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ABSTRACT OF THE DISSERTATION

Random walks on directed graphs and orientations of graphs

by

Sinan Güven Aksoy

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Fan Chung Graham, Chair

We apply spectral theory to study random processes involving directed

graphs. In the first half of this thesis, we examine random walks on directed graphs,

which is rooted in the study of non-reversible Markov chains. We prove bounds on

key spectral invariants which play a role in bounding the rate of convergence of the

walk and capture isoperimetric properties of the directed graph. We first focus on

the principal ratio, which is the ratio of maximum to minimum values of vertices

in the stationary distribution. Improving upon previous bounds, we give a sharp

upper bound for this ratio over all strongly connected graphs on n vertices. We

characterize all graphs achieving the upper bound and give explicit constructions

for these extremal graphs. Additionally, we show that under certain conditions,

the principal ratio is tightly bounded. We then turn our attention to the first

xii



nontrivial Laplacian eigenvalue of a strongly connected directed graph. We give

a lower bound for this eigenvalue, extending an analogous result for undirected

graphs to the directed case. Our results on the principal ratio imply this lower

bound can be factorially small in the number of vertices, and we give a construction

having this eigenvalue factorially small.

In the second half, we apply spectral tools to study orientations of graphs.

We focus on counting orientations yielding strongly connected directed graphs,

called strong orientations. Namely, we show that under a mild spectral and min-

imum degree condition, a possibly irregular, sparse graph G has “many” strong

orientations. More precisely, given a graph G on n vertices, orient each edge in

either direction with probability 1/2 independently. We show that if G satisfies

a minimum degree condition of (1 + c1) log2 n and has Cheeger constant at least

c2
log2 log2 n

log2 n
, then the resulting randomly oriented directed graph is strongly con-

nected with high probability. This Cheeger constant bound can be replaced by

an analogous spectral condition via the Cheeger inequality. Additionally, we pro-

vide an explicit construction to show our minimum degree condition is tight while

the Cheeger constant bound is tight up to a log2 log2 n factor. We conclude by

exploring related future work.

xiii



Chapter 1

Introduction

1.1 Notation and Preliminaries

We utilize graph theory and matrix analysis notation that is largely stan-

dard. A graph G = (V,E) is a set of vertices V := V (G) and set of edges E := E(G)

where E ⊆ {{u, v} : u, v ∈ V }. Unless otherwise stated, we assume that G is

simple, meaning that each edge {u, v} ∈ E consists of a pair of distinct vertices

u, v ∈ V , and V is finite. If {u, v} ∈ E, we say u and v are adjacent and sometimes

write u ∼ v. For each u ∈ V (G), the neighborhood of u, denoted by N(u) := NG(u)

is the set of vertices {v : {u, v} ∈ E}. The degree of a vertex, denoted d(u), is

|N(u)|. A walk of length k is a sequence of vertices v0, v1, . . . , vk where {vi, vi+1}
is an edge. If, for all u, v ∈ V , there exists a walk u, . . . , v, then we say G is

connected.

A directed graph D = (V,E) is defined analogously, except that the edge

set E ⊆ {(u, v) : u, v ∈ V } consists of ordered pairs of vertices. That is, a

directed edge from vertex u to v is denoted by (u, v) or u → v, and we say v is

an out-neighbor of u, or u is an in-neighbor of v. Again, we assume D is simple

throughout. For each u ∈ V , the out-neighborhood of u, denoted by N+(u), is

the vertex set {v : (u, v) ∈ E} and the out-degree of u, denoted by d+(u), is

|N+(u)|. Similarly, the in-neighborhood and in-degree of u are denoted by N−(u)

and d−(u) respectively. A walk of length k is a sequence of vertices v0, v1, . . . , vk

where (vi, vi+1) is an edge. If, for all u, v ∈ V , there exists walks u, . . . , v and

1
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v, . . . , u, then we say D is strongly connected.

We will study various matrices associated with graphs. Unless otherwise

stated, all matrices are n × n matrices over the complex numbers C, where n is

the number of vertices in the associated graph. We write 1 to denote a column

vector of ones, I is the identity matrix, and AT and A∗ denote the transpose and

conjugate transpose of matrix A, respectively. We say a matrix A is positive and

write A > 0 if all entries in A are positive. We write eigenvectors as complex-

valued functions on the vertex set V = {1, . . . , n}; hence f(u) denotes entry u of

vector f . For two such complex-valued functions f, g, we let 〈f, g〉 =
∑

x f(x)g(x)

denote the usual inner product. We sometimes write [n] to denote {1, . . . , n}.
Finally, we will utilize standard asymptotic notation: we say a function

f(n) = O(g(n)) if for all sufficiently large values of n there exists a positive constant

c such that |f(n)| ≤ c·|g(n)|; similarly, we write f(n) = Ω(g(n)) if g(n) = O(f(n)),

and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)). Lastly, f(n) =

o(g(n)) if limn→∞
f(n)
g(n)

= 0 and if limn→∞
f(n)
g(n)

= 1, we write f(n) ∼ g(n) or

f(n) = (1 + o(1))g(n).

1.2 Random walks on directed graphs

1.2.1 The transition matrix and stationary distribution

We begin by briefly reviewing some relevant concepts concerning random

walks on graphs. The study of random walks on graphs is more generally rooted in

the study of Markov chains. In what follows, we gear our exposition explicitly to-

wards random walks on directed graphs, although many of the concepts discussed

have natural analogs in the undirected case. As we will see, problems that are

straightforward for undirected graphs often have relatively complicated counter-

parts in the directed case. We assume only basic knowledge of probability theory;

for a general survey on random walks on graphs, see [34].

A discrete-time, finite, time-homogeneous Markov chain is a sequence of

random variables X1, X2, . . . taking values in a finite state space S such that for
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all t, the sequence satisfies the Markov property and time-homogeneity, i.e.

P(Xt+1 = xt+1 | X1 = x1, . . . , Xt = xt) = P(Xt+1 = xt+1 | Xt = xt),

P(Xt+1 = x | Xt = y) = P(Xt = x | Xt−1 = y).

A random walk on a graph G = (V,E) is such a Markov chain X0, X1, . . .

defined by a transition probability matrix P in which entry P (u, v) = P(Xt+1 =

v | Xt = u) for every u, v ∈ V . Letting ft(u) = P(Xt = u) denote the probability

distribution after t steps, P satisfies

ft+1 = ftP,

where ft is viewed as a row vector. Consequently, if f0 denotes any initial proba-

bility distribution, we have

ft = f0P
t.

Unless otherwise stated, we restrict attention to studying simple random

walks on a given directed graph G = (V,E), in which the probability transition

matrix P is given by

P (u, v) =





1
d+(u)

, if (u, v) ∈ E,

0 otherwise.

That is, in a simple random walk, the probability of transitioning from a

vertex to any of its out-neighbors is equally likely. More generally, we note that

every discrete-time, finite Markov chain can be naturally viewed as a random walk

on an appropriately weighted directed graph. Namely, if wuv ≥ 0 denote edge

weights, a general probability transition matrix P can be defined as

P (u, v) =
wuv∑
z wuz

.

A probability distribution function π : V (G)→ R+∪{0} satisfying
∑

v π(v) =

1 is said to be a stationary distribution of a random walk if

πP = π,

where π is viewed as a row vector.
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In the case of undirected graphs, it can be easily shown that π(v) = d(v)∑
u d(u)

is a stationary distribution for a simple random walk on any undirected graph and

is unique if the graph is connected. In general, there is no such closed formula

for the stationary distribution in the directed case; nonetheless, a closed formula

does exist for directed graphs in which the in-degree of each vertex is equal to its

out-degree, called Eulerian directed graphs.

Example 1. Eulerian directed graphs have stationary distribution proportional to

their out-degree sequences, π(v) = d+(v)∑
u d

+(u)
. Consequently, the stationary distribu-

tion of a directed regular graph with in-degrees and out-degrees all equal is given

by the uniform distribution, π = 1/n.

Finding a closed formula for the stationary distribution of certain explicit

families of directed graphs can be non-trivial, often requiring solving a set of re-

currence relations. To illustrate this, we consider a “modified directed binary tree”

example below and sketch steps for obtaining a closed formula for π.

Example 2. Let D be a modified perfect binary tree of height h with vertex set

V (D) = {v1, v2, . . . , v2h+1−1} and edge set:

E(D) = {(vi, v2i), (vi, v2i+1) : 1 ≤ i ≤ 2h − 1} ∪
{(vi, vi+1) : 2h ≤ i ≤ 2h+1 − 2} ∪ {(v2h+1−1, v1)}.

In other words, D is a perfect directed binary tree with a directed path across ver-

tices in the bottom level leading back to the root. See Figure 1.1 for an illustration.

Ultimately, we can obtain a formula for π by analyzing the set of equations

given by xP = x. We sketch the steps below:

• Observe x(2h+1 − 1) = x(1), x(i) = x(j) for all i, j at the same depth, and

x(i) = x(j)
2

if i has depth k < h and j has depth k − 1.

• For leaf vertices at depth h,

x(i+ 1) =
x(2h−1)

2
+ x(i).
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Figure 1.1: Mod. binary tree of height h = 3. The vertices in blue have the

maximum values in ⇡ while the vertex in red has the minimum value in ⇡.

Sketch of proof We compute ⇡ by analyzing the set of equations given by xP = x.

• Observe x(2h+1 � 1) = x(1), x(i) = x(j) for all i, j at the same depth, and

x(i) = x(j)
2

if i has depth k < h and j has depth k � 1.

• For leaf vertices at depth h

x(i + 1) =
x(2h�1)

2
+ x(i).

Setting x(2h�1) = 1, solving the recurrence, letting S =
P

i x(i)

⇡(i) =
1

S
·

8
<
:

2h�j�1 if i is at depth j < h

i�2h+1
2

for 2h  i  2h+1 � 1
=) max ⇡

min ⇡
=

⇡(1)

⇡(2h)
= 2h.

1.2.1 Preliminaries

1.2.2 Perron-Frobenius theory and ergodicity

Two fundamental questions in the study of random walks concern both the

existence and uniqueness of a stationary distribution, as well as convergence to

that distribution. Namely, a random walk is said to be ergodic if for any initial

distribution f , the random walk converges to the unique stationary distribution,

i.e.,

lim
k!1

fP k = �.

Figure 1.1: The directed graph D in Example 2 for h = 3. The blue vertices have
the maximum values in π while the red vertex has the minimum value in π.

• Setting x(2h−1) = 1, solving the above recurrence, and letting S =
∑

i x(i),

we have

π(i) =
1

S
·





2h−j−1 if i is at depth j < h

i−2h+1
2

for 2h ≤ i ≤ 2h+1 − 1
.

In Example 2, the formula we obtained for π implies that the largest entry

of π is 2h times as large as the smallest; that is,

maxi π(i)

mini π(i)
=

π(1)

π(2h)
= 2h.

We remark that, in the undirected case, the closed formula for π ensures

that all entries of the stationary distribution are within a factor of n, the number

of vertices. However, in the directed case, this is not guaranteed. For instance,

[15, Example 4] shows that the entries of the stationary distribution can be expo-

nentially small in n for directed graphs. In general, Chung gives the bound:

Proposition 1 (Chung [15]). For a strongly connected graph G on n vertices, the

stationary distribution π of a random walk on G satisfies:

max
i∈V (G)

π(i) ≤ kD min
j∈V (G)

π(j),

where k is the maximum out-degree and D is the diameter of G.

Below, we sketch our own proof of this fact.
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Proof. Since (PD)i,j ≥ 1
kD

, we have

π(i) · 1

kD
≤ π(i)(PD)i,j

≤
∑

k∈V (G)

π(k)(PD)k,j

= (πPD)j = π(j).

Thus, for all i, j ∈ V (G), we have:

π(i) · 1

kD
≤ π(j).

As we will explain further in Section 1.3.3, the extreme values of the station-

ary distribution play an important role in controlling the behavior of the random

walk.

1.2.2 Perron-Frobenius theory and ergodicity

Two fundamental questions in the study of random walks concern the ex-

istence and uniqueness of a stationary distribution, as well as convergence to that

distribution. Namely, a random walk is said to be ergodic if for any initial dis-

tribution f , the random walk converges to the unique stationary distribution π,

i.e.,

lim
k→∞

fP k = π.

For undirected graphs, the spectral decomposition of P shows a random walk is

ergodic if and only if the graph is connected and non-bipartite (see [3] for fur-

ther details). However, for directed graphs, no such closed formula exists for

the stationary distribution and a more nuanced ergodicity criterion is required.

The Perron-Frobenius theorem for non-negative matrices plays a central role in

establishing conditions for ergodicity, as well as the existence of the stationary

distribution.

Theorem 1 (Perron-Frobenius Theorem [25, 27]). Let A be non-negative matrix

that is irreducible, i.e (I + |A|)n−1 > 0, with spectral radius ρ(A). Then
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(a) ρ(A) > 0.

(b) ρ(A) is an algebraically (and hence geometrically) simple eigenvalue of A.

(c) There are positive vectors x and y such that Ax = ρ(A)x and yTA = ρ(A)yT .

From the definition of the probability transition matrix P , it is easy to see

that (P k)u,v > 0 if and only if there exists a path of length k from u to v; hence

strongly connected directed graphs have irreducible probability transition matrices.

Furthermore, since
∑

v P (u, v) = 1 for each u ∈ V of a strongly connected directed

graph, ρ(P ) ≤ 1 and

P1 = 1,

and thus the all ones vector 1 is trivially the (right) Perron eigenvector associated

with eigenvalue 1 = ρ(P ). By the Perron-Frobenius theorem, there exists a left

(row) eigenvector φ with positive entries such that

φP = φ.

We may scale φ so that
∑

u φ(u) = 1, in which case φ is the (unique)

stationary distribution which we refer to as the Perron vector. However, as the

following simple example shows, existence of the Perron vector for strongly con-

nected directed graphs does not guarantee ergodicity:

Example 3. Labeling the vertices of a directed cycle V = {1, 2, 3}, let ei be the

probability distribution which places weight 1 on vertex i and 0 on all other vertices.

Then

eiP
k = ei+k,

where the indices are taken modulo 3.

Thus, we see that while a simple random walk on an undirected cycle of

length 3 is ergodic, a simple random walk on a directed cycle of length 3 is not.

In the above example, P k oscillates between 3 transition matrices, making conver-

gence to the stationary distribution impossible for other initial distributions. The

period of this random walk is 3. In general, the period of a strongly connected
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directed graph is the number of eigenvalues of P with modulus 1; directed graphs

with period 1 are aperiodic. In the language of directed graphs, the period is the

greatest common divisor of the lengths of all its directed cycles. Having defined

aperiodicity and irreducibility, we can now state the ergodicity criterion for random

walks on directed graphs.

Theorem 2 (Ergodicity for random walks on directed graphs). A random walk on

a directed graph G is ergodic if and only if G is strongly connected and aperiodic.

For completeness, we sketch an elementary proof of Theorem 2, which fol-

lows mainly from the following lemma:

Lemma 1. Let P be the probability transition matrix for a strongly connected,

aperiodic directed graph G with associated Perron vector φ. Then lim
k→∞

P k = 1φT .

Proof. To simplify notation, let Υ = 1φT . Since P1 = 1, P Tφ = φ, and 1Tφ = 1,

it follows immediately that, for m = 1, 2, . . .

Υm = Υ, (1.1)

PmΥ = ΥPm = Υ. (1.2)

And, by induction, it easily follows from Eqs. (1.1) and (1.2) that

(P −Υ)m = (Pm −Υ). (1.3)

Now, note that if (P − Υ)x = λx for x 6= 0, then by Eqs. (1.1) and (1.2),

we have Υ(P −Υ)x = 0 so Υx = 0, and thus (P −Υ)x = Px = λx. Hence, if (1, x)

is an eigenpair for (P − Υ) then (1, x) is also an eigenpair for P . But, since P

is an irreducible, non-negative matrix, the Perron-Frobenius theorem guarantees

that ρ(P ) = 1 has algebraic (and thus geometric) multiplicity of 1, so it must be

that x = c · 1 for some scalar c 6= 0. This yields the contradiction

x = (P −Υ)x = (P −Υ)c · 1 = c · 1− c · 1 = 0,

so 1 cannot be an eigenvalue of (P−Υ). Ordering the eigenvalues of P by increasing

modulus, |λ1| ≤ · · · ≤ |λn−1| ≤ |λn| = 1, either ρ(P −Υ) = 0 or ρ(P −Υ) = |λn−1|.
In either case,

ρ(P −Υ) ≤ |λn−1| < 1.
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Finally, since for any matrix A ∈Mn, limn→∞(A) = 0 if and only if ρ(A) <

1, combining the above with Eqn. (1.3) implies that as m→∞,

(P −Υ)m = (Pm −Υ)→ 0.

Proof of Theorem 2. The sufficiency of the condition follows immediately from

Lemma 1. If for any initial distribution f , limk→∞ fP k = π, where π > 0 de-

notes the stationary distribution, then P k > 0 for some k. Hence G must be

strongly connected. Furthermore, by [27, Theorem 8.5.2], if A is a non-negative

matrix with Ak > 0 for some k, then ρ(A) is an algebraically simple eigenvalue; so

G is aperiodic as well.

Lastly, we note that the ergodicity criterion of irreducibility and aperiodicty

can be characterized in matrix theoretic language by primitivity. A non-negative

square matrix A is said to be primitive if there exists some positive natural number

k such that Ak > 0.

Remark 1. A directed graph G is irreducible and aperiodic if and only if the

probability transition matrix P of G is primitive.

1.3 Spectral graph theory

1.3.1 The normalized Laplacian

In addition to the probability transition matrix P , an important object

of study in our analysis of random walks on directed graphs will be the directed

normalized Laplacian matrix, as defined by Chung. Namely,

Definition 1 (Chung [15]). Let G be an n-vertex, strongly connected directed graph

with associated probability transition matrix P . The normalized Laplacian L of G

is

I − Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
,

where Φ = diag(φ(1), . . . , φ(n)) is a diagonal matrix with the entries of the Perron

vector φ of P on the diagonal.
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By construction, note that L∗ = L and hence L is Hermitian. If one takes

G to be an undirected graph in the above definition, then applying the closed

formula for the stationary distribution in the undirected case φ(u) = d(u)∑
v d(v)

and

examining L entry-wise, one can see the directed normalized Laplacian reduces to

the undirected normalized Laplacian, defined by

L = I −D−1/2AD−1/2,

where D = diag(d(1), . . . , d(n)) denotes the diagonal degree matrix and A denotes

the adjacency matrix. We write the eigenvalues of L in increasing order, where

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

A useful tool in analyzing both the undirected and directed normalized

Laplacian is the variational characterization of eigenvalues given by the Courant-

Fischer theorem. In particular, the Courant-Fischer theorem characterizes the

eigenvalues of a Hermitian matrix as solutions to optimization problems over sub-

spaces S of fixed dimension.

Theorem 3 (Courant-Fischer [27]). For any Hermitian A ∈ Cn×n with eigenvalues

λ0 ≤ λ1 ≤ · · · ≤ λn−1,

λi = min
S

dim(S)=i+1


max

x∈S
x 6=0

〈x,Ax〉
〈x, x〉


 ,

λi = max
S

dim(S)=n−i


min

x∈S
x 6=0

〈x,Ax〉
〈x, x〉


 .

As a notable consequence of the Courant-Fischer theorem, the Rayleigh-

Ritz theorem provides a simple expression for the largest and smallest eigenvalues.

Theorem 4 (Rayleigh-Ritz [27]). For any Hermitian A ∈ Cn×n with eigenvalues

λ0 ≤ λ1 ≤ · · · ≤ λn−1,

λ0 = min
x 6=0

〈x,Ax〉
〈x, x〉 ,

λn−1 = max
x 6=0

〈x,Ax〉
〈x, x〉 .
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In the case of the normalized Laplacian, it is easy to see its eigenvalues are

non-negative and λ0 = 0 since LΦ1/21 = 0. We note that R(A, x) := 〈x,Ax〉
〈x,x〉 = x∗Ax

x∗x

is sometimes referred to as the Rayleigh quotient. Applying the Courant-Fischer

theorem and rewriting the Rayleigh quotient for the directed normalized Laplacian

L, Chung [15] showed that

λ1 = inf
g∈Cn

〈g,1Φ1/2〉=0

〈g,Lg〉
〈g, g〉

= inf
f∈Cn∑

u f(u)φ(u)=0

∑

u→v
|f(u)− f(v)|2φ(u)P (u, v)

2
∑

v

|f(v)|2φ(v)
,

where g = fΦ1/2. In the undirected case, this characterization of λ1 can be written

as

λ1 = inf
f∈Cn∑

u f(u)d(u)=0

∑

u∼v
(f(u)− f(v))2

∑

v

f(v)2d(v)
.

This first non-trivial eigenvalue, λ1, is a key parameter for controlling a

plethora of graph properties. In Section 1.3.3, we will see how λ1 can be used to

bound the rate of convergence of an ergodic random walk. Below, we describe the

role of λ1 in capturing isoperimetric properties of the graph.

1.3.2 Circulations and the Cheeger inequality

The classical isoperimetric problem in geometry concerns finding the maxi-

mum area-enclosing curve, among all curves of a given length. Isoperimetric prob-

lems in graphs can be framed analogously by measuring the “boundary” of a subset

of vertices, taken to be the edges leaving that set, relative to some notion of the

“size” of that set. In the case of undirected graphs, a notion of vertex subset size

is given by volume, defined by

vol(S) =
∑

v

d(v),
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for some S ⊆ V (G). However, there is no such natural notion of vertex degree or

volume in the directed case, as vertices in a directed graph have both in-degree and

out-degree, which may differ. Nonetheless, one can define a measure of volume in

the directed case by using the stationary distribution of a random walk. This is

achieved by considering a special type of flow on the edges of the directed graph

called a circulation. More precisely, let F : E(G) → R+ ∪ {0} denote a function

assigning a non-negative value F (u, v) to each edge (u, v) in a directed graph G.

We call F a circulation if at each vertex v,
∑

u
u∈N−(v)

F (u, v) =
∑

w
w∈N+(v)

F (v, w).

As shown in [15], one can associate a circulation Fφ with the left Perron

vector φ of a probability transition matrix P by defining, for each (u, v) ∈ E(G),

Fφ(u, v) = φ(u)P (u, v),

since
∑

u
u∈N−(v)

Fφ(u, v) =
∑

u
u∈N−(v)

φ(u)P (u, v)

= φ(v)

= φ(v)
∑

w
w∈N+(v)

1

d+(v)

=
∑

w
w∈N+(v)

φ(v)P (v, w) =
∑

w
w∈N+(v)

Fφ(v, w).

Accordingly, the flow at a vertex v is given by its value in the stationary

distribution, since

φ(v) =
∑

u
u∈N−(v)

Fφ(u, v) =
∑

w
w∈N+(v)

Fφ(v, w).

We can now define the size of a vertex subset and its boundary using this

notion of circulation. For a directed graph G, the out-boundary of S ⊆ V (G),

denoted ∂S, consists of all edges (u, v) with u ∈ S and v 6∈ S. We define:

F (∂S) =
∑

u∈S,v 6∈S
F (u, v),
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F (S) =
∑

v∈S

∑

u∈N−(v)

F (u, v).

The Cheeger ratio h(S) of a subset S ∈ V (G) is

h(S) =
Fφ(∂S)

min{Fφ(S), Fφ(S)} .

and the Cheeger constant of a directed graph G is h(G) = minS⊆V (G) h(S). We

note that the Cheeger constant is sometimes called isoperimetric constant or con-

ductance. While computing the Cheeger constant for general families of graphs

is not feasible in practice, the Cheeger inequality shows that normalized Lapla-

cian eigenvalues can provide an estimate of h(G). Namely, in the case of directed

graphs, Chung proved:

Theorem 5 (Directed Cheeger inequality [15]). If G is a directed graph with nor-

malized Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 and Cheeger constant

h(G), then
h2(G)

2
≤ λ1 ≤ 2h(G).

We note that, in the undirected case, the Cheeger ratio of a subset is

h(S) =
e(S, S)

min(vol(S), vol(S))
,

where e(S, S) denotes the number of edges between S and its complement S.

Similarly, the (undirected) Cheeger constant is then the minimum of this Cheeger

ratio over all vertex subsets and an identical statement for the Cheeger inequality

in Theorem 5 holds in the undirected case. We note that the Cheeger inequality for

the adjacency matrix of undirected graphs was first proved by Alon and Milman

[4] and Tanner [49] for regular graphs. For general undirected graphs, see [14]

for a proof of the undirected Cheeger inequality in terms of normalized Laplacian

eigenvalues.

1.3.3 Bounding the rate of convergence

In Section 1.2.2, we reviewed the necessary and sufficient conditions for a

random walk to converge to the unique stationary distribution. For such ergodic
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Markov chains, a subsequent question, which has been the topic of much research

(see [38] for a survey), is to determine how fast the random walks converges to the

stationary distribution. In addressing this question, one can consider a variety of

metrics to measure distance between the current and stationary distribution. For

example, one might consider convergence in the standard Euclidean L2 norm,

∆L2(s) = max
f
‖fP s − π‖.

However, this metric may be considered weak for our purposes since it doesn’t re-

quire convergence of the distribution at every vertex of the graph. A stronger, and

perhaps more popular notion of convergence is given by total variation distance.

Namely, the total variation distance ∆TV after s steps is

∆TV (s) = max
A⊆V (G)

max
y∈V (G)

∣∣∣∣∣
∑

x∈A
(P s(y, x)− π(x))

∣∣∣∣∣

=
1

2
max
y∈V (G)

∑

x∈V (G)

|P s(y, x)− π(x)| .

The χ-square distance is

∆′(s) = max
y∈V (G)


 ∑

x∈V (G)

(P s(y, x)− φ(x))2

φ(x)




1/2

,

and lastly, the relative pointwise distance simply determines the largest relative

distance between the two distribution, i.e.

∆(s) = max
x,y

|P s(x, y)− φ(y)|
φ(y)

.

We note that convergence bounds for one of the above metrics may imply

bounds for another; for example, since

∆TV (s) ≤ 1

2
∆′(s),

we have that convergence upper bounds for ∆′(s) imply bounds for ∆TV (s) as well.

See [14] for further comparison of these metrics.

In deriving convergence bounds for the directed case, Chung considers a

modified random walk called a lazy random walk. At each step in a lazy random
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walk, we stay at the current vertex with probability 1/2, and with probability 1/2,

move to an out-neighbor of that vertex chosen uniformly at random. In other

words, the transition probability matrix of a lazy random walk is

P =
I + P

2
,

where P is the probability transition matrix of the simple random walk. Thus,

one can think of a lazy random walk as a weighted random walk in which we add

loops to each vertex. Consequently, a lazy random walk is always aperiodic, and

hence, lazy random walks are ergodic for strongly connected directed graphs. In

this way, lazy random walks allow us to relax the assumption of aperiodicity while

preserving key spectral properties of P . Namely, note that the Perron vector φ of

P is a left eigenvector of P associated with eigenvalue 1. Furthermore, if P has

left eigenvalues

ρ0, ρ1, . . . , ρn−1 = 1,

then P has left eigenvalues 1+ρi
2

, where |1+ρi
2
| < 1 since P is aperiodic. Chung [15]

proved the following theorem establishing an upper bound on the convergence rate

for a lazy random walk on a directed graph.

Theorem 6 (Chung [15]). Let G be a strongly connected directed graph on n

vertices with normalized Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 and

Perron vector φ. Then after at most s ≥ 2λ−1
1 (− log(minv φ(v)) + 2c) steps of a

lazy random walk on G, we have

∆′(s) ≤ e−c.

Here, we see that normalized Laplacian eigenvalues and extreme values of

φ play an important role in bounding the rate of convergence of random walks

on directed graphs. This theorem serves as part of our motivation for studying

the principal ratio, maxu φ(u)
minu φ(u)

, of the stationary distribution φ, as well as λ1 of the

normalized Laplacian L, in Chapter 2.
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1.4 Strong orientations of graphs

1.4.1 Preliminaries and Robbins’ Theorem

The second half of this thesis concerns orientations of graphs, which natu-

rally define a family of directed graphs called oriented graphs. Let G be a simple

(undirected) graph with vertex set V (G) and edge set E(G). An orientation func-

tion of G is a sign-valued function σ on {(u, v), (v, u) : {u, v} ∈ E(G)} that defines

whether edge {u, v} ∈ E(G) is oriented from u to v (in which case we write u→ v)

or vice versa. More precisely,

σ(u, v) =





1 if u→ v

−1 if v → u
.

The resulting directed graph D with vertex set V (D) = V (G) and edge

set E(D) = {(u, v) : σ(u, v) = 1} is called an orientation of G. A directed graph

is called an oriented graph if it is an orientation of a simple graph. Equivalently,

oriented graphs are directed graphs without 2-cycles.

Our study of orientations of graphs will focus on the fundamental directed

graph property of strong connectedness. We call a strongly connected orientation a

strong orientation. A natural starting question in the study of strong orientations

is characterizing existence of a strong orientation for a given undirected graph G.

Here, the elegant Robbins’ Theorem provides a simple criterion based on edge

connectivity. Recalling that a connected graph G = (V,E) is k-edge connected if

G remains connected whenever fewer than k edges are removed from E, Robbins

proved:

Theorem 7 (Robbins’ Theorem [46]). A graph G admits a strong orientation if

and only if G is 2-edge connected.

Alternatively stated, Robbins’ Theorem states that graphs admitting strong

orientations are precisely connected, bridgeless graphs, where a bridge is an edge

whose removal increases the number of connected components of the graph. We

remark that the necessity of the condition in Robbins’ theorem is trivial, as it is
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clear that no orientation of a disconnected graph nor a graph featuring a bridge

edge can yield a strongly connected directed graph. To prove the condition is

sufficient, Robbins utilizes a tool called ear decomposition; we refer the reader to

[46] for details. We note Robbins’ theorem has since been extended to the broader

setting of mixed multigraphs (see [6]), which are graphs whose edge sets E are in

fact multisets, allowing for multiple edges between a pair of vertices, as well as

both directed and undirected edges.

With regard to constructing strong orientations, linear-time algorithms

which detect strong orientations and construct them whenever possible are known

[20]. In particular, given an undirected graph G, a classic algorithm proceeds

by depth-first search, orienting edges in the depth-first search tree from ancestor

to descendant and, after all vertices have been uncovered, orienting any remain-

ing edges from descendant to ancestor. See [47] for a proof that this orientation

yields a strongly connected directed graph, provided the input graph is 2-edge

connected. Just as Robbins’ theorem has since been generalized to mixed multi-

graphs by Boesch and Tindell [6], Chung, Garey, and Tarjan [20] gave a linear-time

algorithm that constructs strong orientations in mixed multigraphs.

1.4.2 Counting strong orientations

Although the existence and construction of strong orientations are well-

understood topics, the task of counting strong orientations is less straightforward.

The topic of counting strong orientations enjoys a multidisciplinary history. In fact,

interest in counting strong orientations arose naturally in statistical mechanics in

studying ice-type models used to study crystals with hydrogen bonds [33]. In these

models, oxygen atoms form a square lattice, and the hydrogen ion between each

pair of oxygen atoms is located in one of two positions: “close” or “far”. This

configuration of hydrogen ions is said to satisfy Pauling’s Ice Rule [43]. Roughly

speaking, this states that of the four ions surrounding each atom, two are close and

two are far, on their respective bond. In this way, one can naturally associate an

Eulerian orientation (i.e. a strong orientation for which each vertex has equal in

and out-degree) of a 4-regular graph with an allowable configuration of hydrogen
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ions. See Figure 1.2 for an example of this association.

Figure 1.2: Left: Hydrogen ion (squares) configuration satisfying the ice rule,
where the intersection of two lines represents an oxygen atom. Right: the corre-
sponding graph orientation, where vertices represent oxygen atoms, and edge (u, v)
denotes that the hydrogen ion is close to v and far from u.

The total number of possible configurations, first determined by Lieb [33],

is a key parameter in studying the residual entropy S of the model, defined as

S = kB ln(Z),

where kB denotes Boltzmann’s constant, Z denotes the allowable configurations.

More generally, the problem of counting the number of Eulerian and strong

orientations of a given graph G is a special case of evaluating its Tutte polynomial,

T (G;x, y), defined recursively by

T (G;x, y) =





x · T (G\e;x, y) if e is a bridge

y · T (G/e;x, y) if e is a loop

1 if E(G) = ∅

T (G\e;x, y) + T (G/e;x, y) otherwise

,

where for e ∈ E(G), we let G\e denote the subgraph obtained from G by deleting

the edge and G/e denote the subgraph obtained by contracting e (i.e., deleting

e = {u, v} and replacing u, v ∈ V with a single vertex w). The Tutte polynomial

captures a number of graph properties and also specializes to other well-known

polynomials (e.g. along xy = 1, T (G;x, y) specializes to the Jones polynomial of

an alternating knot associated with graph G [50]). We refer the reader to [22, 53]

for more discussion of the Tutte polynomial; here, we simply note that the number
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of Eulerian orientations of a given graph G is T (G; 0,−2) and number of strong

orientations is T (G; 0, 2) [51]. In general, counting Eulerian and strong orientations

has been shown to be #P -hard (see [36] and [52] respectively), even for planar,

bipartite graphs.

Instead of exact counting, other researchers have approximated the number

of strong orientations for particular classes of graphs. In the case of α-dense graphs

G (i.e. graphs with minimum degree δ(G) > αn for 0 < α < 1), Alon, Frieze, and

Welsh [39] developed a fully polynomial randomized approximation scheme for

counting strong orientations. That is, they provided an algorithm that will, to an

arbitrary degree of accuracy, approximate the number of strong orientations of G

in polynomial time, depending on the size of G and the desired degree of accuracy.

Nonetheless, the α-density assumption precludes sparse graphs from this scheme.

In Chapter 3, we will show how eigenvalues can reveal information about

the number of strong orientations of a graph, even for possibly sparse, irregular

graphs. Below, we give a complete overview of the remainder of this thesis.

1.5 Overview of main results

The remainder of this thesis is divided into three chapters, all of which

concern problems in the spectral theory of directed graphs. In Chapter 2, we

examine the stationary distribution of random walks on directed graphs, as well

as λ1 of the normalized Laplacian. In particular, we focus on the principal ratio,

which is the ratio of maximum to minimum values of vertices in the stationary

distribution. Here, our main results are:

• We give a sharp upper bound (Theorem 9, p. 24) for the principal ratio

over all strongly connected graphs on n vertices. We explicitly compute the

maximum principal ratio, characterize all graphs achieving this upper bound,

and give explicit constructions for the extremal graphs (Theorem 10, p. 24).

• We show that under certain conditions, the principal ratio is tightly bounded

(Theorem 11, p. 45). We also provide counterexamples (Examples 4 − 5,
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pp. 45 − 47) to show the principal ratio cannot be tightly bounded under

weaker conditions.

• We prove a lower bound (Theorem 15, p. 50) on λ1, the first nontrivial

eigenvalue of the normalized Laplacian, for a strongly connected directed

graph. We also give a construction (Example 6, p. 53) with λ1 factorially

small in the number of vertices.

In Chapter 3, we examine how eigenvalue conditions on an undirected

graph may guarantee strong connectedness properties of orientations of that graph.

Namely, we establish mild conditions under which a possibly irregular, sparse graph

G has “many” strong orientations. Here, our main results are:

• We show that under an isoperimetric condition and minimum degree require-

ment, a random orientation of G is strongly connected, with high probability

(Theorem 16, p. 58). We show each condition is insufficient on its own in

guaranteeing the result, and prove the minimum degree condition is tight

(Proposition 16, p. 61), while the isoperimetric condition is almost tight

(Proposition 17, p. 63).

• We prove a related, but somewhat weaker version of the above theorem,

replacing the isoperimetric condition with a condition on the spectral gap of

the normalized Laplacian (Theorem 17, p. 75).

In Chapter 4, we conclude and explore a series of related, open problems for

each result in this thesis. As partial progress towards Question 1, we compute the

maximum hitting time between vertices in principal ratio extremal graphs (Claim

2, p. 85).



Chapter 2

Extreme values of the stationary

distribution of random walks on

directed graphs

2.1 Introduction

In the first part of this chapter, we study extreme values of the stationary

distribution π of a random walk on a directed graph. In particular, we focus on

the principal ratio γ(D) of a strongly connected directed graph D, defined as

γ(D) =
maxu π(u)

minu π(u)
.

As we saw in Section 1.3.3, the principal ratio has immediate implications for the

central question of bounding the rate of convergence of a random walk on a directed

graph, where extreme values of the stationary distribution play an important role

in addition to eigenvalues (see Theorem 6). Another application of the stationary

distribution and its principal ratio is in the algorithmic design and analysis of ver-

tex ranking, particularly in so-called “PageRank” algorithms for directed graphs

(since many real-world information networks are indeed directed graphs). PageR-

ank algorithms [45] use a variation of random walks with an additional diffusion

parameter and therefore it is not surprising that the effectiveness of the algorithm

depends on the principal ratio. In addition to its role in Page Rank algorithmic

21
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analysis and bounding the rate of converge in random walks, it has been noted (see

[21]) that the principal ratio can be interpreted as a numerical metric for graph

irregularity since it achieves its minimum of 1 for regular graphs.

The study of the principal ratio of the stationary distribution has a rich

history. We note that the stationary distribution is a special case of the Perron

vector φ, which is the unique positive eigenvector associated with the largest eigen-

value of an irreducible matrix with non-negative entries. There is a large literature

examining the Perron vector of the adjacency matrix of undirected graphs, which

has been studied by Cioabă and Gregory [21], Tait and Tobin [48], Papendieck and

Recht [42], Zhao and Hong [55], and Zhang [54].

For directed graphs, some relevant prior results are from matrix analysis.

Latham [31], Minc [37], and Ostrowski [32] studied the Perron vector of a (not

necessarily symmetric) matrix with positive entries, which can be used to study

matrices associated with complete, weighted directed graphs. However, for our

case, a more relevant prior result comes from Lynn and Timlake, who gave bounds

of the principal ratio for primitive matrices with non-negative entries (see Corollary

2.1.1 in [35]). As we noted earlier, since ergodic random walks on directed graphs

have primitive transition probability matrices, their result applies naturally in our

setting.

Theorem 8 (Lynn, Timlake [35]). If A is an n× n nonnegative matrix satisfying

Ak > 0 for some positive integer k and with Perron vector x (i.e. right eigenvector

associated with the largest eigenvalue in modulus), then

max
1≤i≤n

xi

min
1≤i≤n

xi
≤ λk −mk−1(r −m)

mk
,

where m = min
aij>0

aij, k is any integer such that Ak > 0, r = min
1≤i≤n

∑n
j=1 aij, and λ

is the largest eigenvalue in absolute value.

This upper bound depends on the matrix A. To get an upper bound for the

principal ratio of a strongly connected, aperiodic directed graph D, we can apply

the above theorem with A = P T , where P T is the transpose of P , the probability

transition matrix of a simple random walk on D. Namely, if we wish to get an
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absolute upper bound for all strongly connected, aperiodic directed graphs, we

take λ = 1, m = 1
n−1

, k ≥ n − 1, and 1
n−1
≤ r ≤ n. We get the following upper

bound
maxu φ(u)

minu φ(u)
≤ K,

where

K ≥ (n− 1)n−1

(
1− 1

(n− 1)n−1
(r − 1

n−1
)

)

= (1 + o(1))(n− 1)n−1.

Another prior bound on the principal ratio of directed graphs was given by

Chung in [15]. In particular, the aforementioned Proposition 1 gives a bound on

the principal ratio of a strongly connected directed graph that depends on certain

graph parameters. Namely,

γ(D) ≤ kd,

where d is the diameter of the graph D and k is the maximum out-degree. Since

d, k ≤ n− 1, this bound also implies absolute upper bound on the principal ratio

of (n− 1)n−1 over all strongly connected directed graphs on n vertices.

In this chapter, we provide an exact expression for the maximum of the

principal ratio over all strongly connected directed graphs on n vertices. Asymp-

totically, our bound is

γ(n) = max
D:|V (D)|=n

γ(D) =

(
2

3
+ o(1)

)
(n− 1)!.

Furthermore, we show that this bound is achieved by precisely three directed

graphs, up to isomorphism.

In addition to an extremal analysis of the principal ratio, we also examine

conditions under which the principal ratio can be tightly bounded. Namely, we

show that if a directed graph satisfies a degree condition and a discrepancy condi-

tion, then its principal ratio can be tightly bounded in the sense that it is “close”

to the minimum possible value of 1. Furthermore, we provide counterexamples

that show the principal ratio cannot be tightly bounded if either the discrepancy

condition or degree conditions are removed.
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2.2 A sharp upper bound on the principal ratio

We will prove an upper bound on the principal ratio in terms of n that is

best possible. For n ≥ 3, we define a function

γ(n) = max{γ(D) : D is a strongly connected n-vertex directed graph}.

Our main theorem is as follows.

Theorem 9. The maximum of the principal ratio of the stationary distribution

over all strongly connected directed graphs on n vertices is asymptotically

γ(n) =

(
2

3
+ o(1)

)
(n− 1)!.

This theorem is an immediate consequence of the following theorem which

we prove.

Theorem 10. The maximum of the principal ratio of the stationary distribution

over all strongly connected directed graphs on n ≥ 3 vertices is exactly

γ(n) =
2

3

(
n

n− 1
+

1

(n− 1)!

n−3∑

i=1

i!

)
(n− 1)!.

Moreover, γ(n) is attained only by directed graphs D1, D2, and D3 defined

as follows: D1, D2, and D3 have vertex set {v1, v2, . . . , vn} and edge set

E(D) = {(vi, vi+1) : 1 ≤ i ≤ n− 1)} ∪ {(vj, vi) : 1 ≤ i < j ≤ n− 1} ∪ S(D),

where

S(D) =





{(vn, v1)} for D = D1,

{(vn, v2)} for D = D2,

{(vn, v1), (vn, v2)} for D = D3.

The case for n = 5 is illustrated in Figure 2.1.

We note that the extremal graphs D1, D2, D3 are not only strongly con-

nected, but also aperiodic. Thus, Theorem 1 still holds if one restricts attention to

stationary distributions of ergodic random walks. We also remark that the graphs
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1 2 3 4 5

D1

1 2 3 4 5

D2

1 2 3 4 5

D3

Figure 1: The three constructions D1, D2, D3 for n = 5.

Remark 1. Note that the extremal graphs D1, D2, D3 are not only strongly connected, but
also aperiodic. Thus, Theorem 1 still holds if one restricts attention to stationary distributions
of ergodic random walks.

The proof of Theorem 2 follows from a sequence of propositions. The basic idea is as
follows: we first show that if the principal ratio of a directed graph achieves the bound in
Theorem 2, then the graph must necessarily satisfy a set of properties, which are described
in Section 4. In Sections 5 � 6, we identify families of graphs that satisfy these properties,
but nonetheless are not extremal. Namely, given an arbitrary member from this family, we
describe how one can modify this graph by adding or deleting edges so that its principal
ratio strictly increases. In Section 7, we apply these propositions to show that unless a given
graph is one of three graphs, it can be modified to increase its principal ratio. Finally, after
establishing that all three of these extremal graphs indeed have the same principal ratio, we
finish the proof and we explicitly compute the stationary distribution of one of these extremal
graphs.

Remark 2. Note that the graphs D1 and D2 are proper subgraphs of D3. While all three
graphs have di↵erent stationary distributions, their principal ratios are nonetheless equal.

4 The structure of the extremal graphs

We assume all directed graphs D are strongly connected. For two vertices u and v, the
distance dist(u, v) is the number of edges in a shortest directed path from u to v. For two
subsets V1, V2, the directed distance dist(V1, V2) from V1 to V2 is defined as min{dist(u, v) :
u 2 V1 and v 2 V2}. For a directed graph D, let � be the (left) eigenvector corresponding to
the eigenvalue 1 for the transition probability matrix P . We define two subsets of V (D) with
respect to � as follows.

Vmax = {v 2 V (D) : max
u2V (D)

�(u) = �(v)}.

Vmin = {v 2 V (D) : min
u2V (D)

�(u) = �(v)}.

We will establish a number of useful facts that relate the ratio of values of vertices of the
Perron vector to the distance between those vertices.

5

Figure 2.1: The three constructions D1, D2, D3 for n = 5.

D1 and D2 are proper subgraphs of D3. While all three graphs have different

stationary distributions, their principal ratios are nonetheless equal.

The proof of Theorem 10 follows from a sequence of propositions. The

basic idea is as follows: we first show that if the principal ratio of a directed graph

achieves the bound in Theorem 10, then the graph must necessarily satisfy a set

of properties, which are described in Section 2.2.1. In Sections 2.2.2 and 2.2.3, we

identify families of graphs that satisfy these properties, but nonetheless are not

extremal. Namely, given an arbitrary member from this family, we describe how

one can modify this graph by adding or deleting edges so that its principal ratio

strictly increases. In Section 2.2.4, we apply these propositions to show that unless

a given graph is one of three graphs, it can be modified to increase its principal

ratio. Finally, after establishing that all three of these extremal graphs indeed

have the same principal ratio, we finish the proof and we explicitly compute the

stationary distribution of one of these extremal graphs.

2.2.1 The structure of the extremal graphs

We assume all directed graphs D are strongly connected. For two vertices

u and v, the distance dist(u, v) is the number of edges in a shortest directed path

from u to v. For two subsets V1, V2, the directed distance dist(V1, V2) from V1 to

V2 is defined as min{dist(u, v) : u ∈ V1 and v ∈ V2}. For a directed graph D,

let φ be the (left) eigenvector corresponding to the eigenvalue 1 for the transition
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probability matrix P . We define two subsets of V (D) with respect to φ as follows.

Vmax = {v ∈ V (D) : max
u∈V (D)

φ(u) = φ(v)}.

Vmin = {v ∈ V (D) : min
u∈V (D)

φ(u) = φ(v)}.

We will establish a number of useful facts that relate the ratio of values of

vertices of the Perron vector to the distance between those vertices.

Proposition 2. If v1, v2, . . . , vk is a path of length k − 1 from v1 to vk, then

φ(v1)

φ(vk)
≤

k−1∏

i=1

d+(vi).

Proof. From φP k = φ, we obtain

φ(vk) =
∑

z∈V (D)

φ(z)P k(z, vk) ≥ φ(v1)P k(v1, vk).

By considering the path v1, v2, . . . , vk, we have

P k(v1, vk) ≥
k−1∏

i=1

1

d+(vi)
.

Equivalently, φ(v1)
φ(vk)

≤∏k−1
i=1 d

+(vi).

Proposition 3. If dist(u, v) = k, then

φ(u)

φ(v)
≤ (n− 1)k,

where (n− 1)k = (n− 1) · (n− 2) · · · (n− k) is the falling factorial.

Proof. Let P = {u = v0, v1, . . . , vk = v} be a shortest path from u to v. For all

0 ≤ i ≤ k − 2 and j ≥ i + 2, we note that (vi, vj) is not a directed edge. Since D

has no loops, we have d+(vi) ≤ n − k + i for all 0 ≤ i ≤ k − 1. The proposition

now follows by applying Proposition 2.

Proposition 4. For any directed graph D with n vertices, we have dist(Vmax, Vmin) ≤
n− 2.
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Proof. Suppose dist(Vmax, Vmin) = n − 1 = dist(u, v) for some u ∈ Vmax and v ∈
Vmin. Let P = v1, v2, . . . , vn be a shortest directed path of length n − 1 such that

v1 = u and vn = v. Since P is a shortest directed path, we note v2 is the only

outneighbor of v1. From φP = φ, we obtain

φ(v2) = φ(v1) +
∑

j≥3
vj→v2

φ(vj)

d+(vj)
.

Thus φ(v2) ≥ φ(v1) and so dist(Vmax, Vmin) ≤ dist(v2, vn) ≤ n − 2, which is a

contradiction.

Proposition 5. For a directed graph D with n vertices, if dist(Vmax, Vmin) ≤ n−3,

then γ(D) ≤ 1
2
(n− 1)!.

Proof. Let u ∈ Vmax and v ∈ Vmin such that dist(u, v) = dist(Vmax, Vmin). By

Proposition 3, we have γ(D) ≤ (n− 1)n−3 = 1
2
(n− 1)!.

Proposition 6. Let D be a strongly connected directed graph with vertex set

{v1, . . . , vn}. Assume v1, v2, . . . , vn is a shortest directed path from v1 to vn. Sup-

pose v2 ∈ Vmax and vn ∈ Vmin. If γ(D) > 2
3
(n−1)!, then we have N+(v2) = {v1, v3},

N+(v3) = {v1, v2, v4}, and d+(vi) ≥ b2i
3
c for 4 ≤ i ≤ n− 1.

Proof. Since v1, . . . , vn is a shortest path from v1 to vn, we have d+(vi) ≤ i. To

prove N+(v2) = {v1, v3} and N+(v3) = {v1, v2, v4}, it therefore suffices to show

d+(v2) = 2 and d+(v3) = 3. From φP = φ, we have for 1 ≤ j ≤ n− 1,

φ(vj+1) =
φ(vj)

d+(vj)
+
∑

i≥j+2
vi→vj

φ(vi)

d+(vi)
≥ φ(vj)

d+(vj)
≥ φ(vj)

j
.

If d+(v2) = 1, then applying the above bound we have φ(vn) ≥ φ(v2)
(n−1)...4·3 ,

yielding the contradiction γ(D) ≤ 1
2
(n−1)!. Similarly, if d+(v3) ≤ 2, or if d+(vi) <

b2i
3
c for some i where 4 ≤ i ≤ n − 1, then applying the above bound yields

γ(D) ≤ 2
3
(n− 1)!.
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Proposition 7. Let D be a strongly connected directed graph with vertex set

{v1, v2, . . . , vn}. Assume v2, . . . , vn is a shortest directed path from v2 to vn, where

v2 ∈ Vmax and vn ∈ Vmin such that dist(Vmax, Vmin) = n − 2. If γ(D) > 2
3
(n − 1)!,

then we have (v1, v2), (v2, v1) ∈ E(D) and v2 is the only out-neighbor of v1.

Proof. We first show (v2, v1) must be an edge. Suppose not. Then v3 will be the

only outneighbor of v2. The equation φP = φ gives

φ(v3) = φ(v2) +
∑

j≥4
vj→v3

φ(vj)

d+(vj)
.

Therefore, φ(v3) ≥ φ(v2) which yields that v3 ∈ Vmax and dist(Vmax, Vmin) ≤ n− 3.

By Proposition 5, we have γ(D) ≤ 1
2
(n − 1)! which is a contradiction. Therefore,

(v2, v1) is an edge.

Next, we will show N+(v1) = {v2}. Since we assume v2, . . . , vn is a short-

est path from v2 to vn, we have N+(v2) = {v1, v3} and N+(v1) ⊆ {v2, v3, v4}.
Moreover, we have d+(vi) ≤ i for 3 ≤ i ≤ n as N+(vi) ⊆ {v1, . . . , vi−1} ∪ {vi+1}.
Lastly, we note that from φP = φ, we have φ(v1) ≥ 1

2
φ(v2). Assume v4 ∈ N+(v1).

Then by considering directed paths v1, v4, . . . , vn and v2, v3, . . . , vn and applying

Proposition 2, we have

φ(vn) ≥ φ(v2)

d+(v2) . . . d+(vn−1)
+

φ(v1)

d+(v1) · d+(v4) . . . d+(vn−1)

≥ φ(v2)

(n− 1)!
+

φ(v1)

(n− 1)n−3

≥ 2φ(v2)

(n− 1)!
,

yielding the contradiction γ(D) = φ(v2)
φ(vn)

≤ 1
2
(n − 1)!. So, N+(v1) ⊆ {v2, v3}.

Assume v3 ∈ N+(v1). Again, by considering directed paths v1, v3, . . . , vn and

v2, v3, . . . , vn and applying Proposition 2, we similarly obtain

φ(vn) ≥ φ(v2)

d+(v2) . . . d+(vn−1)
+

φ(v1)

d+(v1) · d+(v3) . . . d+(vn−1)

≥ φ(v2)

(n− 1)!
+

φ(v1)

(n− 1)n−2

≥ 3φ(v2)

2(n− 1)!
,
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yielding the contradiction γ(D) = φ(v2)
φ(vn)

≤ 2
3
(n− 1)!. Thus v3 6∈ N+(v1) and since

D is strongly connected, N+(v1) 6= ∅. Therefore, N+(v1) = {v2}.

2.2.2 Adding edges to increase the principal ratio

Based on Propositions 1-6, we consider the definition of the following family

of graphs. An extremal graph must satisfy (i)-(iv) in the definition below.

Definition 2. For each n, let Dn be a family of directed graphs where each D ∈ Dn
on vertex set {v1, . . . , vn} satisfies the following properties:

(i) The shortest path from v1 to vn is of length n−1 and is denoted by v1, v2, . . . , vn.

(ii) For i ∈ {2, 3}, d+(vi) = i.

(iii) For each 4 ≤ i ≤ n− 1, we have d+(vi) ≥ b2i
3
c.

(iv) v2 ∈ Vmax, vn ∈ Vmin, and dist(Vmax, Vmin) = dist(v2, vn) = n− 2.

(v) There exist i and j such that (vj, vi) is not an edge where 4 ≤ j ≤ n− 1 and

1 ≤ i ≤ j − 1.

For each D ∈ Dn, we now define an associated graph D+ identical to D

except for the addition of a single edge.

Definition 3. For a given D ∈ Dn, let 4 ≤ t ≤ n denote the smallest integer and

s < t the largest integer such that (vt, vs) is not an edge of D. Define D+ as the

directed graph with the same vertex set as D and with edge set E(D) ∪ {(vt, vs)},
as illustrated in Figure 2.2.

For a given D ∈ Dn, we wish to compare the principal ratios of D and D+.

In order to do so, we must establish some tools used to compare their stationary

distributions. First, the following proposition provides a useful way to express

entries of the Perron vector as a multiple of a single entry.
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v1 v2 vs vt vn�1 vn. . . . . . . . .

D+

v1 v2 vs vt vn�1 vn. . . . . . . . .

D

Figure 2: D and D+. A dashed edge indicates the absence of that edge.

5 Adding edges to increase the principal ratio

Based on Propositions 1-6, we consider the definition of the following family of graphs. An
extremal graph must satisfy (i)-(iv) in the definition below.

Definition 1. For each n, let Dn be a family of directed graphs where each D 2 Dn on vertex
set {v1, . . . , vn} satisfies the following properties:

(i) The shortest path from v1 to vn is of length n� 1 and is denoted by v1, v2, . . . , vn.

(ii) For i 2 {2, 3}, d+(vi) = i.

(iii) For each 4  i  n� 1, we have d+(vi) � b 2i
3 c.

(iv) v2 2 Vmax, vn 2 Vmin, and dist(Vmax, Vmin) = dist(v2, vn) = n� 2.

(v) There exist i and j such that (vj , vi) is not an edge where 4  j  n�1 and 1  i  j�1.

For each D 2 Dn, we now define an associated graph D+ identical to D except for the
addition of a single edge.

Definition 2. For a given D 2 Dn, let 4  t  n denote the smallest integer and s < t the
largest integer such that (vt, vs) is not an edge of D. Define D+ as the directed graph with
the same vertex set as D and with edge set E(D) [ {(vt, vs)}, as illustrated in Figure 2.

For a given D 2 Dn, we wish to compare the principal ratios of D and D+. In order
to do so, must establish some tools used to compare their stationary distributions. First,
the following proposition provides a useful way to express entries of the Perron vector as a
multiple of a single entry.

Proposition 7. Let D be a directed graph whose vertex set is {v1, . . . , vn}. We assume
v1, . . . , vn is a shortest path from v1 to vn. If � is the Perron vector of the transition probability
matrix P , then for 1  i  n, there exists a function fi such that

�(vi) = fi · �(vn),

where the the functions fi satisfy

8

Figure 2.2: D and D+. A dashed edge indicates the absence of that edge.

Proposition 8. Let D be a directed graph whose vertex set is {v1, . . . , vn}. We

assume v1, . . . , vn is a shortest path from v1 to vn. If φ is the Perron vector of the

transition probability matrix P , then for 1 ≤ i ≤ n, there exists a function fi such

that

φ(vi) = fi · φ(vn),

where the the functions fi satisfy

fk =
fk−1

d+(vk−1)
+
∑

i≥k+1
vi→vk

fi
d+(vi)

. (2.1)

Proof. We proceed by induction. Trivially, fn = 1. Let 1 < k < n − 1. Assume

the proposition holds for all integers j where k ≤ j ≤ n. We show the result holds

for i = k − 1. As φ = φP , we have

φ(vk) =
φ(vk−1)

d+(vk−1)
+
∑

i≥k+1
vi→vk

φ(vi)

d+(vi)
.

We note if k = n, then we do not have the second term of the equation above.

Applying the induction hypothesis and rearranging the above yields

fk−1 = d+(vk−1)


fk −

∑

i≥k+1
vi→vk

fi
d+(vi)


 . (2.2)
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The upshot of Proposition 8 is that when comparing two graphs D and

D′ where V (D) = V (D′) = {v1, . . . , vn} and v1, . . . , vn is a shortest directed path

from v1 to vn in D and D′, we may write their Perron vectors entrywise as

φ(vi) = fi · φ(vn),

ψ(vi) = gi · ψ(vn),

for some functions fi and gi satisfying (2.1). The following proposition describes

when fi = gi.

Proposition 9. Let D and D′ and their respective Perron vectors be as described

above.

If there is some 1 ≤ s ≤ n−1 such that d+
D(vi) = d+

D′(vi) for each s ≤ i ≤ n,

then we have fi = gi for each s ≤ i ≤ n.

This proposition can be proved inductively by using (2.1) and we skip the

proof here. The next proposition compares fi and gi for the graphs D and D+.

Proposition 10. For each D ∈ Dn, let D+ be as defined in Definition 3. Suppose

φ and ψ are the Perron vectors of the transition probability matrices of D and D+

respectively. Moreover, suppose φ(vi) = fi · φ(vn) and ψ(vi) = gi · ψ(vn) for each

1 ≤ i ≤ n. We have

(a) fi = gi for each t+ 1 ≤ i ≤ n.

(b) gt
ft

=
d+
D(vt)+1

d+
D(vt)

.

(c) gt−1−ft−1

t−1
= gt

d+
D(vt)+1

= gt−2−ft−2

(t−1)2
.

If t ≥ 5, then additionally we have

(d) For each 3 ≤ k ≤ t−2, we have gt−k−ft−k
(t−1)k

≥ gt
d+
D(vt)+1

(
1− 4

3

∑k−2
j=1

1
(t−j)2

)
> 0.

(e) For each 3 ≤ k ≤ t− 2, we have gt−k−ft−k
(t−1)k

≤ gt
d+
D(vt)+1

.

Proof. Since 4 ≤ t ≤ n − 1 is the smallest integer such that an edge (vt, vs) is

missing for some 1 ≤ s ≤ t− 1, we have d+(vi) = i for each 2 ≤ i ≤ t− 1. We also

note d+
D(vi) = d+

D+(vi) for each 1 ≤ i 6= t ≤ n and d+
D(vt) + 1 = d+

D+(vt).
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Part (a) follows from Proposition 9 easily. Part (b) can be verified by using

the equation (2.1). If t ∈ {3, 4}, then we do not need Part (d) or Part (e). We

can compute Part (c) directly by using the out-degree conditions and the equation

(2.1).

For Part (d) and Part (e), we first prove them simultaneously by induction

on k for 3 ≤ k ≤ t − s − 1. We mention here for the case where k = t − s, we

will give the argument separately. If either t = s + 1 or t = s + 2, then we prove

directly for k = t− s and for t− s+ 1 ≤ k ≤ t− 2 the proof is by induction.

The base case is k = 3. From (2.1), we have

gt−2 =
gt−3

t− 3
+

gt−1

t− 1
+
∑

j≥t
vj→vt−2

gj
d+
D+(vj)

,

ft−2 =
ft−3

t− 3
+

ft−1

t− 1
+
∑

j≥t
vj→vt−2

fj
d+(vj)

.

We note
fj

d+
D(vj)

=
gj

d+

D+ (vj)
for all j ≥ t+ 1. Combining with Part (b), we have

gt−2 − ft−2 =
gt−3 − ft−3

t− 3
+
gt−1 − ft−1

t− 1
.

We solve for gt−3−ft−3

t−3
and divide both sides of the resulted equation by (t − 1)2.

Then Part (c) gives the base case of Part (d) and Part (e).

For the inductive step, we assume Part (d) and Part (e) hold for all 3 ≤
j ≤ k − 1. As for the base case, from equation (2.1), gt−k satisfies the following

equation:

gt−k =
gt−k−1

t− k − 1
+

∑

1≤j≤k−1

gt−j
t− j +

∑

j≥t
vj→vt−k

gj
d+
D+(vj)

.

Similarly,

ft−k =
ft−k−1

t− k − 1
+

∑

1≤j≤k−1

ft−j
t− j +

∑

j≥t
vj→vt−k

fj
d+
D(vj)

.

Solving for gt−k−1−ft−k−1

t−k−1
and dividing both sides of the equation by (t − 1)k, we

have
gt−k−1 − ft−k−1

(t− 1)k+1

=
gt−k − ft−k

(t− 1)k
−

k−1∑

j=1

gt−j − ft−j
(t− j)(t− 1)k

.
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We note gt−j − ft−j > 0 for each 1 ≤ j ≤ k− 1 by the inductive hypothesis of Part

(d). Part (e) then follows from the inductive hypothesis of Part (e).

Applying Part (c) as well as the inductive hypothesis for Part (e), we have

gt−k−1 − ft−k−1

(t− 1)k+1

≥ gt
d+
D(vt) + 1

(
1− 4

3

k−2∑

j=1

1

(t− j)2

−
k−1∑

j=1

1

(t− j)k−j+1

)
,

since

k−1∑

j=1

1

(t− j)k−j+1

=
1

(t− k + 1)2

(
1 +

1

t− k + 2
+

1

(t− k + 3)2

+ · · ·+ 1

(t− 1)k−2

)

≤ 1

(t− k + 1)2

∞∑

j=0

1

(t− k + 2)j

<
4

3
· 1

(t− k + 1)2

,

we get

gt−k−1 − ft−k−1

(t− 1)k+1

≥ gt
d+
D(vt) + 1

(
1− 4

3

k−1∑

j=1

1

(t− j)2

)
.

We are left to show the expression in Part (d) is positive. We observe

k−1∑

j=1

1

(t− j)2

≤
t−4∑

j=1

1

(t− j)2

=
1

(4)2

+ · · ·+ 1

(t− 1)2

=
1

3
− 1

t− 1
<

1

3
.

here we used the assumption t ≥ 5. We’ve completed the inductive step for Part

(d).

An additional argument is needed for k = t− s since (vt, vs) ∈ E(D+) and

(vt, vs) 6∈ E(D). We observe s ≥ 3 since otherwise we do not need this argument.

We have

gs =
gs−1

s− 1
+

∑

1≤j≤s−t−1

gt−j
t− j +

gt
d+
D(vt) + 1

+
∑

j≥t+1
vj→vs

gj
d+
D(vj)

,

while

fs =
fs−1

s− 1
+

∑

1≤j≤s−t−1

ft−j
t− j +

∑

j≥t+1
vj→vs

fj
d+
D(vj)

.
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As we did previously in the inductive proof, we have

gs−1 − fs−1

(t− 1)t−s+1

≥ gt
d+(wt) + 1

(
1− 4

3

t−s−2∑

j=1

1

(t− j)2

−
t−s−1∑

j=1

1

(t− j)t−s−j+1

− 1

(t− 1)t−s

)
.

We need only to prove the first inequality of Part (d) for k = t − s. If t − s = 3,

then we prove Part (d) for k = 3 directly. For t− s ≥ 4, we have

t−s−1∑

j=1

1

(t− j)t−s−j+1

+
1

(t− 1)t−s
<

1

(s+ 1)2

( ∞∑

j=0

1

(s+ 2)j
+

1

(t− 1)t−s−2

)

<
1

(s+ 1)2

(
5

4
+

1

(s+ 2)(s+ 3)

)

<
4

3
· 1

(s+ 1)2

.

We used that s ≥ 3 and t − s ≥ 4 to prove the inequalities above. For the range

of t − s + 1 ≤ k ≤ t − 2, this can be proved along the same lines as the range of

3 ≤ k ≤ t− s.

Using Proposition 10, we can now compare γ(D) and γ(D+).

Proposition 11. For each D ∈ Dn, let D+ be defined as in Definition 3. Then

γ(D+) > γ(D).

Proof. Since the Perron vector has positive entries, rescaling it by a positive num-

ber will not change the principal ratio. Thus we are able to assume ψ satisfies

φ(v2) = ψ(v2).

To prove the claim, it is enough to show φ(vn) > ψ(vn). Suppose not, i.e., φ(vn) ≤
ψ(vn).

Recall Proposition 10. If t = 3 then we have g2 > f2 as Part (a), Proposition

10. For t = 4, we have g2 > f2 as Part (b), Proposition 10. Since we assumed

φ(vn) ≤ ψ(vn), we have ψ(v2) = g2 · ψ(vn) > φ(v2) = f2 · φ(vn), which is a

contradiction. If t ≥ 5, then we apply Part (d) of Proposition 10 with k = t − 2

and get g2 > f2. In the case of t = 5, we still have the same inequality. Therefore,

we can find the same contradiction as the case of t = 4.
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v1 v2 vt vn�1 vn. . . . . .

D�

v1 v2 vt vn�1 vn. . . . . .

D

Figure 3: D and D�. A dashed edge indicates the absence of that edge.

If t � 5, then additionally we have

(d) For 3  k  t� 2, we have
gt�k�ft�k

(t�1)k
� 1

d+
D(vn)

⇣
1� 4

3

Pk�2
j=1

1
(t�j)2

� 1
d+

D(vn)�1

Pk�1
j=1

1
(t�1)j

⌘
> 0.

(e) For 3  k  t� 2, we have gt�k�ft�k

(t�1)k
 1

d+
D(vn)

.

Proof. We observe d+
D(vi) = d+

D�(vi) = i for each 1  i  n� 1 and d+
D(vn)� 1 = d+

D�(vn).
Also, fn = gn = 1. Part (a) is a simple consequence of Proposition 8. We can verify Part
(b) and Part (c) directly. We note when we check Part (c), there are two cases depending on
whether (vn, vt�1) is an edge or not. If t 2 {3, 4}, then we do not need Part (d) or Part (e).
Thus we assume t � 5. We will prove Part (d) and Part (e) simultaneously using induction.

The base case is k = 3. We have two cases.

Case 1: (vn, vt�3) 2 E(D).

Using the equation (1), we have

gt�2 =
gt�3

t� 3
+

gt�1

t� 1
+

1

d+
D(vn)� 1

+
X

tjn�1
vj!vt�3

gj

d+
D(vn)

(3)

Similarly,

ft�2 =
ft�3

t� 3
+

ft�1

t� 1
+

1

d+
D(vn)

+
X

tjn�1
vj!vt�3

fj

d+
D(vn)

(4)

Subtracting ft�2 from gt�2, rearranging terms followed by dividing both sides by (t�1)2, we
have

gt�3 � ft�3

(t� 1)3
=

gt�2 � ft�2

(t� 1)2
� gt�1 � ft�1

(t� 1)(t� 1)2
� 1

d+
D(vn)(d+

D(vn)� 1)(t� 1)2
(5)

13

Figure 2.3: D and D−. A dashed edge indicates the absence of that edge.

2.2.3 Deleting edges to increase the principal ratio

We now consider another family of graphs D′n, disjoint from Dn, which

satisfy the properties necessary for extremality in Section 2.2.1.

Definition 4. For each n, let D′n be a family of directed graphs where each D ∈ D′n
on vertex set {v1, . . . , vn} satisfies the following properties:

(i) The shortest path from v1 to vn is of length n−1 and is denoted by v1, v2, . . . , vn.

(ii) For each 2 ≤ i ≤ n− 1, d+(vi) = i.

(iii) v2 ∈ Vmax, vn ∈ Vmin, and dist(Vmax, Vmin) = dist(v2, vn) = n− 2.

(iv) d+(vn) ≥ 2.

(v) N+(vn) 6= {v1, v2}.

For each D ∈ D′n, we now define an associated graph D− identical to D

except for the deletion of a single edge.

Definition 5. For each D ∈ D′n, let 3 ≤ t ≤ n− 1 be the largest integer such that

(vn, vt) ∈ E(D). We define D− as the directed graph whose edge set is E(D) \
{(vn, vt)}, as illustrated in Figure 2.3.

For a graph in D′n, we consider the following algorithm.
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Analogous to how Proposition 10 allowed us to compare the principal ratios

of D and D+, the following proposition will allow us to compare the principal ratios

of D and D−.

Proposition 12. For each D ∈ D′n, let D− be defined as in Definition 5. Assume

φ and ψ are the Perron vectors of the transition probability matrices of D and D−

respectively. Moreover, suppose φ(vi) = fi · φ(vn) and ψ(vi) = gi · ψ(vn) for each

1 ≤ i ≤ n. We have

(a) fi = gi for t ≤ i ≤ n .

(b) gt−1−ft−1

t−1
= 1

d+
D(vn)

.

(c) 0 < 1
d+
D(vn)

(
1− 1

(t−1)(d+
D(vn)−1)

)
≤ gt−2−ft−2

(t−1)2
≤ 1

d+
D(vn)

.

If t ≥ 5, then additionally we have

(d) For 3 ≤ k ≤ t− 2, we have
gt−k−ft−k

(t−1)k
≥ 1

d+
D(vn)

(
1− 4

3

∑k−2
j=1

1
(t−j)2

− 1
d+
D(vn)−1

∑k−1
j=1

1
(t−1)j

)
> 0.

(e) For 3 ≤ k ≤ t− 2, we have gt−k−ft−k
(t−1)k

≤ 1
d+
D(vn)

.

Proof. We observe d+
D(vi) = d+

D−(vi) = i for each 1 ≤ i ≤ n− 1 and d+
D(vn)− 1 =

d+
D−(vn). Also, fn = gn = 1. Part (a) is a simple consequence of Proposition 9. We

can verify Part (b) and Part (c) directly. We note when we check Part (c), there

are two cases depending on whether (vn, vt−1) is an edge or not. If t ∈ {3, 4}, then

we do not need Part (d) or Part (e). Thus we assume t ≥ 5. We will prove Part

(d) and Part (e) simultaneously using induction.

The base case is k = 3. We have two cases.

Case 1: (vn, vt−3) ∈ E(D).

Using the equation (2.1), we have

gt−2 =
gt−3

t− 3
+

gt−1

t− 1
+

1

d+
D(vn)− 1

+
∑

t≤j≤n−1
vj→vt−3

gj
d+
D(vn)

. (2.3)
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Similarly,

ft−2 =
ft−3

t− 3
+

ft−1

t− 1
+

1

d+
D(vn)

+
∑

t≤j≤n−1
vj→vt−3

fj
d+
D(vn)

. (2.4)

Subtracting ft−2 from gt−2, rearranging terms followed by dividing both sides by

(t− 1)2, we have

gt−3 − ft−3

(t− 1)3

=
gt−2 − ft−2

(t− 1)2

− gt−1 − ft−1

(t− 1)(t− 1)2

− 1

d+
D(vn)(d+

D(vn)− 1)(t− 1)2

. (2.5)

Applying Part (a) to Part (c), we have

gt−3 − ft−3

(t− 1)3

≥ 1

d+
D(vn)

(
1− 1

(t− 1)2

− 1

d+
D(vn)− 1

(
1

t− 1
+

1

(t− 1)2

))
> 0.

The above quantity is clearly positive since t ≥ 5. Therefore, we obtained the base

case for Part (d). From (2.5), if we apply Part (b) and Part (c) as well as t ≥ 5,

then we get gt−3−ft−3

(t−1)3
≤ 1

d+(vn)
, which is the base case for Part (e).

Case 2: (vn, vt−3) 6∈ E(D).

If (vn, vt−3) is not an edge, then 1
d+
D(vn)−1

is missing from (2.3) and 1
d+
D(vn)

is missing in (2.4). However, (2.5) still holds in this case. We can prove the base

case for Part (d) and Part (e) similarly.

For the inductive step, we assume Part (d) and Part (e) are true for all

3 ≤ i ≤ k. We first deal with the case where (vn, vt−k) is an edge. Again, from

equation (2.1) we have

gt−k =
gt−k−1

t− k − 1
+

∑

1≤j≤k−1

gt−j
t− j +

1

d+
D(vn)− 1

+
∑

t≤j≤n−1

gj
d+
D(vj)

. (2.6)

Similarly, for ft−k, we have

ft−k =
ft−k−1

t− k − 1
+

∑

1≤j≤k−1

ft−j
t− j +

1

d+
D(vn)

+
∑

t≤j≤n−1

fj
d+
D(vj)

. (2.7)

We solve for gt−k−1−ft−k−1

t−k−1
and then divide both sides of the equation by (t − 1)k.

We get

gt−k−1 − ft−k−1

(t− 1)k+1

=
gt−k − ft−k

(t− 1)k
−

k−1∑

j=1

gt−j − ft−j
(t− j)(t− 1)k

− 1

d+
D(vn)(d+

D(vn)− 1)(t− 1)k
.

(2.8)
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By the inductive hypothesis for Part (d) and Part (e), we get gt−k−1−ft−k−1

(t−1)k+1
≤

gt−k−ft−k
(t−1)k

≤ 1
d+(vn)

, which proves the inductive step for Part (e).

From the inductive hypothesis of Part (d), we get

gt−k − ft−k
(t− 1)k

≥ 1

d+
D(vn)

(
1− 4

3

k−2∑

j=1

1

(t− j)2

− 1

d+
D(vn)− 1

k−1∑

j=1

1

(t− 1)j

)
. (2.9)

From the inductive hypothesis for Part (e), we have

k−1∑

j=1

gt−j − ft−j
(t− j)(t− 1)k

=
k−1∑

j=1

gt−j − ft−j
(t− 1)j

· 1

(t− j)k−j+1

≤ 1

d+(vn)

k−1∑

j=1

1

(t− j)k−j+1

.

(2.10)

Putting (2.8), (2.9) and (2.10) together, we get

gt−k−1 − ft−k−1

(t− 1)k+1

≥ 1

d+
D(vn)

(
1− 4

3

k−2∑

j=1

1

(t− j)2

−
k−1∑

j=1

1

(t− j)k−j+1

− 1

d+
D(vn)− 1

k∑

j=1

1

(t− 1)j

)
.

By the same lines as the proof of Proposition 10, we can show
∑k−1

j=1
1

(t−j)k−j+1
<

4
3
· 1

(t−k+1)2
. Therefore, we proved

gt−k−1 − ft−k−1

(t− 1)k+1

≥ 1

d+
D(vn)

(
1− 4

3

k−1∑

j=1

1

(t− j)2

− 1

d+
D(vn)− 1

k∑

j=1

1

(t− 1)j

)
.

We note

4

3

k−1∑

j=1

1

(t− j)2

+
1

d+(vn)− 1

k∑

j=1

1

(t− 1)j
≤ 4

3

(
1

3
− 1

t− 1

)
+

1

t− 1

∞∑

i=0

1

2i

<
4

9
+

3

8
< 1.

Here we applied facts t − k ≥ 3 and t ≥ 5. Thus, that the expression in Part (d)

is positive follows from the inequality above. We established the inductive step of

Part (d) in the case where (vn, vt−k) is an edge. For the case where (vn, vt−k) is not

an edge, we note 1
d+(vn)−1

is missing from (2.6) and 1
d+(vn)

is missing from (2.7).

The argument goes along the same lines.

Using Proposition 12, we can now compare γ(D) and γ(D−).
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Proposition 13. For each D ∈ D′n, let D− be defined as Definition 5. We have

γ(D−) > γ(D).

Proof. We use the same idea as the proof for Proposition 11. We rescale ψ such

that φ(v2) = ψ(v2) and show ψ(vn) < φ(vn). Suppose ψ(vn) ≥ φ(vn). We will show

g2 > f2 which will yield ψ(v2) > φ(v2) since ψ(v2) = g2 ·ψ(vn) and φ(v2) = f2 ·φ(vn)

as well as the assumption ψ(vn) ≥ φ(vn). If t ∈ {3, 4}, then g2 > f2 follows either

from Part (b) or Part (c) of Proposition 12. If t ≥ 5, then we will apply Part

(d) of Proposition 12 with k = t − 2 to get g2 > f2. We draw the contradiction

similarly.

2.2.4 Proof of Theorem 10

We can now prove Theorem 10 as a consequence of Propositions 2− 13.

Proof of Theorem 10. We will show that the extremal graphs achieving the maxi-

mum of the principal ratio over all strongly connected n-vertex graphs are precisely

D1, D2, and D3 and that their principal ratio is indeed as claimed in Theorem 10.

We will use the fact that D1 has principal ratio as follows, which we will

prove at the end of this section:

γ(D1) =
2

3

(
n

n− 1
+

1

(n− 1)!

n−3∑

i=1

i!

)
(n− 1)!.

Assume D is extremal, i.e. its principal ratio is at least as large as that

of any directed graph on n vertices. For any (strongly connected) directed graph D,

we have dist(Vmax, Vmin) ≤ n−2 by Proposition 4. IfD is such that dist(Vmax, Vmin) ≤
n− 3, then D is not extremal since by Proposition 5, we have γ(D) < γ(D1). So

dist(Vmax, Vmin) = n−2, where v2 ∈ Vmax, vn ∈ Vmin, and v2, v3, . . . , vn is a shortest

path from v2 to vn. If D is extremal, then γ(D) ≥ γ(D1) > 2
3
(n − 1)!. So, ap-

plying Proposition 7 and Proposition 6, we can assume further that v1, v2, . . . , vn

is a shortest path from v1 to vn, d+(vi) = i for i ∈ {2, 3}, and d+(vi) ≥ b2i
3
c for

4 ≤ i ≤ n.

Now, if D ∈ Dn, then D is not extremal by Proposition 10. Similarly, if

D ∈ D′n, D is not extremal by Proposition 12.
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Therefore, D 6∈ Dn and D 6∈ D′n. Since D 6∈ Dn but satisfies all properties

for inclusion in Dn except (v) in Definition 2, it must be that d+(vi) = i for each

2 ≤ i ≤ n− 1. Then, since D 6∈ Dn but satisfies all properties for inclusion in Dn
except either (iv) or (v) in Definition 4, either d+(vn) = 1 or N+(vn) = {v1, v2}.
In the former case, if N+(vn) = {vj} for j ≥ 3, then arguing along the same lines

as in the proof of Proposition 13, one has γ(D) < γ(D1); otherwise D = D1 or

D = D2. In the latter case, D = D3.

Lastly, we show that D1, D2, and D3 all have the same principal ratio.

Assume φ, ψ, τ are the Perron vectors of D1, D2, and D3 respectively. Scale their

Perron vectors so that all three agree on the nth coordinate. By Proposition 8, we

know there exist (positive) functions fi, gi, hi so that

φ(vi) = fi · φ(vn),

ψ(vi) = gi · ψ(vn),

τ(vi) = hi · τ(vn).

By Proposition 9, we note fi = gi = hi for 2 ≤ i ≤ n. We can prove the following

inequalities for fi.

(a) fn−1

n−1
= fn−2

(n−1)2
= fn.

(b) For each 3 ≤ k ≤ t− 2, we have fn

(
1− 4

3

∑k−2
j=1

1
(n−j)2

)
≤ fn−k

(n−1)k
≤ fn.

The proof of Part (a) and Part (b) uses the same argument as the proof of Proposi-

tion 10 and it is omitted here. If n ≤ 5, then we can verify max{fi : 1 ≤ i ≤ n} = f2

and min{fi : 1 ≤ i ≤ n} = fn directly. Suppose n ≥ 6. By Part (b), for each

3 ≤ k ≤ n− 2 we have

fn−k − fn−k+1

(n− 1)k
=

fn−k
(n− 1)k

− fn−k+1

(n− 1)k−1(n− k)

≥ fn−k
(n− 1)k

− fn
n− k

≥ fn

(
1− 4

3

k−2∑

j=1

1

(n− j)2

− 1

n− k

)

≥ fn

(
1− 4

3(n− k + 2)
− 1

n− k

)
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> fn

(
1− 1

3
− 1

2

)
=
fn
6
.

We note n − k ≥ 2. We can check f1 > fn easily. Therefore, we obtain max{fi :

1 ≤ i ≤ n} = f2 and min{fi : 1 ≤ i ≤ n} = fn .

The same holds for g2 and h2, which completes the proof.

We now compute the stationary distribution and principal ratio of D1, com-

pleting the proof of Theorem 10.

Claim A. Let D1 be as defined in the statement of Theorem 10, and let φ be the

Perron vector associated with the transition probability matrix P of D1. Then

γ(D1) =
2

3

(
n

n− 1
+

1

(n− 1)!

n−3∑

i=1

i!

)
(n− 1)!,

where

min
1≤i≤n

φ(vi) = φ(vn) and max
1≤i≤n

φ(vi) = φ(v2).

Proof. Since we are concerned with the ratio of the maximum entry and the mini-

mum entry of the Perron vector, rescaling the Perron vector by a positive number

will not affect our result. We assume x = (x1, x2, . . . , xn) with xn = 1 such that

xP = x, where

P =




0 1 0 · · · 0 0

1/2 0 1/2 · · · 0 0

1/3 1/3 0 · · · 0 0

1/4 1/4 1/4 · · · 0 0
...

...
...

. . .
...

...

1
n−1

1
n−1

1
n−1

· · · 0 1
n−1

1 0 0 · · · 0 0




.

Suppose P = (p1, p2, . . . , pn) where pi is the i-th column of P for each 1 ≤ i ≤ n.

From x1 = x · p1 and x2 = x · p2, we have

x2 =
4

3
x1 −

2

3
, (2.11)
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where we used the assumption xn = 1. As x3 = x · p3 and x1 = x · p1, we have

x3 =
3

4
x1 −

3

4
. (2.12)

For each 2 ≤ k ≤ n− 1, we define

ak =
2k

(k + 1)(k − 1)!
,

bk =
k

(k + 1)(k − 1)!

k−2∑

i=0

i!.

For each 2 ≤ k ≤ n− 1, we will show

xk = akx1 − bk. (2.13)

We will prove (2.13) by induction on k. The cases k = 2 and k = 3 are given by

(2.11) and (2.12) respectively. Assume (2.13) is true up to l for some 3 ≤ l ≤ n−2.

Using xl+1 = x · pl+1 and xl−1 = x · pl−1, we have

xl+1 =
l + 1

l + 2

(
xl−1 −

xl−2

l − 2

)

=
l + 1

l + 2

(
(al−1x1 − bl−1)− al−2x1 − bl−2

l − 2

)

=
l + 1

l + 2

(
al−1 −

al−2

l − 2

)
x1 −

l + 1

l + 2

(
bl−1 −

bl−2

l − 2

)

= al+1x1 − bl+1.

The inductive hypothesis and an elementary computation gives:

al+1 =
l + 1

l + 2

(
al−1 −

al−2

l − 2

)

=
l + 1

l + 2

(
2(l − 1)

l(l − 2)!
− 2(l − 2)

(l − 1)!

)

=
2(l + 1)

(l + 2)l!
.

bl+1 =
l + 1

l + 2

(
bl−1 −

bl−2

l − 2

)
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=
l + 1

(l + 2)

((
(l − 1)2

l!

) l−3∑

i=0

i!−
(
l(l − 2)

l!

) l−4∑

i=0

i!

)

=
l + 1

(l + 2)l!

(
l(l − 2)

(
l−3∑

i=0

i!−
l−4∑

i=0

i!

)
+

l−3∑

i=0

i!

)

=
l + 1

(l + 2)l!

(
l(l − 2)! +

l−3∑

i=0

i!

)

=
l + 1

(l + 2)l!

l−1∑

i=0

i!.

We have completed the proof of (2.13). Since xn = x · pn, we have

xn =
xn−1

n− 1
. (2.14)

Recall the assumption xn = 1. Using (2.13) with k = n − 1 and solving for x1 in

(2.14), we obtain

x1 =
n(n− 2)!

2
+

1

2

n−3∑

i=0

i!.

We already have an explicit expression for entries of x. We claim

x2 > x1 > x3 > x4 > · · · > xn−1 > xn.

We can verify x2 > x1 > x3 and xn−1 > xn directly. To prove the remaining

inequalities, for each 3 ≤ k ≤ n− 2, (2.13) yields

xk =
2k

(k + 1)(k − 1)!
x1 −

k

(k + 1)(k − 1)!

k−2∑

i=0

i!, (2.15)

xk+1 =
2(k + 1)

(k + 2)k!
x1 −

(k + 1)

(k + 2)k!

k−1∑

i=0

i!. (2.16)

We first multiply (2.16) by a factor −k2(k+2)
(k+1)2 and add the resulting equation to

(2.15). We get the following equation

xk −
k2(k + 2)

(k + 1)2
xk+1 =

k

k + 1
.

The equation above implies xk ≥ xk+1 for each 3 ≤ k ≤ n − 2. We have finished

the proof of the claim. As the Perron vector φ is a positive multiplier of x, we have

min
1≤i≤n

φ(vi) = φ(vn) and max
1≤i≤n

φ(vi) = φ(v2).
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Finally, we are able to compute

φ(v2)

φ(vn)
=
x2

xn

=
2n(n− 2)!

3
+

2

3

n−3∑

i=0

i!− 2

3

=
2

3

(
n

n− 1
+

1

(n− 1)!

n−3∑

i=1

i!

)
(n− 1)!.

This completes the proof of Theorem 10.

2.3 A sufficient condition for a tightly bounded

principal ratio

So far, we have shown that the maximum of the principal ratio over all

strongly connected n-vertex directed graphs is (2/3 + o(1))(n− 1)!. On the other

hand, the minimum of the principal ratio is 1 and is achieved by regular directed

graphs. In this section, we examine conditions under which the principal ratio is

“close” to the minimum of 1.

An important tool in our analysis will be the aforementioned notion of

circulation, as defined by Chung [15]. Recall that for a directed graph D, a function

F : E(D)→ R+∪{0} that assigns to each directed edge (u, v) a nonnegative value

F (u, v). F is said to be a circulation if at each vertex v, we have
∑

u:u∈N−(v)

F (u, v) =
∑

w:w∈N+(v)

F (v, w).

For a circulation F and a directed edge e = (u, v), we will write F (e) for F (u, v)

in some occasions. If φ is the Perron vector of the transition probability matrix P ,

then we can associate a circulation Fφ to φ, where

Fφ(v, w) =
φ(v)

d+(v)
.

In particular, we recall that the circulation Fφ has the following property: at each

vertex v, we have
∑

u:u∈N−(v)

Fφ(u, v) = φ(v) =
∑

w:w∈N+(v)

Fφ(v, w). (2.17)
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We will repeatedly use (2.17) in the proof of the following theorem.

Theorem 11. Let D = (V,E) be a strongly connected directed graph and φ be the

Perron vector of the transition probability matrix P . If there are positive constants

a, b, c, d, ε such that

(i) (a− ε)n ≤ d+(v), d−(v) ≤ (a+ ε)n for all v ∈ V (D) and

(ii) |E(S, T )| ≥ b|S||T | for all disjoint subsets S and T with |S| ≥ cn and |T | ≥
dn,

then we have

γ(D) ≤ 1

C
for C =

b(a− 5ε)(a− ε)
4(a+ ε)2

.

2.3.1 Discussion of conditions

Before proceeding with the proof of Theorem 11, we illustrate that neither

the degree condition (i), nor the discrepancy condition (ii) alone guarantee a small

principal ratio. We first give a construction which satisfies the degree requirement

but fails the discrepancy condition and has principal ratio linear in n.

Example 4. Construct a directed graph D on 2n+ 1 vertices as follows: take two

copies of Dn, the complete directed graph on n vertices, as well as an isolated vertex

b. Add an edge from each vertex in the first copy of Dn to b and an edge from b to

each vertex in the second copy of Dn. Finally, select a distinguished vertex from

the first copy of Dn, which we denote e, and a distinguished vertex from the second

copy of Dn, which we denote d, and add edge (d, e). Let A denote the induced

subgraph of the first copy of Dn obtained by deleting vertex e; similarly, C is the

induced subgraph obtained by deleting vertex d from the second copy of Dn. See

Figure 2.4 for an illustration.

Proposition 14. The construction D in Example 4 satisfies the degree condition

of Theorem 11 but not the discrepancy condition. The (unscaled) Perron vector of
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Figure 2.4: The construction in Example 4.

D is given by

φ(u) =





1 u ∈ V (A)

n+1
n

u = b

(n+1)2(n−1)
n2 u ∈ V (C)

n+ 1 u = d

2 u = e

.

Consequently, γ(D) = maxu φ(u)
minu φ(u)

= n+ 1.

Proof. Observe that, for all a ∈ V (A), d+
a = d+

b = d+
d = d+

e = n, and, for

all c ∈ V (C), d+
c = n − 1, thus D satisfies the degree condition in Theorem

11. However, D fails the discrepancy condition since E(V (A), V (C)) = 0 where

|V (A)| = |V (C)| = n − 1. To compute the Perron vector of D, first observe that

since A and C are vertex-transitive, φ(u) = φ(a) for all u, a ∈ V (A) and similarly

φ(u) = φ(c) for all u, c ∈ V (C). Consider a ∈ V (A). From φ = φP , we obtain

φ(a) =
∑

u∈N−(a)

φ(u)P (u, a)

=
∑

u∈N−(a)\V (A)

φ(u)P (u, a) +
∑

u∈V (A)

φ(u)P (u, a)

=
φ(e)

d+
e

+
∑

u∈V (A)

φ(a)

d+
a

=
φ(e)

n
+
n− 2

n
φ(a).

In the same way as above, we also obtain equations for vertices b, d, e and

c ∈ C:

φ(b) =
n− 1

n
φ(a) +

φ(e)

n
,
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φ(c) =
φ(b)

n
+
n− 2

n− 1
φ(c) +

φ(d)

n
,

φ(d) =
φ(b)

n
+ φ(c),

φ(e) =
n− 1

n
φ(a) +

φ(d)

n
.

We may set φ(a) = 1 and solve the above equations, yielding the result.

Next, we give a construction to illustrate the discrepancy condition alone

is insufficient to guarantee a small principal ratio.

Example 5. Construct a directed graph D on n +
√
n vertices as follows: first,

construct the following graph from [15] on
√
n vertices, which we denote H√n. To

construct H√n, take the union of a directed cycle C√n consisting of edges (vj, vj+1)

(where indices are taken modulo
√
n), and edges (vj, v1) for j = 1, . . . ,

√
n − 1.

Then, take a copy of Dn, the complete directed graph on n vertices, and select from

it a distinguished vertex u. Add edges (v1, u) and (u, v1). See Figure 2.5 for an

illustration.

Figure 2.5: The construction in Example 5.

It is easy to check D as defined in Example 5 satisfies the discrepancy

condition in Theorem 11, but not the degree requirement (note d+
v√n

= 1 and

d+
u = n). As noted in [15], the graph H√n has principal ratio 2

√
n−1. Thus,

γ(D) ≥ γ(H√n) = 2
√
n−1.

2.3.2 Proof of Theorem 11

Having shown that each condition in Theorem 11 taken on its own is in-

sufficient in ensuring a small principal ratio, we now prove that together they do

provide a sufficient condition.
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Proof of Theorem 11. We assume

max
v∈D(V )

φ(v) = φ(u) and min
v∈D(V )

φ(v) = φ(w).

We will show φ(w) ≥ C · φ(u) instead, where C is the constant in the statement

of the theorem. We use U to denote the set {v ∈ N−(u) : φ(v) ≤ φ(u)
2
}. If

w ∈ N−(u) \ U , then we have nothing to show. Thus we assume w 6∈ N−(u) \ U .

We consider the circulation Fφ associated with φ and recall (2.17). By the definition

of U , we have

φ(u) =
∑

v∈N−(u)

Fφ(v, u) =
∑

v∈U
Fφ(v, u) +

∑

v∈N−(u)\U
Fφ(v, u)

≤
∑

v∈U

φ(u)

2(a− ε)n +
∑

v∈N−(u)\U

φ(u)

(a− ε)n

≤ |U |φ(u)

2(a− ε)n +
((a+ ε)n− |U |)φ(u)

(a− ε)n .

Solving the inequality above, we have |U | ≤ 4εn. Let U ′ = N−(u) \ U . Then we

have |U ′| ≥ (a− 5ε)n from the assumption |N−(u)| ≥ (a− ε)n. If |N−(w)∩U ′| ≥
|U ′|

2
, then we have

φ(w) =
∑

v∈N−(w)

Fφ(v, w)

≥
∑

v∈N−(w)∩U ′
Fφ(v, w)

≥
∑

v∈N−(w)∩U ′

φ(u)

2(a+ ε)n

≥ (a− 5ε)φ(u)

4(a+ ε)

≥ C · φ(u).

Therefore, we assume |N−(w)∩U ′| < |U ′|
2

for the remainder of the proof. We define

U ′′ = U ′ \N−(w) and we have |U ′′| ≥ (a−5ε)n
2

. The assumption |E(S, T )| ≥ b|S||T |
for any disjoint S and T implies

|E(U ′′, N−(w))| ≥ b|U ′′||N−(w)| ≥ b(a− 5ε)(a− ε)n2

2
. (2.18)



49

Set Φ1 =
∑

v∈N−(w) φ(v) and E1 = E(U ′′, N−(w)). Using (2.17), we have the

following inequality

Φ1 =
∑

v∈N−(w)

∑

z∈N−(v)

Fφ(z, v) ≥
∑

e∈E1

Fφ(e) ≥
∑

e∈E1

φ(u)

2(a+ ε)n
≥ C(a+ ε)nφ(u),

(2.19)

where we used inequality (2.18) in the last step. By the definition of the circulation

Fφ, we have

φ(w) =
∑

v∈N−(w)

Fφ(v, w) ≥
∑

v∈N−(w)

φ(v)

(a+ ε)n
=

Φ1

(a+ ε)n
. (2.20)

The combination of inequalities (2.19) and (2.20) now completes the proof.

2.4 Bounds on the first non-trivial eigenvalue, λ1

In this section, we focus on the first non-trivial eigenvalue of the normalized

Laplacian. As we saw in Theorems 6 and 5, this eigenvalue λ1 is a key parameter

in bounding the rate of convergence of random walks on directed graphs and in

capturing isoperimetric properties of the directed graph. In the undirected case,

it is well-known that λ1 and the diameter of the graph G are intimately related.

Specifically, one can derive lower bounds on λ1 in terms of the diameter of the

graph and, conversely, derive upper bounds on the diameter in terms of λ1. As an

example of the former, consider the following bound from [14]:

Theorem 12 ([14]). For a connected graph G with diameter D and normalized

Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, we have

λ1 ≥
1

D · vol(G)
.

For more specialized classes of graphs (e.g. for vertex-transitive and edge-

transitive graphs), one can derive tighter bounds by applying lower bounds on

the Cheeger constant with the Cheeger inequality (see [14, Theorems 7.5–7.7]);

however, the above bound is asymptotically sharp up to a constant in general.

Additionally, Chung proved the following upper bound on graph diameter in terms

of λ1.
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Theorem 13 (Chung [14, 19]). For a connected graph G on n vertices with di-

ameter D and normalized Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, we

have

D ≤
⌊

log(n− 1)

log λn−1+λ1

λn−1−λ1

⌋
+ 1.

In the directed case, Chung established a result similar to Theorem 13.

Theorem 14 (Chung [15]). For a strongly connected directed graph G on n vertices

with diameter D, normalized Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1,

and Perron vector φ of the probability transition matrix of a random walk on G,

we have

D ≤
⌊

2 maxu log(1/φ(u))

log 2
2−λ1

⌋
+ 1.

In this section, we prove a lower bound for λ1 for a strongly connected

directed graph, which can be thought of as the directed analog to Theorem 12.

We also investigate the sharpness of this bound by constructing an example with

small λ1. Our lower bound is as follows:

Theorem 15. For a strongly connected directed graph G on n vertices with diam-

eter D, normalized Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, and Perron

vector φ of the probability transition matrix of a random walk on G, we have

λ1 >
minu φ(u)

2D ·maxu d+(u)
.

2.4.1 Proof of Theorem 15

Before proceeding with the proof of Theorem 15, we establish the following

useful fact.

Fact 1. Let f ∈ Cn and g ∈ (R+)n such that
∑

u f(u)g(u) = 0. Then, for every u

there exists v such that |f(u)− f(v)| > |f(u)|.

Proof. For each j = 1, . . . , n, let x(j) = [Re(f(j)), Im(f(j))] and · denote vec-

tor dot product. For any u, the equation
∑

u f(u)g(u) = 0 yields 0 = x(u) ·
∑

j x(j)g(j) = |x(u)|2g(u) +
∑

j:j 6=u x(u) · x(j)g(j), from which it is clear that
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there must exist some v 6= u such that x(u) · x(v)g(v) < 0 =⇒ x(u) · x(v) <

0 =⇒ cos θ < 0, where θ denotes the angle between vectors x(u) and x(v).

Now, squaring both sides of |f(u)− f(v)| > |f(u)| and rewriting using the

fact that |z|2 = zz, we have

0 < |f(v)|2 − (f(u)f(v) + f(v)f(u))

= |f(v)|2 − 2 · Re(f(u)f(v))

= |f(v)|2 − 2 · Re
(
|f(u)||f(v)|ei(ϕu−ϕv)

)

= |f(v)|2 − 2|f(u)||f(v)| cos θ,

where in the last step we used Euler’s formula and θ denotes the angle between

x(u) and x(v). Since |f(v)|2 − 2|f(u)||f(v)| cos θ > 0 holds when cos(θ) < 0, the

claimed inequality holds.

Using the above fact, we now prove Theorem 15.

Proof of Theorem 15. Let φ denote the Perron vector (scaled so its entries sum to

1) of the probability transition matrix P of G. Then, from [16], we have

λ1 = inf
f∈Cn∑

u f(u)φ(u)=0

∑

u→v
|f(u)− f(v)|2φ(u)P (u, v)

2
∑

v

|f(v)|2φ(v)
. (2.21)

Let f be the harmonic eigenvector achieving λ1 in Equation (2.21). Let u0

denote a vertex with |f(u0)| = maxu |f(u)|. From Fact 1, there must exist v0 such

that |f(u0)− f(v0)|2 > |f(u0)|2. Let S denote the shortest directed path from u0

to v0. By Cauchy-Schwarz, we have:

|f(u0)− f(v0)|2 =

∣∣∣∣∣∣
∑

(u,v)∈S
(f(u)− f(v)) · 1

∣∣∣∣∣∣

2

≤ D ·
∑

(u,v)∈S
|f(u)− f(v)|2 .

Applying this fact, we obtain

λ1 =

∑

u→v
|f(u)− f(v)|2φ(u)P (u, v)

2
∑

v

|f(v)|2φ(v)
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≥

∑

(u,v)∈S
|f(u)− f(v)|2φ(u)P (u, v)

2 · |f(u0)|2

≥ minu φ(u)

2 ·maxu d+(u)
·

∑

(u,v)∈S
|f(u)− f(v)|2

|f(u0)|2

≥ minu φ(u)

2 ·maxu d+(u)
·

1
D
· |f(u0)− f(v0)|2
|f(u0)|2

>
minu φ(u)

2D ·maxu d+(u)
.

As an immediate consequence of this theorem, we can apply our previous

upper bound the principal ratio to get an absolute lower bound on λ1 in terms of

n, the number of vertices.

Corollary 1. For a strongly connected n-vertex directed graph G with normalized

Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, we have

λ1 >
1(

4
3

+ o(1)
)

(n− 1)3 · (n− 1)!
.

Proof. Apply the bound on the principal ratio in Theorem 10 with maxu φ(u) ≥
1−minu φ(u)

n−1
to obtain a lower bound on minu φ(u); then apply this to Theorem 15

with D,maxu d
+(u) ≤ n− 1.

To compare the above corollary with the undirected case, we can derive a

corollary from Theorem 13 in a similar way. Namely, taking diameter D = n − 1

and vol(G) = 2 ·
(
n
2

)
, we obtain

λ1 ≥
1

n(n− 1)2
,

for undirected graphs.

2.4.2 A construction with small second eigenvalue

To examine the sharpness of the bound in Theorem 15 and subsequent

Corollary 1, we give a construction on n vertices with λ1 < f(n), where

f(n) ∼ 2

(e− 1) · (n
2
− 1)!

.
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1 2 3 4 5

G

1 2 3 4 5 6 7 8 9 10

G′

Figure 2.6: Constructions G and G′ in Example 6 for N = 5.

We describe the construction below. This construction utilizes the principal

ratio extremal graph from Theorem 10 by (loosely speaking) appending a reflected

copy of this graph to itself.

Example 6. Let G have vertex set {v1, . . . , vN} and edge set given by

E(G) = {(vi, vi+1) : 1 ≤ i ≤ N − 1)} ∪ {(vj, vi) : 1 ≤ i < j ≤ N − 1} ∪ (vN , v1).

We define a graph G′ on vertex set {v′1, . . . , v′N , v′N+1, . . . , v
′
2N} that consists of a

copy of G on {v′1, . . . , v′N} connected to a “reflected” copy of G on {v′N+1, . . . , v
′
2N}

by edges (v′N , v
′
N+1) and (v′N+1, v

′
N). More precisely,

E(G′) = {(v′i, v′j) : (vi, vj) ∈ E(G)} ∪ {(v′2N−i+1, v
′
2N−j+1) : (v′i, v

′
j) ∈ E(G)} ∪

{(v′N , v′N+1), (v′N+1, v
′
N)}.

An illustration for N = 5 is shown in Figure 2.6.

We first make some useful observations about the Perron vector of G′ and

G which will be helpful in proving an upper bound for λ1 for G′.

Lemma 2. Let φG′ and φG denote the Perron vectors of graphs G′ and G described

in Example 6. Then φG′(vN) < φG(vN) and φG(vN) ∼ φG′(vN).

Proof. Let P and P ′ denote the probability transition matrices of G and G′ re-

spectively. Furthermore, let x = (x1, x2, . . . , xN) and x′ = (x′1, x
′
2, . . . , x

′
N) be such
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that xP = x and x′P ′ = x′. For i = 2, . . . , N − 1, we have identical equations for

xi and x′i, namely

x′i =
∑

i−1≤j≤N−1
j 6=i

x′j
j
,

xi =
∑

i−1≤j≤N−1
j 6=i

xj
j
.

For i = 1, N we have

x′1 =
∑

2≤j≤N−1

x′i
i

+
x′N
2
,

x1 =
∑

2≤j≤N−1

xi
i

+ xN ,

x′N =
2x′N−1

N − 1
,

xN =
xN−1

N − 1
.

Substituting the above expressions for x′N and xN into the equations for x′1

and x1 respectively yields the identical equations

x′1 =
∑

2≤j≤N−1

x′i
i

+
x′N−1

N − 1
,

x1 =
∑

2≤j≤N−1

xi
i

+
xN−1

N − 1
.

Hence x′i = xi for i = 1, . . . , N − 1 and thus x′N = 2xN . Furthermore, by the

symmetry of G′, it is clear that for i = 1, . . . , N , we have x′i = x′2N−i+1 and thus
∑N

i=1 x
′
i =

∑2N
i=N+1 x

′
i. Putting these facts together

φG′(v
′
N) =

x′N∑2N
i=1 x

′
i

=
2xN

2
∑N

i=1 x
′
i

=
xN∑N−1

i=1 xi + 2xN
,

φG(vN) =
xN∑N
i=1 xi

=
xN∑N−1

i=1 xi + xN
,

from which we obtain φG′(vN) < φG(vN). Furthermore, as φG(vN) = φG(vN−1)

N−1

where φG(vN−1) < 1, it is clear that lim
N→∞

φG(vN) = 0. And the above expressions

for φG′(vN) and φG(vN) imply

φG(vN) + 1 =
φG(vN)

φG′(v′N)
,
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from which we can see that φG(vN) ∼ φG′(v
′
N).

Next, we obtain the asymptotic behavior of the minimal coordinate of the

Perron of G in Example 6.

Lemma 3. Let G be as described in Example 6. Then

φG(vN) ∼ 1

(e− 1) · (N − 1)!
.

Proof. In [1], it was shown that

φG(vN) =
1

1 +
∑N−1

k=1
k2

(k+1)!

∑N−1
i=k−1 i!

.

We claim

lim
N→∞

∑N−1
k=1

k2

(k+1)!

∑N−1
i=k−1 i!

(e− 1) · (N − 1)!
= 1.

Note that
∞∑

k=1

k2

(k + 1)!
= e− 1. (2.22)

Reversing the order of summation, we can rewrite

N−1∑

k=1

k2

(k + 1)!

N−1∑

i=k−1

i! =

(
N−2∑

i=0

i!
i+1∑

k=1

k2

(k + 1)!

)
+

(
(N − 1)!

N−1∑

k=1

k2

(k + 1)!

)
,

where by Equation (2.22), the second term above is asymptotic to (e−1) ·(N−1)!.

Thus, all that remains to be shown is that

lim
N→∞

N−2∑

i=0

i!
i+1∑

k=1

k2

(k + 1)!

(e− 1) · (N − 1)!
≤ lim

N→∞

N−2∑

i=0

i!

(N − 1)!

≤ lim
N→∞

5
3
(N − 2)!

(N − 1)!
= 0,

where, in the last step, we used the fact that
∑N−2

i=0 i! ≤ 5
3
(N − 2)! holds for

N ≥ 3.

Using the preceding lemmas, we now prove an upper bound on λ1 for the

construction G′ described in Example 6. Our main tool will be Theorem 5, the

directed Cheeger inequality proved by Chung in [15].
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Claim 1. Let directed graphs G and G′ be as described in Example 6. Then

λ1(G′) < 2φG(vN) ∼ 2

(e− 1) · (N − 1)!
,

where λ1(G′) denotes the first non-trivial eigenvalue of the normalized Laplacian

of G′ and φG(vN) denotes the value of the Perron vector of G on vertex vN .

Proof. Taking S = {v′1, . . . , v′N}, we have that the Cheeger constant h(G′) of G′

satisfies

h(G′) ≤ Fφ(∂S)

min{Fφ(S), Fφ(S)}

=
φG′(v

′
N)/2∑N

i=1 φG′(v
′
i)

= φG′(v
′
N)

< φG(vN),

where, in the last step, we applied Lemma 2 and in the second-to-last step, we

applied the fact that φG′(v
′
i) = φG′(v

′
2N−i+1) for i = 1, . . . , N . Applying the upper

bound of the Cheeger inequality (Theorem 5) and Lemma 3 yields the result.
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Chapter 3

Graphs with many strong

orientations

3.1 Introduction

In this chapter, we answer a question posed by Fan Chung related to count-

ing strong orientations: for which possibly sparse and irregular graphs are “most”

orientations strongly connected? More precisely, for any given ε > 0, we wish to

establish minimally restrictive conditions on G so that, with probability 1 − ε, a

random orientation of G is strongly connected, provided the number of vertices n

is sufficiently large.

In particular, we show that if a general graph G satisfies a mild eigen-

value condition and mild minimum degree requirement, then a random orientation

will be strongly connected with high probability. In fact, we actually prove two

main theorems: a “weak” and “strong” version. Both theorems contain an iden-

tical minimum degree requirement, but the strong version stipulates a bound on

the Cheeger constant (and hence, via the Cheeger inequality, the first nontrivial

eigenvalue of the normalized Laplacian, λ1), whereas the weak form replaces this

with a more restrictive condition on the spectral gap of the normalized Laplacian,

σ = max {1− λ1, λn−1 − 1}. Nonetheless, as the methods used to prove each result

are completely different, we include both theorems here.

57
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3.2 Main theorem: strong form

We begin with the stronger form of our main theorem:

Theorem 16. Given any α > 0 and ξ > 4, there exists an integer N0 = N0(α, ξ)

such that for n ≥ N0, if G is an n-vertex graph with minimum degree δ(G) ≥ (1 +

α) log2 n and Cheeger constant Φ(G) > ξ · log2 log2 n

log2 n
, then a random orientation

of G is strongly connected with probability at least 1− 1 + 4α log2 n

αnα log2 n
.

Thus, a graph G satisfying the conditions of Theorem 16 has (1−o(1))2e(G)

many strong orientations, where e(G) denotes the number of edges ofG. We remind

the reader that the Cheeger constant of a graph measures the fewest number of

edges leaving a vertex set relative to the “size” of that set. Beyond the bound on

the Cheeger constant and the minimum degree requirement, we do not assume the

graph necessarily satisfies additional structural properties; in particular, the graph

is not assumed to be regular. Not assuming regularity increases the utility of the

result, but introduces additional subtleties in the proof, particularly with regard

to enumerating connected k sets of the graph.

As we will show in Section 3.2.1, the minimum degree requirement is tight

while the bound on the Cheeger constant is tight up to a log2 log2 n factor. Since

the normalized Laplacian eigenvalues of a general graph can be more efficiently

computed than its Cheeger constant, it may be useful to reformulate the second

condition in Theorem 16 as a spectral condition via the Cheeger inequality.

Corollary 2. In Theorem 16, the condition Φ(G) > ξ · log2 log2 n
log2 n

may be replaced

with
λ1(G)

2
> ξ · log2 log2 n

log2 n
,

where λ1(G) denotes the second eigenvalue of the normalized Laplacian of G.

Here, we emphasize that the spectral condition in Corollary 2 only pertains

to the second eigenvalue and thus makes no additional assumptions about the

spectral gap, σ = maxi≥1 |1 − λi|, which is the key parameter in controlling the

discrepancy of a graph. Thus, while we assume a bound on |1 − λ1|, we do not
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assume an additional bound on the other end of the spectrum, |1− λn−1|, beyond

the trivial bound that holds for any graph, λn−1 ≤ 2.

A consequence of the Cheeger inequality, by which Corollary 2 follows im-

mediately from Theorem 16, is that for any set X ⊆ V (G) with vol(X) ≤ 1
2
vol(G),

e(X,X) ≥ λ1

2
vol(X). (3.1)

As an aside, this uses only the bound 2Φ ≥ λ1, so we are not using the full

strength of Cheeger’s inequality. Indeed, on graphs the lower bound λ1 ≤ 2Φ is

easily proven (for instance, see Lemma 2.1 in [14]). In the Riemannian manifold

case, Cheeger’s inequality only refers to the lower bound on λ1 in terms of Φ – the

upper bound on λ1 in terms of Φ is Buser’s inequality [10]. Nonetheless, we stick

with the convention in graph theory and refer to (3.1) as following from Cheeger’s

inequality.

Next, in Section 3.2.1 we briefly discuss the isoperimetric condition and

minimum degree requirement in Theorem 16. In Section 3.2.2, we present the

proof of Theorem 16.

3.2.1 Sharpness of conditions

Before we proceed with the proof of Theorem 16, we briefly discuss the

minimum degree requirement and Cheeger constant bound. First, we show that

each of these conditions, taken on their own, do not ensure that a random ori-

entation of a graph yields a strongly connected directed graph with any nonzero

limiting probability. For instance, Figure 3.1 illustrates the so-called barbell graph

on n vertices, which has minimum degree a factor of n but possesses a bridge.

Similarly, the graph obtained by connecting a single vertex to exactly one vertex

of Kn−1 has Cheeger constant always at least 1/2 (as we prove below) but again

contains a bridge. Thus, neither condition in Theorem 16, on its own, is sufficient

in ensuring the result.

Proposition 15. Let G = (V,E) be the graph on {v1, . . . , vn} obtained by con-

necting a single vertex to exactly one vertex of Kn−1. Then h(G) ≥ 1
2

for n ≥ 4.
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Proof. Let {v1, . . . , vn−1} denote the set of vertices in the clique, and {v1, vn} the

appended edge. For ease of exposition, we assume n is even. For any subset S

with |S| = k ≥ 2 satisfying vol(S) ≤ 1
2
vol(G), there are four cases:

h(S) =





k(n− k) + 1

k(n− 1) + 1
if vn+1 6∈ S, v1 ∈ S,

(k − 1)(n− k + 1) + 1

(k − 1)(n− 1) + 1
if vn+1 ∈ S, v1 6∈ S,

(k − 1)(n− k + 1)

(k − 1)(n− 1) + 2
if vn+1 ∈ S, v1 ∈ S,

n− k
n− 1

if vn+1 6∈ S, v1 6∈ S.

Note that vol(S) ≤ 1
2
vol(G) =⇒ k ≤ n

2
, except in Case 2 above, where

k ≤ n
2

+ 1. However, we may assume k ≤ n
2
, as a straightforward computation

shows that when k = n
2
, the Cheeger constant of a subset in Case 4 is still smaller

than for that of a subset in Case 2 when k = n
2

+ 1. We can further restrict

attention to Cases 3 and 4 above since the Cheeger constant of such subsets is

always smaller than those in Cases 1 and 2, respectively.

Now, for fixed n, the Cheeger constant in Cases 3 and 4 is strictly monotoni-

cally decreasing for 2 ≤ k ≤ n
2
. And whenever n ≥ 4 and k ≥ 3, (k−1)(n−k+1)

(k−1)(n−1)+2
> n−k

n−1
.

Thus

h(G) =





3
5

if n = 4,

1
2

+ 1
2(n−1)

if n ≥ 5.

Next, we show our minimum degree requirement is sharp while the bound

on the Cheeger constant is sharp up to a log2 log2 n factor. In order to do this, we

will make use of the fact that if G is a random d-regular graph, for d = c log2 n,

then G has a Cheeger constant bounded away from zero. Such results were known

for fixed d dating to the work of Bollobás [7].

For non-constant degree, as in our case, the easiest approach to such a result

is to appeal to the spectra. The study of spectra of random regular graphs has

a long history, culminating most famously in Friedman’s proof of Alon’s second
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Figure 3.1: Two copies of Kn/2 connected by an edge.

eigenvalue conjecture [24]: random regular graphs of fixed degree d have second

eigenvalue of the adjacency matrix 2
√
d− 1+ε for any ε > 0, with high probability.

This, again unfortunately for our work, focuses on the case with constant degree.

Fortunately for our purposes, Broder, Frieze, Suen and Upfal [9] showed that

the technique used by Kahn and Szemeredi in [28] works in the case that d =

o(n1/2), and shows that the second eigenvalue of the adjacency matrix is O(
√
d)

for such graphs. In terms of normalized Laplacian eigenvalues, this shows that

λ1 ≥ 1 − O(d−1/2) in this regime, and through Cheeger’s inequality random d-

regular graphs have Cheeger constant satisfying Φ > 1
4

with high probability so

long as n is sufficiently large. We mention that this problem is still attracting

attention, as just recently, Cook, Goldstein and Johnson [40] proved that the second

adjacency eigenvalue for a random d-regular graph is still O(
√
d) for d = o(n2/3).

We now use the fact that a log2 n regular graph has Cheeger constant at

least 1/4 with high probability when considering the following example, which

shows our minimum degree requirement is sharp.

Example 7. Let G′ be a random t regular graph on N = 2t vertices.

Proposition 16. G′ has minimum degree log2N and, with high probability, Cheeger

constant at least 1
4
. However, a random orientation of G′ is disconnected with lim-

iting probability at least 1− 1
e
.

Proof. We show a random orientation of G′ is disconnected with limiting proba-

bility at least 1 − 1
e
. Since G′ is log2N regular, the probability a vertex is a sink

in a random orientation is 1
N

. Assume the vertices are labeled and let Bi denote

the event that vertex i is a sink. For fixed k, define
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S(k) =
∑

{i1,...,ik}∈(V (G′)
k )

P(Bi1 ∩ · · · ∩Bik).

By Brun’s sieve [5, Theorem 8.3.1], if we show that for every fixed k

lim
N→∞

S(k) =
1

k!
,

then the limiting probability there are no sinks in a random orientation of G′ is 1
e
.

Note that if {i, j} ∈ E(G′), then P(Bi ∩ Bj) = 0. Thus, we may rewrite the sum

for S(k) as over all independent sets with k vertices. Accordingly, since we need

each of the t = log2N edges for each of the k vertices to be oriented so that each

is a sink, P(Bi1 ∩ · · · ∩Bik) =
(

1
2t

)k
= 1

Nk . At most, every k-subset of V (G′) is an

independent set, yielding the upper bound

S(k) ≤
(
N

k

)
1

Nk
∼ 1

k!
,

and at least, there are 1
k!
· N(N − log2N) . . . (N − (k − 1) log2N) ≥ (N−k log2N)k

k!·Nk

independent sets of size k, yielding the lower bound

S(k) ≥ (1− k log2N
N

)k ·Nk

k! ·Nk
∼ 1

k!
.

Having shown that the minimum degree condition in Theorem 16 is sharp,

we now use G′ to construct a graph G to show the Cheeger constant condition in

Theorem 16 is sharp up to a log2 log2 n factor.

Example 8. For any integer c > 1, consider the graph G on n vertices obtained

from G′ by appending to each vertex in G′ vertex disjoint complete graphs on ct

vertices. (Equivalently, G is constructed by taking N vertex disjoint cliques on ct

vertices, selecting from each of them a distinguished vertex, and amongst the N

distinguished vertices, placing a t regular random graph). See Figure 3.2 for one

example of this construction.
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Figure 3.2: The graph G in Example 8 with t = c = 2.

Proposition 17. G has minimum degree Ω(log2 n) and Cheeger constant Φ(G) =

Ω(log−1
2 n). However, a random orientation of G is disconnected with limiting

probability at least 1− 1
e
.

Proof. First, recalling that G is constructed by appending disjoint complete graphs

to each vertex in G′, Proposition 16 immediately implies a random orientation of

G is disconnected with limiting probability at least 1 − 1
e
. Next, we examine

the minimum degree and Cheeger constant of G. Note that the graph G is on

n = ctN vertices, and log2 n = t + log2(ct). For t large enough, the minimum

degree in the graph (which is ct− 1) is at least c log2 n
2

and the maximum degree is

(c + 1)t − 1 < 2c log2 n. For any subset X ⊆ V (G) with vol(X) < vol(G)/2, we

will show that
e(X, X̄)

vol(X)
= Ω(log−1

2 n).

Note that since every vertex has degree Θ(log2 n) it suffices to show that for all

subsets of cardinality at most n
2
,

e(X, X̄)

|X| = Ω(1).

This is what we shall do. Let S ⊆ V (G) denote the vertices of G′ (contained as

a subgraph of G.) Let S1, . . . , SN denote the vertices contained (respectively) in

each of the N cliques. Note |Si∩S| = 1 for all i, as there is a unique distinguished

vertex per clique. Fix a set X ⊆ V (G). Define the sets

S ′ = X ∩ S,
T1 = {x ∈ X : x ∈ Si with (Si ∩ S ′) 6= ∅ for some i ∈ [N ]},
T2 = {x ∈ X : x ∈ Si with (Si ∩ S ′) = ∅ for some i ∈ [N ]}.



64

Note that S ′ ⊆ T1 and T1 and T2 partition X. We observe that

e(X, X̄)

|X| =
e(T1, X̄) + e(T2, X̄)

|T1|+ |T2|
.

By the real number inequality

a+ b

c+ d
≥ min

{
a

c
,
b

d

}
,

valid for positive a, b, c, d, it suffices to show that both e(T1,X̄)
|T1| and e(T2,X̄)

|T2| are both

Ω(1) (unless one of them is 0
0

– note that both of them cannot be since X is

non-empty).

We begin by proving that e(T2,X̄)
|T2| = Ω(1) so long as T2 is non-empty. Let

ri = |Si ∩ T2|. Note that ri ≤ ct − 1 for every i, as the distinguished vertices are

not in T2. Further note that since Si is a clique, the ri vertices in Si are adjacent

to all remaining ct− ri vertices in the clique which are in X̄. Thus

e(T2, X̄) =
∑

i

ri(ct− ri) ≥
∑

i

ri = |T2|,

so e(T2, X̄)/|T2| = Ω(1).

It is slightly more complicated to bound e(T1,X̄)
|T1| . Similarly, we let ni =

|Si ∩ T1|. Let m = |T1 ∩ S|. Then

e(T1, X̄) = e(T1 ∩ S, X̄ ∩ S) +
∑

i

ni(ct− ni).

Since G′ has Φ(G′) ≥ 1
4
,

e(T1 ∩ S, X̄ ∩ S) ≥ 1

4
min{m,N −m} · log2N.

If m ≤ 9N
10

this is sufficient to show e(T1,X̄)
|T1| = Ω(1), since |T1| = O(m log2N) and

e(T1 ∩ S, X̄ ∩ S) = Ω(m log2N). Otherwise, if m > 9N
10

, without loss of generality

n1, n2, . . . , nm are positive. Consider the function:

f(n1, n2, n3, . . . , nm) =
∑

i

ni(ct− ni).
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Note that if x ≥ y,

(x+1)(ct−(x+1))+(y−1)(ct−(y−1))−(x(ct− x) + y(ct− y)) = 2(y−x−1) < 0.

Thus, for any two arguments of the function f , increasing the larger by 1 while

decreasing the smaller by 1 decreases the function. Since f is symmetric in its

variables, we may relabel them so that n1 ≥ · · · ≥ nm and repeatedly apply the

above observation to yield:

f(n1, n2, . . . , nm) ≥ f(ct, ct, · · · , ct, ∗, 1, 1, . . . , 1, 1),

so that the arguments sum to
∑
ni and 1 ≤ ∗ ≤ ct. Since

∑
ni ≤ n

2
and m > 9N

10
,

this means that there are at least 4N
10

1’s, so

f(n1, n2, n3, . . . , nm) ≥ f(ct, ct, · · · , ct, ∗, 1, 1, . . . , 1, 1) ≥ 4N

10
· 1(ct− 1) = Ω(n).

This shows e(T1, X̄) = Ω(n), hence e(T1,X̄)
|T1| = Ω(1). Thus we have shown Φ(G) =

Ω(log−1
2 n).

3.2.2 Proof of Theorem 16

Our general approach to proving Theorem 16 is based on the observation

that a directed graph is strongly connected if and only if every nonempty proper

subset X ( V (G) has an edge both entering and leaving it. Namely, we bound

the probability that every connected set X ⊆ V (G) with vol(X) ≤ vol(G)/2 has

an edge both entering and leaving it.

Definition 6. For a subset X of vertices let BX be the event that vol(X) ≤
vol(G)/2, X is connected in G and X has either no edges oriented into it or

out of it. Note only the third property here is random – if X does not have one of

the first two properties, P(BX) = 0 deterministically. We further define

Bk =
⋃

X⊆V (G)
|X|=k

BX .
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We estimate P(
⋃
k Bk) ≤

∑
k P(Bk) by dividing k into two regimes. First

we prove that every small subset (where |X| ≤ c log2 n) has an edge entering and

leaving:

Regime 1: We claim
∑α/2 log2 n

k=1 P(Bk) < 4
nα

.

Proof. We begin by noting that for a given set X of size k, there are at most
(
k
2

)

edges induced on X and hence, recalling that δ denotes the minimum degree, there

are at least δk −
(
k
2

)
edges leaving. Note that in this regime, δk −

(
k
2

)
> 0 since

k ≤ α
2

log2 n. For a given set X,

P(BX) ≤ 2−δk+(k2)+1,

and this gives an estimate

P(Bk) ≤
(
n

k

)
2−δk+(k2)+1 =: bk.

We note that if k ≤ α
2

log2 n,

bk+1

bk
=

(
n
k+1

)
2−δ·(k+1)+(k+1

2 )+1

(
n
k

)
2−δk+(k2)+1

=
(n− k)2k

(k + 1)2δ

≤ 2k

nα
≤ 1

2
.

Then
α
2

log2 n∑

k=1

P(Bk) ≤ 2P(B1) ≤ 2n21−(1+α) log2 n = 4n−α.

Regime 2: We claim
∑n

k≥α/2 log2 n
P(Bk) ≤ 1

αnα log2 n
.

Proof. For large sets, we must take greater care – the number of edges that could be

induced in sets is much larger, we utilize our lower bound on the Cheeger constant

to ensure many edges leave each set. Since the number of potential k sets grows
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large as well, we will restrict attention to counting only connected sets so as to not

over count.

To this end, we will enumerate connected k sets by considering rooted

spanning trees in G, which we will consider labeled. The shape of spanning trees,

can of course, vary wildly. For the purposes of this work we will enumerate them

by their exposure sequence.

Definition 7. An exposure sequence π = (π1, π2, . . . , πk−1) of a labeled rooted

spanning tree on k vertices is determined as follows: newly label the vertices in

breadth-first order, with ties broken by the original labeling of the tree. Then,

under this new labeling πi is the number of children of vertex vi in the tree. See

Figure 3.3 for an example.

Therefore, an exposure sequence of a rooted spanning tree on k vertices

is an (ordered) list of (k − 1) non-negative integers (π1, π2, . . . , πk−1) satisfying
∑

i≤j πi ≥ j and
∑k−1

i=1 πi = k − 1. A given exposure sequence of k − 1 numbers

uniquely determines the shape of the rooted, spanning tree on k vertices. Since

these vertices are labeled in breadth-first order, the kth vertex is necessarily a leaf

of the tree, so by convention we have πk = 0. We note that an exposure sequence

for a rooted spanning tree on k vertices can be thought of as a staircase walk on

the square lattice from (0, 0) to (k − 1, k − 1) which never crosses the diagonal.

Namely, the staircase walk corresponding to exposure sequence π is formed by

taking πi steps east and 1 step north for i = 1, . . . , k − 1 (see Figure 3.3). Thus,

counting all possible exposure sequences is equivalent to counting all Dyck paths

on the square lattice, which is given by the Catalan numbers: ck−1 = 1
k

(
2(k−1)
k−1

)
.

We will enumerate all of the rooted subtrees in G on k vertices by their

exposure sequence. Our task now is to bound the following sum:
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1

2

4

6 5 7

8

3

Figure 3.3: Left: a breadth-first vertex labeling of a rooted tree yielding expo-
sure sequence π = (1, 2, 0, 3, 0, 0, 1). Right: the staircase walk corresponding to
exposure sequence π = (1, 2, 0, 3, 0, 0, 1).

P(Bk) ≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

∑

{v2,v3,...,v1+π1}
∈(N(v1)

π1
)
∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}
∈(N(v2)

π2
)

· · ·
∑

{vk−πk−1+1,...,vk}
∈(N(vk−1)

πk−1
)

P(BX), (3.2)

where X = {v1, . . . , vk} and
(
N(vi)
πi

)
denotes the set of all sets of πi vertices adjacent

to vi in the original graph G. For any X which is connected in the original graph,

P(BX) =





0 if vol(X) > vol(G)
2

21−e(X,X̄) if vol(X) ≤ vol(G)
2

.

In the second case,

P(BX) ≤ 21−e(X,X̄) ≤ 21−Φvol(X) = 21−Φ
∑
vi∈X

deg(vi).

Since this bounds P(BX) above by a positive quantity (and P(BX) is otherwise

zero), the inequality

P(BX) ≤ 21−Φ
∑
vi∈X

deg(vi), (3.3)

holds for every X. We now use (3.3) to bound the right hand side of (3.2). We

wish to collapse a term of the form

∑

(N(vj)
πj

)

21−Φ deg(vj),
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as (after having already bounded each of the summands for vi where i > j) we will

have ensured that the summand is independent of the πj vertices chosen. Thus,

∑

(N(vj)
πj

)

21−Φ deg(vj) =

(
deg(vj)

πj

)
21−Φ deg(vj).

We will give an upper bound of this term which is independent of vj, depending

only on πj and δ, and this will allow us to continue collapsing the sum (3.2). We

find three different upper bounds for this term for the cases when πj = 0, πj = 1,

or πj > 1.

Case 1: πj = 0.

If vj is a leaf of the embedded spanning tree (which corresponds to πj = 0),

we simply bound

21−Φ deg(vj) ≤ 21−Φ·(1+α) log2 n.

Case 2: πj > 1.

Since the terms we are interested in have the general form:
(

deg(vj)
πj

)
21−Φ deg(vj),

we investigate the associated sequence defined by fixing πj and varying deg(vj). In

general, let

κs,t =

(
s

t

)
21−Φs,

so that the terms appearing above are κdeg(vj),πj . Then for a fixed t and varying s,

the sequence κs,t is unimodal. We have that

κs,t
κs+1,t

=

(
1− t

s+ 1

)
2Φ.

Thus the maximum of κs,t, for a fixed t, is achieved by the smallest s such that

κs+1,t < κs,t, yielding
t

s+ 1
< 1− 2−Φ,

or equivalently

(s+ 1) >
t

1− 2−Φ
.

Thus the maximum of κs,t occurs when

smax(t) =

⌊
t

1− 2−Φ

⌋
.
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Indeed, extending the binomial coefficients to the reals in the usual way, the floor

function can be dropped. Recalling that Φ, s ≥ 0, for fixed t we have:

κs,t ≤
(

(1− 2−Φ)−1t

t

)
21−Φ·(1−2−Φ)−1t. (3.4)

Next, we use the entropy bound:
(
n

k

)
≤ nn

kk(n− k)n−k
= 2nH(k/n),

where H(q) = −q log2 q − (1− q) log2(1− q) is the binary entropy function.

Applying this bound to the binomial coefficient in (3.4) yields:

log2

(
(1− 2−Φ)−1t

t

)
≤ (1− 2−Φ)−1tH(1− 2−Φ)

= −(1− 2−Φ)−1t
[
(1− 2−Φ) log2(1− 2−Φ) + 2−Φ log2(2−Φ)

]

= t

[
− log2(1− 2−Φ) +

Φ

2Φ − 1

]
.

Combining this upper bound with (3.4) and simplifying, we have that

κs,t ≤ 21+t(− log2(1−2−Φ)−Φ). (3.5)

We will now provide constant upper bounds on the terms involving Φ in

the exponent of (3.5). Setting f(x) = − log2(1 − 2−x), we have f ′(x) = −1
2x−1

and

so for x > 0,

f(x) = f(1) +

∫ x

1

f ′(t) dt = 1 +

∫ 1

x

1

2t − 1
dt.

Since 1 + x ln 2 ≤ ex ln 2 = 2x, we have that for x > 0,

f(x) ≤ 1 +

∫ 1

x

1

t ln 2
dt = 1− log2(x).

We may use this to bound (3.5), yielding

κs,t < 21−t log2(Φ)+t.
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Although we will only apply this when πj > 1, this gives the general bound, good

for any deg(vj), πj that
(

deg(vj)

πj

)
21−Φ deg(vj) ≤ 21−πj log2(Φ)+πj .

Case 3: πj = 1.

In this case, the previous bound does not suffice for our purposes. Here, we

improve the bound by observing that our conditions imply that deg(vj) > smax(t).

Indeed, our condition that Φ > ξ log2 log2 n
log2 n

implies that for n sufficiently large,

(1 + α) log2 n > (1 − 2−Φ)−1. Hence we are interested in κdeg(vj),πj and by the

unimodality of the κs,t for t fixed, we can derive the bound:

(
deg(vj)

πj

)
21−Φ deg(vj) <

(
(1 + α) log2 n

πj

)
21−Φ·(1+α) log2 n

< ((1 + α) log2 n)πj21−Φ·(1+α) log2 n

= 21+πj [log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n, (3.6)

which for πj = 1 simplifies to
(

deg(vj)

1

)
21−Φ deg(vj) < 21+[log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n.

Collecting our results from Cases 1, 2, and 3, we have established the fol-

lowing:

∑

(N(vj)
πj

)

21−Φ deg(vj) =

(
deg(vj)

πj

)
21−Φ deg(vj)

≤





21−Φ·(1+α) log2 n if πj = 0

21+[log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n if πj = 1

21+πj log2(1/Φ)+πj if πj > 1

. (3.7)

Before we collapse the sum (3.2) using (3.7), we make a few simple com-

binatorial observations concerning exposure sequences of rooted spanning trees.

Recalling that a degree of a vertex in the spanning tree is π1 for v1, and πi + 1 for

vi, we define the following:
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Definition 8. For an exposure sequence π = (π1, . . . , πk−1), let

`(π) = 1 + |{j ≤ k − 1 : πj = 0}|

denote the number of leaves of the spanning tree described by the sequence and we

let

p(π) = |{j ≤ k − 1 : πj = 1}|.

Lemma 4. For any exposure sequence π, we have

• p(π) + `(π) ≥ k

2
,

•
∑

j:πj≥2

πj < k − p(π).

Proof. For the first observation, note that if p(π) + `(π) < k
2
, then there are at

least k
2

terms in π that are at least 2, yielding the contradiction:

k = (k/2) · 2 ≤
k−1∑

i=1

πi = k − 1.

And, for the second observation:

k − 1 =
k−1∑

i=1

πi =
∑

j:πj≥2

πj +
∑

j:πj=1

πj +
∑

j:πj=0

πj

=
∑

j:πj≥2

πj + p(π).

We now proceed to bound P(Bk) (3.2). We will take logarithm here for

readability so that every term would not appear in the exponent – this should be

viewed most naturally by exponentiating both sides. Iteratively applying (3.7), we

obtain that for a fixed π = (π1, · · · , πk−1) and v1 ∈ V (G)

log2 P(Bk) ≤ log2




∑

{v2,v3,...,v1+π1}
∈(N(v1)

π1
)

∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}
∈(N(v2)

π2
)

· · ·
∑

{vk−πk−1+1,...,vk}
∈(N(vk−1)

πk−1
)

P(BX)
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≤


 ∑

j:πj≥2

1 + πj log2(1/Φ) + πj


+ p(π)[1 + log2(1 + α) + log2 log2 n]

− (p(π) + `(π))Φ·(1 + α) log2 n+ `(π)

=


 ∑

j:πj≥2

πj log2(1/Φ) + πj


+ p(π)[log2(1 + α) + log2 log2 n]

− (p(π) + `(π))Φ·(1 + α) log2 n+ k.

Continuing, we apply Lemma 4 to yield

 ∑

j:πj≥2

πj log2(1/Φ) + πj


+ p(π)[log2(1 + α) + log2 log2 n]

− (p(π) + `(π))Φ·(1 + α) log2 n+ k

≤ (k − p(π)) (log2(1/Φ) + 1) + p(π)[log2(1 + α) + log2 log2 n]

− k

2
·Φ·(1 + α) log2 n+ k.

Next, using the fact that Φ > ξ log2 log2 n
log2 n

for some (large) constant ξ, we

obtain

(k − p(π)) (log2(1/Φ) + 1) + p(π)[log2(1 + α) + log2 log2 n]

− k

2
·Φ·(1 + α) log2 n+ k

< (k − p(π)) log2 log2 n+ (k − p(π)) + p(π) log2 (1 + α)

+ p(π) log2 log2 n− ξ
k

2
(1 + α) log2 log2 n+ k

≤ k

(
log2 log2 n

[
1− ξ

2
(1 + α)

]
+ (2 + log2(1 + α))

)
. (3.8)

Finally, for ξ > 4 and n sufficiently large we have:

k

(
log2 log2 n

[
1− ξ

2
(1 + α)

]
+ (2 + log2(1 + α))

)

≤ k (log2 log2 n [1− 2(1 + α)])

= −k·α log2 log2 n

2

(
2α−1 + 4

)

≤ −k(2α−1 + 4).
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Therefore, by assuming n and ξ are large enough, for any fixed π and

v1 ∈ V (G) we have that:

∑

{v2,v3,...,v1+π1}
∈(N(v1)

π1
)

∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}
∈(N(v2)

π2
)

· · ·
∑

{vk−πk−1+1,...,vk}
∈(N(vk−1)

πk−1
)

P(BX)

≤ 2−(2α−1+4)k.

Using the above bound and recalling that there are ck−1 = k−1
(

2(k−1)
k−1

)
many

exposure sequences, we now bound all of (3.2) as:

P(Bk) ≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

∑

{v2,v3,...,v1+π1}
∈(N(v1)

π1
)

∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}
∈(N(v2)

π2
)

· · ·
∑

{vk−πk−1+1,...,vk}
∈(N(vk−1)

πk−1
)

P(BX)

≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

2−(2α−1+4)k

≤ nk−1

(
2(k − 1)

k − 1

)
2−(2α−1+4)k

≤ nk−14k−12−(2α−1+4)k

= 2log2 n−(log2 k+(2α−1+2)k+2)

≤ 2−(log2 k+2k+2),

where, in the last inequality, we used that k ≥ α
2

log2 n. Thus:

n∑

k=α
2

log2 n

P(Bk) ≤
n∑

k=α
2

log2 n

2−(log2 k+2k+2)

≤ 2 · 2−(log2(α
2

log2 n)+α log2 n+2)

=
1

αnα log2 n
.

This completes our estimate for Regime 2.
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Finally, combining the estimates we derived in each regime, we see that

P

(
n⋃

k=1

Bk
)
≤

n∑

k=1

P(Bk) ≤
1 + 4α log2 n

αnα log2 n
,

and thus with probability at least 1− 1+4α log2 n
αnα log2 n

= 1− o(1), a random orientation

of G is strongly connected, completing our proof of Theorem 16.

3.3 Main theorem: weak form

Here, we present a related, but somewhat weaker form of Theorem 16 that

replaces the isoperimetric condition with a more restrictive condition on the spec-

tral gap of the normalized Laplacian, σ = max {1− λ1, λn−1 − 1}.

Theorem 17. There exist c, c′, c′′ ∈ R+ and no ∈ Z+ such that if G is a graph

with |V (G)| > no, minimum degree δ > c log n and spectral gap of the normalized

Laplacian σ < c′, then a randomly oriented copy of G is strongly connected with

probability p ≥ 1− c′′

n
.

As before in Theorem 16, we remark that our approach here also does not

assume the regularity of G and that each condition on G is insufficient on its own

to imply the result. In particular, that the assumption on the spectral gap σ of G

is insufficient can be easily seen by considering a log2 n-regular graph. From the

Alon-Bopanna bound [41], one can conclude that the spectral gap the normalized

Laplacian satisfies

σ ≤ 2
√

log2 n− 1

log2 n
= o(1),

while a random orientation fails to be strongly connected with high probability

for the same reasons described in Proposition 16. To prove our theorem, we give

an algorithm that attempts to construct a directed path between two vertices

by simultaneously building the successive out-neighborhoods of one vertex and

in-neighborhoods of another vertex. Once each neighborhood has expanded to a



76

suitable size, we bound the number of edges between them. We establish the result

by bounding the probability of failure at each step in the process.

3.3.1 Tools and neighborhood expansion algorithm

We adopt the following notation, some of which will be defined more explic-

itly in the algorithm: for a subset S ⊂ V (G) where G is the underlying undirected

host graph, vol(S) =
∑

v∈V (G) dv, N(S) = {u : u ∼ s ∈ S}, and e(X, Y ) denotes

the number of (undirected) edges between X, Y . When considering the resulting

randomly oriented digraph, U(t) denotes the “unexplored” vertices at time t avail-

able for inclusion in the subsequent neighborhood expansion. We let Vx(t) and

Vy(t) denote the current unexplored out and in-neighborhoods of vertices x and

y respectively at time t. At each time step, we write the “smaller” and “larger”

neighborhoods as follows:

V
min

(t) =




Vx(t) if vol(Vx(t)) ≤ vol(Vy(t))

Vy(t) otherwise
.

Similarly, we define

Vmax(t) =




Vx(t) if vol(Vx(t)) > vol(Vy(t))

Vy(t) otherwise
.

We use N+(Vx(t)) and N−(Vy(t)) to denote the out and in-neighborhoods

of Vx(t) and Vy(t) while N±(V
min

(t)) is understood to mean N+(V
min

(t)) if V
min

(t) =

Vx(t) and N−(V
min

(t)) otherwise. Our proof utilizes the following two theorems.

First, we use the discrepancy inequality, sometimes referred to as the expander

mixing lemma by others.

Theorem 18 (Discrepancy Inequality [14]). Let G be a graph with spectral gap

σ = max {1− λ1, λn−1 − 1} of the normalized Laplacian L. Then
∣∣∣∣e(X, Y )− vol(X)vol(Y )

vol(G)

∣∣∣∣ ≤ σ
√

vol(X)vol(Y ).

The above result can be strengthened to obtain:

∣∣∣∣e(X, Y )− vol(X)vol(Y )

vol(G)

∣∣∣∣ ≤ σ

√
vol(X)vol(Y )vol(X)vol(Y )

vol(G)
.
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As an aside, we mention that Chung and Kenter, as well as Butler, proved

several analogs of the above discrepancy inequality for directed graphs. While

not relevant for our purposes here, we refer the interested reader to [17] and [11]

respectively. Secondly, we utilize the Chernoff bounds [13], a typical statement of

which, taken from [18], is the following:

Theorem 19 (Chernoff Bounds [13]). Let X1, . . . , Xn be independent random vari-

ables with P(Xi = 1) = pi, P(Xi = 0) = 1 − pi, X =
∑n

i=1 Xi, and expectation

E(X) =
∑n

i=1 pi. Then we have the following lower and upper tails

P(X ≤ E(X)− λ) ≤ e−λ
2/2E(X),

P(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

We try to construct a directed path between two vertices algorithmically.

Algorithm 1 Find directed path x, . . . , y

input: vertices x, y in randomly oriented digraph

output: success or failure

1: Vx(0)← {x}
2: Vy(0)← {y}





Step 0

3: U(0)← V (G) \ {x, y}
4:

5: Vx(1)← N+(x)

6: Vy(1)← N−(y)

7: U(1)← V (G) \ {x, y}
8: if Vx(1) ∩ Vy(1) 6= ∅ or y ∈ Vx(1) then

9: return success





Step 1

10: end if

11: if |Vx(1)| < vol(Vx(0))
4

or |Vy(1)| < vol(Vy(0))

4
then

12: return failure

13: end if

14:
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Algorithm 1 Find directed path x, . . . , y (continued)

15: t = 1

16: while vol(Vx(t)) <
vol(G)

100
or vol(Vy(t)) <

vol(G)
100

do

17: U(t+ 1)← U(t) \ V
min

(t)

18: V
min

(t+ 1)← N±(V
min

(t)) ∩ U(t+ 1)

19: Vmax(t+ 1)← Vmax(t)

20: if V
min

(t+ 1) ∩ Vmax(t+ 1) 6= ∅ then

21: return success





Step 2

22: end if

23: if vol(V
min

(t+ 1)) < 2 vol(V
min

(t)) then

24: return failure

25: end if

26: t = t+ 1

27: end while

28:

29: if N+(Vx(t)) ∩ Vy(t) 6= ∅ then

30: return success

31: else





Step 3

32: return failure

33: end if

3.3.2 Proof of Theorem 17

We prove Theorem 17 by bounding the probability of failure at each step

in Algorithm 1.

Step 1: We claim that P(failure in Step 1) ≤ 2n−c/16.

Proof. Letting X = |N+(x)|, from our minimum degree requirement δ > c log n,

we have that E(X) ≥ c
2

log n. Using the lower tail of the Chernoff bound with

λ = E(X)/2, we obtain:

P(X ≤ c

4
log n) ≤ n−c/16.
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The claim thus follows by the union bound.

Step 2: We bound the probability of failure after one iteration of the while loop,

given that failure has not yet occurred. We will require the following lemma:

Lemma 5. If vol(Vmin(t)) = ε vol(G), then vol(U(t+ 1)) ≥ (1− 4ε)vol(G).

Proof. Equivalently stated, we must show

vol(U(t+ 1)) ≥ vol(G)− 4vol(V
min

(t)).

To avoid failure, recall that we require vol(V
min

(t + 1)) ≥ 2vol(V
min

(t)).

The volume of each successive neighborhood grows geometrically, thereby ensuring

both

2vol(V
min

(t)) >
∑

{i∈[t]:Vmin (i)=Vx(i)}
vol(Vx(i)),

2vol(V
min

(t)) >
∑

{i∈[t]:Vmin (i)=Vy(i)}
vol(Vy(i)).

So, at time t, we have removed a set with volume at most 4vol(V
min

(t)) from

U(t+ 1).

Using this lemma, we find a lower bound on the number of edges between

V
min

(t) and the unexplored vertices U(t + 1) in terms of vol(V
min

(t)) using the

strengthened discrepancy inequality. Observe

e(V
min

(t), U(t+ 1)) ≥ vol(V
min

(t))vol(U(t+ 1))

vol(G)
−

σ

√
vol(V

min
(t))vol(V

min
(t))vol(U(t+ 1))vol(U(t+ 1))

vol(G)

≥ (1− 4ε)vol(V
min

(t))− σ
√

(1− ε)(1− 4ε)vol(G)24ε2vol(G)2

vol(G)

= (1− 4ε)vol(V
min

(t))− 2σvol(V
min

(t))
√

(1− ε)(1− 4ε)

=
(

1− 4ε− 2σ
√

(1− ε)(1− 4ε)
)

vol(V
min

(t))
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>
vol(V

min
(t))

2
,

where the second inequality holds since, using the lemma along with the fact that

ε < 1/100 yields U(t + 1) ≥ 24
25

(vol(G)), implying (1 − 4ε)4εvol(G)2 ≥ vol(U(t +

1))vol(U(t+ 1)).

Next, considering our undirected host graph G, we partition N(V
min

(t)) ∩
U(t + 1) into two sets: one in which there are “many” edges from V

min
(t) to

N(V
min

(t)) ∩ U(t+ 1) and one in which there are “few”. More precisely, define

T1 = {v ∈ N(V
min

(t)) ∩ U(t+ 1) : e(v, V
min

(t)) ≥ 5 log2 n},
T2 = {v ∈ N(V

min
(t)) ∩ U(t+ 1) : e(v, V

min
(t)) < 5 log2 n}.

Upon randomly orienting our graph, we have

P
(
v 6∈ N±(V

min
(t))
)
≤
(1

2

)5 log2 n

= n−5.

And since there are at most n vertices in T1, we have

P
(
∃v ∈ T1 : v 6∈ N±(V

min
(t))
)
≤ n−4.

Observe that at least half of the edges leaving V
min

(t) go to T1 or at least

half of the edges leaving V
min

(t) go to T2. We thus divide the remainder of the proof

into two cases, showing that in either case, the volume of the next neighborhood

of V
min

(t) is sufficiently large to avoid incurring failure.

Case 1: e(V
min

(t), T1) ≥ 1
2
e(V

min
(t), U(t+ 1)).

Combining our assumption for Case 1 along with the above bound on

e(V
min

(t), U(t+ 1)) yields

vol(V
min

(t))

4
≤ e(V

min
(t), T1).

Considering this fact, assume for sake of contradiction that vol(T1) ≤
2vol(V

min
(t)). Then

e(V
min

(t), T1) ≤ vol(V
min

(t))vol(T1)

vol(G)
+ σ
√

vol(V
min

(t))vol(T1)
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≤ vol(T1)

100
+ σ
√

vol(V
min

(t))vol(T1)

≤ vol(V
min

(t))

50
+
√

2σvol(V
min

(t)),

which is a contradiction.

Case 2: e(V
min

(t), T2) ≥ 1
2
e(V

min
(t), U(t+ 1)).

Again, we have

vol(V
min

(t))

4
≤ e(V

min
(t), T2).

And by definition, each vertex in T2 has fewer than 5 log2 n edges from

V
min

(t). Putting these two facts together yields

|T2| ≥
vol(V

min
(t))

20 log2 n
.

Upon orienting edges randomly, we have

E(|V
min

(t+ 1)|) ≥ log 2

40

vol(V
min

(t))

log n
.

Using the lower tail of the Chernoff bound with λ = E(|V
min

(t+ 1)|)/2 and

the fact that vol(V
min

(t)) ≥ vol(V
min

(1)) ≥ c2

4
log2 n yields

P
(
|V

min
(t+ 1)| ≤ log 2

80

vol(V
min

(t))

log n

)
≤ e−( c

2 log 2
1280

) logn = n−
c2 log 2

1280 .

Thus, from our minimum degree requirement, we know that with probabil-

ity 1− n− c
2 log 2
1280 , we have

vol(V
min

(t+ 1)) ≥ c log 2

80
vol(V

min
(t)) > 2vol(V

min
(t)),

for c > 160/log 2. Finally, we can bound the probability of failure in Step 2.

The number of iterations are bounded above by 2 log2(vol(G)). Since Case 1 has

a higher probability of failure, we have

P(failure in Step 2) ≤ 2 log2(vol(G))n−4.
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Step 3: At this final stage, the successive neighborhoods of each vertex have grown

sufficiently large (i.e. vol(Vx(t)) ≥ vol(G)
100

and vol(Vx(t)) ≥ vol(G)
100

). We find a lower

bound on the number of edges between them using the discrepancy inequality:

e(Vx(t), Vy(t)) ≥
vol(Vx(t))vol(Vy(t))

vol(G)
− σ

√
vol(Vx(t))vol(Vy(t))

≥ 1− 100σ

10000
vol(G)

≥ 1− 100σ

10000
cn log n,

where the second inequality follows since the left hand-side is monotonically in-

creasing in vol(Vx(t))vol(Vy(t)) for vol(Vx(t))vol(Vy(t)) ≥ (vol(G)/100)2 given our

choice of σ.

Here, failure occurs only if all these edges are oriented in the same direc-

tion. Thus,

P(failure in Step 3) ≥ 2−
(

1−100σ
10000

cn logn
)

= n
− cn(1−100σ)

log2(e)10,000 ,

thereby completing the proof of Theorem 17.
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Chapter 4

Related future work

4.1 Maximum hitting time for directed graphs

Beyond what we’ve mentioned, there appears to be little known about how

the principal ratio of a directed graph may be related to other important random

walk parameters. In the undirected case, extremal families for the principal ratio

have been shown to be extremal for other parameters, like maximum hitting time.

In particular, the expected hitting time HG(u, v) between two vertices u and v in

a graph G is the expected number of steps it takes to reach v, in a random walk

starting at u. In the undirected case, Brightwell and Winkler proved the following:

Theorem 20 (Brightwell, Winkler [8]). Let G be a connected graph on n vertices

and HG(u, v) denote the expected hitting time it takes to reach v from u in a simple

random walk on G. Then

max
G:|V |=n

(
max
u,v∈V

HG(u, v)

)
≈ 4

27
n3,

and is achieved by vertices u, v in a lollipop graph (see Figure 4.1), consisting of a

clique of size
⌊

2n+1
3

⌋
containing vertex u, to which a path on the remaining vertices

ending in v has been attached.

Tait and Tobin showed that the extremal graphs for the principal ratio are

also lollipop graphs, albeit with a slightly different clique size and path length [48].

83
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Figure 4.1: The lollipop graph described in Theorem 20 for n = 12.

Indeed, lollipop graphs have been shown to be extremal for a number of other

random walk parameters, such as cover time [23] and commute time [29].

In the directed case, it seems plausible that the extremal graphs for principal

ratio are part of a larger family of directed graphs extremal for maximum hitting

time. Below, we formulate this conjecture formally and derive an explicit formula

for the maximum hitting time of our principal ratio extremal graphs. This shows

that, whereas the maximum hitting time is on the order of n3 in the undirected

case, maximum hitting time is at least on the order of (n−1)! in the directed case.

Formally, the hitting time between two vertices u, v ∈ V (D) in a random

walk on a directed graph D is denoted HD(u, v) and defined by

HD(u, v) =





1 +
1

d+(u)

∑

w∈N+(u)

HD(w, v), if u 6= v,

0 if u = v.

(4.1)

The maximum hitting time of a directed graph, denoted α(D), is the max-

imum hitting time between all pairs of vertices, i.e.

α(D) = max
u,v∈V (D)

HD(u, v).

Question 1. What is

α(n) = max
D:|V (D)|=n

α(D),

and what is the family of directed graphs achieving this maximum?

Conjecture 1.

α(n) = d(e− 1)(!n− 1)− 3Hn + 2Hn+1e ,

where Hn denotes the n-th harmonic number and !n is the left factorial defined as

!n =
∑n−1

i=0 i!. Asymptotically,

lim
n→∞

α(n) = (e− 1) · (n− 1)!.
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1 2 3 4 5

D5

Figure 4.2: An illustration of Dn for n = 5. A particular member of Dn contains
all the undashed edges and any positive number of the dashed edges.

We conjecture α(n) is maximized precisely by the family of n-vertex directed

graphs Dn with vertex set {v1, v2, . . . , vn} and edge set

{(vi, vi+1) : for all 1 ≤ i ≤ n− 1)} ∪ {(vj, vi) : for all 1 ≤ i < j ≤ n− 1} ∪ S,

for any nonempty S ⊆ {(vn, vi) : i ∈ [n− 1]}. See Figure 4.2 for an illustration.

The posited maximum hitting time in Conjecture 1 is the maximum hitting

time of the principal ratio extremal graphs we found in Theorem 10, which belong

to the family Dn defined above. Below, we find a closed-form expression for the

maximum hitting time for Dn in terms of n.

Claim 2. Let D ∈ Dn, where Dn is defined above. Then α(D) = HD(1, n) =

d(e− 1)(!n− 1)− 3Hn + 2Hn+1e. Asymptotically,

lim
n→∞

α(D) = (e− 1) · (n− 1)!.

Proof. For ease of notation, let xi,n := HD(i, n) for i = 1, . . . , n. Applying the

formula (4.1) for hitting time for D yields x1,n = 1 + x2,n and xn,n = 0 and for

i = 2, . . . , n− 1,

xi,n = 1 +
1

i
(x1,n + · · ·+ xi−1,n + xi+1,n) .

We claim that

xi,n = fi + xi+1,n, (4.2)
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where fk =
∑k

i=1
k!
i!

. We prove this by strong induction. Since x1 = 1 + x2 and

x2 = 3+x3, we have f1 = 1 and f2 = 3. Assume the claim holds for i = 1, . . . , k−1.

Then

xk,n = 1 +
1

k
(x1,n + · · ·+ xk−1,n + xk+1,n)

= 1 +
1

k

(
(f1 + x2,n) + (f2 + x3,n) + · · ·+ (fk−1 + xk,n) + xk+1,n

)

= 1 +
1

k

(
(f1 + · · ·+ fk−1) + (f2 + · · ·+ fk−1) + · · ·+

(fk−1) + (k − 1)xk + xk+1,n

)

= 1 +
1

k

(
k−1∑

i=1

ifi + (k − 1)xk,n + xk+1,n

)

=

(
k +

k−1∑

i=1

ifi

)
+ xk+1,n,

where fk = k+
∑k−1

i=1 ifi. Next, we show that k+
∑k−1

i=1 ifi =
∑k

i=1
k!
i!

with f1 = 1.

It is easy to verify the base case holds for k = 2; assume the result holds for

k = 1, . . . , s− 1. Then

fs = s+
s−1∑

i=1

ifi

= 1 + (s− 1) +

(s−1)−1∑

i=1

+(s− 1)fs−1

= 1 + fs−1 + (s− 1)fs−1

= 1 + sfs−1

= 1 + s
s−1∑

i=1

(s− 1)!

i!
= 1 +

s−1∑

i=1

s!

i!
=

s∑

i=1

s!

i!
.

Rewriting x1,n using (4.2) and using the fact that xn,n = 0, we have that x1,t =
∑n−1

k=1 fk. So, substituting the above formula for fi into this equation yields

x1,n =
n−1∑

k=1

k∑

i=1

k!

i!
. (4.3)

First, we claim that α(D) = x1,n, that is, x1,n ≥ xi,j for all i, j ∈ [n]. By

(4.2), for any given n, xi,n > xi+1,n and then hence x1,n ≥ xi,n for any i ∈ [n]. By

(4.3), it is clear that x1,n ≥ x1,j for any j ∈ [n]. Hence α(D) = x1,n.
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Next we shall show

x1,n = d(e− 1)(!n− 1)− 3Hn + 2Hn+1e . (4.4)

We claim that

fk = b(e− 1) · k!c, (4.5)

where bxc denotes the largest integer no larger than x. Since fk is an integer and

e− 1 = lim
n→∞

n∑

i=1

1

i!
,

to prove (4.5) it suffices to show

lim
n→∞

n∑

i=1

k!

i!
− fk < 1. (4.6)

We start from the left-hand side of the inequality (4.6), for k ≥ 1,

lim
n→∞

n∑

i=1

k!

i!
− fk

= lim
n→∞

n∑

i=1

k!

i!
−

k∑

i=1

k!

i!

= lim
n→∞

n∑

i=k+1

k!

i!

=
1

k + 1
+

1

(k + 2)(k + 1)
+ lim

n→∞

n∑

i=k+3

k!

i!

=
k + 3

(k + 2)(k + 1)

+
1

(k + 2)(k + 1)
·
(

lim
n→∞

1

k + 3
+

1

(k + 4)(k + 3)
+ · · ·+ 1

n · · · (k + 4)(k + 3)

)

<
k + 3

(k + 2)(k + 1)
+

1

(k + 2)(k + 1)
·
(

lim
n→∞

1

2
+

1

2 · 2 +
1

2 · 2 · 2 + · · ·+ 1

2n−k−2

)

=
k + 4

(k + 2)(k + 1)

≤ 5

6
< 1,

which proves (4.5). For convenience, we denote the difference between (e− 1) · k!

and fk by δk. From the proof above, we can see that

δk := (e− 1) · k!− fk >
k + 3

(k + 2)(k + 1)
=

2

k + 1
− 1

k + 2
,
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and

δk <
k + 4

(k + 2)(k + 1)
=

3

k + 1
− 2

k + 2
.

For n ≥ 1, we see that

2Hn −Hn+1 −
1

2
<

n−1∑

k=1

δk < 3Hn − 2Hn+1, (4.7)

where Hn is the n-th Harmonic number,

Hn =
n∑

i=1

1

i
≈ lnn+ γ +

1

2n
− 1

12n2
+

1

120n4
,

and γ ≈ 0.5772156649 is the Euler–Mascheroni constant. This observation is

straightforward because

2
1

k + 1
− 1

k + 2
< δk < 3

1

k + 1
− 2

1

k + 2
.

Now recalling that

x1,n =
n−1∑

k=1

k∑

i=1

k!

i!
=

n−1∑

k=1

fk,

we have

x1,n =
n−1∑

k=1

((e− 1) · k!− δk) . (4.8)

Next we claim that x1,n is the only integer in the open interval
(

(e− 1)(!n− 1)− 3Hn + 2Hn+1, (e− 1)(!n− 1)− 2Hn +Hn+1 +
1

2

)
,

where !n is left factorial defined as

!n :=
n−1∑

i=0

i!.

Combining (4.7) and (4.8), it is apparent to see that x1,n lies in the open

interval above. We also need check the length of the interval which is equal to
(
−2Hn +Hn+1 +

1

2

)
− (−3Hn + 2Hn+1) =

1

2
+Hn −Hn+1 =

1

2
− 1

n
,

which implies the length of the interval is bounded by 1/2. It means x1,n is the

only integer in this interval and then hence

x1,n = d(e− 1)(!n− 1)− 3Hn + 2Hn+1e .
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Next we shall show the asymptotics of x1,n. It suffices to show

lim
n→∞

x1,n

(e− 1) · (n− 1)!
= 1,

which is equivalent to

lim
n→∞

(e− 1)(!n− 1)− 3Hn + 2Hn+1

(e− 1) · (n− 1)!
= 1.

Clearly,

lim
n→∞

Hn

(e− 1) · n!
= 0,

and it is easy to see that

lim
n→∞

!(n+ 1)

n!
= 1.

Therefore,

lim
n→∞

x1,n

(e− 1) · (n− 1)!
= 1.

4.2 Upper bounds on λ1 for directed graphs

In Section 2.4, we established lower bounds for λ1, the first non-trivial eigen-

value of the normalized Laplacian, extending an analogous result for undirected

graphs to the directed case. For the related question of upper bounds on λ1, we

note that the obvious bound,

λ1 ≤
n

n− 1
, (4.9)

extends trivially to the directed case, as the trace of the directed normalized Lapla-

cian L is still n and λ0 = 0. Furthermore, equality holds if G =
−→
Kn, the complete

directed graph on n vertices. However, whereas for undirected graphs only the

complete graph Kn has λ1 > 1 (see [14, Lemma 1.7]), directed graphs other than
−→
Kn, may have λ1 > 1. For example, deleting any edge of

−→
K3 yields a graph with

λ1 ≈ 1.19; in general, we leave it as an exercise to show that for any e ∈ E(
−→
Kn),

we have λ1(
−→
Kn − e) > 1 for all n ≥ 3.

One can obtain more refined upper bounds on λ1 by using the variational

characterization of λ1 and cleverly constructing an eigenfunction. For example,

Nilli proved the following:
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Theorem 21 ([41, 14]). Let G be a graph with diameter D ≥ 4 and maximum

degree k. Then

λ1 ≤ 1− 2

√
k − 1

k

(
1− 2

D

)
+

2

D
.

In the directed case, such bounds for the first nontrivial eigenvalue of the

normalized Laplacian are not known. It would be of interest to obtain more nu-

anced bounds than (4.9) on λ1, in terms of directed diameter and other parameters.

4.3 Hamiltonian cycles in random orientations

In Chapter 3, we showed that under a mild minimum degree condition

and mild eigenvalue condition, all orientations of a given graph are strongly con-

nected. Furthermore, we showed that these conditions are essentially best possi-

ble. Nonetheless, our result could be improved by showing that these (or similar)

conditions guarantee a graph satisfies (with high probability) properties stronger

than strong connectedness, like Hamiltonicity. Namely, for a given graph G, what

minimal conditions on its minimum degree and spectral gap σ of its normalized

Laplacian guarantee that a random orientation has a directed Hamiltonian cycle,

with high probability?

It seems unlikely that one could adapt our proofs here to guarantee Hamil-

tonicity, given that our approach was fundamentally geared towards proving strong

connectedness. Grötschel and Haray [26] showed that the only graphs for which

every strong orientation is Hamiltonian are the complete graph and cycle graph.

Extending work of Krivelevich and Sudakov [30] for regular graphs, Butler and

Chung [12] showed that an eigenvalue condition involving the spectral gap of the

combinatorial Laplacian implies an “almost regular” graph is Hamiltonian. It is

unclear whether such results have any bearing on proving existence of Hamiltonian

cycles in random orientations under analogous spectral conditions. A key tool uti-

lized, the so-called rotation-extension technique due to Pósa [44], does not appear

to have an analog in the directed case.
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4.4 Other extremal problems on the principal ra-

tio

Here, we briefly review extremal problems related to Theorem 10, where we

proved a sharp upper bound on the principal ratio of a directed graph. Note that

the three constructions in the statement of Theorem 10 achieving the maximum

principal ratio have maximum in-degree and out-degree equal to n− 1. Addition-

ally, these constructions are also dense, having at least
(
n
2

)
edges out of the 2 ·

(
n
2

)

edges possible. One natural problem would be to determine the maximum of the

principal ratio when in-degree or out-degree are bounded, or when the number of

edges is not very large. Here are several ways to formulate such questions:

Question 2. For given n, k, j with k, j < n, what is the maximum principal ratio

over all simple strongly connected directed graphs on n vertices with maximum out-

degree at most k and maximum in-degree at most j? That is, determine γ(n, k, j)

where

γ(n, k, j) = max
D:|V (D)|=n

d+
max=k, d−max=j

γ(D).

Question 3. For given n,m, what is the maximum principal ratio over all strongly

connected directed graphs on n vertices with at most m edges? That is, determine

γ(n,m) where

γ(n,m) = max
D:|V (D)|=n
|E(D)|≤m

γ(D).

For both of the above questions, it would be of interest to characterize the

extremal family of graphs achieving the maximum.

In random walks on unweighted directed graphs, the probability of moving

from a vertex to any of its neighbors is equally likely. For the general case of

random walks on weighted directed graphs, the probability of moving from vertex

u to v is proportional to edge weight wuv. In this case, unless edge weights are

bounded, the principal ratio can be made arbitrarily large by making the weights

of in-edges incident to a particular vertex arbitrarily small. The following question

is of interest:
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Question 4. What is the maximum principal ratio over all strongly connected

weighted directed graphs on n vertices with edge weight function w : E → R+∪{0}
having minimum value wmin > 0 and maximum value wmax ≤ 1?

We remark that some of the techniques and constructions used in Chapter

2 may be useful when considering the weighted case. For example, consider an

edge-weighting of the construction D1 defined in Theorem 10 with wvivi+1
= wmin

for 1 ≤ i ≤ n − 1 and wuv = 1 for all other edges (u, v) ∈ E(D1). By adapting a

greedy argument similar to that used in Proposition 6, it is not too difficult to show

that for wmin sufficiently small, this weighted digraph has principal ratio at least

(wmax/wmin)n−2(n− 2)!. This serves as a lower bound for the maximum principal

ratio in the weighted case.
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