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Abstract

A new recognition memory model is proposed which differs
from the existing memory models in that it operates on natural
input. Therefore it is called the natural input memory (NIM )
model. A biologically-informed perceptual pre-processing
method takes local samples from a natural image and translates
these into a feature-vector representation. The feature-vector
representations reside in a similarity space in which perceptual
similarity corresponds to proximity. By using the similarity
structure of natural input, the model by-passes assumptions
about distributional statistics of real-world input. Our sim-
ulations on the list-strength effect, the list-length effect, and
the false memory effect support the validity of the proposed
model. In particular, we conducted a face recognition simula-
tion with the NIM model and found that it is able to replicate
well-established recognition memory effects that relate to the
similarity of the input.

Memory Representation
Many computational memory models represent an item by a
vector of abstract features (e.g., the SAM model, Raaijmakers
& Shiffrin, 1981; the REM model, Shiffrin & Steyvers, 1997,
the model of differentiation, McClelland & Chappell, 1998).
The feature values are usually drawn from a mathematical
distribution (e.g., a geometric distribution). Since the com-
putational models artificially generate vector representations,
they do not address the contribution of the similarity struc-
ture intrinsic to natural data. However, we believe that the
similarity structure contains important information. There-
fore, we propose a memory model that operates on natural
data and represents the similarity structure of these data.

The similarity structure of natural data can be represented
in any type of space that fulfills the compactness criterion
(Arkadev & Braverman, 1966). This criterion is fulfilled
when similar objects in the real world are close in their rep-
resentations. Several researchers developed so called ‘simi-
larity spaces’, in which representations of similar items are in
close proximity of each other (e.g., Nosofsky, 1986; Steyvers,
Shiffrin, & Nelson, in press). An analysis of human similarity
judgments or of free association data often forms the basis of
a similarity space. However, we propose to derive the similar-
ity space from the natural data by employing a biologically-
informed transformation.

In the next section, a new recognition memory model that
operates on natural images is introduced and described. We
call this model the natural input memory (NIM ) model. We
will conduct a face recognition simulation with the NIM
model and will evaluate its ability to replicate findings from

recognition-memory studies. Finally our main conclusion
will be given.

The NIM Model
The NIM model encompasses the following two stages.

1. A perceptual pre-processing stage that translates a natural
image into a number of feature vectors.

2. A memory stage comprising two processes:

(a) a storage process that simply stores feature vectors;
(b) a recognition process that compares feature vectors of

the image to be recognized with previously stored fea-
ture vectors.

Figure 1: The natural input memory (NIM ) model.

Figure 1 presents a schematic diagram of the NIM model.
The face image is an example of a natural image. The two
boxes correspond to the perceptual pre-processing stage and
the memory stage.

The Perceptual Pre-Processing Stage
In this section, we first provide some background on the
sources of biological inspiration and on the computational
considerations. Then, we discuss some relevant implemen-
tation details.

Biological Inspiration and Computational Considerations
The human visual system is our main source of biological
inspiration. The eye sequentially fixates on those parts of a
visual scene that are most informative for recognition (e.g.,
Yarbus, 1967). Early visual processing in the brain leads to
the activation of millions of optic nerve cells (Palmer, 1999).
The nerve-cell activations may be conceived as a high di-
mensional vector. The high dimensionality enables the rep-
resentation of a large amount of information without suffer-
ing from interference (Rao & Ballard, 1995), but it also ham-
pers the memory performance, as the number of examples
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that is necessary for a reliable generalization performance
grows exponentially with the number of dimensions. This
phenomenon is known as the ‘curse of dimensionality’ (Bell-
man, 1961; Edelman & Intrator, 1997). In coping with the
curse of dimensionality, subsequent stages in the visual sys-
tem are assumed to reduce the dimensionality of the high-
dimensional input (e.g., Hubel, 1988; Tenenbaum, Silva, &
Langford, 2000). The assumption is supported by findings
of Edelman and Intrator (1997), who showed that the human
visual system is able to retrieve the intrinsic low-dimensional
structure of the high-dimensional visual input.

In the NIM model, dimension reduction of high-
dimensional natural input is achieved in two sequential steps:
(1) a biologically-informed feature-vector extraction (Free-
man & Adelson, 1991) followed by (2) a principal compo-
nent analysis (Pearson, 1901). The feature-vector extraction
method employed by the NIM model operates directly on a
high-dimensional natural image. The image has a high di-
mensionality because it is treated as a vector, the elements of
which are the constituent pixel values. Motivated by eye fixa-
tions in human vision, the feature-vector extraction method
takes samples from randomly-selected locations along the
contours in the image. To emphasize the parallel with hu-
man vision, we refer to the samples as ‘fixations’. For each
fixation, the NIM model extracts features (i.e, a feature vec-
tor) from the image area centered at the fixation location.
Since the feature vector contains a limited number of fea-
tures, it is of a much lower dimensionality than the image.
The feature-vector extraction method is based on the visual
processing generally believed to occur in the visual area V1.
The responses of neurons in V1 are modeled by a multi-
scale wavelet decomposition (described later). Several stud-
ies showed that the biologically-informed multi-scale wavelet
decomposition results in a representation space that accu-
rately represents similarities as perceived by humans (e.g.,
Kalocsai, Zhao, & Biederman, 1998; Lyons & Akamatsu,
1998; Bartlett, Littleworth, Braathen, Sejnowski, & Movel-
lan, 2003). After extraction of feature vectors, principal com-
ponent analysis represents the feature vectors by their projec-
tion onto a number of orthogonal basis vectors which are or-
dered according to the amount of variance they explain. The
dimensionality of the feature vectors is reduced by taking the
projection onto the firstp basis vectors. The low-dimensional
feature vectors reside in a similarity space where visual sim-
ilarity translates to proximity of feature vectors. Translating
a two-dimensional image using a multi-scale wavelet decom-
position followed by a principal component analysis, is an
often applied method in the domain of visual object recogni-
tion to model the first three stages of processing of informa-
tion in the human visual system (i.e., retina/LGN, V1/V2,
V4/LOC; Palmeri & Gauthier, 2004). In contrast, existing
memory models lack such a pre-processing method and often
make simplifying assumptions about object representations.

Implementation The input image is translated into a multi-
scale representation at four spatial scales. At every scale,
the image is processed by four oriented filters in the orien-
tations 0◦, 45◦, 90◦, and 105◦ using the steerable-pyramid
transform (Freeman & Adelson, 1991). This processing re-
sults in sixteen (four scales times four orientations) filtered
images. From each of the sixteen images a 7×7 window is

selected at a fixation point and the 16× 49 pixel values are
placed in a vector. In addition, the pixel values of a 7× 7
low-resolution subimage centered at the fixation point are ap-
pended to the vector. Fixation points are randomly drawn
from the contours of the face. The result is a feature vector
for each fixation. As mentioned before, a principal compo-
nent analysis was used to reduce the dimensionality of the
feature vectors by taking the projection onto the firstp basis
vectors.

The Memory Stage
The Storage Process In the NIM model, the storage pro-
cess straightforwardly stores an item (i.e., a pre-processed
natural image). A pre-processed natural image is represented
by a number of low-dimensional feature vectors in the simi-
larity space, each corresponding to an eye fixation. The stor-
age strength,S, is defined as the number of feature vectors
stored for an image.

The Recognition Process In the NIM model, the recog-
nition process determines the familiarity of an image to
be recognized by comparing feature vectors of the image
to be recognized with previously stored feature vectors.
Models with a recognition process based on comparing
items to previously stored exemplars can provide an accurate
quantitative account of recognition performance (Medin &
Schaffer, 1978; Nosofsky, 1986; Nosofsky, Clark, & Shin,
1989). In the NIM model, the recognition process uses a
nearest neighbor classifier method, which takes each feature
vector of the image to be recognized and then determines
the number of previously stored feature vectors,f , that fall
within a hypersphere with radiusr, centered around the
feature vector of the image. The familiarity,F , of the image
is defined as∑ fi/T, with fi the value off for the ith feature
vector of the image, andT the total number of feature vectors
of the image.

We expect that the similarity-space representations em-
ployed by the NIM model will deepen our understanding of
human recognition memory. Moreover, they may effectively
support a number of memory effects often obtained in recog-
nition memory studies. The latter studies are described in the
next section.

Human Recognition Memory Studies
Three recognition memory effects often found in recognition
memory studies are: the list-strength effect, the list-length
effect, and the false memory effect. In general, recognition
memory studies provide subjects with a study list of items
and test their recognition memory for (some of) the studied
items (i.e., targets) and a number of non-studied items (i.e.,
lures). We will emphasize the relation between the similarity
structure of the targets and the lures used in the experiments
on the one hand and the memory effects on the other hand.

The List-Strength Effect
A list-strength effect is defined as: a decrease in memory per-
formance for a given set of study list items when other items
of the study list are ”strengthened” (i.e., the amount of time or
the number of times the items are studied is increased) (Rat-
cliff, Clark, & Shiffrin, 1990). While some researchers failed
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to find a list-strength effect for recognition memory (e.g., Rat-
cliff et al., 1990), recent findings showed that a list-strength
effect can be obtained when there is a high degree of similar-
ity between targets and lures. Norman (2002) tested whether
strengthening some words of the study list affected a sub-
ject’s recognition performance for other (non-strengthened)
studied words. In the experiments, a significant list-strength
effect was obtained only when targets and lures were sim-
ilar. For dissimilar targets and lures, no list-strength effect
was found. Moreover, recognition scores were significantly
higher for dissimilar targets and lures than for similar targets
and lures.

The List-Length Effect
A list-length effect is defined as: a decrease in memory per-
formance for the items of the study list when additional items
are added to the study list (Ratcliff et al., 1990). List-length
studies yielded contradictory results. While some researchers
failed to find a list-length effect (e.g., Dennis & Humphreys,
2001), others did obtain it (e.g., Cary & Reder, 2003). Re-
cent experimental results indicate that the similarity between
targets and lures can affect the degree to which a list-length
effect occurs (MacAndrew, Klatzky, Fiez, McClelland, &
Becker, 2002). In a study examining the effect of phono-
logical similarity on recognition memory, MacAndrew et al.
(2002) tested subjects’ recognition memory for letters on a
study list of four or six letters. The results showed that a
larger list-length effect occurred for similar targets and lures
than for dissimilar targets and lures. Also, overall recogni-
tion scores were higher for dissimilar targets and lures than
for similar targets and lures.

The False Memory Effect
A number of experimental studies showed a false memory
effect, which holds that the recognition of a lure (i.e., a
false memory or a false alarm) is more likely to happen
when the lure is similar to (one of the) studied items (e.g.,
Postman, 1951; Dewhurst & Farrand, 2004). For instance,
the results by Dewhurst and Farrand (2004) show that
the number of false memories increases together with the
number of targets on the study list that are similar to the lures.

In a similarity space, representations of similar targets and
lures show more overlap than representations of dissimilar
targets and lures. Similar targets and lures are thus more dif-
ficult to discriminate than dissimilar targets and lures. There-
fore, we expect that list-strength effects and list-length effects
will be more pronounced and there will be more false alarms
when targets and lures are similar than when targets and lures
are dissimilar.

We hypothesize that the similarity structure of the per-
ceived targets and lures can give rise to the recognition-
memory effects discussed above. To test this hypothesis, we
conducted a face recognition simulation with the NIM model,
which employs similarity-space representations of perceived
natural images.

Simulation
In our simulation, we investigated the ability of the NIM
model to produce the following effects: (1) the effect of the

similarity between targets and lures on the list-strength ef-
fect, (2) the effect of the similarity between targets and lures
on the list-length effect, and (3) the false memory effect. The
NIM model was repeatedly provided with a study list of face
images and tested for recognition of the studied images (i.e.,
targets) and a number of non-studied images (i.e., lures). The
images were gray-scale images of human faces taken from the
FERET database (Phillips, Wechsler, Huang, & Rauss, 1998)
of facial images. Male and female Caucasian faces without
beards or glasses were selected. An example of such an image
is shown on the left hand side of Figure 1. In this simulation,
recognition memory was tested in two different conditions:
(1) the dissimilar condition that employed lures dissimilar
from the targets, and (2) the similar condition, that employed
lures similar to one of the targets. In the NIM model, simi-
lar images are separated by a small distance in the similarity
space. List-strength effects and list-length effects were as-
sessed in both conditions and compared to determine whether
the similarity between targets and lures had affected the de-
gree to which the list effects occurred. Moreover, a compari-
son of the recognition results in the dissimilar condition and
the similar condition revealed whether a false memory effect
had occurred. Below we describe the calculation of recogni-
tion scores, the paradigms, the conditions, the procedure, and
the results.

Calculation of Recognition Scores
The familiarity values,F , were used in a signal detection
analysis to determine the recognition scores. The appropri-
ate measure for the recognition score (da) was based on the
normalized difference between the averageF values of the
targets (F(IT)) and the averageF values of the lures (F(IL)):

da =
F(IT)−F(IL)√

σ2
[F(IT )]+σ2

[F(IL)]
2

(Simpson & Fitter, 1973). Eachda value was calculated on
the basis of the familiarity values for targets (F(IT)) and the
familiarity values for lures (F(IL)) of ten recognition tests.

Paradigms
The List-Strength Effect We used the mixed-pure
paradigm first proposed by Ratcliff et al. (1990). It is used
in many list-strength studies. The mixed-pure paradigm em-
ploys three types of study lists: pure weak lists (N weak im-
ages), pure strong lists (N strong images), and mixed lists
(N/2 strong andN/2 weak images). A list-strength effect is
said to occur (1) when the recognition score for weak images
on a pure list is higher than the recognition score for weak
images on a mixed list or, (2) when the recognition score for
strong images on a mixed list is higher than the recognition
score for strong images on a pure list. The pure/mixed ratio
for weak images (i.e., the recognition score for weak images
on a pure list divided by the recognition score for weak im-
ages on a mixed list) thus is an indication for the degree to
which a list-strength effect occurs for weak images. Like-
wise, the mixed/pure ratio for strong images is an indication
for the degree to which a list-strength effect occurs for strong
images.
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The List-Length Effect A list-length effect is said to oc-
cur when the recognition score for images on a shorter list
is higher than the recognition score for images on a longer
list. To assess the occurrence of a list-length effect we com-
pared recognition scores for images on study lists of different
lengths.

The False Memory Effect A higher false alarm rate (to-
gether with no difference in the hit rate) for the similar condi-
tion than for the dissimilar condition is said to indicate the
occurrence of a false memory effect. However, using the
general performance measureda (as described in the pre-
vious subsection) to determine recognition scores, the NIM
model produces no false memories (and thus no false memory
effect), simply because no recognition decisions are made.
Most computational memory models, however, make recog-
nition decisions based on the comparison of an obtained fa-
miliarity value to a given criterion (e.g., Busey, 2001). When
the familiarity value exceeds the criterion, the item is rec-
ognized, if not, the item is not recognized. To assess the
false memory effect, we also applied a decision criterion to
the familiarity values,F , obtained for the dissimilar condi-
tion and for the similar condition. As a criterion we used:
C = S× (0.02+ N/500), with S the storage strength of the
images, andN the number of images on the study list.

Conditions
We distinguished two conditions: the dissimilar and the sim-
ilar condition. For the dissimilar condition, recognition per-
formance for targets versus dissimilar lures was tested. Tar-
gets and lures were selected from a subset of dissimilar im-
ages. The images in the subset of dissimilar images were
selected in such a way that the clusters of their feature vec-
tors in the similarity space showed relatively little overlap.
Hence, dissimilarity for a subset of images,D, is defined as:
∑ fB,Ai /TA ≤ d1,∀A,B∈ D, with fB,Ai the number of feature
vectors of imageB that fall within a hypersphere with radiusr
centered around theith feature vector of imageA, TA the total
number of feature vectors of imageA, andd1 a dissimilarity
constant. For the similar condition, recognition performance
for targets versus similar lures was tested. Pairs of similar
targets and lures were selected in such a way that the clusters
of their feature-vector representations in the similarity space
showed relatively much overlap. Hence, similarity for two
images,A andB, is defined as:∑ fB,Ai /TA≥ d2, with fB,Ai the
number of feature vectors of imageB that fall within a hyper-
sphere with radiusr centered around theith feature vector of
imageA, TA the total number of feature vectors of imageA,
andd2 a similarity constant, withd2 > d1.

Procedure
We provided the NIM model with (1) pure weak study lists,
(2) pure strong study lists, and (3) mixed study lists of lengths
N = 4, 8, and 12, in both the dissimilar and the similar con-
dition. Weak images were stored with storage strengthS= 5
(i.e., five feature vectors were stored, corresponding to five
fixations) and strong images were stored with storage strength
S= 10. For each feature vector, the firstp = 50 dimensions
were stored. After the last image of a study list had been pre-
sented to the model, theN images of the study list (i.e., tar-
gets) along withN new images (i.e., lures) were presented for

(a) (b)

Figure 2: (a) Norman’s (2002) results, and (b) Recognition
scores (da) for weak images on pure lists (black bars) and on
mixed lists (white bars) of lengthN = 12 for the dissimilar
condition and for the similar condition.

recognition. Lures in the dissimilar condition were selected
with dissimilarity constantd1 = 0.26 and lures in the simi-
lar condition were selected with similarity constantd2 = 0.8.
Recognition tests and the selection of targets and lures were
performed using the radius parameterr = 5.0.

Results

Table 1 presents the results for the dissimilar and similar con-
ditions, respectively. The rows show the recognition results
for lists of lengthsN = 4, 8, and 12. The columns labeled
w show the recognition scores for the weak images and the
columns labeleds show the recognition scores for the strong
images. The columns labeledpw/mw show the pure/mixed
ratio for weak images and the columns labeledms/ps show
the mixed/pure ratio for strong images (both of which are
indications of the degree to which a list-strength effect oc-
curred). Figure 2(a) presents a bar graph of the results re-

Table 1: The average recognition scores produced by the NIM

model for the dissimilar and the similar condition.

Dissimilar condition
Pure lists Mixed Lists ratios

N w s w s pw/mw ms/ps
4 1.81 2.39 1.78 2.41 1.01 1.01
8 1.65 2.18 1.54 2.28 1.07 1.05
12 1.59 2.11 1.48 2.15 1.07 1.02

Similar condition
Pure lists Mixed Lists ratios

N w s w s pw/mw ms/ps
4 1.38 1.83 1.14 1.97 1.21 1.08
8 1.12 1.52 0.87 1.78 1.29 1.17
12 0.98 1.35 0.73 1.61 1.36 1.20

ported by Norman (2002) (described previously). Figure 2(b)
presents a bar graph of the recognition scores produced by the
NIM model in conditions analogous to the conditions in Nor-
man’s experiment. Since results were similar for lists of dif-
ferent lengthsN, only the results for lists of lengthN = 12 are
shown. A comparison of the graphs in Figures 2(a) and 2(b)
reveals a close correspondence between Norman’s results and
the results produced by the NIM model.
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Similarity and the List-Strength Effect List-strength ef-
fects for the dissimilar condition were significantly smaller
than list-strength effects for the similar condition as indicated
by the higherpw/mwandms/mwvalues for the similar con-
dition compared to those for the dissimilar condition. This
was supported in a two-way analysis of variance (ANOVA) by
the interaction between list type (pure or mixed) and condi-
tion. CalculatedF values for lists of lengthsN = 4, 8, and 12
ranged fromF(1,159) = 4.97 toF(1,159) = 9.62, p < 0.05
for weak images andF(1,159) = 4.52 toF(1,159) = 12.02,
p < 0.05, for strong images.

Similarity and the List-Length Effect The list-length ef-
fects for the dissimilar condition were significantly smaller
than those for the similar condition. This was indicated in a
two-way ANOVA by the interaction between list length and
condition for pure weak lists,F(2,239) = 4.61,p < 0.05, and
for pure strong lists,F(2,239) = 3.68,p < 0.05.

The False Memory Effect Table 2 presents the hit rates and
false alarm rates for pure strong lists of lengthsN = 4, 8, and
12 for both the dissimilar and the similar condition. Since
the results were similar for pure weak lists and pure strong
lists, we only present the results for pure strong lists. The

Table 2: The average hit rates and false alarm rates produced
by the NIM model for the dissimilar and the similar condition.

Dissimilar condition Similar condition
N Hit rate F/A rate Hit rate F/A rate
4 0.84 0.01 0.86 0.14
8 0.76 0.02 0.78 0.17
12 0.69 0.02 0.70 0.15

results show that a false memory occurred: false alarm rates
were higher for lists in the similar condition than for lists in
the dissimilar condition (while hit rates were not significantly
different). In an ANOVA, calculatedF values for the false
alarm rates ranged from 163.38 to 384.74,p < 0.05, whileF
values for the hit rates ranged from 2.08 to 2.24,p > 0.05.

Discussion
Based on recent experimental findings (Norman, 2002), we
assumed that the degree to which a list-strength effect and a
list-length effect occur varies with the degree of similarity be-
tween targets and lures. The NIM model produces this effect,
as well as a false memory effect. Below we discuss the single-
process NIM model in relation to other memory models and
the ability of the NIM model to simulate mirror effects.

Comparison to Other Models

The NIM model differs from existing memory models in that
it operates on natural input and employs a single process for
recognition.

A Perceptual Process Operating on Natural Input The
NIM model encompasses a transformation that yields the sim-
ilarity structure of natural images. So far, existing memory
models have been tested with artificial data (e.g., the REM

model, Shiffrin & Steyvers, 1997), with predefined similar-
ity spaces (e.g., the SimSample model, Busey, 2001), or with
synthesized natural images (Kahana & Sekuler, 2002). The
predictions these models make for recognition memory per-
formance can be similar to the predictions the NIM model
makes, provided that a representation space is employed that
accurately reflects the similarity structure of the input. How-
ever, these models fall short in constructing a representation
in ana priori manner. In contrast, the NIM model remedies
this. Therefore, we expect that the NIM model provides us
with a useful tool for making predictions about the effects of
varying similarity of natural input on memory.

Single versus dual-process modelsSeveral memory mod-
els assume two processes for recognition to explain recog-
nition results. These dual-processing models assume that
recognition involves (1) a familiarity process, i.e., a context
insensitive automatic process, and (2) a recollection process,
i.e., a context sensitive strategic process (see Yonelinas, 2002,
for a review of dual-processing models). Norman (2002) ex-
plains his experimental findings on the similarity effect by
a dual-processing approach. He argues that the degree to
which a list-strength effect occurs depends on the extent to
which recollection drives recognition. While there might be
good biological evidence that more than one process is in-
volved in recognition, our results show that a single straight-
forward process for recognition suffices to produce Norman’s
and other findings on recognition memory.

Mirror Effects
In addition to the list-strength effect and the list-length ef-
fect, memory models are often tested for two related effects
consistently obtained in experimental studies: the strength-
mirror effect and the length-mirror effect (e.g., Murnane
& Shiffrin, 1991). Simulation results, reported elsewhere
(Lacroix, Murre, Postma, & Herik, submitted), showed that
the NIM model exhibits these effects.

Conclusion
We have seen that the NIM model is able to build a similar-
ity space from perceived natural data. Moreover, it success-
fully replicated recognition findings on list-strength effects,
list-length effects, false memory effects, and mirror effects.
Though it is at present not clear to what extent these results
emerge from the use of natural images, it does increase the
validity of the model by by-passing assumptions about dis-
tributional statistics of real-world perceptual features. Future
studies aim at extending the NIM model to simulate a wider
variety of findings on recognition memory.
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