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Abstract recognition-memory studies. Finally our main conclusion
will be given.
A new recognition memory model is proposed which differs
from the existing memory models in that it operates on natural The Nim Model

input. Therefore it is called the natural input memoryil .
model. A biologically-informed perceptual pre-processing 1 Ne NIM model encompasses the following two stages.

tmhethod Eakesf |0<tla| samptles froma n?tlg_ral imTfslhgefan? tfans'(’i‘{esl. A perceptual pre-processing stage that translates a natural
ese into a feature-vector representation. The feature-vector ;

representations reside in a similarity space in which perceptual image into a number of feature vectors.
similarity corresponds to proximity. By using the similarity o A memory stage comprising two processes:
structure of natural input, the model by-passes assumptions ’

about distributional statistics of real-world input. Our sim- (a) a storage process that simply stores feature vectors;

ulations on the list-strength effect, the list-length effect, and i
the false memory effect support the validity of the proposed (b) a recognition process that compares feature vectors of

model. In particular, we conducted a face recognition simula- the image to be recognized with previously stored fea-
tion with the NM model and found that it is able to replicate ture vectors.

well-established recognition memory effects that relate to the

similarity of the input.

Perceptual Memory stage
pre-processing stage siag
Memory Representation -‘Tfyel "ixmimls :Sllt:(fgirclitiun:
-reature-vector . .
Many computational memory models represent an item by a High | extraction Low- fn‘:?lif:ﬁgl‘l’;c
vector of abstract features (e.g., thesmodel, Raaijmakers < L — ’Dil'“‘f“s“'“r fimen | vectors with
& Shiffrin, 1981; the Rem model, Shiffrin & Steyvers, 1997, D ol | oo | soml | previously stored

the model of differentiation, McClelland & Chappell, 1998). feature vectors
The feature values are usually drawn from a mathematical
distribution (e.g., a geometric distribution). Since the com-

putational models artificially generate vector representations,

they do not address the contribution of the similarity struc-Figure 1 presents a schematic diagram of thel Mnodel.

ture intrinsic to natural data. However, we believe that thel_he face image is an example of a natural image. The two

similarity structure contains important information. There- oxes correspond to the perceptual bre-processing stade and
fore, we propose a memory model that operates on natur%]e memory sﬁage P P pre-p g stag

data and represents the similarity structure of these data.
The similarity structure of natural data can be representeqhe Perceptual Pre-Processing Stage

in any type of space that fulfills the compactness criterio ; ; : ;
(Arkadev & Braverman, 1966). This criterion is fulfilled n this section, we first provide some background on the

- . . ; : sources of biological inspiration and on the computational
when similar objects in the real world are close in their rep- 9 P b

\ P considerations. Then, we discuss some relevant implemen-
resentations. Several researchers developed so called ‘si

> ) . . oo MYtion details.
larity spaces’, in which representations of similar items are in
close proximity of each other (e.g., Nosofsky, 1986; SteyversBiological Inspiration and Computational Considerations
Shiffrin, & Nelson, in press). An analysis of human similarity The human visual system is our main source of biological
judgments or of free association data often forms the basis ahspiration. The eye sequentially fixates on those parts of a
a similarity space. However, we propose to derive the similarvisual scene that are most informative for recognition (e.g.,
ity space from the natural data by employing a biologically-Yarbus, 1967). Early visual processing in the brain leads to
informed transformation. the activation of millions of optic nerve cells (Palmer, 1999).
In the next section, a new recognition memory model thafThe nerve-cell activations may be conceived as a high di-
operates on natural images is introduced and described. Waensional vector. The high dimensionality enables the rep-
call this model the natural input memory W) model. We resentation of a large amount of information without suffer-
will conduct a face recognition simulation with theiW  ing from interference (Rao & Ballard, 1995), but it also ham-
model and will evaluate its ability to replicate findings from pers the memory performance, as the number of examples
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Figure 1: The natural input memory (M) model.



that is necessary for a reliable generalization performancselected at a fixation point and the 1&!9 pixel values are
grows exponentially with the number of dimensions. Thisplaced in a vector. In addition, the pixel values of & 7
phenomenon is known as the ‘curse of dimensionality’ (Bell-low-resolution subimage centered at the fixation point are ap-
man, 1961; Edelman & Intrator, 1997). In coping with the pended to the vector. Fixation points are randomly drawn
curse of dimensionality, subsequent stages in the visual sysrom the contours of the face. The result is a feature vector
tem are assumed to reduce the dimensionality of the highfor each fixation. As mentioned before, a principal compo-
dimensional input (e.g., Hubel, 1988; Tenenbaum, Silva, &ent analysis was used to reduce the dimensionality of the
Langford, 2000). The assumption is supported by findingdeature vectors by taking the projection onto the fipdtasis
of Edelman and Intrator (1997), who showed that the humanectors.
visual system is able to retrieve the intrinsic low-dimensional
structure of the high-dimensional visual input. The Memory Stage

In the NiM model, dimension reduction of high- The Storage Process In the NlIm model, the storage pro-
dimensional natural input is achieved in two sequential stepsess straightforwardly stores an item (i.e., a pre-processed
(1) a biologically-informed feature-vector extraction (Free-natural image). A pre-processed natural image is represented
man & Adelson, 1991) followed by (2) a principal compo- by a number of low-dimensional feature vectors in the simi-
nent analysis (Pearson, 1901). The feature-vector extractidarity space, each corresponding to an eye fixation. The stor-
method employed by the IM model operates directly on a age strengthS, is defined as the number of feature vectors
high-dimensional natural image. The image has a high distored for an image.
mensionality because it is treated as a vector, the elements % .
which are the constituent pixel values. Motivated by eye fixa-| ¢ Recognition Process In the N model, the recog-
tions in human vision, the feature-vector extraction method?!tion Process determines the familiarity of an image to
takes samples from randomly-selected locations along thg€ récognized by comparing feature vectors of the image
contours in the image. To emphasize the parallel with hulo be recognized with previously stored feature vectors.

man vision, we refer to the samples as ‘fixations’. For eacH"10d€lS with a recognition process based on comparing

fixation, the NIM model extracts features (i.e, a feature vec/leMS 10 previously stored exemplars can provide an accurate

tor) from the image area centered at the fixation |0cationquantitative account of recognition performance (Medin &

Since the feature vector contains a limited number of fea>chaffer, 1978; Nosofsky, 1986; Nosofsky, Clark, & Shin,

tures, it is of a much lower dimensionality than the image. 1989)- In the Nm model, the recognition process uses a
The feature-vector extraction method is based on the visud]Sarest nelghbor classifier methoq, which takes each fegture
processing generally believed to occur in the visual area V1/ECtor of the image to be recognized and then determines
The responses of neurons in V1 are modeled by a multith® number of previously stored feature vectdrshat fall
scale wavelet decomposition (described later). Several stut¥‘-/'th'n a hyperspherg with radius C.?“t?fed aroqnd the
ies showed that the biologically-informed multi-scale wavelet€ature vector of the image. The familiarify, of the image
decomposition results in a representation space that acclf d€fined ag fi/T, with f; the value off for thei™ feature
rately represents similarities as perceived by humans (e_g\_/,ector.of the image, aril the total number of feature vectors
Kalocsai, Zhao, & Biederman, 1998; Lyons & Akamatsu, ! the image.

1998; Bartlett, Littleworth, Braathen, Sejnowski, & Movel-
lan, 2003). After extraction of feature vectors, principal com-

ponent analysis represents the feature vectors by their proje i M th fractivel
tion onto a number of orthogonal basis vectors which are or.'4Man recognition memory. Moreover, they may etiectively

dered according to the amount of variance they explain. Theupporta numberé)_f me_ll_“?]orly effects ((j)_ften obijaineqti)née.cog-
dimensionality of the feature vectors is reduced by taking thé'lon memory studies. The latter studies are described in the

projection onto the firsp basis vectors. The low-dimensional N€Xt section.
feature vectors reside in a similarity space where visual sim- . :
ilarity translates to proximity of fea)t/urg vectors. Translating Human Recognition Memory Studies

a two-dimensional image using a multi-scale wavelet decomThree recognition memory effects often found in recognition
position followed by a principal component analysis, is anmemory studies are: the list-strength effect, the list-length
often applied method in the domain of visual object recogni-€ffect, and the false memory effect. In general, recognition
tion to model the first three stages of processing of informamemory studies provide subjects with a study list of items
tion in the human visual system (i.e., retina/LGN, V1/v2, and test their recognition memory for (some of) the studied
V4/LOC; Palmeri & Gauthier, 2004). In contrast, existing ittms (i.e., targets) and a number of non-studied items (i.e.,
memory models lack such a pre_processing method and oftéHI’eS). We will emphasize the relation between the similarity
make simplifying assumptions about object representations structure of the targets and the lures used in the experiments

. ) ) i ) . on the one hand and the memory effects on the other hand.
Implementation The inputimage is translated into a multi-

scale representation at four spatial scales. At every scaldhe List-Strength Effect
the image is processed by four oriented filters in the orienp list-strength effect is defined as: a decrease in memory per-

tations 0, 45, 90°, and 103 using the steerable-pyramid formance for a given set of study list items when other items
transform (Freeman & Adelson, 1991). This processing reqs the study list are "strengthened” (i.e., the amount of time or

sults in sixteen (four scales times four orientations) filteredne number of times the items are studied is increased) (Rat-
images. From each of the sixteen images>a77window is it Clark, & Shiffrin, 1990). While some researchers failed
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We expect that the similarity-space representations em-
E[oyed by the NM model will deepen our understanding of



to find a list-strength effect for recognition memory (e.g., Rat-similarity between targets and lures on the list-strength ef-
cliff et al., 1990), recent findings showed that a list-strengthfect, (2) the effect of the similarity between targets and lures
effect can be obtained when there is a high degree of similaln the list-length effect, and (3) the false memory effect. The
ity between targets and lures. Norman (2002) tested whethédim model was repeatedly provided with a study list of face
strengthening some words of the study list affected a subimages and tested for recognition of the studied images (i.e.,
ject’s recognition performance for other (non-strengthenedjargets) and a number of non-studied images (i.e., lures). The
studied words. In the experiments, a significant list-strengtiimages were gray-scale images of human faces taken from the
effect was obtained only when targets and lures were simFERET database (Phillips, Wechsler, Huang, & Rauss, 1998)
ilar. For dissimilar targets and lures, no list-strength effectof facial images. Male and female Caucasian faces without
was found. Moreover, recognition scores were significantlybeards or glasses were selected. An example of such animage
higher for dissimilar targets and lures than for similar targetdgs shown on the left hand side of Figure 1. In this simulation,

and lures. recognition memory was tested in two different conditions:
) (1) the dissimilar condition that employed lures dissimilar
The List-Length Effect from the targets, and (2) the similar condition, that employed

A list-length effect is defined as: a decrease in memory periures similar to one of the targets. In thesNmodel, simi-
formance for the items of the study list when additional itemslar images are separated by a small distance in the similarity
are added to the study list (Ratcliff et al., 1990). List-lengthspace. List-strength effects and list-length effects were as-
studies yielded contradictory results. While some researcheg&£ssed in both conditions and compared to determine whether
failed to find a list-length effect (e.g., Dennis & Humphreys, the similarity between targets and lures had affected the de-
2001), others did obtain it (e.g., Cary & Reder, 2003). Re-gree to which the list effects occurred. Moreover, a compari-
cent experimental results indicate that the similarity betwee$0on of the recognition results in the dissimilar condition and
targets and lures can affect the degree to which a list-lengtfhe similar condition revealed whether a false memory effect
effect occurs (MacAndrew, Klatzky, Fiez, McClelland, & had occurred. Below we describe the calculation of recogni-
Becker, 2002). In a study examining the effect of phono-tion scores, the paradigms, the conditions, the procedure, and
logical similarity on recognition memory, MacAndrew et al. the results.
(2002) tested subjects’ recognition memory for letters on aC . ..
study list of four or six letters. The results showed that ac@lculation of Recognition Scores
larger list-length effect occurred for similar targets and luresThe familiarity values,F, were used in a signal detection
than for dissimilar targets and lures. Also, overall recogni-analysis to determine the recognition scores. The appropri-
tion scores were higher for dissimilar targets and lures thamate measure for the recognition scodg)(was based on the
for similar targets and lures. normalized difference between the averdgealues of the
targets E(I1)) and the averagE values of the luresH((IL)):
The False Memory Effect gets Eir) J o)

A number of experimental studies showed a false memory g - FUr)—F(u)
effect, which holds that the recognition of a lure (i.e., a a o2 102
false memory or a false alarm) is more likely to happen AU TNAECNA
when the lure is similar to (one of the) studied items (e.g.,

POStman, 1951, Dewhurst & Farrand, 2004) For instanc ,Simpson & Fitter, 1973) Eactii value was calculated on
the results by Dewhurst and Farrand (2004) show thaghe basis of the familiarity values for targe((r)) and the
the number of false memories increases _together with thﬁamiliarity values for luresk (1)) of ten recognition tests.
number of targets on the study list that are similar to the lures.

Paradigms

q‘he List-Strength Effect We used the mixed-pure
aradigm first proposed by Ratcliff et al. (1990). It is used
n many list-strength studies. The mixed-pure paradigm em-
loys three types of study lists: pure weak liftsweak im-
ges), pure strong listdN(strong images), and mixed lists
N/2 strong andN/2 weak images). A list-strength effect is
2id to occur (1) when the recognition score for weak images
on a pure list is higher than the recognition score for weak
images on a mixed list or, (2) when the recognition score for
Strong images on a mixed list is higher than the recognition
WEtore for strong images on a pure list. The pure/mixed ratio
for weak images (i.e., the recognition score for weak images

n a pure list divided by the recognition score for weak im-
ages on a mixed list) thus is an indication for the degree to
. . which a list-strength effect occurs for weak images. Like-

Simulation wise, the mixed/pure ratio for strong images is an indication

In our simulation, we investigated the ability of theiNN  for the degree to which a list-strength effect occurs for strong
model to produce the following effects: (1) the effect of theimages.
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In a similarity space, representations of similar targets an
lures show more overlap than representations of dissimil
targets and lures. Similar targets and lures are thus more di
ficult to discriminate than dissimilar targets and lures. There-
fore, we expect that list-strength effects and list-length effect
will be more pronounced and there will be more false alarm
when targets and lures are similar than when targets and lur
are dissimilar.

We hypothesize that the similarity structure of the per-
ceived targets and lures can give rise to the recognition
memory effects discussed above. To test this hypothesis,
conducted a face recognition simulation with theaNmodel,
which employs similarity-space representations of perceive
natural images.



g

The List-Length Effect A list-length effect is said to oc-
cur when the recognition score for images on a shorter list
is higher than the recognition score for images on a longer
list. To assess the occurrence of a list-length effect we com-
pared recognition scores for images on study lists of different
lengths.

The False Memory Effect A higher false alarm rate (to- (2) " Disim. sim- (b) ° Dwm sim-

gether with no difference in the hit rate) for the similar condi-

tion than for the dissimilar condition is said to indicate the Figure 2: (a) Norman’s (2002) results, and (b) Recognition
occurrence of a false memory effect. However, using thescores @,) for weak images on pure lists (black bars) and on

general performance measutlg (as described in the pre- mixed lists (white bars) of length = 12 for the dissimilar
vious subsection) to determine recognition scores, the N ,ndition and for the similar condition.

model produces no false memories (and thus no false memory
effect), simply because no recognition decisions are made.

Most computational memory models, however, make recogeecognition. Lures in the dissimilar condition were selected
nition decisions based on the comparison of an obtained faz;:}, dissimilarity constantl; — 0.26 and lures in the simi-

miliarity value to a given criterion (e.g., Busey, 2001). When 5 cqndition were selected with similarity constait= 0.8.

the familiarity value exceeds the criterion, the item i reC-pecognition tests and the selection of targets and lures were
ognized, if not, the item is not recognized. To assess th@qtormed using the radius paramatet 5.0.

false memory effect, we also applied a decision criterion t
the familiarity valuesF, obtained for the dissimilar condi-
tion and for the similar condition. As a criterion we used:

C = Sx (0.02+ N/500), with Sthe storage strength of the Taple 1 presents the results for the dissimilar and similar con-
images, andN the number of images on the study list. ditions, respectively. The rows show the recognition results
. for lists of lengthsN = 4, 8, and 12. The columns labeled
Conditions w show the recognition scores for the weak images and the
We distinguished two conditions: the dissimilar and the sim-columns labeled show the recognition scores for the strong
ilar condition. For the dissimilar condition, recognition per- images. The columns labelgov/mw show the pure/mixed
formance for targets versus dissimilar lures was tested. Taratio for weak images and the columns labetes! ps show
gets and lures were selected from a subset of dissimilar imthe mixed/pure ratio for strong images (both of which are
ages. The images in the subset of dissimilar images werdications of the degree to which a list-strength effect oc-
selected in such a way that the clusters of their feature ve@urred). Figure 2(a) presents a bar graph of the results re-
tors in the similarity space showed relatively little overlap.

Hence, dissimilarity for a subset of imagé, is defined as:

> fen/Ta < di,VA,B € D, with fg 5 the number of feature Table 1: The average recognition scores produced by thie N
vectors of imagd that fall within a hypersphere with radius  ,gdel for the dissimilar and the similar condition.

centered around th& feature vector of imag#, Ta the total

Il pure weak Il pure weak

[ mixed weak 2 [ mixed weak

[T )

Recognition score
Recognition score

o
n

Results

number of feature vectors of image andd; a dissimilarity Dissimilar condition
constant. For the similar condition, recognition performance Pure lists  Mixed Lists ratios
for targets versus similar lures was tested. Pairs of similar N W S W s pwmw mgps

targets and lures were selected in such away thatthe clusters ™2 187 239 1.78 241 101 101
o;theirdfealture—\llector rﬁpres?ntations in the silmilariﬁy space g 165 218 154 2.28 1.07 1.05
showed relatively much overlap. Hence, similarity for two ’ ' ' ' ' '
imagesA andB, is defined asy fg a;/Ta > do, with fg 4, the 12 159 211 - _1'48 2'.1.5 1.07 1.02
number of feature vectors of imagethat fall within a hyper- ~ Similar condition _
sphere with radius centered around th& feature vector of Purelists  Mixed Lists ratios
imageA, Ta the total number of feature vectors of image w s w S pymw mgps
andd, a similarity constant, witta, > dj. 1.38 183 1.14 197 1.21 1.08
112 152 0.87 1.78 1.29 1.17
098 135 0.73 161 1.36 1.20

Procedure

We provided the W\ model with (1) pure weak study lists,
(2) pure strong study lists, and (3) mixed study lists of lengths
N =4, 8, and 12, in both the dissimilar and the similar con-ported by Norman (2002) (described previously). Figure 2(b)
dition. Weak images were stored with storage streiggth5  presents a bar graph of the recognition scores produced by the
(i.e., five feature vectors were stored, corresponding to fivdNiIM model in conditions analogous to the conditions in Nor-
fixations) and strong images were stored with storage strengtiman’s experiment. Since results were similar for lists of dif-
S=10. For each feature vector, the figst= 50 dimensions ferent lengthdN, only the results for lists of lengt = 12 are

were stored. After the last image of a study list had been preshown. A comparison of the graphs in Figures 2(a) and 2(b)
sented to the model, tHé¢ images of the study list (i.e., tar- reveals a close correspondence between Norman'’s results and
gets) along wititN new images (i.e., lures) were presented forthe results produced by theitl model.
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Similarity and the List-Strength Effect List-strength ef- model, Shiffrin & Steyvers, 1997), with predefined similar-
fects for the dissimilar condition were significantly smaller ity spaces (e.g., the SimSample model, Busey, 2001), or with
than list-strength effects for the similar condition as indicatedsynthesized natural images (Kahana & Sekuler, 2002). The
by the highempw/mwandms/mwvalues for the similar con- predictions these models make for recognition memory per-
dition compared to those for the dissimilar condition. Thisformance can be similar to the predictions thevNmodel
was supported in a two-way analysis of varianceiQ¥A) by  makes, provided that a representation space is employed that
the interaction between list type (pure or mixed) and condi-accurately reflects the similarity structure of the input. How-
tion. Calculated- values for lists of lengthsl =4, 8, and 12  ever, these models fall short in constructing a representation
ranged fronmF (1,159 = 4.97 toF (1,159 = 9.62,p < 0.05 in ana priori manner. In contrast, theiM model remedies

for weak images anfi (1,159 = 4.52 toF (1,159 = 1202, this. Therefore, we expect that thaNNmodel provides us

p < 0.05, for strong images. with a useful tool for making predictions about the effects of

Similarity and the List-Length Effect The list-length ef- varying similarity of natural input on memory.

fects for the dissimilar condition were significantly smaller Single versus dual-process modelsSeveral memory mod-
than those for the similar condition. This was indicated in ae|s assume two processes for recognition to explain recog-
two-way ANOVA by the interaction between list length and nition results. These dual-processing models assume that
condition for pure weak lists5(2,239) = 4.61p < 0.05,and  recognition involves (1) a familiarity process, i.e., a context
for pure strong listsf=(2,239) = 3.68p < 0.05. insensitive automatic process, and (2) a recollection process,

The False Memory Effect Table 2 presents the hit rates and I-€-» @ context sensitive strategic process (see Yonelinas, 2002,
false alarm rates for pure strong lists of lengths- 4, 8, and ~ for a review of dual-processing models). Norman (2002) ex-
12 for both the dissimilar and the similar condition. SincePlains his experimental findings on the similarity effect by
the results were similar for pure weak lists and pure strong dual-processing approach. He argues that the degree to

lists, we only present the results for pure strong lists. TheVhich a list-strength effect occurs depends on the extent to
which recollection drives recognition. While there might be

good biological evidence that more than one process is in-
Table 2: The average hit rates and false alarm rates produc&@!Vved in recognition, our results show that a single straight-

by the Nim model for the dissimilar and the similar condition. forward process for recognition suffices to produce Norman's
and other findings on recognition memory.

< a@tssirtnilar c::c;z\dititon |_?imiltar colgftio? Mirror Effects

7 B?Afe ) gie 6?6(9 ) ;ie In addition to the list-strength effect and the list-length ef-
: : ' ' fect, memory models are often tested for two related effects

8 0.76 0.02 0.78 0.17

consistently obtained in experimental studies: the strength-

12 0.69 0.02 0.70 0.15 mirror effect and the length-mirror effect (e.g., Murnane

& Shiffrin, 1991). Simulation results, reported elsewhere
Lacroix, Murre, Postma, & Herik, submitted), showed that
e NiIm model exhibits these effects.

results show that a false memory occurred: false alarm rat
were higher for lists in the similar condition than for lists in
the dissimilar condition (while hit rates were not significantly Conclusion
different). In an ANOvA, calculatedF values for the false
alarm rates ranged from 163.38 to 384.p4; 0.05, whileF
values for the hit rates ranged from 2.08 to 2.@4; 0.05.

We have seen that theiM model is able to build a similar-

ity space from perceived natural data. Moreover, it success-

fully replicated recognition findings on list-strength effects,

. . list-length effects, false memory effects, and mirror effects.
Discussion Though it is at present not clear to what extent these results

Based on recent experimental findings (Norman, 2002), wémerge from the use of natural images, it does increase the

assumed that the degree to which a list-strength effect and \@lidity of the model by by-passing assumptions about dis-

list-length effect occur varies with the degree of similarity be-tributional statistics of real-world perceptual features. Future

tween targets and lures. ThesNmodel produces this effect, Studies aim at extending theitl model to simulate a wider

as well as a false memory effect. Below we discuss the single¢ariety of findings on recognition memory.

process Mv model in relation to other memory models and

the ability of the NM model to simulate mirror effects. Acknowledgments
The research project is supported in the framework of the
Comparison to Other Models NWO Cognition Program with financial aid from the Nether-

. - . lands Organization for Scientific Research (NWO). It is part
The Nim model differs from existing memory models in that ¢ the larger project: 'Events in memory and environment:

it operates on natural input and employs a single process fqf,q4eling and experimentation in humans and robots’ (project

recognition. number: 051.02.2002).
A Perceptual Process Operating on Natural Input The
NimM model encompasses a transformation that yields the sim- References

ilarity structure of natural images. So far, existing memoryArkadev, A. G., & Braverman, E. M. (1966Lomputers and
models have been tested with artificial data (e.g., tE&R pattern recognition Washington, DC: Thompson.

777



Bartlett, M. S., Littleworth, G., Braathen, B., Sejnowski, T. J., Norman, K. A. (2002). Differential effects of list strength
& Movellan, J. R. (2003). A prototype for automatic  on recollection and familiarity. Journal of Experimental
recognition of spontaneous facial actions. In S. Becker & Psychology: Learning, Memory and Cognitjd?8, 1083-

K. Obermayer (Eds.Advances in neural information pro-  1094.
cessing systen{¥ol. 15). Cambridge, MA: The MIT Press. Nosofsky, R. M. (1986). Attention, similarity, and the

Bellman, R. (1961).Adaptive control processes: a guided identification-categorization relationshipJournal of Ex-
tour. Princeton, NJ: Princeton University Press. perimental Psychology: Generdll5 39-57.

Busey, T. (2001). Formal models of familiarity and memora-Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989). Rules
bility in face recognition. In M. Wenger & J. Townsend and exemplars in categorization, identification, and recog-
(Eds.), Computational, geometric, and process perspec- nition. Journal of Experimental Psychology: Learning,
tives on facial cognition: Contexts and challengéfills- Memory and Cognitionl5, 282-304.
dale, NJ: Erlbaum Associates. Palmer, S. E. (1999)ision science: Photons to phenomenol-

Cary, M., & Reder, L. M. (2003). A dual-process account of ogy. Cambridge, MA: The MIT Press.
the list-length and strength-based mirror effects in recognipPalmeri, T. J., & Gauthier, I. (2004). Visual object under-
tion. Journal of Memory and Languag49, 231-248. _ standing.Nature Reviews Neuroscienée 291-303.

Dennis, S., & Humphreys, M. S. (2001). A context noise pearson, K. (1901). On lines and planes of closest fit to
model of episodic word recognitioRsychological Review  systems of points is spaceThe London, Edinburgh and
108 452-478. o Dublin Philosophical Magazine and Journal of Scienze

Dewhurst, S. A., & Farrand, P. (2004). Investigating the phe- 559.572.
nomenological characteristics of false recognition for catephjllips, P. J., Wechsler, H., Huang, J., & Rauss, P. (1998).
gorised wordsEuropean Journal of Cognitive Psychology  The FereT database and evaluation procedure for face
16, 403-416. _ recognition algorithmsimage and Vision Computing Jour-

Edelman, S., & Intrator, N. (1997). Learning as extrac- ng| 16, 295-306.
tion of low-dimensional representations. In R. Goldstonepgstman, L. (1951). The generalization gradient in recog-
D. Medin, & P. Schyns (Eds.Mechanisms of perceptual  nition memory. Journal of Experimental Psychologg2,
learning(Vol. 36, pp. 353-380). San Diego, CA: Academic  531.235.
press. _ Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of

Freeman, W. T, & Adelson, E. H. (1991). The design and - 555qciative memonpsychological Revieyds, 93-134.
use of steerable filterdEEE Trans. Pattern Analysis and Rao, R. P. N., & Ballard, D. H. (1995). An active vision

Machine Intelligencgl3, 891-906. architecture based on iconic representatiofsificial In-
Hubel, D. H. (1988) Eye, brain, and visionNew York, NY: telligence 461-505. P

WH Freeman. : P
. . Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). The
Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial "jis; strength effect: |. data and discussiafournal of Ex-

g%t?rgigé hoisy exemplar approadision Researchi2, perimental Psychology: Learning, Memory and Cognition
- : . - 16, 163-178.
Kalocsai, P., Zhao, W., & Biederman, |. (1998). Face S'm”ar'Shiﬁrin, R. M., & Steyvers, M. (1997). A model for recog-

9s, Psychonomic Bulletin & Review, 145-166.

facg and gesture recognitidpp, 177-180). Nara Japan. . Simpson, A. J., & Fitter, M. J. (1973). What is the best index
Lacroix, J. P. W., Murre, J. M. J., Postma, E. O., & Herik, of detectability?Psvcholoaical Bulleting0. 481-488
H. J. van den. (submitted). Modeling recognition memorySte ers. M S{{'ffr'l}n/ R '\% & Nel 02 D L (in .re
using the similarity structure of natural inpusychologi- yvers, M., Shifimn, <. M., Ison, D. L. (in press).
cal Review V\1{fordt a_ssomatlczjr} spaces for E)reglcl_tlmgl se(gggtm s.|tr_n|lar|ty
: . . effects in episodic memory. In A. Healy ognitive
Lyons, M., & Akamatsu, S. (1998). Coding facial expressions psychology and its applications: Festschrift in honor of lyle

with gabor wavelets. IfProceedings, third international : :
; ' s bourne, walter kintsch, and thomas landaudfashington
conference on automatic face and gesture recognifjgm P e O '
9 g DC: American Psychological Association.

200-205). Nara Japan. ;
MacAndre\)N, D. K., KF:atzky, R. L., Fiez, J. A.,, McClelland, Tenenbaum, J. B., Silva, V. de, & Langford, J. C. (2000). A

J. L., & Becker, J. T. (2002). The phonological-similarity global geometric framework for nonlinear dimensionality

: ; ; e reduction.Science290, 2319-2323.
grf]fglcotg(?éfglarsegg?]tsglgei\évsei%é\{vo working memoriesy Yarbus, A. L. (1967) Eye movements and visiodew York:
McClelland, J. L., & Chappell, M. (1998). Familiarity breeds __ Plenum Press. _ _

differentiation: A subjective-likelihood approach to the ef- Yonelinas, A. P. (2002). The nature of recollection and famil-
fects of experience in recognition memomsychological iarity: A review of 30 years of researcBournal of Memory
Review 105, 724-760. and Language46, 441-517.
Medin, D. L., & Schaffer, M. M. (1978). Context theory of
classification learning?sychological Reviey85, 207-238.
Murnane, K., & Shiffrin, R. M. (1991). Interference and
the representation of events in memalgurnal of Experi-
mental Psychology: Learning, Memory and Cognitid,
855-874.

778





