Lawrence Berkeley National Laboratory Recent Work

Title

CYCLOPEPTIDE ALKALOIDS. SYNTHESIS OF THE RING SYSTEM AND ITS ION AFFINITY

Permalink

https://escholarship.org/uc/item/2cd6s1tb
Author
Lagarias, J. Clark
Publication Date
1978-05-01

Submitted to Journal of the American Chemical Society

RECEIVED LAWRENCE BERKELEY LABORATORY

JUN 1978

LIBRARY AND DOCUMENTS SECTION

CYCLOPEPTIDE ALKALOIDS. SYNTHESIS OF THE RING SYSTEM AND ITS ION AFFINITY
J. Clark Lagarias, Richard A. Houghten, and Henry Rapoport

May 1978

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not nccessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Cyclopeptide Alkaloids. Synthesis of the Ring
System and Its Ion Affinity.
J. Clark Lagarias, Richard A. Houghten and Henry Rapoport* Contribution from the Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.

Abstract: Several examples of the 14 -membered, para-bridged ring system of the cyclopeptide alkaloids have been synthesized via an active ester cyclization. The yield of monomeric cyclopeptide varied from 1 to 33% and was affected by the amino acid substitution pattern and amide conformation of the linear peptide precursors. Both the synthetic models and a naturally occurring cyclopeptide alkaloid, ceanothine B, bind monovalent (Li^{+}) and divalent ($\mathrm{Ca}^{++}, \mathrm{Mg}^{++}$) cations.

Since the confirmation of the structure of pandamine (1) in 1966, ${ }^{1}$ reports of the isolation and structure elucidation of more than seventy cyclopeptide alkaloids have appeared. ${ }^{2}$ This class of natural product, particularly prevalent in plants of the Rhamnaceae family, is structurally well illustrated by frangulanine (2). The fourteen membered ring, containing two amides and incorporating a variously functionalized benzylic position (3), is the feature common to almost all of these natural products.

Although antibiotic, hypotensive, and antitussive properties have been ascribed to the cyclopeptide alkaloids, no definitive pharmacological activity has been demonstrated ${ }^{2 a}$ for this class of natural product. Recently, peptide alkaloids have shown photophosphorylation inhibitor activity in spinach chloroplasts, an observation which may be related to their function in the plant in which they are produced. ${ }^{3}$ The difficulty of isolating sufficient quantities of pure alkaloids, however, and the absence of any method for synthesis, has hampered further biological study. In this account we present the synthesis of several examples of this unusual macrocyclic system and provide evidence for specific ion binding of the cyclopeptide alkaloids.

Synthetic goals

Our initial experimental approach was designed to develop a general synthetic pathway to the saturated cyclopeptides $\underset{\sim}{4}$. Successful preparation of these saturated models would then be followed by syntheses directed to compounds with the functionalized

1
benzylic residues found in the natural products ($3 \mathrm{a}, \mathrm{b}, \mathrm{c}$), perhaps via the saturated models as substrates. As a simplication, we

l

A-B Components of the Cyclopeptide Alkaloids

$$
\begin{aligned}
& \underset{\sim}{3}, \mathrm{~A}-\mathrm{B}=\mathrm{CH}=\mathrm{CH} \\
& \underset{\sim}{b}, \mathrm{~A}-\mathrm{B}=\mathrm{COCH} \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{4}, \mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\mathrm{R}_{6}=\left(\mathrm{CH}_{2}\right)_{3} \\
& \underset{\sim}{\mathrm{~b}}, \mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}, \mathrm{R}_{6}=\mathrm{H} \\
& \underset{\sim}{c}, \mathrm{R}_{3}=\mathrm{R}_{6}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \\
& \underset{\sim}{\mathrm{~d}}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{R}_{6}=\left(\mathrm{CH}_{2}\right)_{3} \\
& \mathrm{e}, \mathrm{R}_{3}=\mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}
\end{aligned}
$$

chose to omit the nitrogen and alkyl residues on $\mathrm{C}-8$ and $\mathrm{C}-9$, respectively, in our model systems. The exclusion of the β-hydroxy-α-amino acid moiety found in the natural product would eliminate diastereomer separations during the planned synthesis, and the choice of a proline or leucine residue for R_{5} was made on the basis of convenience.

The cyclopeptide models $\underset{\sim}{4 a-e}$ were chosen to test the hypothesis that amide substitution should affect the course of peptide cyclization. These models differ in the degree of substitution of the amide nitrogens in both of the component amino acids. It is commonly accepted that amide resonance stabilizes their planar conformation and that trans conformations are preferred to cis (neglecting hydrogen bonds). The strong trans preference for the amide bond disappears when peptides are N-methylated. ${ }^{43}$ That intramolecular reaction between the ends of the linear peptide is influenced by the amide conformation has been demonstrated in the case of cyclotripeptide synthesis. Thus 9membered ring cyclotripeptide can be prepared only when the amides are tertiary (i.e. cyclotrisarcosyl ${ }^{4 a}$ and cyclotriproly ${ }^{4 b}$). Attempts to cyclize tripeptides with primary amino acid residues have only lead to the isolation of cyclohexapeptides. ${ }^{4 c}$ Therefore we chose the five peptide models ($\underset{\sim}{4 a-e}$) as our first, synthetic goals to test the amide conformational factors.

Synthetic strategy

The key reaction of our synthesis of the cyclopeptide alkaloids involves the cyclization step. Initially, we considered four types of ring closure, as illustrated in Scheme I. Among these, a strong choice was high dilution cyclization of an active ester (pathway a), a peptide cyclization successful in the preparation of cyclotripeptides $4 a, b$ and analogues of the antibiotics actinomycin ${ }^{5 a}$ and gramicidin. ${ }^{5 b}$. Intramolecular Michael addition (pathway c), was questionable because of the reversibility of this reaction especially when forming a strained ring. Cyclization via formation of the 3,4-peptide bond (pathway b) was rejected since this cyclization would require activation of a carbonyl adjacent to a chiral carbon and might lead to racemization of this asymmetric center if forcing conditions were necessary. Final formation of the l,l4-bond by Friedel-Crafts acylation was briefly considered (pathway d); however, reaction conditions necessary to effect this cyclization were considered too vigorous to be compatible with the aryl ether and amide functionalities. For these reasons the 6,7-peptide cyclization of pathway a was our first choice.

Approach a. Beginning with a 3-phenyloxypropanoate system, our initial synthetic design comprised the early preparation of a para-acylated aryl ether derivative followed by formation of the 3,4-peptide bond and ultimately by the 6,7 -peptide cyclization. However, in the first step of this sequence we encountered difficulty in para-acylating aryl ether 5 with a-substituted aliphatic acid derivatives (Scheme II). With trifluoromethane-
sulfonic-carboxylic anhydride intermediates generated by reaction of carboxylic acid chlorides and silver trifluoromethanesulfonate, exclusive para-acylation of oxygenated aromatics has been reported ${ }^{6}$ in some cases. In extending this method, we acylated methyl 3phenyloxypropanoate (5) with either acetyl chloride or isobutyryl chloride under the reported conditions and obtained greater than 85\% yields of isomerically pure para ketones $\underset{\sim}{7 a}$ and $\underset{\sim}{7 b}$. However, acylation of $\underset{\sim}{5}$ with N-trifluoroacetyl-N-methylaminoacetyl chloride (6b) afforded none of the amino ketone. Due to the instability of both aryl ether and ester moieties of $\underset{\sim}{5}$, no Friedel-Craft procedure successfully effected the desired acylation.

On the other hand, acylation with an α-halogenated acetic acid derivative followed by nucleophilic displacement of the halogen atom with an amine did afford the amino ketone $7 \mathrm{\sim}$ d. Unfortunately, the acylation of methyl 3-phenyloxypropanoate (5) via the mixed anhydride formed from trifluoromethane sulfonic acid and chloroacetyl chloride gave a mixture of ortho and para isomers in a $3 / 2$ ratio. A similar isomer mixture was obtained when $\underset{\sim}{5}$. was acylated with methoxyacetyl chloride by the mixed anhydride procedure. Clearly this acylation method ${ }^{6}$ is not a general one for exclusive para acylation of oxygenated aromatic compounds. The amino ketone $\underset{\sim}{\text { 7d, }}$, alternatively, could be prepared in three steps. The previously synthesized ketone $7 \underset{\sim}{7 a}$ was α-brominated with bromine in ether at $0^{\circ} \mathrm{C}$. Displacement of the bromide (7 c) by methylamine in methanol then afforded a 79% conversion to the amino ketone $7 \underset{\sim}{d}$.

Catalytic reduction of the ketone 7d always stopped at the
fn 8
benzyl alcohol stage and failed to give the desired phenylethylamine, although similar catalytic hydrogenation-hydrogenolysis conversions have been reported. ${ }^{7}$ Failure in our case was due to decomposition of the 3 -aryloxypropanoic acid moiety in both acid and base. This instability of the 3-aryloxypropanoic acid group necessitated devising a new approach to the cyclopeptide model 4 in which this functionality was introduced near the end of the synthesis.

To overcome these difficulties, we envisioned the preparation of the 9,10 ether linkage after the preparation of the 3,4-peptide bond. The synthesis of the p-hydroxyphenylethylamine system, the key intermediate, proceeded via catalytic reduction of the nitrostyrene $\underset{\sim}{8}$ in acetic acid. The amine $\underset{\sim}{9}$, on refluxing in concentrated hydrobromic acid, afforded tyramine hydrobromide 10 in 64% yield. Modifying the trichloroacetaldehyde (chloral) procedure ${ }^{8}$ by adding triethylamine led to formylation of tyramine $\underset{\sim}{0} 0$. Without the addition of triethylamine, the Schiff's base was the exclusive product of this reaction. The resultant phenol $\underset{\sim}{l} \underset{\sim}{l}$ was then converted to the benzyl ether $\underset{\sim}{12 b} \underset{\sim}{2 b}$ under standard conditions (benzyl. chloride in refluxing acetone) and was subsequently reduced with lithium aluminum hydride to the N-methylamine $\underset{\sim}{1} \underset{\sim}{3 b}$.

The most effective method for the acylation of amines 10 and 13 with N-tert-butoxycarbonylamino acids ${ }^{9}$ was a mixed anhydride procedure. ${ }^{10}$ The yields of peptides $14 \sim$ and 14 c from 13 and peptides $\underset{\sim}{15 d}$ and $\underset{\sim}{15 e}$ from $\underset{\sim}{10}$ were greater than 90%. In the case of the preparation of $\underset{\sim}{14 a}$ via a dicyclohexylcarbodimide (DCC) coupling, the yield was substantially lower. However following ether cleavage with BBr_{3} and subsequent carbamate formation, the pure phenol $\underset{\sim}{15 a}$ was obtained. The N-methyl peptides $\underset{\sim}{14 \sim} \underset{\sim}{b}, \underset{\sim}{c}$ were converted in high yield to the phenols 15b, c by hydrogenolysis.

With the phenols (15a-e) in hand, we next considered the alternatives for incorporation of the three carbon propanoate residue (Scheme III). The first attempted alkylation of the phenol (15a) with tert-butyl 3-bromopropanoate or 3-bromopropanoic acid
in acetone over potassium carbonate lead to isolation of the corresponding acrylate and starting phenol. Another method investigated to prepare 3-phenoxypropanate systems was the Michael addition of phenols to acrylates. ${ }^{1 l}$ Using p-cresol as a model, we developed conditions for this conversion which gave ether formation in 80% yield. Employing these conditions, however, we observed no reaction of phenol $\underset{\sim}{15}$ a with tert-butyl acrylate.

A method for the three carbon homologation of phenols by Michael addition with propiolate derivatives was successful. ${ }^{12}$ Thus we prepared methyl E-3-phenoxypropenoate ($\mathbf{1 7}_{\sim}^{6}$) by addition of phenol 15 a a to methyl propiolate. If the sodium salt of the phenol was used, prepared with sodium hydride previous to condensation, the z -isomer was the predominant product. Catalytic hydrogenation of E-3-phenoxypropenoate (16) afforded the propanoate 18 but this product was extremely sensitive to alkali. Attempted hydrolysis of the methyl ester $\underset{\sim}{18}$ in alcoholic sodium hydroxide lead to rapid and complete β-elimination. In contrast, hydrolysis of methyl 3phenoxypropenoate ($\underset{\sim}{16)}$ with sodium hydroxide was easily accomplished. The resulting acid $\underset{\sim}{17}$ could be hydrogenated to yield the saturated compound 20~~~. The general homologation of phenols $\underset{\sim}{15} \underset{\sim}{x}-\underset{\sim}{e}$ to the corresponding 3-phenoxypropanoic acids which were then converted to their p-nitrophenyl esters $2 \operatorname{ll}_{\sim}$ a-e is diagrammed in Scheme III. The reaction of phenols $\underset{\sim}{15} \underset{\sim}{15-e}$ with benzyl propiolate followed by complete reduction afforded the respective 3 -phenoxypropanoic acids 20a-e in high yield. After preparation of p-nitrophenyl esters (OND) 2la-e with p-nitrophenyl trifluoroacetate in pyridine, ${ }^{13}$ the conditions for peptide cyclization were next examined.

Cyclization. Removal of the N -tert-butoxycarbonyl protecting group was accomplished by dissolving the p-nitrophenyl esters 21 in anhydrous trifluoroacetic acid at $0-5^{\circ} \mathrm{C}$ (Scheme IV). By NMR, it was clear that this process did not require the presence of a carbonium ion scavenger commonly used during acid catalyzed decomposition of tert-butyl carbamates. 4,5 After evaporation of the excess trifluoroacetic acid, the residual amine salt $\underset{\sim}{2} \frac{1}{\sim}$ was dissolved in N, N^{\prime}-dimethylacetamide and added slowly to pyridine maintained at $90^{\circ} \mathrm{C}$. Studies with $\underset{\sim}{2 l a}$ as the model established acceptable conditions for peptide cyclization (see Experimental Section). Owing to the susceptibility of the 3-phenoxypropanoate system to β-eliminate in alkali, the stability of the p-nitrophenyl esters 21 and the products 4 to these reaction conditions was also tested; both were stable. Using these conditions, the synthesis of each of the cyclopeptide monomers $\underset{\sim}{4 a-e}$ on a preparative scale was accomplished. The yields are outlined in Table I.

In each case, cyclic monomer $\underset{\sim}{4}$ was separated from the respective dimer 23 by sephadex LH-20 chromatography. The spectral data (UV, $C D$, and ${ }^{13} \mathrm{C}$ NMR) manifest the difference between cyclic monomers and dimers, especially with respect to the aromatic chromophor. In the UV, the absorption maxima of the cyclic dimers $\underset{\sim}{23}$ are shifted to longer wavelengths with a fivefold increase in extinction coefficient relative to the corresponding cyclic monomer ${\underset{\sim}{2}}^{4}$. In the ${ }^{13} \mathrm{C}$ NMR spectra of the cyclic dimers $\underset{\sim}{23}$, each pair of ortho carbons, C-12, $C-16$, and $C-13, C-15$, show a single resonance (Figure 1). On the other hand each of the four ortho carbons $C-12, C-13, C-15$, and C-15 of the cyclic monomers $\underset{\sim}{4}$ has a unique resonance (Figure 2).

1 The CD spectra in the $250-300 \mathrm{~nm}$ range show the expected larger 2 interaction of the aromatic chromophor with the asymmetric center 3 in the cyclic monomers ${ }_{\sim}^{4}$. The differential molar extinction coefficient ($\Delta \varepsilon$) in this region is greater for the monomers than for the dimers.

Discussion

Contrary to the results of cyclotripeptide synthesis, ${ }^{4}$ our data show that the yield of cyclopeptide alkaloid model $\underset{\sim}{4}$ is independent of the substitution of the amide ($\mathrm{N}-3, \mathrm{C}-4$) not involved in the formation of the final peptide bond. Although the linear peptides $2 \operatorname{li}_{\sim} a$ and $\underset{\sim}{21 d}$ differ by the substitution pattern of one amide, the yields of the cyclic peptides $\underset{\sim}{4} \underset{\sim}{a}$ and $\underset{\sim}{4} \underset{\sim}{d}$ are similar. The yields of cyclopeptides $\underset{\sim}{4 b}$ and $\underset{\sim}{4 e}$ are also comparable, but less than that of 4 ar . Cyclopeptide $\underset{\sim}{\mathrm{c}} \mathrm{\sim}$ was obtained in very low yield. "Our results show that the reactivity of the free amino group ($N-6$) in the linear peptide is the major factor affecting the different yields of cyclic monomers. That the rate of acylation of amines is greatly influenced by their degree of substitution is well illustrated by the preparation of N-tert-butoxycarbonylamino acids. ${ }^{9}$ The rate of acylation with tert-butoxycarbonylazide decreases in the series proline > leucine >> N-methylleucine. The yields of cyclopeptides follow this sequence of decreased reactivity of the nucleophile, with proline ($\underset{\sim}{4} \underset{\sim}{a}$ and $\underset{\sim}{4 d})>$ leucine $(\underset{\sim}{4} \underset{\sim}{b}$ and $\underset{\sim}{4 e}) \gg N$-methylleucine (4 c).

The spectral data for the cyclopeptide monomers $4 \underset{\sim}{\mathrm{a}}-\mathrm{d}$ indicates that each macrocycle has a unique geometry. Although the yield
of cyclic peptide is independent of the degree of amide substitution in the linear peptide, the configuration of the cyclic product greatly depends on the structure of the amide in the linear peptide. A discussion of configurational isomerization, its effect on the synthesis of this type of ring system, and its effect on ion affinity. of these cyclopeptides will be dealt with in a future report.

The ion binding properties of the synthetic peptide, cyclo-[3(4- - -aminoethyl) phenyloxypropanoyl-L-prolyl] (4d $\underset{\sim}{d}$) and a natural peptide alkaloid, ceanothine $B,{ }^{14}$ were determined by circular dichroism studies in acetonitrile. ${ }^{15}$ The cyclopeptide $\underset{\sim}{4 d}$ showed selectivity for Mg^{++}and Ca^{++}over Li^{+}and did not interact with Na^{+}and K^{+}(Figures 3 and 4). Similarly, ceanothine B interacted with Mg^{++}and Ca^{++}and not with Na^{+}(Figures 5 and 6). Cyclic dimers $23 a-e$ did not exhibit metal complexing when observed by circular dichroism.

It is significant to note that the amino acid components of the cyclopeptide alkaloids contain only hydrophobic residues. Such low molecular weight peptides would probably have a high solubility in the lipid layer of a biomembrane and with respect to their ion affinities, these cyclopeptides could possess ionophoric activity. The high concentration of the cyclopeptide alkaloids in the root bark of plants may indicate an ion solubilizing and transporting function for these alkaloids in plant roots. Also, the reported ${ }^{3}$ effect of the cyclopeptide alkaloids on photophosphorylation may be due to alteration of an ionmediated process.

Our results indicate that this class of natural products

1 possesses an affinity for metal ions. The determination of ion 2 binding constants and ionophoric activity for the cyclopeptide 3 models $\underset{\sim}{4}$ and various natural peptide alkaloids is presently being further investigated. The implication that the cyclopeptide alkaloids may function as ionophores in the plant that produces them, is clearly suggested by the data presented above. ${ }^{16}$

Our synthetic method can be generalized and modified to include the preparation of cyclopeptides of this type in addition to the synthesis of peptide alkaloids. Functionalization of the benzylic position ($C-1$) of our model system $\underset{\sim}{4}$, perhaps via a radical process, will lead to systems found in the natural products 3. By means of a substituted propiolate the positioning of a variety of groups on C-9 can easily be included into our synthetic scheme, as can substituents on the aromatic nucleus. The 3-phenyloxypropenoate 19 may offer a way to incorporate a nitrogen or other substituents on c-8. Through synthesis of these 14 -membered cyclopeptides, 3 or 4 , we can answer the question of what variation in structure affects metal complexing ability, and experiments along these lines are under investigation.

EXPERIMENTAL SECTION
Methods. All reactions were performed under a nitrogen atmosphere. Solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporations were done in vacuo with a Berkeley rotary evaporator. Uncorrected melting points were determined on a Thomas-Hoover Capillary MP Apparatus and a Kofler Micro Hot Stage ($\mu \mathrm{mp}$). Both ${ }^{1}{ }_{\mathrm{H}-\mathrm{NMR}}$ and ${ }^{13} \mathrm{C}$-NMR spectra were taken in CDCl_{3} solution using internal $\mathrm{Me}_{4} \mathrm{Si}$ ($\delta 0$) on a Varian $\mathrm{HR}-220$ and a TT-23 (with a Brucker wH-90 console equipped with an NIC-80 computer and a Varian 25.14 MHz magnet) respectively. UV spectra were taken in methanol on a Cary 118 instrument. A model AEI-MS12 mass spectrometer with INCOS data system was used for determining mass spectra. The gas chromatography was done on (A) a F and M Model 402 High Efficiency GC with a $5^{\prime} \mathrm{x} 1 / 8^{\prime \prime}$ glass column, $3 \% \mathrm{OV}-17$ (w/w) on Aeropak 30 (100120 mesh), and (B) a Hewlett Packard Model 5730A GC with a $3^{\prime \prime} \mathrm{x}$ 1/8" glass column and the same liquid phase and solid support. TLC was done on silica (Eastman sheets \#6060) and column chromatography used silica gel 60 (EM Reagents) with solvent systems: (A) $\mathrm{CH}_{3} \mathrm{OH} /$ benzene/acetone, $1 / 1 / 1$; (B) benzene/acetone, $4 / 1$; and (C) benzene/ $E t_{2} \mathrm{O}, 1 / 1$. Optical rotations were determined on a Bendix Ericsson ETL-NPL Automatic Polarimeter Type 43A. CD spectra were taken in acetonitrile on a home made spectrometer. ${ }^{17}$ Ion exchange chromatography was done with a mixed bead resin, BioRex A6501-X8-D, 20-50 mesh, on a column $1.5 \times 50 \mathrm{~cm}$. Elemental analyses were performed by the Analytical Laboratory, Department of Chemistry, University of California, Berkeley.

Materials. The following solvents were routinely distilled prior to use: tetrahydrofuran from sodium benzophenone ketyl, pyridine (predried over NaOH pellets) from BaO , and N, N^{\prime}-dimethylacetamide from 4A molecular sieves. Spectral grade acetonitrile and analytical reagent grade salts were employed for the ion studies.

Methyl 3-(4'-Acetylphenyloxy) propanoate (7a).-- To a suspension of silver trifluoromethanesulfonate ($65.1 \mathrm{~g}, 0.25 \mathrm{~mol}$) in 750 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of acetyl chloride (19.9 $\mathrm{g}, 0.25$ mol) in 75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the immediate precipitation of silver chloride, a solution of methyl 3-phenyloxypropanoate (5) $(45.6 \mathrm{~g}, 0.25 \mathrm{~mol})^{1 l \mathrm{a}}$ in 75 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was introduced. One half hour later the addition of the same amounts of silver salt and acetyl chloride was repeated. After 1 hour, the mixture was filtered, the filtrate was successively washed with water (3×300 ml), sat. $\mathrm{NaHCO}_{3}(3 \times 300 \mathrm{ml})$, and sat. $\mathrm{NaCl}(1 \times 300 \mathrm{ml})$, dried, and evaporated. After distillation (Kugelrohr), 53 g (93\%) of $\underset{\sim}{7 a}$ was obtained: GC (A) R_{t} at $200^{\circ} \mathrm{C}, 4.3 \mathrm{~min} ; \mathrm{NMR} \delta 2.55(\mathrm{~s}, 3 \mathrm{H})$, $2.83(t, 2 H, J=7 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 6.94(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\right): \mathrm{C}, \mathrm{H}$. Methyl 3-(4'-Bromoacetylphenyloxy)propanoate (7ç) . -- Bromine (1.78 g, 11 mmol) was rapidly added to a stirred slurry of ketone $7 \mathrm{a}(2.48 \mathrm{~g}, 11 \mathrm{mmol})$ in 25 ml of Et 20 at $0-5^{\circ} \mathrm{C}$. The reaction mixture became homogeneous when allowed to warm to room temperature. After 1 hour, the solution was washed with distilled water $(2 \times 15$ ml), sat $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, and sat, $\mathrm{NaCl}(15 \mathrm{ml})$, dried, and evaporated to afford $2.65 \mathrm{~g}(80 \%)$ of the bromo ketone 7 c : mp $68-70^{\circ} \mathrm{C}$; GC (A) $R_{t} a t 230^{\circ} \mathrm{C}, 2.9 \mathrm{~min} ; \mathrm{NMR} \delta 2.76(t, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.67$

1 ($\mathrm{s}, 3 \mathrm{H}$) , $4.27(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{HzL}, 4.32(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$, $7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}\right): C, \mathrm{H}$.

Methyl 3-(4'-N-Methylaminoacetylphenyloxy)propanoate (7d).-A methanol solution of bromoketone 7 c ($1.81 \mathrm{~g}, 6 \mathrm{mmol}$, in 50 ml) was cooled to $-5^{\circ} \mathrm{C}$ at which time a $25 \%(\mathrm{w} / \mathrm{w})$ solution of methylamine in methanol ($3.60 \mathrm{~g}, 30 \mathrm{mmol}$) was introduced. After 4 hours, IN $\mathrm{HCl}(32 \mathrm{ml})$ was added, and on evaporation and SiO_{2} chromatography (A), 1.36 g (79\%) of the hygroscopic amine hydrochloride 7d was obtained: $\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 2.73$ (s, 2H), 2.90 (t, 2H, $\mathrm{J}=7$ $\mathrm{Hz}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.75$ (s, 2 H), $7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$.

2-(4'-Methoxyphenyl)ethylamine (9).-- A solution of p-methoxy-ω-nitrostyrene $(8,50 \mathrm{~g}, 0.28 \mathrm{~mol})^{18}$ in 1.7 L of glacial acetic acid was added over an 8 hour period into 1.7 L of glacial acetic acid containing $\mathrm{Pd} / \mathrm{C}(10 \%, 17.7 \mathrm{~g})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(46 \mathrm{~g}, 0.47 \mathrm{~mol})$. Hydrogen was bubbled through the solution with a gas dispersion tube during the addition and for 1 hour afterwards. On subsequent isolation and distillation, the amine $2(3.3 \mathrm{~g}, 78 \%$) was isolated: bp $110-112^{\circ} \mathrm{C}(2 \mathrm{~mm}) ; \operatorname{NMR} \delta 1.10(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $6.83(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=8,18 \mathrm{~Hz})$.

2-(4'-Hydroxyphenyl)ethylamine Hydrobromide (Tyramine Hydrobromide) (${ }_{\sim}^{10}$).-- A mixture of the amino methyl ether $\underset{\sim}{9}$ (10.9 g , 72 mmol) in $300 \mathrm{ml} 48 \% \mathrm{HBr}$ was refluxed for 30 min . After the solution was cooled in an ice bath, the crystalline percipitate was collected and recrystallized from 95\% ethanol to yield 10 g (64\%) of 10: mp $243-245^{\circ} \mathrm{C}$; NMR $\delta 3.20$ ($\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$), 4.80 (s, phenolic), $7.0(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=8,18 \mathrm{~Hz})$.

N-Formyl-2-(4'-hydroxyphenyl)ethylamine (11).-- While a suspension of tyramine hydrobromide ($\underset{\sim}{10}, 10 \mathrm{~g}, 46 \mathrm{mmol}$) and triethylamine ($9.3 \mathrm{~g}, 92 \mathrm{mmol}$) in 75 ml CHCl 3 was maintained at $0-5^{\circ} \mathrm{C}$, a solution of trichloroacetaldehyde ($6.76 \mathrm{~g}, 46 \mathrm{mmol}$) in $25 \mathrm{ml} \mathrm{CHCl}_{3}$ was added dropwise over a 1 hour period. After refluxing for $1 / 2$ hour, the resultant solution was evaporated and the residue recrystaliized from water yielding 4.6 g (62%) of the N-formyl derivative $\underset{\sim}{110} \mathrm{mp} 97-99.5^{\circ} \mathrm{C}$; TLC (B) $\mathrm{R}_{\mathrm{f}} 0.35$ (ninhydrin neg.); NMR $\delta 2.61(t, 2 H, J=7 \mathrm{~Hz}), 3.27(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$, $6.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.86$ ($\mathrm{m}, 1 \mathrm{H}$), 7.92 (s, 1 H$), 9.0(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Formyl-2-(4'-methoxyphenyl)ethylamine (12a).-- To a solution of amine $\underset{\sim}{9}(40 \mathrm{~g}, 0.27 \mathrm{~mol})$ and triethylamine ($29.5 \mathrm{~g}, 0.29 \mathrm{~mol}$) in 250 ml CHCl 3 cooled to $0-5^{\circ} \mathrm{C}$ was added dropwise over a 1 hour period, a solution of trichloroacetaldehyde ($43 \mathrm{~g}, 0.29 \mathrm{~mol}$) in 250 ml CHCl 3 . Following reflux for 45 minutes, the solution was washed with 5% aq. acetic acid ($3 \times 250 \mathrm{ml}$), distilled water (1 x 200 ml), sat. NaHCO_{3} ($1 \times 200 \mathrm{ml}$), dried, and evaporated. The residue was distilled to afford 44 g (92\%) of the amine $\underset{\sim}{12 a \sim}$: $\mathrm{bp} 159-161^{\circ} \mathrm{C}(2 \mathrm{~mm})$; GC (A) R_{t} at $175^{\circ} \mathrm{C}, 9.8 \mathrm{~min}$; NMR $\delta 2.75$ (t, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), 3.43 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 6.30(\mathrm{~s}, \mathrm{l} \mathrm{H})$, $6.85(\dot{d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 8.0(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}\right): \quad \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Formyl-2-(4'-benzyloxyphenyl)ethylamine (${ }_{\sim}^{2} \underset{\sim}{2 b}$). A mixture of $\underset{\sim}{11}(4.0 \mathrm{~g}, 24 \mathrm{mmol})$, finely powdered, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(7.9 \mathrm{~g}$, $57 \mathrm{mmol})$, and benzyl chloride ($3.2 \mathrm{~g}, 25 \mathrm{mmol}$) in 100 ml acetone was refluxed for 23 hours. After filtration and evaporation, the

1. residue was partitioned between $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ and distilled water (100 mll . The organic phase was successively washed with sat. $\mathrm{NaHCO}_{3}(2 \times 75 \mathrm{ml})$, $1 \mathrm{~N} \mathrm{HCl}(2 \times 75 \mathrm{ml})$, distilled water (75 ml) and sat. NaCl (75 ml). Following drying and evaporating, $4.7 \mathrm{~g}\left(76 \%\right.$ of $\underset{\sim}{12} \mathrm{~b}$ was isolated: mp $109-110^{\circ} \mathrm{C}$; TLC (B) $\mathrm{R}_{\mathrm{f}}=0.49$; NMR $\delta 2.73(t, 2 H, J=7 H z), 3.48(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.98(\mathrm{~s}, 2 \mathrm{H})$, $5.70(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.33$ $(\mathrm{m}, 5 \mathrm{H}), 8.0(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. N-Methyl-2-(4'-methoxyphenyl)ethylamine (13a). -- To a rapidly stirred slurry of lithium aluminum hydride ($9.10 \mathrm{~g}, 0.24 \mathrm{~mol}$) in 180 ml THF kept at $0-5^{\circ} \mathrm{C}$ was added a solution of the N -formyl compound $\underset{\sim}{2} 2 \mathrm{a}(42.9 \mathrm{~g}, 0.24 \mathrm{~mol})$ in 100 ml THF during a 50 minute period, then the mixture was refluxed for 30 minutes. After cooling the reaction mixture to $5^{\circ} \mathrm{C}$, the excess hydride was destroyed by successive addition of 9 ml water, $9 \mathrm{ml} 15 \% \mathrm{NaOH}$, and 20 ml water and allowed to stir for an additional 30 minutes. Filtration, evaporation, and distillation afforded the N-methylamine $\underset{\sim}{13 a}(30.5 \mathrm{~g}, 80 \%): \operatorname{bp} 80-83^{\circ} \mathrm{C}(2 \mathrm{~mm}) ; \operatorname{NMR} \delta 1.20(\mathrm{~s}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=8,18 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}\right): C, \mathrm{H}, \mathrm{N}$.

N-Methyl-2-(4'-benzyloxyphenyl)ethylamine (1 ${ }_{\sim}^{3} \underset{\sim}{b}$).. In a manner exactly as above, the amide $\underset{\sim}{12 b}(4.72 \mathrm{~g}, 18.5 \mathrm{mmol})$ was reduced to amine $\underset{\sim}{13 b}(4.2 \mathrm{~g}, 94 \%): \mathrm{bp} 136^{\circ} \mathrm{C}$ (0.1 mm); NMR $\delta 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 2.74(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.06$ (d, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.32(\mathrm{~m}, 5 \mathrm{H})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Methyl-N, N'-tert-butoxycarbonyl-L-prolyl-2 (4'-methoxy
phenyl)ethylamine (${\underset{\sim}{l}}_{\sim}^{4} \underset{\sim}{a}$).--A solution of N-tert-butoxycarbonyl

L-proline $^{9}(24.5 \mathrm{~g}, 0.11 \mathrm{~mol})$, the amine $13 \mathrm{a}(18.8 \mathrm{~g}, 0.11 \mathrm{~mol})$ and DCC ($14.3 \mathrm{~g}, 0.11 \mathrm{moll}$ in 1.0 L of CHCl_{3} was stirred for 12 hours. Following removal of the urea by filtration, the solution was washed with 5% acetic acid ($2 \times 500 \mathrm{ml}$), distilled water (1 x $500 \mathrm{ml})$, sat. $\mathrm{NaHCO}_{3}(2 \times 500 \mathrm{ml})$, and sat. $\mathrm{NaCl}(500 \mathrm{ml})$, dried and evaporated to yield 14 a as an oil ($30 \mathrm{~g}, 73 \%$) : NMR $\delta 1.45$ $(\mathrm{s}, 9 \mathrm{H}), 1.85(\mathrm{~m}, 4 \mathrm{H}), 2.8(\mathrm{~m}, 2 \mathrm{H}), 3.0\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.50(\mathrm{~m}$, $4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}$) 。

N-Methyl-N, N'-tert-butoxycarbony1-L-leucyl-2-(4'-benzyloxyphenyl)ethylamine (${\underset{\sim}{x}}_{\sim}^{4} \mathrm{~b}$). The temperature of a solution of N-tert-butoxycarbonyl-L-leucine ${ }^{9}(2.77 \mathrm{~g}, 12 \mathrm{mmol})$ and N -methyl morpholine ($1.16 \mathrm{~g}, 12 \mathrm{mmol}$) in 58 ml THF was maintained at $-15^{\circ} \mathrm{C}$ while isobutylchloroformate ($1.57 \mathrm{~g}, 12 \mathrm{mmol}$) was rapidly added. One minute later, a solution of the N-methylamine $\underset{\sim}{13 b}(2.77 \mathrm{~g}, 12$ mmol) in 23 ml THF was dripped in during a 2 minute interval while the solution was kept below $-15^{\circ} \mathrm{C}$. After removal of the cooling bath, the solution was stirred for 4 additional hours, filtered, and evaporated. The resulting oil was dissolved in 100 ml ethyl acetate, washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 50 \mathrm{ml})$, sat. NaHCO_{3} ($3 \times 50 \mathrm{ml}$) and sat. $\operatorname{NaCl}(50 \mathrm{ml})$, dried and evaporated, yielding ${\underset{\sim}{\sim}}_{14 b}$ as a clear oil (4.80 g, 92\%):TLC (B) $R_{f} 0.63$; NMR $\delta 0.92$ $(\mathrm{dd}, 6 \mathrm{H}, \mathrm{J}=6,12 \mathrm{~Hz}), 1.5(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.90$ $\left(\mathrm{d}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.55(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 5.14$ $(\mathrm{m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=3,8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.30(\mathrm{~m}$, 5H). Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}\right): C, \mathrm{H}, \mathrm{N}$.

N-Methyl-N, N^{\prime}-tert-butoxvcarbonyl-N'-methyl-L-leucyl-2(4'benzyloxyphenyl)ethylamine (14 c). -- The coupling of N -tert-butoxy-carbonyl-N-methyl-L-leucine ${ }^{9,19}\left[1.86 \mathrm{~g}, 7.6 \mathrm{mmol},[\alpha]{ }_{\mathrm{D}}^{25}-37.9^{\circ}\right.$ (c $0.7, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$) and N -methylamine $\underset{\sim}{13}(1.83 \mathrm{~g}, 7.6 \mathrm{mmol})$ was accomplished with the mixed anhydride procedure utilized for the preparation of $1 \underset{\sim}{14 a}$. The peptide $\underset{\sim}{14 c}$ was isolated in 91% yield $(3.24 \mathrm{~g}): T L C(C) R_{f} 0.56 ; N M R \delta 0.89(\mathrm{~m}, 6 \mathrm{H}) ; 1.45(\mathrm{~m}, 12 \mathrm{H})$, $2.68\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right.$ carbamate), 2.73 (t, $\left.2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}\right), 2.89(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, 2 \mathrm{H}$, $J=8 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.30(\mathrm{~m}, 5 \mathrm{H})$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}\right):$ C; H, N.

N-Methyl-N, N'-tert-butoxycarbonyl-L-prolyl-2-(4'-hydroxy

 phenyl)ethylamine (15 a).-- To a benzene solution (20 ml) of the peptide $\underset{\sim}{1} \underset{\sim}{4} \mathrm{a}(3.09 \mathrm{~g}, 8.5 \mathrm{mmol})$ was added boron tribromide $(2.56$ g, 10.2 mmol$)$. The resultant heterogeneous mixture was refluxed for 6 hr . After removal of the solvent, the residue was partitioned between $10 \% \mathrm{NaOH}(50 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. After adjustment of the pH to 9.7 , the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$ and evaporated to a light yellow oil weighing $1.40 \mathrm{~g}(67 \%)$. That the O-methyl group was completely removed was established by NMR. This oil ($1.40 \mathrm{~g}, 5.6 \mathrm{mmol}$) was dissolved in 10 ml of dioxane and 10 ml of water, and the pH was maintained at 8.6. with 1 N NaOH with a autotitrator. After 2 hr , the pH was adjusted to 2.0 , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{ml}$), the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and the residue was chromatographed (B) affording the phenol $\underset{\sim}{15 \mathrm{a}}$ (1.37 g, 70\%) as an oil: TLC (B) $\mathrm{R}_{\mathrm{f}} 0.2$, ninhydrin negative, $\mathrm{FeCl}_{3} / \mathrm{K}_{3} \mathrm{Fe}$ (CN) $_{6}$$$
0004300473
$$

positive; $\operatorname{NMR} \delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.8(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{NCH}_{3} \mathrm{~L}, 3.2-3.8(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 4 \mathrm{H}), 8.60(\mathrm{~m}$, 1H) . Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{l}: \mathrm{C}, \mathrm{H}, \mathrm{N}\right.$.

N-Methyl $\mathrm{N}, \mathrm{N}^{\prime}$-tert-butoxycarbonyl-L-1eucyl-2-(4'-hydroxy phenyl) ethylamine (${ }_{\sim}^{5} \mathrm{~b}$).-- After a slurry of Pd / C ($700 \mathrm{mg}, 10 \%$) in 25 ml ethanol was treated with H_{2} at 32 psi for 30 min , a solution of benzyl ether $\underset{\sim}{14} \underset{\sim}{b}(4.77 \mathrm{~g}, 11 \mathrm{mmol})$ in 70 ml ethanol was introduced and was hydrogenated at 30 psi for 3 h . After filtering, the solution was evaporated to $\underset{\sim}{15} \mathrm{~b}$, an oil weighing 3.82 g (100%): NMR $\delta 0.91$ ($\mathrm{dd}, 6 \mathrm{H}, \mathrm{J}=6,13 \mathrm{~Hz}$), $1.36-\mathrm{J} .61$ ($\mathrm{m}, 3 \mathrm{H}$), $1.41(\mathrm{~s}, 9 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.90\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.52$ $(\mathrm{m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Methyl-N, N'-tert-butoxycarbonyl-N-methyl-L-lencyl-2-(4'hydroxyphenyl)ethylamine (${\underset{\sim}{\sim}}_{\sim}^{15 c}$).-- In a manner exactly as above, benzyl ether $\underset{\sim}{14 c}(3.10 \mathrm{~g}, 6.6 \mathrm{mmol})$ was converted to phenol $\underset{\sim}{15 \mathrm{c}}$ $(2.5 \mathrm{~g}, 100 \%):$ TIC (C) $\mathrm{R}_{\mathrm{f}} 0.49, \mathrm{FeCl}_{3} / \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ positive; NMR δ $0.89(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz}), 2.70(\mathrm{~m}, 5 \mathrm{H}), 2.90(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 4.59$ and $4.80(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N,N'-tert-Butoxycarbonyl-L-prolyl-2-(4'-hydroxyphenyl) ethylamine (15d). -- As a solution of N-tert-butoxycarbonyl-Lproline ${ }^{9}(7.53 \mathrm{~g}, 35 \mathrm{mmol})$ and N -methylmorpholine $(3.54 \mathrm{~g}, 35$ mmol) in 175 ml THF was cooled to $-15^{\circ} \mathrm{C}$, isobutylchloroformate $(4.78 \mathrm{~g}, 35 \mathrm{mmol})$ was rapidly added. After 1 min , a solution of tyramine hydrobromide ($10,7.63 \mathrm{~g}, 35 \mathrm{mmol}$) and triethylamine
$(3.54 \mathrm{~g}, 35 \mathrm{mmol})$ in 70 ml of DMF was added in a 2 min period while the temperature was maintained at $-12^{\circ} \mathrm{C}$. Four hours after the removal of the cooling bath, the reaction mixture was filtered and evaporated. The residue was dissolved in ethyl acetate $(200 \mathrm{ml})$, washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 100 \mathrm{ml})$, sat. $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{ml})$, and sat. NaCl (1 x 100 ml), dried, and evaporated, giving 11.3 g (97\%) of pure $\underset{\sim}{15 d}: \operatorname{NMR} \delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.70-2.20^{\circ}(\mathrm{m}, 4 \mathrm{H}), 2.66$ $(\mathrm{m}, 2 \mathrm{H}), 3.25-3.48(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $6.91(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.86(\mathrm{~m}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. N,N'-tert-Butoxycarbonyl-L-leucyl-2-(4'-hydroxyphenyl) ethylamine (15 e).- The coupling of N-tert-butoxycarbonyl-L-leucinc ${ }^{9}$ (2.31 g, 10 mmol$)$ and tyramine hydrobromide ($\underset{\sim}{10})(2.18 \mathrm{~g}, 10 \mathrm{mmol})$ was accomplished exactly as above to give pure $\underset{\sim}{15}$ e as an oil (3.2 g, 89\%) : NMR $\delta 0.87(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~m}$, $3 \mathrm{H}), 2.3(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.6(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 6.8$ (dd, $4 \mathrm{H}, \mathrm{J}=8,18 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\right): C, \mathrm{H}, \mathrm{N}$.

Benzyl E-3-(4'-B-N, N^{\prime}-tert-Butoxycarbonyl-L-prolyl-N-methylaminoethyl)phenyloxypropenoate (192).-- A mixture of phenol $15 a$ (1.18 g, 3.4 mmol$), \mathrm{N}$-methylmorpholine ($0.34 \mathrm{~g}, 3.4 \mathrm{mmol}$) and benzyl propiolate ($1.09 \mathrm{~g}, 6.8 \mathrm{mmol}$) in 20 ml of THF was allowed to stand for 3 hr at room temperature. After evaporation of the solvent, the residue was dissolved in 60 ml of ethyl acetate, washed with $0.2 \mathrm{~N} \mathrm{HCl}(3 \times 20 \mathrm{ml})$, water (20 ml), sat. $\mathrm{NaCl}(20 \mathrm{ml})$, dried, and evaporated. The resultant oil was chromatographed $\left(\mathrm{SiO}_{2}, 100 \mathrm{~g}, \mathrm{Et} \mathrm{O}_{2} \mathrm{O}\right)$ to give $1.55 \mathrm{~g}(90 \%)$ of $\underset{\sim}{19 \mathrm{a}}$: $\operatorname{NMR} \delta 1.47(\mathrm{~s}$, $9 \mathrm{H}), 1.6-2.1(\mathrm{~m}, 4 \mathrm{H}), 2.63-3.1(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.2-3.75$ $(\mathrm{m}, 4 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 6.91$
$(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.38(\mathrm{~s}, 5 \mathrm{H}), 7.83(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=12 \mathrm{HzL}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~L}: \mathrm{C}\right.$, H, N.

Benzyl E-3-(4'-B-N, N^{\prime}-tert-Butoxycarbonyl-L-leucyl-N-methyl
aminoethyl)phenyloxypropenoate (${\underset{\sim}{~}}_{2}^{9} \mathrm{~b}$).-- In a manner analogous to above, phenol $\underset{\sim}{15} \mathrm{~b}(3.90 \mathrm{~g}, 11 \mathrm{mmol})$ was converted to $\underset{\sim}{19} \mathrm{~b}$ (5.3 g , 94\%) after chromatography (200 g Sephadex LH-20, methanol): NMR $\delta 0.92(\mathrm{dd}, 6 \mathrm{H}, \mathrm{J}=6,12 \mathrm{~Hz}), 1.1-1.8(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.80$ $(\mathrm{m}, 2 \mathrm{H}), 2.91(\mathrm{~d}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 3 \mathrm{H})$, $5.5(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $7.28(\mathrm{~s}, 5 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}\right): C, \mathrm{H}, \mathrm{N}$.

Benzyl E-3-(4'-B-N, N'-tert-Butoxycarbonyl-N'-methyl-L-1encyl-N-methylaminoethyl) phenyloxypropenoate (${ }_{\sim}^{9} 9 \mathrm{C}$). .- The acrylate $\underset{\sim}{19 \mathrm{C}}$ ($2.32 \mathrm{~g}, 70 \%$) was prepared from phenol $\underset{\sim}{15} \mathrm{c}(2.34 \mathrm{~g}, 6.2 \mathrm{mmol})$ as above: $T L C R_{f} 0.27\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, $\left.1 / 1\right) ; \mathrm{NMR} \delta 0.88(\mathrm{~m}, 6 \mathrm{H}), 1.43$ $(\mathrm{m}, 9 \mathrm{H}), 1.51(\mathrm{~m}, 3 \mathrm{H}), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$, $2.91\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.47-3.68(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $5.50(\mathrm{~d}, ~ 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $7.27(\mathrm{~s}, 5 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}\right): C, \mathrm{H}, \mathrm{N}$. Benzyl E-3-(4'-B-N, N'-tert-Butoxycarbonyl-L-prolylaminoethyl) phenyloxypropenoate ($\underset{\sim}{19} \mathrm{~d}$). -- The conversion of phenol $\underset{\sim}{15 \mathrm{~d}}$ ($5.37 \mathrm{~g}, 16 \mathrm{mmol}$) to $19 \mathrm{~d}(7.9 \mathrm{~g}, 99 \%$) was accomplished as above: mp $99-101^{\circ} \mathrm{C} ; \operatorname{TLC}\left(E t_{2} \mathrm{O}\right) \mathrm{R}_{\mathrm{f}} 0.14 ; \operatorname{NMR} \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~m}, 4 \mathrm{H})$, $2.82(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.17(\mathrm{~m}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.11$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.28(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}) ;[\alpha]_{\mathrm{D}}^{25}-52.6^{\circ}$ (c $\left.0.73, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\quad\left(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}\right): C, H, N$.

Benzy1 E-3-(4'- $-\mathrm{N}_{2} \mathrm{~N}^{\prime}$-tert-Butoxycarbonyl-L-leucylaminoethyl)
phenyloxypropenoate (19e).-As above, phenol ${\underset{\sim}{c}}_{15 \mathrm{e}}(2.9 \mathrm{~g}, 8.3 \mathrm{mmol})$ was converted to $\underset{\sim}{19} \mathrm{e}(3.98 \mathrm{~g}, 92 \%)$, an oil: $\operatorname{NMR} \delta 0.9(\mathrm{~d}, 6 \mathrm{H}$, $J=6 \mathrm{~Hz}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 3.0(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.5(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 5.0$ $(\mathrm{m}, 2 \mathrm{H}), 5.6(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}), 7.3(\mathrm{~s}, 5 \mathrm{H}), 7.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz})$.
$3-\left(4^{\prime}-\beta-N, N^{\prime}-t e r t-B u t o x y c a r b o n y l-L-p r o l y l-N-m e t h y l a m i n o e t h y l\right) ~$ phenyloxypropanoic Acid (20a). -- A mixtuce of $\underset{\sim}{19} \underset{\sim}{9}$ a ($1.51 \mathrm{~g}, 3.0 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%, 100 \mathrm{mg})$, in 15 ml ethanol was hydrogenated at 37 psi for 1.5 hr . After filtration and evaporation, $\underset{\sim}{20 a}(1.25 \mathrm{~g}, 100 \%$) was obtained: $N M R \delta 1.43(\mathrm{~s}, 9 \mathrm{H})$, 1.6-2.2 (m, 4H), 2.6-3.1 (m, $4 \mathrm{H}), 2.75(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.9(\mathrm{~m}, 4 \mathrm{H}), 4.2(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.1(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, 9.5 ($\mathrm{s}, 1 \mathrm{H}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. 3-(4'- $B-N, N^{\prime}$-tert-Butoxycarbonyl-I-leucyl-N-methylaminoethyl)
 hydrogenation of $\underset{\sim}{19 \mathrm{~b}}(1.29 \mathrm{~g}, 2.5 \mathrm{mmol})$ afforded the acid $\underset{\sim}{20} \mathrm{O}$ $(1.03 \mathrm{~g}, 100 \%): \operatorname{NMR} \delta 0.90(\mathrm{dd}, 6 \mathrm{H}, 6,12 \mathrm{~Hz}, 1.1-1.8(\mathrm{~m}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 9 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.89\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.5(\mathrm{~m}, 2 \mathrm{H}), 4.15$ $(t, 2 H, J=5 H z), 4.55(m, 1 H), 5.48(\mathrm{~m}, ~ 1 \mathrm{H}), 6.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-(4'- $\beta-N, N^{\prime}-t e r t-B u t o x y c a r b o n y l-N^{\prime}-$ methyl-L-leucyl-N-methyl aminoethyl)phenyloxypropanoic Acid (20c).-- The conversion of $\underset{\sim}{19} \mathrm{C}$ ($2.02 \mathrm{~g}, 3.8 \mathrm{mmol}$) to the acid $\underset{\sim}{20 c}(1.65 \mathrm{~g}, 97 \%$) was accomplished under the above conditions: UV $\lambda_{\max }(\varepsilon) 277 \mathrm{~nm}$ (1585), 283(1331); NMR $\delta 0.89(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{~m}, 3 \mathrm{H})$, $2.77(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5 \mathrm{~Hz})$,
$4.98(\mathrm{~m}, \mathrm{IH}), 6.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.05(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$: $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-(4'- $\beta-N^{\prime} N^{1}$-tert-Butoxycarbonyl-L-prolylaminoethyl) phenyloxy propanoic Acid (20d).-- In a manner exactly as above $\underset{\sim}{19 d}$ (5.04 g, $10 \mathrm{mmol})$ was converted to $\underset{\sim}{20} \underset{\sim}{2}(4.13 \mathrm{~g}, 100 \%$) : $\operatorname{NMR} \delta 1.43$ ($\mathrm{s}, 9 \mathrm{H})$, $1.82(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.39(\mathrm{~m}, 4 \mathrm{H})$, $4.16(t, 2 H, J=7 \mathrm{~Hz}), 4.22(\mathrm{~m}, ~ 1 \mathrm{H}), 6.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.98(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 8.90(\mathrm{~m}, 1 \mathrm{H}) ;[\alpha]_{\mathrm{D}}^{25}-56.4^{\circ}\left(\mathrm{C} 0.87, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}\right): C, \mathrm{H}, \mathrm{N}$.

3(4'- β-N, N'-tert-Butoxycarbonyl-L-leucylaminoethyl) phenyloxy propanoic Acid ($\left.\underset{\sim}{20} \mathrm{e}_{2}\right) .-$ The conversion of $\underset{\sim}{19} \mathrm{e}(3.80 \mathrm{~g}, 7.4 \mathrm{mmol})$ to $\underset{\sim}{20}(2.88 \mathrm{~g}, 92 \%)$ was accomplished as above: NMR $\delta 0.88$ $(\mathrm{d}, 6 \mathrm{H}, \mathrm{J}=5 \mathrm{~Hz}), 1.4 \mathrm{l}(\mathrm{s}, 9 \mathrm{H}), 1.57(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$, $2.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.4 \mathrm{l}(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.68$ and 4.02 (m, 1 H$)$, 4.17 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $5.14(\mathrm{~m}, 1 \mathrm{H}), 6.36$ ($\mathrm{m}, 1 \mathrm{H}$), 6.75 (d, 2 H, $J=8 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}) .[\alpha]_{\mathrm{D}}^{25}-26.7^{\circ}$ (C 1.1, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.
p-Nitrophenyl 3-(4'- $-\mathbf{N}$, N^{\prime}-tert-Butoxycarbonyl-L-prolylN -methylaminoethyl) phenyloxypropanoate (2la).-- A mixture of the acid $\underset{\sim}{20 a}(4.94 \mathrm{~g}, 12 \mathrm{mmol})$ and p-nitrophenyl trifluoroacetate ${ }^{13}$ (2.64 g , 12 mmol) in 25 ml pyridine was stirred for 4.5 hr . After evaporation, the residue was dissolved in 200 ml of ethyl acetate and washed with $0.3 \mathrm{~N} \mathrm{HCl}(3 \times 100 \mathrm{ml})$, sat. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{ml})$, $\mathrm{H}_{2} \mathrm{O}$ (100 ml), and sat. NaCl (100 ml). Chromatography (C) of the residue after evaporation afforded the p-nitrophenyl ester $\underset{\sim}{21 a}$ (4.48. g, 708): NMR $\delta 1.42(5,9 H), 1.6-2.3(m, 4 H), 2.6-3.2$ $(\mathrm{m}, 7 \mathrm{H}), 3.3-3.8(\mathrm{~m}, 4 \mathrm{H}), 4.32(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 6.83$
$(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 8.18$ (d, $2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}$) . Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{8}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.
p-Nitrophenyl $3-\left(4^{\prime}-\beta-N, N^{\prime}\right.$-tert-Butoxycarbonyl-L-leucyl
N-methylaminoethyl)phenyloxypropanoate ($2 \underset{\sim}{2 l b}$). - In a manner exactly as above $\underset{\sim}{20 b}(954 \mathrm{mg}, 2.2 \mathrm{mmol})$ was converted to pnitrophenyl ester $\underset{\sim}{21} \mathrm{~b}(1.04 \mathrm{~g}, 82 \%): \operatorname{TLC}\left(E t_{2} \mathrm{O}\right) \mathrm{R}_{\mathrm{f}} 0.32$; NMR δ $0.94(\mathrm{dd}, 6 \mathrm{H}, \mathrm{J}=6.12 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{~m}, 3 \mathrm{H}), 2.77$ (t, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.90\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.06(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.55(\mathrm{~m}$, $2 \mathrm{H}), 4.3 \mathrm{l}(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 8.20$ (d, $2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}$). Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{8}\right): C, \mathrm{H}, \mathrm{N}$.
p-Nitrophenyl 3-(4'-B-N,N'-tert-Butoxycarbonyl-N'-methyl-L-leucyl-N-methylaminoethyl) phenyloxypropanoate (${ }_{\sim}^{l} 1 \mathrm{c}$).-- The
 was accomplished as in the earlier examples. The oil was isolated pure ($859 \mathrm{mg}, 83 \%$) after chromatography (200 g Sephadex LH 20; methanol): $\operatorname{TLC}\left(E t_{2} O\right) R_{f} 0.42 ; \operatorname{NMR} \delta 0.89(m, 6 H), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $1.52(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.89(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.03(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{HO}, 4.28(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.73$ and $4.95(\mathrm{~m}, \mathrm{lH}), 6.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.06$ (d, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 8.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{8}\right): C, \mathrm{H}, \mathrm{N}$.
p-Nitrophenyl $3-\left(4^{\prime}-\beta-N, N^{\prime}\right.$-tert-Butoxycarbonyl-L-prolylamino ethyl)phenyloxypropanoate (21d). In an analogous manner, $\underset{\sim}{20 d}$ ($3.45 \mathrm{~g}, 8.5 \mathrm{mmol}$) was converted to p-nitrophenyl ester ${\underset{\sim}{2}}_{2 l d}^{\sim}$; $3.88 \mathrm{~g}, 87 \%$, after chromatography (200 g Sephadex LH 20; methanol): NMR $\delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.64-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.7(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{t}, 2 \mathrm{H}$,

$$
000-5000466
$$

$$
\begin{aligned}
& \mathrm{J}=7 \mathrm{~Hz}), 3.23-3.52(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~m}, \mathrm{lH}), 4.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}), \\
& 6.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=10 \mathrm{~Hz}), \\
& 8.19(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=10 \mathrm{~Hz}) . \text { Anal. }\left(\mathrm{C}_{2} 7^{\mathrm{H}} 33^{\mathrm{N}} \mathrm{~N}_{3}\right): \mathrm{C}, \mathrm{H}, \mathrm{~N} . \\
& \text { p-Nitrophenyl } 3-\left(4^{\mathrm{r}}-\mathrm{B}-\mathrm{N}, \mathrm{~N}^{\prime}-\right.\text { tert-Butoxycarbony1-L-leucylamino- }
\end{aligned}
$$

 was converted to p-nitrophenyl ester $\underset{\sim}{2 l e}(2.57 \mathrm{~g}, 74 \%$) : mp 116$118^{\circ} \mathrm{C} ; \operatorname{TLC}$ (benzene/ethyl acetate), $\mathrm{R}_{\mathrm{f}} 0.5$; $\operatorname{NMR} \delta 0.89(\mathrm{~d}, 6 \mathrm{H}$, $J=6 \mathrm{~Hz}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.61(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.01(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, ~ 1 \mathrm{H}), 4.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.75$ $(\mathrm{m}, 1 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, $7.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 8.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}\right.$) : C, H, N.

Cyclo[3-(4-B-N-methylaminoethyl) phenyloxypropanoyl-I-proly]] (4a) and Cyclo[3-(4-B-N-methylaminoethy]) phenyloxypropanoyl-L-proly]] 2 (23a) The p-nitrophenyl ester $\underset{\sim}{2 l a}(719 \mathrm{mg}, 1.33 \mathrm{mmol})$ was dissolved in 10 ml of anhydrous trifluoroacetic acid at $0-5^{\circ} \mathrm{C}$. After 1 hr the solvent was evaporated to give an oil (l.20 g) which was dissolved in 600 ml of $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylacetamide. The resultant solution was added over a 50 hr period with a metering pump to 600 ml of mechanically stirred pyridine maintained at $90^{\circ} \mathrm{C}$. The solution was stirred and heated for an additional 10 hrs , evaporated, and the residue was dissolved in methanol and filtered through a mixed bed ion exchange resin. The first 100 ml of eluant was collected and evaporated to give a solid residue ($223 \mathrm{mg}, 56 \%$) from which, after chromatography (200 g Sephadex LH 20; methanol), three fractions were isolated. Eluted first was 45 mg (ll\%) of cyclic oligomers which was not further purified. Next was the cyclic dimer 23 a ,
$188 \mathrm{mg}(22 \%): \mu \mathrm{mp} 251^{\circ} \mathrm{C}(\mathrm{dec}) ; U V \lambda_{\max }(\varepsilon) ; 226 \mathrm{~nm}(21400), 277$ (2910), 284 (2510); GC (A) R_{t} at $275^{\circ} \mathrm{C}, 5.6 \mathrm{~min} ; \mathrm{MS} \mathrm{m} / \mathrm{e}$ (rel. int.) $604(0.8), 303(3), 302(12), 183(31), 152(21), 124(67)$, $121(10), 70(100), 55(45) ;[\alpha]_{\mathrm{D}}^{25}+27.5^{\circ}\left(\mathrm{C} 0.2, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{CD}-\Delta \mathrm{E}_{\max }$ $\left(\lambda_{\text {max }} \mathrm{nm}\right)+2.67(228),-0.11$ (268), -0.14 (275.6), -0.14 (283), $+0.07(287) ;{ }^{l_{\mathrm{H}}} \operatorname{NMR} \delta 1.36-2.36(\mathrm{~m}, 8 \mathrm{H}), 2.5-3.1(\mathrm{~m}, 12 \mathrm{H}), 3.0$ $(\mathrm{s}, 6 \mathrm{H}), 3.14-4.27(\mathrm{~m}, 10 \mathrm{H}), 6.81(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.01(\mathrm{~d}, 4 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}$). Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}\right): \mathrm{C}$ (calcd. 67.5 , found 66.4$), \mathrm{H}, \mathrm{N}$. Eluted last was $\underset{\sim}{4 a}(97 \mathrm{mg}, 24 \%)$ obtained after sublimation at $100^{\circ} \mathrm{C}(0.01 \mathrm{~mm}): \mu \mathrm{mp} 188^{\circ} \mathrm{C} ;$ UV $\lambda_{\max }(\varepsilon) 270 \mathrm{~nm}(508), 276$ (492). GC (A) R_{t} at $275^{\circ} \mathrm{C}, 3.2 \mathrm{~min}$; MS m/e $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 302.1630, found $302.1636 ;[\alpha]_{\mathrm{D}}^{25}+6.3\left(\mathrm{C} 0.2, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{CD}-\triangle \mathrm{E}_{\max }$ $\left(\lambda_{\text {max }} \mathrm{nm}\right) ;+8.72$ (222), -1.74 (241), -1.01 (270), -0.97 (275.5); NMR $\delta 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 2.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.12 \mathrm{~Hz})$, $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, \mathrm{H}), 3.42(\mathrm{rn}$, $1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5,12 \mathrm{~Hz}), 4.80(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz})$, 6.77 (dd, $1 \mathrm{H}, \mathrm{J}=2,8 \mathrm{~Hz}), 7.09(\mathrm{~m}, 3 \mathrm{H})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. Cyclo[3-(4- -N -methylaminoethyl) phenyloxypropanoyl-L-leucyl (ab) and Cyclo[3-(4- $-\mathrm{N}-\mathrm{methylaminoethy1)} \mathrm{phenyloxypropanoyl-1-1eucy1]} 2$ (23b) Dissolution of p-nitrophenyl ester $\underset{\sim}{2} \underset{\sim}{1 b}(665 \mathrm{mg}, 1.2 \mathrm{mmol})$ in 10 ml anhydrous trifluoroacetic acid at $0-5^{\circ} \mathrm{C}$ as above, afforded an oil (1.03 g) after evaporation which was dissolved in dimethylacetamide $(620 \mathrm{ml})$ and added dropwise over a 50 hr period to stirred pyridine $(600 \mathrm{ml})$ at $90^{\circ} \mathrm{C}$. Stirring was continued for an additional 10 hrs . The pyridine was evaporated and the residue was dissolved in methanol and filtered through a mixed bed ion exchange resin to give an oil (332 mg). The crude product was purified by column chroma-
tography on Sephadex LH-20 in methanol, isolating four fractions: (1) $95 \mathrm{mg}(25 \%)$ of cyclic oligomers; (2) dimer $\underset{\sim}{2} 3 \mathrm{~b}$ ($123 \mathrm{mg}, 32 \%$), crystallized from ethanol: $\mu \mathrm{mp} 234^{\circ} \mathrm{C} ; \mathrm{UV} \lambda_{\max }(\varepsilon) 224 \mathrm{~nm}(25,245)$, 276 (3234), 283 (2691); MS m/e (rel. int.) 636 (6), 386 (2), 362 (3), 318 (8), 43 (100); $C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } n m\right):-8.70$ (218), -3.77 (234), $-0.48(278),-0.45(283) ; N M R \delta 0.83(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{q}, 6!\mathrm{I}, \mathrm{J}=5 \mathrm{~Hz})$, $1.30(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dq}, 4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.78(\mathrm{~m}, 4 \mathrm{H})$, $2.97(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}), 3.00(\mathrm{~m}, 6 \mathrm{H}), 4.09(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H})$, $6.20(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6}\right)$: C, H, N; (3) was a mixture of compounds ($36 \mathrm{mg}, 10 \%$) not further characterized; (4) cyclic monomer $\underset{\sim}{4} \mathrm{~b}(49 \mathrm{mg}, 13 \%): \mu \mathrm{mp} 119^{\circ} \mathrm{C}$ after sublimation at $100^{\circ} \mathrm{C}$ (0.01 mm); UV $\lambda_{\max }(\varepsilon) 226 \mathrm{~nm}$ (shld, 6052), 275 (690); MS m/e (rel. int.) 319 (4), 318 (17), 276 (6), 275. (36), 44 (100); $G C$ (B) R_{t} at $230^{\circ}, 8.6 \mathrm{~min} ; C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } \mathrm{nm}\right):$ $+9.84(230) ; \quad+0.23(275),+0.46(284) ; \mathrm{NMR} \delta 0.84(\mathrm{dd}, 4 \mathrm{H}$, $\mathrm{J}=4,8 \mathrm{~Hz}), 0.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.16(\mathrm{~m}, ~ 1 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 2.25$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3,8 \mathrm{~Hz}), 2.40(\mathrm{dd}, 0.5 \mathrm{H}, \mathrm{J}=5,15 \mathrm{~Hz}), 2.63(\mathrm{~m}, 0.5 \mathrm{H}), 2.80$ $(\mathrm{m}, 2.5 \mathrm{H}), 2.94(\mathrm{~s}, 1.5 \mathrm{H}), 3.04(\mathrm{~s}, 1.5 \mathrm{H}), 3.40(\mathrm{~m}, 0.5 \mathrm{H}), 3.61$ $(\mathrm{m}, 0.5 \mathrm{H}), 3.95(\mathrm{q}, 0.5 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 4.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4,1 \mathrm{~Hz}), 4.53$ $(t d, 0.5 H, J=5,9 \mathrm{~Hz}), 4.71(t d, 0.5 H, J=5.6,12 \mathrm{~Hz}), 4.92$ ($\mathrm{m}, ~ 1 \mathrm{H}$), $5.62(\mathrm{~m}, \mathrm{lH}), 6.68(\mathrm{dd}, 0.5 \mathrm{H}, \mathrm{J}=2.3,8 \mathrm{~Hz}), 6.89(\mathrm{~m}, 2.5 \mathrm{H}), 7.17$ (m, lH). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. Cyclo [3-(4-B-N-methylaminoethyl) phenyloxypropanoyl-N-methyl L-leucyl] (4~).-- The conversion of p-nitrophenyl ester $\underset{\sim}{21 c}(665 \mathrm{mg}$, 1.2 mmol) to the cyclopeptides was accomplished as described above. After ion exchange a colorless oil (21 mg) was isolated. Sephadex chromatography ($200 \mathrm{~g} \mathrm{LH}-20, \mathrm{CH}_{3} \mathrm{OH}$) afforded two fractions:

1 (1) 12 mg (3.5\%) which was not further characterized; (2) 8 mg , 2.2\%, contained three major components by $G C$ (B) R_{t} at $230^{\circ} \mathrm{C}$: $18 \mathrm{~min}(20 \%), 21 \mathrm{~min}(14 \%), 32 \mathrm{~min}(56.4 \%)$. These products were isolated by preparative GC (3% OV-17, $6^{\prime} \mathrm{x} 1 / 4^{\prime \prime}$). The 18 min component was the desired cyclic peptide $\underset{\sim}{c}(1.6 \mathrm{mg}, 0.4 \%$) : MS m/e C $19{ }^{\mathrm{H}} 28 \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 332.2100 , found 332.2091 . The other components were not further characterized.

Cyclo[3-(4-8-aminoethyl) phenyloxypropanoyl-L-prolyl] (4d) and Cyclo[3-(4- - -aminoethyl) phenyloxypropanoyl-L-prolyl] 2 (23a).-- The conversion of p-nitrophenyl ester $\underset{\sim}{2 l d}(591 \mathrm{mg}, ~ l . l \mathrm{mmol})$ to the cyclopeptides was accomplished exactly as previously described. After ion exchange a light yellow oil (244 mg) was isolated. Sephadex chromatography ($200 \mathrm{~g} \mathrm{LH}-20$, MeOH) gave three iractions. Fraction 1 was 54 mg (17\%), cyclic oligomers. Fraction 2 was cyclic dimer $\underset{\sim}{23 d}(110 \mathrm{mg}, 34 \%): \mu \mathrm{mp} 221^{\circ}$ on crystallization from ethanol; UV $\lambda_{\max }(\varepsilon) 224 \mathrm{~nm}(25180), 276.5(3393), 283.5(2855) . \mathrm{MS} \mathrm{m} / \mathrm{e}$ 576 (0.8), 374 (2), 368 (2), 124 (100), 70 (100); $C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } n m\right):$ -6.9 (224), -0.29 (282), -0.45 (274.5); NMR $\delta 1.73(\mathrm{~m}, 2 \mathrm{H}), 2.05$ $(\mathrm{m}, 4 \mathrm{H}), 2.52(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~m}, 6 \mathrm{H})$, $3.73(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.81(\mathrm{~d}, 4 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}), 7.01(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.13(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6}\right)$: C, H, N. Fraction 3 was cyclic monomer $\underset{\sim}{4}$ d ($75 \mathrm{mg}, 24 \%$), an oil; UV $\lambda_{\max }(\varepsilon) 223 \mathrm{~nm}(6198$ shld), 271 (568), 276 (513); GC (B) R_{t} at $230^{\circ} \mathrm{C}, 12 \mathrm{~min}$; MS m/e 289 (4), 288 (19), 231 (13), 70 (100); $C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } \mathrm{nm}\right)-12.42$ (232), -2.17 (271), -1.91 (277); NMR δ $1.55(\mathrm{~m}, ~ 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6,13 \mathrm{~Hz})$, $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10,17 \mathrm{~Hz}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}$,
$1 \mathrm{H}, \mathrm{J}=10,17 \mathrm{~Hz}), 3.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H})$, $4.62(t, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 6.36(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{dd}, 2 \mathrm{H}$, $\mathrm{J}=8,15 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Cyclo[3-(4-B-aminoethy1)phenyloxypropanoyl-L-leucyll (4e) and Cyclo[3-(4-ß-aminoethyl)phenoxypropanoyl L-leucyl] $2 \underset{\sim}{(22 e)}$. -- With the same cyclization procedure, p-nitrophenyl ester $\underset{\sim}{2 l e}$ (588 mg , 1.1 mmol) was converted to the cyclopeptides. The resulting brown solid was triturated in methanol and filtered. The insoluble portion ($40.2 \mathrm{~g}, 12 \%$) was later identified as cyclic dimer $\underset{\sim}{2} 2 \mathrm{e}$. The methanol filtrate was eluted through a mixed bed ion exchange resin and evaporated to give a solid residue (137 mg). Following Sephadex chromatography ($200 \mathrm{~g}, \mathrm{LH}-20, \mathrm{CH}_{3} \mathrm{OH}$) three fractions were isolated. Fraction 1 was 48 mg (15\%) of cyclic oligomers, not further characterized. Fraction 2 was cyclic dimer $\underset{\sim}{22 e}$ (5 l mg , 15\%): crystallized from ethanol, $\mu \mathrm{mp} 287^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\varepsilon) 224.5 \mathrm{~nm}$ (19511), 276 (2680), 283 (2267). MS m/e 609 (1), 608 (3), 306 (2), 305 (14), 304 (69), 86 (100); $C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } \mathrm{nm}\right):-5.65$ (229), +0.69 (277), +0.74 (284); NMR: $\delta 0.93$ ($\mathrm{m}, \mathrm{l2H}$), 1.66 ($\mathrm{m}, 6 \mathrm{H})$, $2.65(\mathrm{~m}, ~ 8 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.13(\mathrm{~m}$, $2 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.97(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{4} 8^{\mathrm{N}} \mathrm{N}_{4} \mathrm{O}_{6}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$. Fraction 3 was the cyclopeptide $4 \mathrm{e}(31 \mathrm{mg}, 9 \%): \mu \mathrm{mp} 199^{\circ} \mathrm{C} ; \mathrm{UV} \lambda_{\max }(\varepsilon) 226 \mathrm{~nm}(6127)$, 276 (734). GC (B) R_{t} at $230^{\circ} \mathrm{C}, 9.5 \mathrm{~min}: \operatorname{MS~m} / \mathrm{e} 305(6), 304$ (29), 86 (100); $C D-\Delta \varepsilon_{\max }\left(\lambda_{\max } n m\right):+8.12(226),+0.39$ (275), $+0.50(284) ; \mathrm{NMR} \delta 0.84(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.33(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H})$, 2.52 ($\mathrm{m}, 1 \mathrm{H}$) , 3.06 ($\mathrm{m}, 2 \mathrm{H}$), 4.00 (dd, $1 \mathrm{H}, \mathrm{J}=7,14 \mathrm{~Hz}$), 4.21 (dd , $2 \mathrm{H}, \mathrm{J}=6,13 \mathrm{~Hz}), 4.95(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}), 5.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz})$,
$5.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 6.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4,7 \mathrm{~Hz}), 6.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4$, $7 \mathrm{~Hz}), 7.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4,7 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4,7 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.

ACKNOWLEDGEMENT

The assistance of Sanford Nelzer, an undergraduate research student, is gratefully acknowledged. This research was supported in part by the Division of Biomedical and Environmental Research of the U.S. Department of Energy.

REFERENCES AND NOTES

(1) M. Pais, F. X. Jarreau, X. Lusinchi, and R. Goutarel, Ann. Chim. (Paris), 83 (1966).
(2) a) R. Tschesche and E. U. Kaussman, in "The Alkaloids", ed. R.H.F. Manske, Vol. XV, Academic Press, New York, N.Y., 1975, pp. 165-205; b) Y. Ogihara, Ann. Rep. Fac. Pharm. Sci. Nagoya City Univ., 22, 1 (1974); c) E. W. Warnhoff, Fortschr. Chem. Org. Naturst., $\underset{\sim}{28}, 162$ (1970).
(3) R. A. Ravizzini, C. S. Andreo, and R. H. Vallejos, PJant Cell Physiol., $\underset{\sim}{18}, 701$ (1977).
(4) a) J. Dale and K. Titlestad, J.C.S. Chem. Comm., 656 (1969); b) M. Rothe, K.-D. Steffen, and I. Rothe, Angew. Chem., $\underset{\sim}{77}$, 347 (1965): c) R. Schwyzer, J. P. Carrion, B. Gorup, H. Noltung, and A. Tun-Kyi, Helv. Chim. Acta., $\underset{\sim}{47}, 441$ (1964).
(5) a) J. Meienhofer, J. Am. Chem. Soc., $9 \underset{\sim}{2}$, 3771 (1970); b) S. Matsura, M. Waki, S. Makisumi, and N. Izumiya, Bull. Chem. Soc. Japan, $\underset{\sim}{43}, 1197$ (1970).
(6) F. Eppenberger and G. Epple, Angew. Chem., 8 $\underset{\sim}{4}, 294$ (1971).
(7) K. W. Rosenmund and E. Karg, Ber., $\underset{\sim}{7} \underset{\sim}{5}$, 1850 (1942).
(8) F. F. Blicke and C. J. Lu, J. Am. Chem. Soc., 7~~~, 3933 (1952).
(9) E. Schnabel, Justus Liebigs Ann. Chem., $\underset{\sim}{702} \underset{\sim}{2}, 188$ (1967).
(10) G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Am. Chem. Soc., 8~~ 5012 (1967).
(11) a) R. H. Hall and E. S. Stern, J. Chem. Soc., 2035 (1949);
b) C. E. Rehberg and M. B. Dixon, J. Am. Chem. Soc., 7 $\underset{\sim}{2}, 2205$ (1950).
(12) E. Gottesmann, Ber., $\underset{\sim}{6} \underset{\sim}{6}, 1168$ (1933).
(13) S. Sakakibara and N. Inukai, Bull. Chem. Soc. Japan., 3.7 , 1231 (1964).
(14) F. K. K1ein and H. Rapoport, J. Am. Chem. Soc., ${\underset{\sim}{c}}_{\sim}^{90}, 3576$ (1968).
(15) V. Madison, M. Atreyi, C. M. Deber and E. R. Blout, J. Am. Chem. Soc., $\underset{\sim}{96}, 6725$ (1974).
(16) The recently observed effect of cyclopeptide alkaloids on ion selective mitochondrial swelling may be pertinent in this regard [K. Kawai, Y. Nozawa, and Y. Ogihara, Experientia, $\underset{\sim}{33}$, 1454 (1977).
(17) J. C. Sutherland, L. E. Vickery, and M. P. K1ein, Rev. Sci. Instrum., $\underset{\sim}{45}, 1089$ (1974).
(18) The p-methoxynitrostyrene was prepared analogously to the process of D. E. Worrall, Org. Syn., Coll. Vol. I, 405 (1932).
(19) P. Quitt, J. Hellerbach and K. Vogler, Helv. Chim. Acta., $\underset{\sim}{46}$, 327 (1963).

Table I. Isolated Yields ${ }^{\text {a }}$ of Cyclopeptides from Cyclization of Esters $2 \underset{\sim}{21}$.

a After mixed bed ion exchange and sephadex LH -20 chromatography. b Uncharacterized neutral products, consisting in part of oligomers. C This is a GC yield based on 5 - cholestane as internal standard added to the reaction mixture. d preparative GC followed by high resolution mass spectrometry established the structure of monomer $\underset{\sim}{4} \underset{\sim}{c}$.

Figure 1. Fourier-transform ${ }^{13} \mathrm{C}$ NMR spectra of cyclic dimers in CDCl_{3} ($\left.\sim 0.05 \mathrm{M}\right) ; ~ \underset{\sim}{2} 3 \mathrm{a}$, cyclo[3-(4- $\beta-\mathrm{N}$-methylaminoethylphenyloxy)-propanoyl-L-prolyl] $2^{\text {; }} \underset{\sim}{23 b}$, cyclo[3-(4-B-N-methylaminoethylphenyloxy)-propanoyl-L-leucyl] $2_{2}^{2} \underset{\sim}{2} \alpha$, cyclo[3-(4-B-aminoethylphenyloxy)-propanoyl-I,-prolyl] $2_{2} \underset{\sim}{23 e}, ~ c y c l o[3-(4-\beta-a m i n o e t h y l p h e n y l o x y)-~$ propanoyl-L--leucyll 2 。

Figure 2. Fourier-transform ${ }^{13} C$ NMR spectra of cyclic monomers in CDCl_{3} ($\sim 0.05 \mathrm{M}$); 4 a , cyclo[3-(4-B-N-methylaminoethylphenyloxy)-propanoyl-L-prolyl]; 4b; cyclo[3-(4- $\beta-\mathrm{N}-$ methylaminoethylphenyloxy)-propanoyl-L-leucyl]; $\underset{\sim}{4 d}$, cyclo[3-(4- β-aminoethylphenyloxy)-propanoyl-L-prolyl]; $\underset{\sim}{4 e}$, cyclo[3-(4- β-aminoethylphenyloxy)-propanoyl-L-leucyl].

Figure 3. Circular dichroism spectra of cyclo[3-(4- - -amino-ethylphenyloxy)-propanoyl-L-prolyll $\underset{\sim}{(4 \alpha)}), 9.4 \times 10^{-4} \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{CN}$, with various added salts: - . -, no salt added; - • -, 9.4 x $10^{-3} \mathrm{M} \mathrm{NaClO}_{4} ;-\cdots, 8.6 \times 10^{-3} \mathrm{M} \mathrm{KPF}_{6} ; \cdots, 8.3 \times 10^{-3} \mathrm{M}$ $\mathrm{LiClO}_{4} ;-, 9.2 \times 10^{-4} \mathrm{MMg}\left(\mathrm{ClO}_{4}\right)_{2} ;-\cdots, 1.5 \times 10^{-3} \mathrm{M} \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$.

Figure 4. Circular dichroism spectra of cyclo[3-(4-B-aminoethylphenyloxy) propanolyl-L-prolyl] (4d), $9.4 \times 10^{-4} \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{CN}$ with various added salts: - . - no salt added; - - - 1.0 x $10^{-2} \mathrm{M} \mathrm{NaClO}_{4} ;-, 9.3 \times 10^{-3} \mathrm{M} \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$. ;

Figure 5. Circular dichroism spectra of ceanothine $\mathrm{B}, 1.0 \times 10^{-4}$ M in $\mathrm{CH}_{3} \mathrm{CN}$, with various added salts: - - no salt added; ———, $1.1 \times 10^{-3} \mathrm{M} \mathrm{NaClO}_{4} ; \cdots, 9.2 \times 10^{-4} \mathrm{M} \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$; $\cdots, 1.5 \times 10^{-3} \mathrm{M} \mathrm{Ca}\left(\mathrm{ClO}_{4}\right){ }_{2}$.

Figure 6. Circular dichroism spectra of ceanothine $B, 1.0 \times 10^{-4}$ M in $\mathrm{CH}_{3} \mathrm{CN}$ with various added salts: ———, no salt added;
—. $1.1 \times 10^{-3} \mathrm{M} \mathrm{NaClO}_{4} ;-, 9.2 \times 10^{-4} \mathrm{M} \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$;
$\cdots, 1.5 \times 10^{-3} \mathrm{M} \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$.

Scheme I: Cyclization Modes for the Preparation of Cyclopeptide Alkaloids.

4

Scheme II. Synthetic Apprcach via Para Acylation of 2-Phenyloxypropanoates.

0
0
6
0
6
0
∞
0

Scheme III. Incorporation of the Three Carbon Propanoate Residue.

$$
\mathrm{a}, \mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\mathrm{R}_{6}=\left(\mathrm{CH}_{2}\right)_{3}
$$

$$
\text { b, } \mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}, \mathrm{R}_{6}=\mathrm{H}
$$

$$
\text { c, } \mathrm{R}_{3}=\mathrm{R}_{6}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}
$$

$$
\mathrm{d}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{R}_{6}=\left(\mathrm{CH}_{2}\right)_{3}
$$

$$
\text { e, } \mathrm{R}_{3}=\mathrm{R}_{6}=\mathrm{H}, \quad \mathrm{R}_{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}
$$

21 ale

$$
004-30047 \% 9
$$

Scheme IV. Peptide Cyclization

Appendix. Elemental Analyses:

			Calcd.			Found	
Compound	Moi. Formula	c	H	N	C	H	N
$\underset{\sim}{4 a}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.5	7.3	9.3	67.7	7.4	9.1
4b	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.9	8.2	8.8	67.9	; 8.2	8.7
4d	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	66.6	7.0	9.7	66.5	7.0	9.7
$\underset{\sim}{4 e}$	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.1	8.0	9.2	66.9	8.0	9.1
7 7	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	64.8	. 6.3		64.7	6.1	
$\underset{\sim}{7 c}$	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}$	47.9	4.4		48.0	4.4	
11	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$	65.4	6.7	8.5	65.2	6.7	8.4
12a	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$	67.0	7.3	7.8	67.2	7.1	7:9
$\underset{\sim}{12 b}$	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$	75.3	6.7	5.5	75.2	6.7	5.5
13a	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}$	72.7	9.1	8.5	72.9	9.0	8.7
$\underset{\sim}{13 b}$	$\dot{C}_{16} \mathrm{H}_{19} \mathrm{NO}$	79.6	7.9	5.8	79.6	7.9	5.9
14~	$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$	71.3	8.4	6.2	71.5	8.3	5.9
$\underset{\sim}{14}$	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$	71.8	8.6	. 6.0	72.0	8.6	5.7.
15~	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$	65.5	8.1	8.0	65.3	8.0	8.0
$\underset{\sim}{15 b}$	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$	65.9	8.8	7.7	65.8	8.7	7.5
$\underset{\sim}{15}$	$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}$	66.6	9.0	7.4	66.7	9.0	7.1
15d	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$	64.6	7.8	8.4	64.5	7.8	8.2
15e	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$	65.1	8.6	8.0	64.8	8.4	7.9
19a	$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$	68.5	7.1	5.5	68.3	7.1	5.6
19b	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$	68.7	7.7	5.3	68.6	7.7	5.3
19~	$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$	69.1	7.9	5.2	68.9	7.9	5.1
19~	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$	68.0	6.9	5.7	67.9	6.9	5.7

		Calcd.			Found		
Compound	Mol. Formula	C	H	N	C	H	N
20a	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$	62.8	7.7	6.7	62.7	7.6	6.7
20b	$\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$	63.3	8.3	6.4	63.3	8.1	6.4
20c	$\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$	64.0	8.5	6.2	63.9	8.6	6.0
20d	$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$	62.0	7.4	6.9	61.9	7.4	6.8
$\underset{\sim \sim}{20 e}$	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$	62.5	8.1	6.6	62.4	8.1	6.5
21a	$\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{8}$	62.1	6.5	7.8	62.1	6.5	7.8
21b	$\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O} 8$	62.5	7.0	7.5	62.2	7.0	7.8
21c	$\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{8}$	63.0	7.2	7.3	62.7	7.2	7.2
$\underset{\sim \sim}{21 d}$	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8}$	61.5	6.3	8.0	61.6	6.4	7.9
21e	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8}$	61.9	6.9	7.7	61.8	6.9	7.6
23a	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}$	67.5	7.3	9.3	66.4	7.4	9.2
23b	$\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6}$	67.9	8.2	8.8	67.7	8.0	8.7
23d	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6}$	66.6	7.0	9.7	66.6	7.0	9.7
$\underset{\sim}{23} \mathrm{e}$	$\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6}$	67.1	7.9	9.2	66.8	7.8	9.2

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

