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STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIC FIELD 

. Gary R. Smith and Allan N. Kaufman 

Department of Physics and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

January 16, 1975 

ABSTRACT 

The nature of a particle orbit in an electrostatic 

plasma wave is modified by a magnetostatic field, because 

there exists a set of resonant parallel velocities 

If the wave amplitude t is sufficiently o 

large, neighboring resonant regions overlap, and the 

particle motion becomes stochastic; the threshold condition 

is kz
2(e/m) ~0IJ1(k~P)1 ~ 0

2
/16. As an application, a 

weakly damped intermediate-frequency ion-acoustic wave may 

be used to heat the tail of an ion distribution. 

The character of the resonant interaction of a particle with an 

electrostatic wave can be qualitatively different in the presence or 

absence of an ambient magnetostatic field. In its absence, it is well 

~ownl that particles whose velocity (projected along the wave vector) 

differs from the wave phase velocity w/k by less than the trapping 

half-width ~2( et /m)! may be trapped into orbits oscillating about the 
o 

! phase velocity at a bounce frequency k(eto/m). This behavior, whose 

short-term consequence is Landau damping, asymptotically liiidtsthe net 

damping and energy (or momentum) transfer of the wave to the resonant 

particles. 
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In a magnetized plasma, an electrostatic wave propagating at an 

oblique angle e = tan-l(k~/kz) to the.uniform field Bo Z has a set 

of resonant parallel velocities {Vi} which satisfy 

w - k V = -10, 1 = 0,±1,±2,· •. , 
z 1 

(1) 

where the left side is the Doppler-shifted wave frequency and the right 

side is an integer multiple of the gyrofrequency 0 = eBo/mc. As shown 

below, the trapping half-width at the 1th resonance is 

(2) 

where p is the gyroradius of the particle. When the wave amplitude 

t is so large that the trapping layers (V1 ± w1 ) overlap, a 
o 

particle can move from one resonance region to the next, executing a 

random walk in v :"space, so to speak. As a result, the mean net momen­z 

tum transfer to the particles can be appreciably larger than expression 

(2) would indicate. In this paper we study the transition from 

nadiabat1cn2 particle trajectories, when ~o is small, to IIstochastic ll 

trajectories, when to is large. A rough criterion for the transition 

is given in (17). The motion of a particle in a magneti c field and a 

single oblique wave has previously been treated by Fredricks. 3 Anal­

ogous studies on cyclotron heating in a mirror field4 and on IIsuper­

adiabat1city,,5 may be mentioned. 

In the wave frame, moving at 

plasma, the particle Hamiltonian is 

(w/k )z wi th respect to the 
z 

= 2:.. P - ---2. x y + et sin( k z + k x) ( 
eB V2 

2m c· 0 Z J. 

With the canonical transformation generated by 



-)-

the Hamiltonian becomes 

H(z,pz; Q1,P1; P2) = ~ [pZ2 + P1
2 

+ (mQQ1 )2] 

+eto sin [kzZ + kJ. (Q1 + P2/mQ)] , (5 ) 

where P
1 

= Px' P2 = Py' and Q1 = x - P2/mn. Since (5) does not 

depend on Q2' P
2 

is a constant of the motion which we can set to 

zero, by choice of the origin x = o. We then use another canonical 

transformation, generated by 

(6) 

to write the Hamiltonian as 

H(Z,PZ; $,p$) = Pz
2

/ 2m + Opcj> + eto sin [kzZ - k..LP sin $], 

(7) 

where. Q
l 

= -P sin $, and Pcj> = [P1
2 

+ (nlQl )2]/2nil is the canonical 

angular momentum of gyration, conjugate to the gyrophase cj>. We use 

the convenient abbreviation p:: (2pcj>/nl )t, the gyroradius. TIlis 

Hamiltonian system has two degrees of freedom. Since (7) is indepen-

dent of time, in the wave frame the energy of the particle is conserved. 

-To analyze (7), it is helpful to use the Bessel function 

identity 
. GO 

eXP(ikJ. p sin $) = [J1(kJ. P) exp(Hcj» (8) 

1=-110 

to ..rite (7) as 
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2· L H = P 12m + np + e~ 
Z cj> 0 

(9 ) 

If the wave amplitude is small enough we can treat the last term in 

(9) as a small perturbation of the unperturbed Hamiltonian 

(10 ) 

The zeroth-order equations of motion derived from (10) yield 

v :: Z = p 1m z z ' ~ = g, Pz = const, p$ = const. 

(11 ) 

Substituting 

(12) 

into the last term of (9) yields 

IX> 

H == HoCPz,Pcj» + ecflo I J1(kJ.. p) sin [(~zvz - R.Q)t + kzZo ] 
1= ..... 

When one of the resonance conditions6 

kv-R.Q::::O 
z Z 

( 13) 

is satisfied, the motion is dominated by a single term of the sum .over 

R. for times much longer than g-l. TIle exact Hamil tonia:n (9) can then 

be approximated by 

for which a constant of the motion (in addition to the energy) exists: 

(16 ) 

! 

I 
I 

I~ 
(" 
i 
I 

r 
I' 



·0 
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.' 

-5-

Wher, the wave amplitude is not small, the above analysis breaks down, 

and we might expect no additional constant of the motion to exist. By 

using the exact Hamiltonian (7) we have found that the constant of the 

motion does indeed disappear fairly abruptly as the wave amplitude 

inc~eases. 

To visualize the disappearance of the constant of the motion 

we use the "surface of section" method. (This method has been used to 

analyze several other nonlinear oscillator systems. 7 For present 

purposes, we view it asa technique for representing the four-dimen-

sional phase-space trajectory in two dimensions, so we can draw it on 

paper.) To construct the surface of section plots, the trajectory is 

calc.ulated numerically using the Hamiltonian equations. We look at 

a cross section (<p =7T) of phase space, and see the traj ectory repre­

sented by dots in a three-dimensional space. We then project the dots 

onto a two-dimensional surface to obtain a surface of section plot: If 

the dots lie on a curve, an additional constant of the motion exists. 

If the dots fill an area, the energy is the only constant of the motion. 

The sample plot in Fig. 1 was generated using Hamiltonian (7). In this 

case the dots ,which represent the coordinates of the particle at 

intervals of the gyroperiod, are projected onto the zPz -plane. In 

some regions of the plane, which we call "adiabatic," initial conditioIls, 

l.ead to dots lying on a curve. In the other regions of the plane, which, 

we call "stochastic," initial conditions lead to dots filling an area. 

Figure 1 illustrates the power of this method for exhibiting the extent 

of adiabatic and stochastic regions, and also for revealing other types 

of complexity in the particle motion. We do not yet completely under­

stand all the features appearing in Fig. 1. 
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The condition for the onset of stochastic particle motion can 

be derived using the method of Walker and Ford,S We refer to the plot 

shown in Fig. 2, for which the wave amplitude is smaller than for Fig. 1, 

and all initial conditions lead to adiabatic particle motion. Notice 

the similarity in appearance of each of the three curves to the phase 

space orbit of a trapped particle in an unmagnetizedPlasma.
l 

In the 

magnetized case, the curves shown in Fig. 2 are near the separatrices 

which surround the resonance conditions (14) for R, = 0, ±i. From (15), 

we see that the trapping half-widths are given by (2). As the wave 

amplitude increases, these widths increase. The additional constant of 

the motion will cease to exist, and particle motion will change from 

adiabatic to stochastic, when two separatrices touch. We may then 

expect the particle to·be able to move from the vicinity of one reson-

ance to the vicinity of another. This occurs when (w1+1 + wR,), the 

sum of neighboring half-widths, equals the resonance separation 

IVi+1 - vR,1 = Olkz; i.e., roughly when 

1 
1il1/0 '" 4' (17) 

where 1il1 = kzwR,12 is the bounce frequency at the 1th resonance. This 

crude estimate is in good agreement with our numerical results, whiCh 

show a transition from adiabatic to stochastic particle motion when the 

wave amplitude ~o is increased through the value given by (17). 

When, the wave amplitude is large enough that particle motion 

is stochastic, the particle distribution may be significantly heated by 

the interactions with the wave. The evolution of the distribution 

resembles a diffusion process in velocity space. These results are 

illustrated in Fig. J, which shows a sequence of three surface of 

section plots of increasing wave amplitude. In these plots the 
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trajectory dots have been projected onto the v~vz-plane instead of the 

zpz-plane. Eight initial conditions were used to generate each of the 

plots: the initial conditions all have the same values of the velocity 

(k vl. /n = k.L p = 2.24, k v /0. = -3.6) and gyrophase (</> = 11'), but zoo z zo 0 

different values of zoo This set of initial conditions corresponds to 

a ring distribution (in the plasma frame) 

(18) 

when W = 3.6 O. In the case of small wave amplitude 

[<;/0)2 :: kz2Ie~ol/mn2 = 0.25], all initial conditions led to adiabatic 

motion; the velocity of a particle changed little from its initial 

value. In the case of large wave amplitude [( ;/n)2 = 0.75 ], all 

in! tial condi tiona led to stochastic particle motion, and the time­

averaged values of both perpendicular and parallel velocities (in the 

plasma frame) increased significantly. The transition from adiabatic 

to stochastic motion corresponds to an increase of wave amplitude by a 

factor of three. The results shown in Fig. 3 indicate the transition 

at about ( ;/0)2 = 0.50. In order to ~ompare this result to (17) we 

use 1 = -3 because k v /0 = -3.6 is between the resonances 1 = -3 
z zo 

and -4, and for the parameters of Fig. :3 the half-width w_3 is several 

times w -4' The numerically observed threshold condition is thus 

1 
== ~ I 

(19) 

which is remarkably close to (17), considering the crude theory used. 

To illustrate the application of these concepts, we choose a 
, ' 9 

particular wave, the "intermediate-frequency acoustic" wave, propaga-
. ' 

ting with angle e = 450 between the wave vector and magnetic field. 
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This longitudinal wave has the dispersion relation W ~ ke s ' very similar 

to an ion-acoustic wave in an unmagnetized plasma. To be specific (and 

consistent with Fig. 3) we choose W = 3.6 0. and TelTi = 16. Then 

w/kz = 6.2 Vi' where Vi is the ion thermal speed, so there is neglig­

ibl~ ion Landau damping. Further, there is negligible linear ion­

cyclotron-harmonic damping: the thermal ions (shown by cross-hatching 

in Fig. 3) can have R, = -3 and R, = -4 resonances, but the damping 

is proportional to AR,(S):: IR,(S) exp{-S), and with kJ..v1/n:: S! .. 0.58, 

we see that A
3
(0.34) ~ 5 x 10-4 and A

4
(0.34) ~ 3 x 10-5 are quite 

small. We, now examine ions in the Maxwell tail, specifically, at 

Vz = 0 (in the plasma frame) and ~P = 2.24 (vol ~ 3.8 Vi)' which are 

Just the initial conditions used in Fig. 3. These ions will be 

accelerated by the wave when (00/0)2 ~ 0.50, that is, when e~o ~ ~ Ti . 

An acoustic wave with ~o = ~ Ti = it Te has a density amplitude 
1 ~' 

6n/n • U and a wave energy density w a£/&l {r}/811' ::: nTi /15, and 

is thus in the linear regime. We have shown the possibli ty of heating 

the tail of the ion distribution, by an intermediate-frequency acoustic 

wave of frequency w a fert times the gyrofrequency 0, propagating at 

an oblique angle, and of a certain minimum amplitude given by (17). 

We acknclrledge useful discussions with S. Johnston, D. Nicholson, 

B. Cohen,M. Mostrom, C'.BirdSall, J. Harte, W. Nevins, A. Lichtenberg, 

and G. Johnst,on. This work was supported in part by the U.S. Atomic 

Energy Commission and by an NSF Graduate Fellowship held by one of the 

authors (GRS). 
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Or PlasIllll Instabilities (Consultants Bureau, N.Y., 1974), Vol.' I, 
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FIGURE CAPTIONS 

Fig. 1. Sample surface of section plot. The symbol A indicates one 

of the adiabatic regions, S one of the stochastic regions. 

Curves have been drawn to connect the dots lying in adiabatic 

regions. The dashed lines represent the limitations on the 

particle motion due to conservation of energy. The parameters 

have the fixed values k.i ~ :: k 1. (2E/m)1/0 :: 1.48, 

(w/0)2 :: kz2Ie~ol/mn2 = 0.1, 8 = 45°. The 15 initial condi­

tions used to generate the dots are shown by XIS. A chain of 

five· islands is indicated by the numbers 1 2 ~ 4 5 , I;)' , • 

Fig. 2. Surface of section plot showing trajectory dots resulting from 

initial conditions near the three accessible resonances, 

R. :: 0, ±l. The 'parameters have the same values as in Fig. 1 

except (w/0)2 = 0.025. 

Fig. 3. Three surface of section plots illustrating the transition from 

adiabatic to stochastic particle motion and the onset of 

heating as the wave amplitude is increased. The values of 

(w/ll)2 are shown; the energy, parameter has the value 

k.!. PE = 4.24 and 8 = 45°. The initial conditions corres­

pond to the ring distribution (18). The dashed lines represent 

the limitations on the particle motion due to conservation of 

energy in the wave frame. The axis showing v in the plasma z 

frame is based on II) =3.6 Sl. The numbers 0,1,2,5,6,7 on 

the last plot show the coordinates of the particle initially 

and at the ends of the corresponding gyroperiods. On 'the 

tirst plot cross-hatching shows the extent of the thermal ions 

considered in the wave~heating example. 
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