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STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIC FIELD
Gary R. Smith and Allan N. Kaufman

Department of Physics and Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

January 16, 1975

ABSTRACT
The nature of a particle orbit in an electrostaiic
plasma wave is modified by a magnetostafic field, because
there exists a set of resonant parallel velocities

(w + 292)/k,. If the wave amplitude & is sufficiently

large, neighboring resonant regions overlap, and the

particle motion becomes stochastic; the threshold condition

is kzz(e/m) ¢O|J2(klp)| = 92/16. As an application, a

weakly damped intemediéte—frequency ion-acoustic wave may

be used to heat the tail of an ion distribﬁtion.

The charécter of the resonant interactiop of a particle with an
electrostatic wave can be qualitatively different in the presence or
absence of an ambient magnetostatic field. In its abéence, it is well
kncwnl that partiéles whose velocity (projected along the wave vector)

differs from the wave phase velocity w/k by less than the trapping

halffwidth ;2(e¢o/m)i may be trapped into orbits oscillating about the

. phase velocity at a bounce frequency k(e@o/m)é. This behavior, whose

short-term consequence is Landau damping, asymptotically limits-the net

damping and energy (or momentum) transfer of the wave to the resonant

particles.
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In a magnetized plasma, an electrostatic wave propagating at an
oblique angle 6 = tan'l(%L/kq) to the unlform field B Z has a set

of resonant parallel velocities {Vl} which satisfy

w-k V = -0, £ = 0,%1,%2,..., (l)

z 2
where the left side is the Doppler-shifted wave frequency aﬁd the right
side is an integer multiple of the gyrofrequency Q = eBo/mc. As shqwn.
below, the trapping half-width at the £th resonance is
w, = 2|e¢°J£(klp)/m[J" , -(2')

where p 1is the gyroradius of the particle. Wheh the wave amplitude

¢ 1s so large that the trapping layers (V@ + wl) overlap, a’

o
particle can move from one resonance region to the next, executing a

random walk in vz;space, so to speak. As a result, the mean net momen-
tum transfer to the particles can be apprecisbly larger than expression
(2) would indicate. In this paper we study the transition from
"adiabatic"2 particle trajectories, when ¢° is small, to "stochastic"
trﬁjectories, when ¢° is large; A rough criterion for the trénsition
is given in (17). The motion of alparticle in a magnetic field and a
single oblique wave has previously been treated by Fredricks.3 Anal-
ogous studies on cyclotron heatingvin a mirror field4 and on "super-
adiabaticity"5 may be mentioned.

In the wave frame, moving at (m/kz)ﬁ with respect to the

plasma, the particle Hamiltonlan is

2 .
eB .
H(F-,i?) = % -I; - -—cha +ed sin(kzz + klx) . (3)

Witk the canonical transformation generated by
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S(X:YE P1)P2) = XP + yP

2

the Hamiltonian becomes
' . . 1 2 2 2
H(Z:sz Ql)Pl) Pz) = -5 [pz + Pl + (le) ]
+ ed  sin [kzz + k_L(Ql + P2/m$2)] s (5)

wherg Pl = Dy P2 = py, and Ql = x - Pz/nﬂ. ‘Since (5) does not
depend on Q2, P2 is a constant of the motion which we can set to
zero, by choice of the origin x = 0. We then use another canonical

transformation, generated by

s'(Q; ¢) = 3w cot s (6)

to write the Hamiltonian as

. = 2 ' - ]
H(z,p,; ¢,p¢) P, /2m + Qp, + €d, sin [kzz k peindj,
(7
- - 2 2 :
where Ql = -p g8in ¢, and p¢ = [Pl + (mQQl) /2m8 is the canonical
angular momentum of gyration, conjugate to the.gyrophase ¢. We use
the convenient abbreviation p = - (2p¢/mQ )_}, the gyroradius. This

Hamiltonian system hes two degrees of freedom. Since (7) is indepen-

dent of time, in the wave frame the energy of the particle is- conserved.

-To analyze (7‘), it is helpful to use the Bessel function

identity

Y 30k, o) exslise) (&)

J E-

exp(ik, o _si_n ¢)

to write (7) as

-
H = p22/2m + Qp¢ + e@o Z Jﬂ,(klp) sin(kzz - 2) . (9)
l .

If the wave amplitude is small enough we can ireat the last term in

(9) as a small perturbation of the unpefturbed Hamiltconian
N 2
Ho(p,»By)) = p,/2m + @p, . (10)

The zeroth-order equations of motion derived from (10) yield

v, =z = .pz/m, ¢ = Q, P, = const , p¢ = const.
(11)
Substituting
z=vzt+z°,¢=_.m (12)
into the last term of (9) yields
(-] .
H = Ho(pz,p¢) *ed Z Jz(k.L p) sin [(kzvz - )t + kzzo]
[ =)
(13)
When one of the resonance conditions6
kv, -8 = 0 ' - (14)

is satisfied, the motlon is dominated by a single term of the sum over
£ - for times much longer than 2°*. The exact Hamiltonian (9) can then

be approximated by
B, = E(p,,p,) + et J(k o) sin(kz - %) , (15)
for which a constant of the motion (in addition to the energy) exists:

I, = p'4> + /%, . (16)

e s s
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Wher the wave amplitude is not small, the above analysis breaks down,
~and we might expect no additional constanﬁ of the motion to exist. By
v}using the exact Hamiltonian (7) we have found that the constant of the
motion does indeed disappear fairly abruptly as the wave émplitude
inc;eases.
To visualize the disappearance of the constant of the motion
we ‘use the "surface of section” method. (This method has been used to
: analyze‘several other nonlinear oscillator systems.7 For present
: purpbses, we view it as a technique for representing the four-dimen-
sional phase-space trajectory in two diménsions, so we can draw it on
ﬁaper.) To construct the surféce of section plots, the trajectory is
calculated numerically using the Hamiltonian equations. Wgwlook at
a cross section (¢ = n)> of phase spacé,.and see the trajectory repre-
'sented by dots in & three~-dimensional space. We then project the dots
onto a two-dimensional surface to obtain a surface of seétian plot. If.
the dots lie on a curve, an additional constant of the motion exists.
If the dots fill an area, the energy is.the only consfant of the motion.
The sample plot in Fig. 1 was generated using Hamiltonian (7).' In this
. case the dots, which represent the coordinates of the particle at

intervals of the gyropériod, are projected onto the zpz-plane. In

some regions of the plene, which we call "adiabatic," initial conditions

leed to dots lying on a curve. In the other regions of the plane, which
we’calll"sto;hastic," initial conditions lead to dots filling an area.i.\
Figure 1 {llustrates the power of this method for éxhibiting the extent
of adiabatié‘and’stochastie regions, and also fof revealinglotﬁer types
ofvcomplexity iﬁ ﬁhe particle motion. _Wé do not yet completely under-

stand all the features appearing in Fig. 1.
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The condition for the onset of stochastic particle motion can

e

be derived using the method of Walker and Ford.® Ve refer to the plot

shown in Fig. 2, for which the wave amplitude is smaller than for Fig. 1,

and all initial conditions 1lead to adiabatic particle motion. Notice

- the similarity in appearance of each of the three curves to the phase

space orbit of a trapped particle in an unmagnetized»plasma.l In the
magnetized case, the curves shown in Fig. 2 -are near the separatrices

which surround the resonance conditions (14) for % = 0, +1. From (15),

‘'We see that the trapping half-widths are given by (2). As the wave

amplitude increases, these widths increase. The additional constant of

the motion will cease to exist, and particle motion will change from

adiabatic to stochastic, when two separatrices touch. We may then
expect the particle to be able to move from the vicinity of one reson-
ance to the vicinity of another.v This occurs when (W2+l + wl), the
sum of neighboring half-widths, equals the resonance separation

|V£+1 - Vzl = Q/k,; i.e., roughly when

. 1 .
wg/ﬂ = Z 3 . (17)

where wy = kzwl/Z is the bounce frequency ai the Zth resonance. This

 erude estimate is in good agreement with our numerical results, which '

show a transition from adiabatic to stochastic particle motion when the
wave amplitude & is increased through the value given by (17).

When, the wave amplitude is large enough that particle motion
is stochastic, the particle distribution may be significantly heated by
the interactions with the wave. The evolution of the distribution
resembles a diffﬁsion process in velocity space. These results are

{1lystrated in Fig. 3, which shows a sequence of three surface of

v gection plots of increasing wave amplitude. In these plots the
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trajectory dots have been projected onto the vlvz-pla.ne instead of the

zpz-pla.ne. Eight initial conditions were used to generate each of the

Plots: the initial conditions all have the same values of the velocity
(kzv_Lo/Q = k_Lpo = 2.24, kzvzo/ﬂ = -3.6) and gyrophase (¢o = 1), but
different values of Zy This set of initial conditions corresponds to

a ring distribution (in the plasma frame)

Hrvy) = gy o) 8y = v o) (18)
when w = 3.6 Q. In the case of small wave amplitude

[(am)?
motion; the velocity of a pafticle changed little from its initial

k22|e¢°|/m(22 = 0.25], all initial conditions led to adiabatic

value. In the case of large wave amplitude [((;/Q )? = 0.75], all
initial conditions led to stochastic particle motion,and the time-
averaged values of both perpendicular and parallel velocities (in the
plasma frame) increased significahtly. The transitién from adiabatic
to stochastlic motion corresponds to an increase of wave amplifude by a
factor of three. The results shown in Fig. 3 indicate the transition
at about (&/9)2 = 0.50. In order to éompaﬁre'this result to (17) we
use % = -3 because k v__/Q = -3.6 is between the resonances £ = -3

zZ 20
and -4, and for the paremeters of Fig. 3 the half-width w_, is several

times w_ 4 The numerically observed threshold condition is thus
- ) . _
(@/@P[3(x o) = (0.50)7_f2.24)] = g5 . (19)

which is remarkably close to (17), considering the crude theory used.
To :llluetrafe the application of these concepts, we choose a
_ particular wave, .the "intermediate-frequency acoixs‘c:l.<:"’9 wave, propaga-

ting with angle 6 = 45° betv’reén the wave vector and magnetic field.

-8~
This longitudinal wave has the dispersion relation w = kcs, ver& similar
to an ion-acoustic wave in an unmagnetlzed plasma. To be specific (and
consistent with Fig. 3) we choose w = 3.6 % and Te/Ti = 16. Then
m/kz = 6.2 Vys where vy is the ion thermal speea, so there 1s neglig-
Iblg‘ion Landau damping. Further, there is negligible linear ion-
cyclotron-harmonic damping: the thermal ions (shown by cross-hatching

in Fig. 3) can have & =-3 and % = -4 resonances, but the damping

is proportional to Az(ﬁ) gt . 0.58,

I1,(8) exp(-8), and with k v, /Q
we see that A,(0.34) = 5 x 1074 and 2,(0.3) = 3 x 107° are quite

small. We now examine ions in the Maxwell tail, specifically, at

v, =0 (in the plasma frame) and klp = 2.2/ (vJ_ = 3.8 vi), which are

Just the initial conditions used in Fig. 3. These ions will be

accelerated by the wave when ( W) 2 0.50, that is, when ed_ 2 % Ty
An acoustic wave with e‘lip'.= %Ti = -1}1- Te has a density amplitude

Sn/n ~ 1%- and a wave energy density w ae/8w<E2 )/81r = nTi/15,. and

is thus in the linear regime. We have shown the possiblity of heating
the tail of the lom distribution, by an intermediate-frequency acoustic
wave of frequency w & few times the gyrofrequency {2, propagating at

an oblique angle, and of & certain minimum amplitude given by (17).

We acknowledge useful discussions witﬁ S. Jomston, D. Nicholson,
B. Cohen, M. Mostrom, C. Birdsall, J. Herte, W. Nevins, A. Lichtenberg,
and G. Johnston. This work was supported in part by the U.S. Atomic
Enersy Commission and by an NSF Graduate Fellowship held by one of the
authors (GRS).
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FIGURE CAPTIONS

Sample surface of section plot. The symbol A indicates one

of the adiabatic regions, S one of the stochastic regions.
Curves have been drawn to connect the dots lying in adiabatic

regions. The dashed lines represent the limitations on the

particle motion due to conservation of energy. The parameters

have the fixed values k | P = =k (2E/m)%/Q 1.48,

(/) = X, ?le |/ma® = 0.1, 6= 45°. The 15 initial condi-

tions used to generate the do‘;s are shown by X's. A chain of
five islands is indicated by the numbers 1,2,3,4,5. |
Surface of section plot showing trajectory dots resulting from
initlal conditions near the three accessible resonances,

L ='(>), +1. The parameters have the same values as in Fig. 1
except (('I:/fz)2 = 0.025. |

Three surface of section plots illustrating the transitidn from
adiabatic to stochastic particle motion and the onset of
heating as the wave amplitude is increased. The valués of
(@/m)?
k) pp = 4.2 and 8 = 45°
j:ond to the ring di'stributi‘on (18).

ai'e_ shown; the energy. pafaheter has the value

The initial conditions corres?
The dashed lines réprese_nt
the 1imitations on the particle motion due to conservation of
energy in the wave frame. The._ axis showing v, in the plasma
frame is i:ased o0 w = 3.6 R, The nunbers 0,1,2,5,6,7 on
the last plot show the coordinates bf the particle initially
and at the ends of the corresponding gyroperiods.‘ On the
first plot cross-hatching shows the extent of the thermal ions

cone:l.dered in the wave-heating example
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