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ABSTRACT OF THE DISSERTATION

Mechanical Design, Dynamic Modeling, State Estimation, and Feedback Control
of a Micro-Ball-Balancing Robot at High Yaw Rates

by

Eric Nauli Sihite

Doctor of Philosophy in Engineering Science (Mechanical Engineering)

University of California San Diego, 2019

Professor Thomas Bewley, Chair

A ball-balancing robot (BBR) is a robot that balances itself on top of a ball, typically

using three omni-directional wheels. This class of robot features a highly coupled 3D nonlinear

dynamics that is capable of natural and holonomic motion. This dissertation presents a new

mechanical design, a tractable dynamic model that is accurate at high yaw rates, and an effective

estimation and control strategy for a micro ball-balancing robot (MBBR). The miniaturization and

the low-cost components used in this design add significant control challenges, which manifest

in the form of reduced durability and high amounts of noise, friction, and vibration, making

the design of effective state estimation and control strategies for it very difficult, especially

under high yaw rates. This motivates the design and use of a reduced nonlinear model which

xviii



captures the important high yaw-rate dynamics well, and the design of an effective model-based

observer and controller based on this reduced nonlinear model. The primary contributions of this

dissertation in the general area of ball-balancing robotics include:

(1) the novel (and, now, patented) midlatitude and orthogonal-omniwheel orientation of the

design,

(2) a reduced (minimum complexity) nonlinear BBR dynamic model which well captures its

high yaw-rate behavior, and

(3) the development of an effective model-based estimator (Extended Kalman Filter) and

controller which are capable of achieving remarkable performance of this delicate system

under high yaw rates.

The novel omniwheel placement minimizes coupling and increases the normal force acting on

the omniwheels, which helps to reduce the slipping caused by its very light body. Another

contribution of this dissertation is:

(4) the modeling and real-time implementation of drive/coast motor drivers,

which is also used in the MBBR. Drive/coast motor drivers exhibit highly nonlinear behavior,

which makes using them in a model-based controller difficult, but they allow for zero torque

dynamics which can be quite useful for many wheeled robots. The drive/coast motor model has

been implemented in our linear feedback controller, and has achieved remarkably good position

tracking even under high yaw-rates. The performance of the observer and controller were verified

with a motion capture system.
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Chapter 1

Introduction

The robotics field has evolved significantly with the arrival of 3D printing technologies.

Small scale robots can quickly be manufactured which allows for quick assembly and rapid

prototyping. One example of such robots is the eduMIP (Educational Mobile Inverted Pendulum)

robot developed in our Coordinated Robotics Labs in the University of California San Diego.

This mobile inverted pendulum robot (MIP) robot was designed as an educational tool to teach

undergraduate students control system theories. One of the initial designs of the eduMIP used a

breadboard with off-the-shelf sensor and motor driver breakout boards, Arduino microcontroller,

and 3D printed chassis. All of these parts were then assembled together with injection molded

plastic mounts. The latest version of eduMIP is powered by a Beaglebone Blue, or a Beaglebone

Black and Robotics Cape with injected molded plastic mounts. Our lab has also built several

other robot prototypes using the rapid prototyping capabilities of the 3D printer. Some examples

of these robots are the stair climbing MIP robot, a MIP robot that can pickup ping-pong balls

and rapidly shoot them, and a hexacopter.

The Micro Ball-Balancing Robot (MBBR) was developed as a follow-up to the MIP

projects. Ball-Balancing robots (BBRs) dynamics can be simplified into two decoupled MIP

dynamics in the roll and pitch directions under the assumption of slow dynamics and trivial yaw

rates. This class of robot allows for a fluid and organic holonomic movements which can serve

as an interesting toy product when miniaturized. At the time of the project conception, many

1



existing BBRs are large or extremely large. The largest BBR is almost as tall as a person ( 150 cm)

and one of the smaller BBRs are at least taller than a knee height (> 50 cm). Therefore, the design

and fabrication of a miniaturized BBR is novel and, after our first few attempts, also proves to be

very challenging. Using 3D printers, several prototypes of the MBBR was built using different

types of driving mechanism, omniwheels type, orientations, and placements. Our MBBR design

features a novel and patented ([1]) orthogonal midlatitude omniwheel placement. The midlatitude

placement serves as a method to increase the normal force acting on the omniwheels without

adding weight to the robot. The orthogonal omniwheel placement allows each omniwheels to

rotate independently to each other, reducing the coupling torque and allow the wheels to spin

more efficiently. The MBBR mechanical design and the novel omniwheel placement paper

was published in the IEEE International Conference on Intelligent Robots and Systems (IROS)

2015 [2]. Within a year, several successful prototypes has been built which can balance and

be driven slowly. However, the robot has a serious problem with stability when driven fast or

starts spinning. Some significant problems have surfaced due to the miniaturization of the robot,

primarily in the form of faster dynamics, large vibrations, noise, and friction. In addition to

this, BBRs exhibit a highly coupled and nonlinear dynamics when subjected to nontrivial yaw

rates. All of these problems cause stability issues when the robot starts to drive or spin quickly.

Therefore, a good controller and state estimator that can work under high yaw rates and noisy

measurements are required before this robot can show its true potential.

As a type of an inverted pendulum robot, MBBR shares similar dynamic behavior as

a MIP robot. Therefore, testing the high yaw-rate modeling, estimation and controls on the

MIP robot first is the natural step before implementing them in the MBBR. We developed the

high yaw-rate model for the MIP robot and implemented in an Extended Kalman Filter (EKF).

The accuracy of the attitude state estimation by EKF was verified by using motion capture.

Several other state estimators were also compared, such as linear model Kalman Filter (KF),

complementary filter, complementary KF, and the Digital Motion Processor (DMP) which is the

proprietary sensor fusion algorithm native to the InvenSense MPU-9250 Inertial Measurement
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Unit (IMU). The motion capture experiment showed that the attitude estimation of the high

yaw-rate model is more accurate than the linear model KF and other estimators under high yaw

rates, except the DMP which has comparable performance. However, the DMP only estimates

the orientation, which is useful if the robot only need an accurate orientation estimates. The

EKF has the advantage full system states estimation which is required for using a state feedback

controller. The MIP high yaw-rate estimation paper was published in the IEEE American Control

Conference (ACC) 2018 [3].

There is an additional problem which became apparent when attempting to model the

motors for the MBBR. The DC motors are driven by using Pulse Width Modulation (PWM)

through the motor drivers. There are two common types of motor drivers for brushed DC motors

depending on how the current flows during the low PWM duty: drive/coast and drive/brake. The

drive/brake driver shorts the motor terminals during the low PWM signal while the drive/coast

driver opens all MOSFET gates which allows the current to flow through the flyback diodes

back into the battery’s positive terminal. Conveniently, the motors using a drive/brake driver

can be modeled with a linear model. On the other hand, the drive/coast drivers exhibits a

nonlinear behavior which is heavily influenced by the PWM frequency, rotor speed, and the

motor inductance. The most recent MBBR prototype uses drive/coast motor drivers, which

motivated us to investigate on the drive/coast motor model and a method to compensate the

nonlinearities in real-time control applications. The drive/coast drivers have some advantages

compared to the drive/brake motors; this type of drivers allows for the zero-input response

and free-wheeling which might be advantageous for some wheeled robots. There might be a

benefit of using drive/coast drivers from the energy efficiency perspective as the current flows

regeneratively back into the battery during the low PWM duty cycle. More experiments must be

done to back up this claim, which can be a part of the future work in this topic. A novel model for

the drive/coast drivers which can be used for bi-directional (forward and reverse) motor control

and a real-time compensation algorithm were successfully developed and tested on a MIP robot.

The experiment used the controller designed for the linear motor model of a drive/brake driver in
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a drive/coast driver. This control command was compensated by using the algorithm in real-time

and has showed that the driving performance of the compensated drive/coast system is similar

to the drive/brake system with the same controller. This indicates that the model is correct and

we have successfully use the PWM command in a drive/coast driver which is equivalent to the

drive/brake controller. The drive/coast modeling and compensation paper has been accepted

for publication in the IEEE International Conference on Automation Science and Engineering

(CASE) 2019 [4].

The high yaw-rate modeling, estimations, and the drive/coast compensation has been

successfully done on a MIP robot. Then the next step is to implement the same methodology

on the MBBR, which is significantly more challenging due to its mechanical and dynamical

complexities. A high yaw-rate MBBR dynamical model was developed, implemented in an EKF,

and verified by using motion capture. The MBBR high yaw-rate modeling and estimation paper

was published in the IEEE International Conference on Robotics and Automation (ICRA) 2019

[5]. The modeling and implementation of the estimator faced even more challenge with the

presence of high friction, omniwheel slipping, and other vibrations which manifest during the

balancing. While the attitude estimations were relatively accurate, the ball speed estimation was

highly inaccurate without using friction compensation in the controller. The ball speed estimation

is important for the robot’s position and speed tracking, which is also the main motivation of

developing this robot: organic and fluid movement that can spin and translate at the same time.

More extra work has been done to improve the estimation accuracy and the position tracking

performance of the controller which includes the friction parameter system identification, using

the robot’s non-minimum phase dynamics to determine the attitude state reference, and gain

scheduling based on the desired yaw rates. Numerical simulations have also been done using

the full nonlinear model, EKF and the controller used in the actual MBBR to show that the

simultaneous spinning and translation can be done by using a linear feedback controller. After

the development of the finalized controller algorithm, several motion capture experiments were

done to prove the estimation accuracy, the controller stability, and position tracking performance.
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The contributions of this dissertation in the general area of ball-balancing robotics and

controls are:

(1) the novel and patented midlatitude and orthogonal-omniwheel orientation,

(2) a minimum complexity nonlinear BBR dynamic model which well captures its high

yaw-rate behavior,

(3) the development of an effective model-based estimator (Extended Kalman Filter) and

controller which are capable of achieving remarkable performance of this delicate system

under high yaw rates, and

(4) the modeling and real-time implementation of drive/coast motor drivers.

This dissertation is outlined as follows: MBBR mechanical design, MIP high yaw-rate model

and estimations, drive/coast DC motor model and compensation, MBBR high yaw-rate model,

and finally the MBBR control, estimation and motion capture experiment.
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Chapter 2

Micro Ball-Balancing Robot (MBBR)
Design

A Ball-Balancing Robot (BBR) is a robot which balances itself on top of a ball, either

using omni-directional wheels (omniwheels) or an inverse mouse-ball mechanism. This class

of a robot has a holonomic motion and exhibits rich 3D dynamics and is capable of fluid and

graceful motion. A BBR under a small perturbation has a similar dynamics to two independent

Mobile Inverted Pendulum (MIP) robot problems in both the fore/aft and left/right directions.

However, BBRs has a highly nonlinear dynamics when driving under nontrivial yaw-rates which

proves to be a highly challenging controls problem.

The conceptual design of the Micro Ball-Balancing Robot (MBBR) began in 2013, where

the robot was proposed as a continuation of the MIP and the eduMIP projects. As mentioned

above, the dynamics of the BBR is similar to the MIP’s dynamics under low perturbations,

making it an ideal continuation of the MIP projects. The MBBR had undergone many iterations

throughout the years, with varying body designs, DC motors, motor drivers, and omniwheels. The

latest iteration of MBBR weighs 700g and is 25 cm tall, making it one of the, if not the smallest,

BBRs in the world. The MBBR also costs less than USD$200 to build with potentially significant

cost savings when mass-produced. Since the MBBR is much cheaper to manufacture, it is viable

for commercial applications in entertainment, service, education, and research. Throughout all

of the MBBR iterations, it was controlled by using the Beaglebone Black and a Robotics Cape
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which was also developed at the same time in our Coordinated Robotics Labs. The MBBR design

features a novel midlatitude placement and orthogonal omniwheels orientation. The midlatitude

placement increases the normal forces applied on the omniwheels which is used to counteract

the problem which arises from the robot’s small weight. The orthogonal omniwheels orientation

is designed to allow the omniwheels to rotate independently with each other and improve the

efficiency of the actuation.

This chapter contents include the past works of the other existing BBRs, preliminary

MBBR designs, the omniwheels design and placements, and the latest MBBR build which is

used in the motion capture experiments in Chapter 6.

2.1 Past Works and Preliminary MBBR Designs

Early research on BBRs appeared around 2006 (see [1]). To date, most BBR research has

focused on human-scale designs ([1]–[3]), ball-balancing transportation vehicles ([4]–[6]), and

knee-high to waist-high designs ([7], [8]). These larger vehicles weigh between 8.7kg and 45kg,

and are characterized by significantly higher build cost and slower dynamics than the designs

considered in our MBBR.

There are significant challenges and limitations to contend with when attempting to minia-

turize a BBR. Tolerances become more stringent and cross-sectional areas decrease, lowering

the yield strength of the mechanical components. Scaling down the characteristic length scale,

l, of a given design generally reduces the volume and mass of the design by l3; on a BBR, this

significantly reduces the normal force between the omniwheels and the ball, creating problems

with slip. Simultaneously, the time scale of the nonminimum-phase inverted-pendulum dynamics

of a BBR is proportional to
√
l, so as l is reduced, the time scale decreases and the actuators must

respond faster, further exacerbating the slip problem. In extreme cases, the drive wheels may

even lose contact with the ball completely for short periods of time. The preliminary designs

in the MBBR attempted to address these issues, such as manufacturing tolerances, drivewheel
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(a) Belt-driven inverse mouseball
mechanism.

(b) Single-row omniwheels and
conventional omniwheel place-
ment.

(c) Double-row omniwheel and or-
thogonal omniwheel placement.

Figure 2.1: Three MBBR mechanisms considered during the preliminary design process.

slippage, and fast dynamics.

To begin the design process, we compiled an ordered list of design requirements: size,

robustness, cost, and energy efficiency. With such an open design space, we began by examining

existing large-scale designs which seemed fit for miniaturization. Previous work on BBRs fall

into two main categories: those driven by an inverse mouseball mechanism, and those driven

by three omniwheels. At first, neither category presented obvious barriers to miniaturization.

The many design choices available, the inaccuracy of analytical friction models, and various

unresolved questions related to manufacturing led to the conclusion that rapid test and iteration

were essential to converge quickly to the best practical solution. We thus decided to pursue

both the inverse mouseball mechanism and the omniwheel-driven mechanism in parallel. Using

low-cost additive manufacturing techniques, we iterated quickly on various design changes,

and built more than 10 different working prototypes, three of which are shown in Fig. 2.1, in

a span of three months. We successfully balanced both archetypes of the MBBR, eventually
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Figure 2.2: The inverse mouse-ball mechanism MBBR.

downselecting to the omniwheel-driven design, such as in Fig.2.1c.

2.2 Inverse Mouseball Mechanism MBBR

The inverse mouseball mechanism (Fig. 2.1a and 2.2) relies on two perpendicular rollers

along the equator of the ball. A small, low-friction bearing is used at the top of the ball to support

the weight of the upper body. Spring-loaded idler wheels at opposite points along the equator

press the rollers against the ball to create enough friction to eliminate slip between the rollers and

the ball. This allows the rollers to actuate the ball in the two horizontal directions independently.

The inverse mouse-ball MBBR shown in Fig. 2.1a uses timing belts to actuate the rollers on the

equator which add some complexity in the robot’s actuation (e.g. belt tension, friction).

There were two key problems with MBBRs driven by this mechanism. The first was

contamination. During testing, dirt and rubber particles would build up on the support bearing,

idler wheels, and drive rollers. This would increase friction and degrade performance to the
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point of failure. For large BBRs, the torques and forces involved are greater in magnitude, and

tolerances are relaxed, so a thin layer of dirt has little effect on performance. However, for an

MBBR, dirt buildup on the rotating components proved to be a critical point of failure. The

second problem encountered was the ball being pushed out of the socket during maneuvers.

The rollers transmit torque to the ball by applying a friction force along the ball’s equator.

Depending on the direction of rotation, this force tends either to push the ball farther into the

socket, or to pull the ball away from the socket. The only force preventing the ball from leaving

the socket is the weight of the robot itself. Since MBBRs have reduced mass, their weight is

generally insufficient to keep the ball in the socket. Even if the ball does not leave the socket,

the design suffers from asymmetric friction. As the roller actuates the ball in one direction,

the ball is forced into the socket, increasing both the normal force and the friction at the top

support bearing; when actuating the ball in the opposite direction, the friction at the top support

bearing is reduced. Additionally, the inverse mouseball mechanism does not control the yaw of

the robot about its vertical axis, so additional actuators would be needed to make the robot face

in a desired direction. Weighing all of these considerations, we ultimately concluded that the

inverse mouseball mechanism, though feasible, was the lesser of the two available choices.

2.3 Omniwheel-Driven MBBR

Several omniwheel-driven MBBR prototypes were developed using varying omniwheel

types and configurations. The omniwheel can be categorized into two types depending on the

number of rows of the rollers: single-row omniwheel (SROW) and double-row omniwheel

(DROW). Varying omniwheel midlatitude placements and orthogonal orientations were tested

and compared to the traditional omniwheel placements. After some experimentation on these on

the omniwheels type and configurations, we finally settled on the MBBR prototype seen in Fig.

2.3 for IROS 2015 [9]. The design was further improved in the latest prototype by using a more

optimized DROW, appropriate motor, motor driver and gearbox selections.
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Figure 2.3: SROW MBBR prototype for IROS 2015.

This section discusses the following topics: SROW and DROW omniwheel design,

midlatitude and orthogonal omniwheel placements, motor selections, and the latest optimized

DROW MBBR prototypes. The discussion is structured to show the progress from the 2015 to

the latest 2018 MBBR prototype.

2.3.1 Omniwheel Design

The most limiting factor for the omniwheel-driven MBBR is the omniwheels themselves.

An ideal omniwheel (see Fig. 2.4) has:

• Zero friction in the direction of the wheel axis, which is achieved using rollers around its

circumference,

• Zero friction resisting yaw about the contact patch, and

• Zero slip (infinite stiction) in its direction of rotation.
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(a) Single-row omniwheel (SROW). (b) Double-row omniwheel (DROW).

Figure 2.4: Two primary types of omniwheels.

The smallest off-the-shelf omniwheels found were too large, at 4cm in diameter. We thus

custom fabricated smaller omniwheels. Due to manufacturing tolerances and material strength

limitations, the smallest omniwheels we could reliably manufacture were 2.5cm in diameter. Two

omniwheel designs were selected for testing (see Fig. 2.4): the single-row omniwheel (SROW)

design found in [8], [10], and the more conventional double-row omniwheel (DROW) design.

The SROW design considered (Fig. 2.4a) consists of 12 rollers lying in the same plane.

The rollers alternate between large and small, allowing the smaller rollers to nest within the

larger rollers to form an nearly circular profile [11]. In practice, SROWs allowed for very smooth

actuation of the ball, due to the absence of gaps between rollers and the single contact point on

the ball. Several drawbacks were also encountered. First, the design complexity is high, with 37

parts per wheel, which increases the manufacturing cost significantly. Additionally, parts of the

hub had to be made as thin as 1mm, which were prone to mechanical failures.

The DROW design considered (Fig. 2.4b) consists of 12 equally-sized rollers in two

parallel planes, which greatly simplifies construction. Although the part count is still relatively

high, the individual pieces are larger and more robust. The drawback of the DROW design

lies in the differences in the engagement of the two different rows on the curved surface of the

ball. On flat surfaces, a DROW behaves much like a SROW. However, in MBBRs, as the ratio

between the ball diameter and the distance between the two rows of rollers becomes smaller, the

omniwheels induce a characteristic “wobble” into the dynamics, as derived below, that is nearly
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Figure 2.5: Double row omniwheel and ball contact interaction.

impossible to eliminate.

As illustrated in Fig. 2.5, as the DROW rotates, the normal force fa generated by the

DROW on the ball creates (via stiction) a torque on the ball, τa, in a direction perpendicular to

both fa and the azimuthal direction of the omniwheel. As the omniwheel continues to rotate, the

second roller contacts the ball, resulting in a normal force fb and concomitant torque on the ball,

τb. It is thus seen that the torque that the DROW generates on the ball switches back and forth

between between τa and τb. This switching induces a periodic disturbance which leads to the

undesirable “wobble”. The angle between these two axes of rotation is given by

sin(γ) = w/(2rb). (2.1)

As the ratio between the radius of the ball and the distance between the two rows of rollers in the

DROW increases, the wobble diminishes. In practice, we found both the SROW and DROW

designs viable for miniaturization, though neither was perfect.

The SROW that is used in the MBBR can be seen in Fig. 2.6a. The rollers are all placed

in one plane, using six small and six large rollers alternating between each other. How the rollers

are setup can be seen in more detail in Fig. 2.6b. Both rollers are setup to minimize the gap

between the rollers, making the ball transition between the rollers very smoothly. However, this
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(a) SROW CAD model. (b) SROW roller details. (c) SROW mechanical failure.

Figure 2.6: The SROW CAD model, details, and mechanical failure.

design has a significant mechanical weakness in the part that’s holding the small roller. This part

is very prone to break under high torques at its smallest cross-section, as shown in Fig. 2.6c. The

mechanical failure is very likely to occur when the SROW MBBR is being driven aggressively.

Figure 2.7 shows the FEA analysis on the most vulnerable part, with the largest von Mises stress

of 35 MPa under 0.05 N.m torque. This stress is very close to the tensile strength of the SROW

material (PVC), which is 52 MPa. As the robot is being driven around, we believe that plastic

deformation occurs and this lead to failure after several high stress cycles. This is torque is

chosen because it is the static torque of the robot tipping at around 30 degrees, which is generally

the nominal torque during balancing. The motor itself has a maximum stall torque of 0.176 N.m

and can apply torques more than 0.05 N.m during aggressive movements. Ultimately, despite the

SROW’s advantages of lower vibrations, the part is not reliable for aggressive maneuvering. The

SROW is much more feasible when it’s scaled up in size, however our robot’s demand of small

omniwheel size does not allow that option.

As SROW can’t be improved further for MBBR, we put our attention into optimizing the

DROW to minimize slips and vibrations from the ball’s transition across the alternating rows of

wheels. Similarly to the SROW design, the rollers in the optimized DROW, shown in Fig. 2.8,

are designed to minimize the gap between the rollers. Unlike the SROW design, this optimized

DROW design does not have a structural weakness and the smoother roller transition results in
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Figure 2.7: Stress analysis on the SROW most vulnerable component.

(a) DROW CAD model. (b) Photo of the DROW.

Figure 2.8: Optimized DROW design.
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(a) Angle from the North Pole (b) Angle of twist

Figure 2.9: Omniwheel placement and orientation.

less vibrations in the system during the balancing. This optimized DROW is the omniwheel of

choice for our latest MBBR build purely due to its robustness.

Both omniwheel designs have advantages and disadvantages. The SROW design has

smoother operation but more fragile than its DROW counterpart. We have not yet found a good

solution for mass producing both omniwheel designs, but a mass produced DROW design seems

more likely to be found compared to SROW’s. Mass production and cost cutting can be the

topics for future research and development.

2.3.2 Omniwheel Midlatitude and Orthogonal Placement

Following the work of others (see §2.1), our early omniwheel-driven MBBR prototypes,

as seen in Fig. 2.1b, placed the omniwheels between α = 30◦ and α = 45◦, and took β = 0◦

(see Fig. 2.9). With the omniwheels in such a position, we found that slippage between DROW

and the ball was significant. To mitigate this problem, the friction between the wheel and the ball

must be increased. There are two ways to accomplish this: increase the coefficient of friction

between the ball and rollers, or increase the normal force between the omniwheels and the ball.

Since there are limited options in materials, and it is undesirable to increase normal force by

adding mass to the main body, we sought other solutions to this problem. We found that placing
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omniwheels closer to the equator of the ball (that is, in the “midlatitudes”), could greatly increase

the normal force between the ball and omniwheels. It is easily seen that the normal force is equal

to:

N = mg/[3 cos(α)] (2.2)

The normal force monotonically increases as α increases from near 0◦ to near 90◦. Thus, by

moving the omniwheels from α = 45◦ to 70◦, we can double the normal force between the

omniwheels without adding any mass. This simple geometric change significantly mitigated

the omniwheel slippage issues. Note that, if α becomes too large, the amplified normal forces

increase friction in the drivetrain, and degrades performance. We built several prototypes, with

α = {45◦, 60◦, 70◦, 80◦}, and found that, for our design, α = 60◦ to 70◦ represented a good

compromise.

The lower placement of the omniwheels also effectively solved the problem of the

omniwheels losing contact with the ball during quick maneuvers. Lowering the omniwheels

result in larger normal forces, which allows the omniwheels to grip the ball better, and the contact

points upon which the upper body rests are spaced farther apart, requiring a larger moment to tip

the upper body off the ball.

There is a significant drawback to lowering the omniwheel placement if the orientation

of the omniwheels is left in the conventional orientation with β = 0. The magnitude of

the component of the torque which contributes to the yaw of the ball about the vertical axis

scales with sin(α). Conversely, the magnitude of the components of torque which contribute to

translational movement of the ball scales with cos(α). Thus, as α approaches 90◦, the actuator

input corresponding to balancing the vehicle approaches 0, and balancing becomes impossible.

A natural solution to this problem is achieved by varying β, as discussed below.

We now consider the issue of the omniwheel orientation β. Our solution of mounting the

omniwheels in mutually-orthogonal planes increases the overall efficiency of the power transfer

and, as discussed above, is desirable when used in conjunction with midlatitude omniwheel
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placement. Traditionally (see, e.g., [12]), omniwheels are spaced evenly apart, with 120◦

separation, and oriented in a radially-symmetric fashion about the z-axis, with β = 0◦. By

aligning the three omniwheels in mutually-orthogonal planes, we effectively decouple their

effects.

If the omniwheels are not in mutually orthogonal planes, actuating one while holding the

other two fixed results in both rolling of the ball about an axis τ parallel to that of the actuated

omniwheel, and rolling about the other two axes, which gives no slip in the direction of rotation

of the other two omniwheels. This is achieved by spinning the rollers of all three omniwheels,

including the actuated omniwheel.

If, on the other hand, the omniwheels are in mutually orthogonal planes, actuating one

while holding the other two fixed results in pure rolling of the ball about an axis parallel to that

of the actuated omniwheel, and zero rolling about the other two axes. This is more direct and

efficient, as it doesn’t result in the spinning of the roller of the actuated omniwheel.

Our method to enforce orthogonal omniwheel orientation follows: let the rotational axis

of the omniwheel i ∈ {1, 2, 3} be represented by the unit vector ŵi ∈ R3. The omniwheels

are orthogonal to each other if the vectors ŵ1, ŵ2, ŵ3 are mutually orthogonal. This may be

achieved by calculating the ŵi given the α and β, then checking if ŵi · ŵj = 0 for i 6= j,

i, j ∈ {1, 2, 3}. The ŵi can be determined using the following equations:

ẑ1
1 = Rot(ŷ1

0, α) ẑ1
0 , (2.3)

ŵ1 = Rot(ẑ1
1 , β) Rot(ŷ1

0, α) x̂1
0, (2.4)

ŵi = Rot(ê3, 2π/3)i−1 ŵ1, i ∈ {2, 3}, (2.5)

where Rot(x̂, α) is the Euler rotation matrix about x̂, and {x̂i
0, ŷ

i
0, ẑ

i
0} are the initial wheel i

axis coordinates, which are set up as shown in Fig. 2.9. In particular, our prototype is set up

such that the initial coordinates for the first wheel are the same as lab coordinates {ê1, ê2, ê3},

where ê1 = [1, 0, 0]T , ê2 = [0, 1, 0]T , and ê3 = [0, 0, 1]T . Given a particular value for α, we can
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Table 2.1: Some orthogonal omniwheel orientations.

α 45◦ 60◦ 70◦ 80◦
β 35.237◦ 48.186◦ 52.082◦ 54.145◦

determine the β which gives us ŵi · ŵj = 0 for i 6= j using an iterative method. Some of the

{α, β} pairs resulting in an orthogonal omniwheel orientation are given in Table 2.1.

As discussed previously, there are multiple benefits of such an orthogonal omniwheel

orientation. First, the conventional omniwheel orientation at large α angles leads to diminished

torque available to translate the ball. Further, the orthogonal omniwheel orientation leads directly

to rotation of the ball in the actuated direction; actuation of a single omniwheel doesn’t result in

a force applied against the other two omniwheels in a manner that results in the spinning of the

rollers of the actuated omniwheel, therefore providing a smoother application of torque.

2.3.3 Motor and Gearbox Selection

The motor and gearbox combination of the MBBR need to be carefully selected in order

to achieve the best performance under our operating conditions. The MBBR is designed with

the goal to develop a low-cost balancing robot that can drive and spinning fast at the same time.

Small brushed DC motors are used due to their low cost and ease of use. An angled gearbox is

used for the motors because the angled gearbox can be swiveled in such a way that it minimizes

the robot’s width. This makes the robot “slimmer”, reducing the inertia about the robot’s ẑ axis

in addition to some aesthetics benefits. It is necessary for the motors to provide adequate torque

under high rotor speed to achieve adequate performance. If the gear ratio is too high, the motor

lose its maximum torque and may not have enough torque when the motor is spinning at high

speed. Therefore, it is necessary to do some preliminary analysis in order to select the correct

gearbox for our motor. The motor and gear ratio combination used in the IROS 2015 prototype

are not adequate for high speed maneuvers, and this problem has been resolved in the latest

MBBR prototype.
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Figure 2.10: The motor torque vs. speed curve of the MBBR motor.

The torque vs. speed curve of the motor at nominal battery voltage of 7.4V with several

gear ratios is shown in Fig. 2.10. The bottom left square in Fig. 2.10 is the estimated motor

operating region, with a torque of 0.06 N.m and motor speed of 600 rpm. The torque of 0.06

N.m is generously estimated from the torque required to counter the gravity when the robot is

tilted at 30 degrees. The 600 rpm speed is the estimated motor speed to drive the ball forward at

the speed of 4 rotation per second, or approximately linear translational speed of 1.5 m/s. These

numbers are rough approximation and we simply assume that the MBBR primarily operates

under these torque and speed range. Using Fig. 2.10 as a guide, we finally decided to use gearbox

with 12:1 gear ratio for our latest MBBR prototypes. The experiments under high yaw-rates and

translational speed has shown that this motor and gearbox combination works very well and can

achieve our target performance for the MBBR.
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Figure 2.11: The latest MBBR prototype (2018) and its components.

2.3.4 The Most Recent MBBR Build

The MBBR has gone through several iterations from the first design paper in 2015. The

latest build which was completed in 2018, as shown in Fig. 2.11, is the MBBR used in the

high yaw-rate model and experiments in Chapter 5 and 6. This design has been proven to fulfill

our design criterion of a low-cost BBR that can translate and spin fast at the same time. The

optimized DROWs and improved construction tolerance have reduced some of the vibration and

friction in the system, but these problems are still nontrivial which require robust controller and

estimator to balance well. Design improvements which address the vibration issue can be a part

of the future work.

This design uses α = 60◦ and the corresponding β angle shown in Table 2.1 for the

orthogonal midlatitude placement. As mentioned in §2.3.1 and §2.3.3, the latest MBBR prototype
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used optimized DROWs and high powered brushed DC motors with 12:1 gear ratio. The robot is

also controlled by using a Linux embedded systems using Beaglebone Black and the Robotics

Cape like the previous iterations. However, it used external motor drivers due to the increase

in the motor current demands. This robot uses a different motor driver than the one used in

the IROS 2015 prototype: the drive/coast motor drivers. This motor driver exhibits a nonlinear

behavior which will be explained in further details in Chapter 4. The motors, gearboxes, the

motor housing, and the ball were provided by Wowwee Robotics. The bill of material of the

latest MBBR build is listed below:

• Three motors, CL-FF180SH-1885V-50, rated 6V.

• 2 Channel optical encoders (15 slits) on each motor.

• Beaglebone Black.

• Robotics Cape.

• MC33926 coasting motor drivers for each motor.

• 2.5 inch Ball.

• Six support balls inside the bottom cover.

• 3D printed chassis and PVC motor mounts.

• 2 cells LiPo battery, 1300 mAh 50C.

• JY-MCU HC-06 Bluetooth dongle.
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Chapter 3

MIP Dynamic Modeling and State
Estimation

The dynamics of a BBR is similar to a MIP under trivial yaw rates. However, as the

yaw rate increases, the dynamics of a BBR becomes significantly nonlinear and coupled. A

similar effect can also be observed in the MIP dynamics, where its dynamics also becomes

nonlinear as the yaw rate increases. Compared to a BBR, a MIP robot has a simpler dynamics

even under high yaw rates, and a simple actuation mechanism that has less noise and points of

failure. Therefore, a comprehensive study on the effect of high yaw rates on a MIP robot is a

great stepping stone before attempting to control the BBR under a similar condition. Developing

a nonlinear controller is very difficult compared to nonlinear estimators. The latter can be done

by implementing an Extended Kalman Filter (EKF), and can be designed separately from the

controller itself. By intuition, a well designed EKF using a more accurate dynamic model will

have a better estimation accuracy compared to the estimators using the simplified linear model.

This motivated us to study on the accuracy of commonly used MIP estimators compared to an

EKF with a high yaw-rate MIP model. By showing that the high yaw-rate model EKF has a

better accuracy than the other linear estimators, we might be able to use a similar methodology

on the BBR to improve its estimation accuracy as well. This will be discussed in more detail in

Chapter 5.

This chapter explores the accuracy of several state estimators used in MIP robots. Accu-
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rate state estimation is essential for effective feedback stabilization of such vehicles, especially at

high yaw-rates. The MIP estimation techniques compared in this section are the Complementary

Filter, the Complementary Kalman Filter, the (proprietary) Digital Motion Processor (DMP) from

the (common) TDK InvenSense MPU-9250, and a dynamically modelled EKF. The dynamics

of MIPs undergoing high yaw rates, as used by the EKF, are derived by using a Lagrangian

dynamics formulation. The MIP was then controlled at several different yaw rate setpoints, and

the tilt angle estimates were compared with the (“ground truth”) measurements obtained via

motion capture. Our test results indicate that the high yaw rate dynamic EKF and DMP are

significantly more accurate than the usual Complementary Filter and planar dynamic EKF. The

inaccuracy of the Complementary Filter is likely caused by the IMU not being aligned with the

body’s center of mass, creating a significant centrifugal force while spinning quickly.

3.1 Past Works

A MIP robot is a feedback-stabilized inverted pendulum that is rigidly mounted to

two individually-controllable coaxial wheels. Many groups have designed and stabilized MIP

robots, using techniques ranging from PID to State-Space Control. In general, performance

of the feedback stabilization algorithm implemented is limited by the estimator, which is very

challenging in a small embedded systems with low-cost processors and sensors. In addition,

small light robots can accelerate quickly and operate on fast timescales, further complicating

their estimation.

In order to overcome these challenges, groups have employed a variety of estimation

approaches, such as complementary filters and Kalman Filters (KF) [1][2]. However, many

of these solutions obtain body angle estimates by treating the accelerometer and gyroscope as

a simple inclinometer [1][2]. While a few references have considered body dynamics during

the state estimation process, they only used the gyroscope and encoders as measurements.

Further, all prior models for estimation that we could find in the literature were based on planar
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Figure 3.1: The eduMIP with motion capture markers attached.

MIP dynamics, under the assumption that any yaw motions of the MIP were decoupled from

the longitudinal dynamics. High-performance MIP (and, ultimately, ball-balancing) robots

[3][4], undergoing high yaw rates, are not accurately modeled under this assumption. Smooth

stabilization of a very aggressive maneuvers of small MIP like this, or a small ball-balancing

robot with complex dynamics, will likely be dependant on an accurate situational awareness

provided by such state estimators. This motivates the present investigation, which aims to

develop improved state estimates by reconciling with the raw sensor measurements with the

dynamic equation of motion of the vehicle itself.

In this chapter, we present a 3D model for a MIP undergoing fast yaw dynamics, and

introduce an EKF for state estimation using both the accelerometer and gyroscope measurements.

In addition, using the (commercially-available) Renaissance Robotics eduMIP depicted in Fig.

3.1 as a test platform and a motion capture system to capture “ground truth”, we compared

our new yaw model and estimator to three existing methods: the complementary filter, the
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complementary Kalman Filter, and the planar MIP dynamic Kalman Filter. The most difficult

and important state to estimate on a MIP is the body tilt angle θ. The following subsections

describe and derive the existing state estimators for θ.

3.1.1 Complementary Filter with Kalman Filter

Complementary Filtering can also be done using Kalman Filter [5]. This filter only

uses the measurement from the IMU into the Kalman Filter in order to estimate θ [1][2]. This

Complementary Kalman Filter setup is shown in Eq. 3.1, where yg
k = ωk + bk is the gyro

measurement, ω is the body’s true angular velocity and b is the sensor bias. θk = θk−1 + ωk dt

and ya
k is the inclinometer angle estimate from the accelerometer measurements, vk and wk are

zero mean white noise.

θk

bk

 =

1 −dt

0 1


θk−1

bk−1

+

dt
0

 yg
k−1 + vk

ya
k =

[
1 0

] θk

bk

+ wk

(3.1)

There are several similar estimation methods that do not use a dynamic model. For

example, the state can be estimated using an Indirect Kalman Filter with a kinematic model,

which was used on the high performance ball-balancing robot Rezero[4]. There are also other

IMU sensor fusion algorithm that are used to estimate the orientation, such as for UAV and

wearable sensors [6][7][8]. In addition, the TDK InvenSense MPU-9250, which is the IMU used

in our MIP, has a proprietary Digital Motion Processing (DMP) algorithm which calculates a

very accurate angle estimate without a dynamic model.
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3.1.2 Dynamic Kalman Filter

The Extended Kalman Filter using the system dynamic model is shown in Eq. 3.2 with

the fk and hk are the dynamically modelled system and measurement of the robot. The accuracy

of the Kalman Filter’s estimate relies heavily on the model.

xk = f(xk−1,uk−1) + vk

yk = h(xk,uk) +wk

(3.2)

State estimation using Kalman Filter with the MIP dynamic equation has been done, but mostly in

simulations where it is assumed that the θ can be measured directly [9]. In addition, Shimizu et al.

developed a MIP Dynamic Kalman Filter using only the gyroscope and encoder measurements

[10].

The Extended Kalman Filter which uses a 3D high yaw rate MIP dynamic model has

not been explored yet. We hypothesized that by implementing this model with the Extended

Kalman Filter can yield a significantly more accurate estimates compared to the Complementary

filter and the Kalman Filter with planar MIP dynamics. The next section describes the dynamic

modeling for MIP robots with high yaw rate.

3.2 MIP Dynamic Modeling

The high yaw-rate MIP dynamic model is derived in this section by using Lagrangian

dynamics formulation. The methodology can be described as follows: derive the full nonlinear

MIP model, and then apply simplification which allows for high yaw rates. The linear acceler-

ation of the body is also derived in order to determine the measurement model for the IMU’s

accelerometer for the KF and EKF. Table 3.1 lists the parameters used in this chapter.

The linearized planar MIP dynamic model in Eq. 3.3 as derived in [11] is well known
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Table 3.1: Parameter and Time Varying Variable List. Abbreviations: CoM = Center of Mass,
CoR = Center of Rotation (origin of the body frame).

Parameter List Time Varying Variable List, i = {1, 2}
mb = body mass. θ = pitch angle.
mw = wheel mass. ψ = yaw angle.
Îb = body inertia about CoM. φi = wheel i rotation angle.
Îw = wheel inertia about CoM. ϕi = wheel i encoder rotation angle.
r = wheel radius. τi = wheel i torque.
l = length of body’s CoM to CoR. ui = motor i PWM command ∈ [−1, 1].
d = distance between wheels. p = body CoM position vector.
g = gravity constant. pwi = wheel CoM position vector.
k1 = motor torque gain. pw = body frame’s CoR position vector.
k2 = motor back EMF gain. lb = length vector from CoR to body CoM.

lr = length vector of wheel CoM to the floor.

and used in MIP robots where the yaw rate is trivial or ignored.

(
Îb1 +mbL

2
)
θ̈ +mbrl φ̈− g mb θ = −τ

mbrl θ̈ +
(
Îw1 + (mw +mb) r2

)
φ̈ = τ.

(3.3)

Îb1 and Îw1 are the component of the matrices ÎB
b and ÎB

w respectively, as shown in Eq. 3.4. ÎB
b

and ÎB
w in Eq. 3.4 are the body frame moment of inertia of the body and the wheel respectively.

ÎB
b =


Ib1 0 0

0 Ib2 0

0 0 Ib3

 ÎB
w =


Iw1 0 0

0 Iw2 0

0 0 Iw3

 . (3.4)

In order to develop a model which allows for high yaw rates, the simplification conditions used

in Eq. 3.3 can be relaxed to allow nontrivial yaw rates. The MIP kinematics are defined using

two separate coordinate frames: the inertial frame and the body frame about the center of rotation

as shown in Fig. 3.2. The body reference frame’s axis {ê1, ê2, ê3} is pointed to the body’s left,

back, and top respectively and the variables defined in the body frame are represented with a
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Figure 3.2: Coordinate frames of the kinematic model. The body frame origin is the center of
rotation for both the body and the wheels.

superscript B, e.g. xB. The rotation from the body into the inertial frame is defined in Eq. 3.5

below.

x = RB x
B

RB = Rz(ψ)Rx(θ).
(3.5)

Rx and Rz are the Euler rotation about the inertial frame’s x-axis and z-axis respectively. The

linear position of the body frame’s origin about the inertial frame can be defined with the vector

pw which is the average position of both wheels pw1 and pw2.
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3.2.1 Kinematic Formulation

The kinematic equations derived in this subsection are used to determine the kinetic and

potential energy of the system. Some of the position and length vectors are defined below:

pw = (pw1 + pw2)/2 (3.6)

lBb =
[
0 0 l

]T

, lr =
[
0 0 −r

]T

. (3.7)

The upper body rotational speed Ω and the wheel i ∈ {1, 2} rotational speed ωi are:

Ω = Rz(ψ)


θ̇

0

0

+


0

0

ψ̇

 , ωi = Rz(ψ)


ϕ̇i

0

0

+ Ω. (3.8)

Note that the ωi in Eq. 3.8 is defined by using the encoder measurements ϕi. The no slip

conditions between the wheel and the ground is:

dpwi

dt
= r × ωi, i = {1, 2} (3.9)

ψ = (ϕ1 − ϕ2) r/d. (3.10)

Finally, the body linear velocity is:

dp

dt
= d

dt

(
RBl

B
b

)
+ 1

2

(
dpw1

dt
+ dpw2

dt

)
. (3.11)

3.2.2 Lagrangian Dynamics Formulation

The MIP equations of motion are derived using Lagrangian dynamics and transformed

into the state space form to be used with the Kalman Filter. The kinetic and potential energy into
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the system are:

Kb = 1
2(RT

B Ω)T Îb (RT
B Ω) + mb

2
dp

dt

T dp

dt

Kwi = 1
2(RT

B ωi)T Îw (RT
B ωi) + mw

2
dpwi

dt

T dpwi

dt

Ub = −mb

[
0 0 −g

]
p

Uwi = 0, i = {1, 2}.

(3.12)

Then the Lagrangian of the system is L(q, q̇) = Kb +Kw1 +Kw2 − Ub, which is a function of

the time varying variable q(t):

q(t) =
[
θ(t) ϕ1(t) ϕ2(t)

]T

. (3.13)

The system dynamic equations is solved by using the Lagrange’s equation as shown below:


L1

L2

L3

 = d

dt

∂L

∂q̇
− ∂L

∂q
− τ = 0. (3.14)

There is no Lagrange Multiplier in Eq. 3.14 because the constraints are already applied into the

kinematic equation from Eq. 3.9 and 3.10. The force acting onto the system is applied through

the wheel’s motor. The force τ and the motor i torque τi are:

τ =
[
0 τ1 τ2

]T

(3.15)

τi = k1ui − k2ϕ̇i, i = {1, 2}. (3.16)
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The wheel angles ϕ1 and ϕ2 and motor command u1 and u2 are not useful for controlling the

robot. To simplify the states, modify the Eq. 3.14 as follows:


L∗1

L∗2

L∗3

 =


L1

L2 + L3

L2 − L3

 = 0. (3.17)

Next, do the following change of variables:

u1 = ux + uz ϕ1 = ϕ+ ψd/(2r)

u2 = ux − uz ϕ2 = ϕ− ψd/(2r).
(3.18)

The equations of motion in Eq. 3.17 are now a function of q∗ = [θ, ϕ, ψ], q̇∗ and [ux, uz]

where ϕ is the average encoder angles from both wheels, ψ is the yaw rate, ux and uz are the

motor command forward and spin respectively.

The full nonlinear dynamic model for the MIP can be seen in Appendix A.1. The dynamic

equations are simplified by assuming the body angle θ and its derivatives are small, similar

to the linearized planar MIP equations in Eq. 3.3. This approximates sin θ ≈ θ, cos θ ≈ 1,

{θ2, θθ̇, θ̇2} ≈ 0. However, the small yaw rates assumption is not used in the high yaw-rate

model derivations. Then rearrange Eq. 3.17 into the general form:

M(q∗) q̈∗ + h(q∗, q̇∗) = τ ∗(ux, uz) (3.19)

M q̈∗ = b (3.20)

M =


m11 m12 0

m21 m22 0

0 0 m33

 , b =


b1

b2

b3

 (3.21)
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m11 = Ib1 + 2Iw1 + 2mwr
2 +mb(l + r)2

m12 = m21 = 2Iw1 + 2mwr
2 +mbr(l + r)

m22 = 2Iw1 + (mb + 2mw)r2

m33 = Iw1d/r + r(dmw + 2(It3 + 2Iw3)/d)

b1 = glmbθ + (Ib2 − Ib3 + 2(Iw2 − Iw3) + l2mb)θψ̇2

b2 = 2(k1ux − k2ϕ̇)

b3 = 2k1uz − k2dψ̇/r.

(3.22)

Finally, derive the high yaw-rate model which will be used in the EKF:

x =
[
θ ϕ ψ θ̇ ϕ̇ ψ̇

]T

(3.23)

u =
[
ux uz

]T

(3.24)

dx

dt
=

q̇∗
q̈∗

 =

 q̇∗

M−1 b

 = fc(x,u). (3.25)

The equations above can be simplified down into the linear planar MIP dynamic in Eq. 3.3 by

setting ψ̇ = 0 and doing a change of variable φ = ϕ+ θ.

3.2.3 Sensor Dynamics

The body’s linear acceleration can be solved as a function of x using the angular acceler-

ation q̈∗ derived from Eq. 3.25. Then the linear acceleration as measured by the accelerometer

is:

yB
a (x) =


ax

ay

az

 = RT
B




0

0

−g

−
d2p

dt2

 . (3.26)
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The full nonlinear derivations of the sensor model can be seen in Appendix A. The yB
a can be

simplified by using the same small θ and θ̇ assumptions as the equation of motion above. Only ay

(body forward/back direction) is used in the EKF because the other acceleration measurements

were very noisy even when idling. The ay is expressed below:

ay = −lθψ̇2 + (l + r)θ̈ + rϕ̈− gθ. (3.27)

3.3 Estimators Design

This section lists the actual equations used by the estimations. The EKF algorithm

follows the standard discrete time EKF algorithm. The controller loop is assumed to run at a

constant frequency of 200 Hz (dt = 0.005 s).

Complementary Filter

The Complementary Filter was setup with the cutoff frequency of 4 rad/s, which gave us

c = 0.98 and the following equations:

θaccel
k = atan2(−ayk,−azk) (3.28)

θ̂k = 0.98 θ̂k−1 + 0.005ωgyro
k−1 + 0.02 θaccel

k−1 (3.29)

Complementary Kalman Filter

The Complementary Kalman Filter is setup the same way as the Eq. 3.1, using the

following values:

ya
k = θaccel

k = atan2(−ayk,−azk) (3.30)

Qc = diag([10−8, 10−10]), Rc = 10−4 (3.31)
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where the Qc and Rc are the process and measurement noise covariance matrices respectively.

Planar Dynamic Kalman Filter

The dynamic equation for the planar MIP dynamic can be calculated from the fast yaw

dynamic equation in Eq. 3.37 by setting ψ̇ = 0. The dynamic equation will become linear

time-invariant and is defined with only 4 states: x = [θ, ϕ, θ̇, ϕ̇] and 1 input u = ux. The

measurements used in the planar KF is:

h(xk,uk) =
[
ϕk ωgyro

k ayk

]T

(3.32)

The process and measurement noise covariance matrices values are:

Qp = diag([10−11, 10−7, 10−5, 10−7]) (3.33)

Rp = diag([10−5, 3.07 10−6, 3.04 10−3]) (3.34)

The equation of motion derived in Eq. 3.25 is the continuous time dynamic equation, so

we need to transform it into a discrete time equation before we can use it in the EKF. The discrete

time equation of motion was estimated using the Explicit Euler method. Then the difference

equation for the EKF becomes:

xk = f(xk−1,uk−1) + vk (3.35)

f(xk−1,uk−1) = xk−1 + dtfc(xk−1,uk−1) (3.36)

f(xk,uk) =
[
f1 f2 f3 f4 f5 f6

]T

(3.37)
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Plugging in the parameters values in Table 3.2 into the equations above yields:

f1 = θk + 0.005 θ̇k (3.38)

f2 = ϕk + 0.005 ϕ̇k (3.39)

f3 = ψk + 0.005 ψ̇k (3.40)

f4 = θ̇k + 0.629 θk + 0.068 ϕ̇k + 0.009 θk ψ̇
2
k − 2.72uxk (3.41)

f5 = 0.813 ϕ̇k − 1.12 θk − 0.016 θk ψ̇
2
k + 7.47uxk (3.42)

f6 = 0.939 ψ̇k + 2.44uzk (3.43)

and the measurements used in the yaw dynamic EKF is:

yk = h(xk,uk) +wk (3.44)

h(xk,uk) =
[
ϕk ωgyro

k ayk ψk

]T

(3.45)

ωgyro
k = θ̇k (3.46)

ay = 8.17ux − 7.41 θ − 0.204 ϕ̇− 0.0346 θ ψ̇2 (3.47)

The process and measurement noise covariance matrices values used for the EKF are:

Qy = diag([10−11, 10−7, 10−7, 10−5, 10−7, 10−7]) (3.48)

Ry = diag([10−5, 2.62 10−7, 5.44 10−3, 10−5]) (3.49)

3.4 Motion Capture Experiment

The motion capture system comprised of four Optitrack 13 cameras placed in four

different corners at varying heights around the testing platform. The camera have a sampling

rate of 120 Hz. During testing, we simultaneously recorded the motion capture data on a laptop
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Table 3.2: Edu MIP Parameter Values.

Parameter Value Parameter Value

mb 218 g Ib1 5.91 10−4 kg.m2

mw 24 g Ib2 2.99 10−4 kg.m2

r 35 mm Ib3 2.91 10−4 kg.m2

d 70 mm Iw1 6.42 10−5 kg.m2

l 46 mm Iw2 7.48 10−6 kg.m2

k1 0.12 N.m Iw3 7.48 10−6 kg.m2

k2 0.003 N.m.s/rad g 9.8 m/s2

dt 0.005 s

and state estimates on board MIP’s Beaglebone Black. The data was synchronized in post by

matching the measurements when the robot begins balancing from its resting position.

3.4.1 Experimental Setup

We used motion capture to obtain a ground truth model to test the validity of our various

state estimators. We were able to simultaneously we record all the θ estimates on board the robot

and the camera data from motion capture. To test the performance of our estimators, we ran our

MIP test under three different experiments: idling balancing, 5 rad/s and 10 rad/s spinning while

balancing in place.

The MIP used in this work is the eduMIP, available from Renaissance Robotics, as shown

in Fig. 3.1. The Edu MIP is controlled using the Beaglebone Black and a robotics cape, which

contains the 9-axis IMU, breakout for encoder counting and motor drivers. Beaglebone can store

data into its hard drive at a sampling rate of 50 Hz. The parameter values for this Edu MIP can

be seen in Table 3.2, which were estimated using system identification by Zhuo [12].

In order to balance the MIP, we used a Successive Loop Closure (shown in Fig. 3.3) for

controlling θ and a simple PD controller for controlling ψ. The controller’s discrete time transfer
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Table 3.3: Root Mean Squared (RMS) Error between the estimates and the motion captured θ.

Estimator
RMS Error (rad)

No Spin 5 rad/s spin 10 rad/s spin

DMP 0.0148 0.0115 0.0129
Planar EKF 0.0133 0.0256 0.1028
High Yaw Rate EKF 0.0133 0.0107 0.0249
Complementary Filter 0.0228 0.0424 0.1605
Complementary KF 0.0199 0.0432 0.1636

Figure 3.3: Successive Loop Closure Block Diagram

functions are:

D1(z) = −4.95 z2 + 8.86 z − 3.97
1.000 z2 − 1.48 z + 0.481 (3.50)

D2(z)P = −0.189 z2 + 0.372 z − 0.184
1.000 z2 − 1.86 z + 0.86 (3.51)

Dz = 1.0(ψr − ψ) + 0.05(ψ̇r − ψ̇) (3.52)

where Dz is the yaw controller which outputs uz, ψr and ψ̇r are the reference yaw values. This

controller uses the DMP measurement from the IMU and the raw encoder values as the state into

the controller. Since we want to compare the accuracy of the estimators relative to each other,

we want to use the same controller for all of the test and this controller worked very well.

3.4.2 Experimental Results

The θ estimates under several yaw rates can be seen in Figure 3.4a and their respective

Root Mean Squared errors are listed in Table 3.3. The error from Table 3.3 shows that the DMP
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(a) Estimated θ and the motion captured θ.

20 25 30 35 40 45 50

Time (s)

-2

0

2

 (
ra

d)

y
1
 = Encoder Average

20 25 30 35 40 45 50

Time (s)

-1

0

1

d
/d

t (
ra

d/
s)

y
2
 = Angular Velocity

20 25 30 35 40 45 50

Time (s)

-4

-3

-2

-1

0

1

a
y (

m
/s

2
)

y
3
 = Body Acceleration Y

measured
estimated

20 25 30 35 40 45 50

time (s)

-5

0

5

10

 (
ra

d)

y
4
 = Yaw

no spin

10 rad/s spin

5 rad/s spin

(b) Measured y vs estimated y plot for the high
yaw-rate model EKF during the 0 rad/s, 5 rad/s
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Figure 3.4: MIP high yaw rates motion capture experimental results.
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and yaw dynamic EKF have the overall best performance with better accuracy under high yaw

rates compared to the other estimates, like what we expected. The DMP’s estimate is especially

good because it does not use the system’s dynamic equation to get such an accurate estimate. So,

it is very likely that we can use the DMP’s estimate without the need of using an observer if the

orientation is the only important state to estimate.

Looking at the acceleration data in Figure 3.4b shows an interesting situation. The yaw

dynamic EKF’s estimated y3 value did not match the measured value during the 10 rad/s spinning

but the estimated θ is still more accurate than the others. We believe that there is an offset on the

acceleration data from the IMU placement being not on the top body’s center of mass, causing

the acceleration data to receive a bias as a function of yaw rate due to the centripetal force. The

complementary filter used the atan2 function to determine θ, but the estimation during high yaw

rate is heavily skewed due to the accelerator bias and this caused the estimates to be inaccurate

during fast yaw movements.

In this chapter we surveyed several different state estimators used on MIP robots and

compared their performance using a ground truth established by a motion capture system. In

addition, we presented our novel high yaw rate dynamic model and it’s corresponding extended

Kalman Filter which proved to provide better estimates as the robot is performing dynamic

maneuvers. Also, we found that the Complementary Filter and the Complementary Kalman

Filter have almost identical performance under all tested situations. Remarkably, the proprietary

DMP estimate from the MPU-9250 appears to very accurate over the conditions tested, even

under high yaw rates, even though it is not based on the dynamic model of the physical system.

The next step of this project is to implement a similar high yaw rate dynamic modeled Kalman

Filter into our ball-balancing robot [3] to help us control the robot during aggressive and fast yaw

maneuvers. Compared to the simpler MIP robot, the BBR is highly nonlinear and the dynamics

are heavily coupled under high yaw rate, which should prove to be a challenging topic.
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Chapter 4

Coasting Brushed DC Motor Driver Model

Brushed DC motors are generally driven by using PWM signal which operates in one

of two modes: drive/brake or drive/coast. That is, at the low state of the PWM forcing profile,

the motor driver will either “brake” the motor with its own back EMF, or allow the motor to

“coast” (i.e., spin freely). Drive/brake motor drivers, which are by far the most common, may

be represented by a Multilevel Four-Quadrant DC Chopper model, while drive/coast motor

drivers may be represented by two independent Bipolar Two-Quadrant DC Chopper models.

Conveniently, when averaged over the PWM duty cycle, drive/brake motor drivers are accurately

modeled as linear systems over their entire operational range. On the other hand, drive/coast

motor drivers, when averaged over the PWM duty cycle, exhibit significant nonlinear behaviors

that are dependent on factors such as inductance, PWM frequency, and rotor speed. Though

there are some existing partial derivations of drive/coast motor driver models, no comprehensive,

experimentally-validated modeling approaches appropriate for feedback control applications

over the full dynamic range of the motor could be readily found in the literature.

The most recent MBBR prototype uses a motor driver which operates in the drive/coast

configuration. The drive/coast motor drivers were chosen because the limitation of the PWM

pins in the Beaglebone Black and the electrical current requirements of the motors used. The

Beaglebone only has four PWM capable pins and most drive/brake drivers that fulfills our current

requirements requires two PWM pins for each motor to operate. Since we have three motors, we
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can’t use these drive/brake drivers with the Beaglebone Black. On the other hand, drive/coast

drivers can be driven with one PWM pin and two GPIO pins which. However, the nonlinear

behavior in the drive/coast drivers must be compensated so that we can use a linear torque model

in our dynamic model. In this chapter, we derive a practical nonlinear model of a drive/coast

motor driver, validate this model using a motor dynamometer, and demonstrate a real-time

implementation of this model on a Mobile Inverted Pendulum (MIP) robot.

4.1 Past Works on DC Motor Drivers

Agile dynamic UxVs require accurate physical models to inform mechanical designs and

to develop controllers that achieve maximum performance. Mass distributions and other physical

parameters can generally be obtained via CAD and simple experiments, but accurate dynamic

motor models are often much more difficult to develop. Least-square fits to experiments can

be used to identify the parameters of simple linear dynamic models of motors if they are of the

correct structure, but getting the (nonlinear) structure of these models correct in the drive/coast

case is delicate.

Brushed DC motors are commonly driven by modulating the input voltage via pulse

width modulation (PWM), at frequencies from 500Hz to 20kHz, together with one or two logic

signals to indicate the forward or reverse direction. The MOSFETs in an H-Bridge are then

opened or closed in pairs to allow current to pass through the circuit in the appropriate direction.

There are two types of motor driver modes discussed in this chapter, depending on the MOSFET

settings during the low state of the PWM forcing profile: braking or coasting. Braking occurs

when both of the upper (or, lower) MOSFETs are closed, and the other MOSFETs are open; in

this case, current circulates in the upper (or, lower) part of the H-bridge circuit, and the back

EMF of the motor itself drives the current in the opposite direction of the rotor speed, slowing

the motor. Coasting occurs when all four MOSFETs in the H-bridge are open, and current flows

from ground to Vcc through two of the flyback diodes when necessary. The coasting steady state
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Figure 4.1: Full H-bridge circuit demonstrating the current paths during forward drive, brake,
and coast.

current applies a zero torque on the motor, allowing the motor to spin freely. Figure 4.1 shows

the driving, braking and coasting states of an H-bridge. To drive the motor forward (green),

MOSFETs 1 and 4 are closed. To brake (red), either MOSFETs 3 and 4 are closed (low side)

or 1 and 2 (high side) which shorts the motor and allows the current to circulate and brake the

motor. Finally, to coast (blue), all of the MOSFETs are left open, allowing the current to flow

through the diodes as necessary, and causing the motor to coast when this current decays to zero.

Drive/brake motor drivers may be represented by a Multilevel Four-Quadrant DC Chop-

per, and drive/coast motor drivers may be represented by two independent Bipolar Two-Quadrant

DC Chopper [1][2]. Drive/coast motor drivers in constant forward drive use the I-IV quadrants,

and in reverse drive use the II-III quadrants [1]. Averaged over the PWM duty cycle, such

drive/brake motor drivers may be accurately modeled with a simple linear model [3][4][5][6].

Averaged over the PWM duty cycle, the drive/coast motor driver, on the other hand, exhibits a

significant nonlinear behavior especially near zero duty cycle. Partial derivations of electrical

current models for such drivers exist [1]; however, this work does not extend to a full range of

forward and reverse driving, and no real-time implementation suitable for control applications is

provided.

There are several advantages of using drive/coast motor drivers. Coasting engages the
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natural (unforced) dynamic behavior of the vehicle, which is at times preferred. There might also

be a good incentive to use drive/coast instead of drive/brake drivers from an energy efficiency

standpoint. There has been much research on regenerative braking with brushless DC motors

in, e.g., hybrid/electical vehicles [7][8][9][10]. However, to the best of our knowledge, the

energy efficiency of drive/coast vs. drive/brake systems for vehicles that often operate near zero

speed and/or zero torque has not been extensively studied. A drive/brake system can produce

regenerative current during the braking sequence, transforming the kinetic energy into electrical

energy [7]. A drive/coast system, on the other hand, regenerates the battery during coasting by

flowing current back into the Vcc through the flyback diodes [1][9]. In a motor that operates

near zero torque and/or zero speed, the drive/brake regenerative method is ineffective due to the

lack of kinetic energy. The drive/coast approach might have better efficiency in this range, but

conclusively establishing this would require further study. Recent advanced TI motor drivers,

such as the DRV8881 in the so-called “fast decay” mode, detect the regenerative current during

coasting and close the respective gates such that the current flows through the MOSFETs instead

of the flyback diodes, resulting in reduced voltage drop (and, thus preventing the flyback diodes

from overheating). If this is utilized well, drive/coast systems might show better energy efficiency

than drive/brake systems near zero torque in speed control applications.

Brushed DC motors are cheap and often used in low cost robots which generally have

a high amount of noise. The challenge of accurately modeling such motors is exacerbated in

a drive/coast implementation due to the nonlinearities near zero torque and speed, which is a

primary mode of operation for a balancing robot such as a Mobile Inverted Pendulum (MIP).

Modeling the system dynamics as accurately as possible can increase the performance of the

controller. For these reasons, it is important to develop an accurate drive/coast model that can be

used in a real-time feedback controller.

In this chapter, we present a new dynamic model for a system with a brushed DC motor

using a drive/coast motor driver, validate the model using a low cost dynamometer, propose a

method of real-time implementation of the drive/coast model, and demonstrate the performance
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of our model on a educational Mobile Inverted Pendulum (eduMIP) robot.

4.2 H-Bridge and Drive Modes

An H-bridge circuit allows for directional control of a brushed DC motor. It typically

consists of four MOSFETs and diodes arranged as letter H with a load at the center [11]. By

switching the diagonally opposite MOSFETs on and off, the motor driving direction (forward or

reverse) can be controlled. During the off duty of the PWM signal, the motor will either brake or

coast based on the states of the four MOSFETs, as shown in Fig. 4.1. The choice of coast or

brake mode has a significant effect on motor’s dynamics, especially at low duty cycles. A quick

survey of common motor drivers used in robotics shows that the drivers are either drive/coast

only (DRV8881E, MC33926), drive/brake only (TB6612FNG), or configurable in either mode

(DRV8881P, DRV8871). In practice, there is no “standard” mode of operation for the motor

drivers and it is often left to the user’s discretion. Table 4.1 lists the parameters and the variables

used in the equations and derivations in this chapter. The following subsections derive and

discuss the electrical equation model for the drive/brake and drive/coast motor drivers.

4.2.1 Drive-Brake

In drive/brake mode, the current path through the H-bridge can be seen in Fig. 4.1.

During a high PWM signal, the appropriate MOSFETs pair is closed to drive the motor forward

or reverse [11]. During low PWM signal, either the high side or low side MOSFETs are closed,

shorting the motor terminals and allowing the back EMF to circulate and brake the motor [12].

The drive/brake system is very well understood and commonly modeled as follows: let u be

the motor command, where v = |u| is the PWM duty cycle and sign(u) is the motor driving

direction where u > 0 and u < 0 are forward and reverse driving respectively. The electrical
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Table 4.1: List of parameters and time varying variables.

Constant Parameters, all positive values. Time Varying Variables

k torque constant. i electrical current.
V supply voltage. u motor command ∈ [−1, 1].
R motor resistance. τ motor torque.
L motor inductance. v PWM duty cycle, v = |u| ∈ [0, 1].
is stall current at u = 1, ω = 0. ω rotor velocity.
ωnl maximum rotor no load speed. ωr scaled rotor velocity ∈ [−1, 1].
Te electrical time constant.
Tr ratio of Tpwm over Te.
Tpwm PWM period.
fpwm PWM frequency.

circuit equation during the high and low PWM signals can be seen in (4.1) and (4.2).

PWM high: sign(u)V = R i+ L di
dt

+ k ω (4.1)

PWM low: 0 = R i+ L di
dt

+ k ω (4.2)

uV = R iavg + k ω. (4.3)

Both models can be combined into the linear system shown in (4.3) where iavg is the average

current of one PWM pulse [6]. The inductance can be ignored because the controller and

measurement update period are significantly longer than the electrical time constant. This linear

behavior and simplicity is a significant advantage for controller design and is the most common

motor model used for PWM based motor controls.

4.2.2 Drive-Coast

The drive/coast model is much more complex. The current path for drive/coast mode

can be seen in Fig. 4.1. During the low PWM signal, all of the MOSFETs are opened, forcing

the current of the spinning motor to pass through the diodes into the battery positive terminal.

The current quickly decays to zero but does not change direction, allowing the motor to spin
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unimpeded. The electrical circuit equation during the high and low PWM signals can be seen in

(4.4) and (4.5).

PWM high: sign(u)V = R i+ L di
dt

+ k ω (4.4)

PWM low: −sign(i) (V + 2Vd) = R i+ L di
dt

+ k ω, (4.5)

where Vd is the voltage drop across the diodes during the low PWM signal. As the motor coasts,

the current drains down to zero and stays at zero for as long as the MOSFETs are opened,

resulting in nonlinear dynamics. Additionally, di/dt is nonzero at i = 0, so this system must be

described as a hybrid system, making it difficult to determine an averaged system model for a

single PWM pulse.

4.3 Drive-Coast Model Derivations

Although the drive/coast system is a hybrid system, i(t) can be solved from both ODEs

in (4.4) and (4.5), as done by [1] on a First-Quadrant and a Bipolar Two-Quadrant DC Choppers.

The averaged system model such as in (4.3) can’t be derived. However, the average current iavg

during one PWM pulse can then be derived from the solution of i(t). Deriving the iavg is useful

for controls application because the applied motor torque is a linear function of the motor current

(τ = k i). The following assumptions are used in order to simplify the i(t) derivations:

• Electrical time constant is much smaller than mechanical time constant, controller update

and sampling time.

• Time-periodic PWM pulse, as shown in Fig. 4.2, where the starting and final current in

one PWM pulse are equal. t0, t1, and t2 are the pulse start time, low PWM signal start

time and the final pulse time respectively. The initial current during each time-periodic

PWM pulse is assumed to be constant (i(t0) = i(t2)).
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Figure 4.2: Plot of the current and PWM signal (shown at an offset) during one time-periodic
PWM pulse in a drive/coast motor driver.

• Voltage drop across the diodes is negligible (Vd ≈ 0).

• Instantaneous MOSFETs switching time.

• No external force to the mechanical system that can push the rotor speed above ωnl.

The first assumption simplifies the ODEs in (4.4) and (4.5) by setting u and ω approximately

constant compared to the i within one PWM pulse. The second assumption simplifies the

problem further by constraining the initial and final current in one PWM pulse. The equations

can be simplified even further by applying change of variables below:

is = V/R Te = L/R ωnl = V/k

Tr = Tpwm/Te ωr = ω/ωnl, (4.6)

where ωr is the ratio of between the rotor velocity and the maximum no load speed while Tr is

the ratio between the PWM period and the electrical time constant. The final assumption above

guarantees that ωr ∈ [−1, 1]. Using (4.6) and the assumptions above into (4.4) and (4.5) results
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in the following simplified equations:

PWM high: di
dt

(t) = (−i(t) + is(sign(u)− ωr)) /Te (4.7)

PWM low: di
dt

(t) = (−i(t)− is(sign(i(t)) + ωr)) /Te. (4.8)

Let t0 be the time at the beginning of the PWM pulse, t1 = t0 + v Tpwm is the starting

time of the low PWM signal, and t2 = t0 + Tpwm is the end time of the pulse, as shown in Fig.

4.2. There are several statements that can be made from using ωr ∈ [−1, 1], (4.7) and (4.8) that

will be useful during the derivation of i(t).

Lemma 1. The current is always being driven to ihi = is(sign(u) − ωr) during high PWM

signal. Also, ihi ≥ 0 if u > 0 and ihi ≤ 0 if u < 0.

Proof. From (4.7), it can be easily shown that di
dt
< 0 if i > ihi and di

dt
> 0 if i < ihi. Using

ωr ∈ [−1, 1], it can also be shown that if sign(u) > 0, then ihi ≥ 0 and if sign(u) < 0, then

ihi ≤ 0. �

Lemma 2. The current is always being drained to zero during low PWM signal.

Proof. Use ωr ∈ [−1, 1] in the (4.8), then it can be shown that di
dt
< 0 if i > 0 and di

dt
> 0 if

i < 0. �

Proposition 1. Assuming time-periodic PWM pulse, if u > 0, then i(t) ≥ 0 within one pulse

(t ∈ [t0, t0 + Tpwm]). Conversely, if u < 0, then i(t) ≤ 0.

Proof. During high PWM signal, the current is being driven to ihi ≥ 0 if u > 0 using Lemma

1. Then during low PWM signal, the current is being driven to zero using Lemma 2. Then that

means the current during both high and low PWM signal, or one PWM pulse, is always ≥ 0 for

u > 0. Case u < 0 can be proven the same way. �

Solve the ODE in (4.7) and (4.8) for i(t) using the assumptions and statements listed
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above. There are two different cases that need to be explored: i(t0) 6= 0 and i(t0) = 0, which is

also shown in Fig. 4.2.

4.3.1 Case i(t0) 6= 0

Solve the ODE in (4.7) and (4.8) for u > 0 and i(t0) > 0. Using Proposition 1 and

time-periodic PWM signal, sign(i) is inferred to be constant in (4.8). This transforms (4.7) and

(4.8) into easier to solve linear equations:

PWM high: di
dt

(t) = − (i(t) + is(−1 + ωr)) /Te (4.9)

PWM low: di
dt

(t) = − (i(t) + is(1 + ωr)) /Te. (4.10)

Solve the ODE in (4.9) and (4.10) for i(t):

iH(tH) = e−tH/Te

(
i(t0) + is(1− etH/Te)(ωr − 1)

)
(4.11)

iL(tL) = e−tL/Te

(
i(t1) + is(1− etL/Te)(ωr + 1)

)
, (4.12)

where iH(tH) and iL(tL) are the current equation during high and low PWM signal respectively.

tH = t− t0 and tL = t− t1 are the time shift such that tH and tL are zero at the start of the high

and low PWM signal respectively. Using (4.11) and (4.12), solve for i(t2) which should be equal

to i(t0) by using the time-periodic PWM pulse assumption as shown below:

i(t1) = iH(v Tpwm) = e−v Tr

[
i(t0) + is(1− ev Tr)(ωr − 1)

]
(4.13)

i(t2) = iL((1− v)Tpwm) = i(t0) (4.14)

i(t0) = e−Tr

[
i(t0)− is(1− ωr − 2ev Tr + eTr(1 + ωr))

]
. (4.15)
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Then solve for i(t0) from (4.15):

i(t0) =
−is

(
1− ωr − 2ev Tr + eTr(1 + ωr)

)
eTr − 1 > 0. (4.16)

Using the knowledge that Tr > 0 and eTr > 1, derive the domain for i(t0) > 0:

ev Tr > (eTr(1 + ωr) + 1− ωr)/2. (4.17)

By plugging in the initial current i(t0) in (4.16) into (4.11), (4.13) and (4.12), the average current

during one time-periodic PWM pulse can be solved for u > 0 and i(t0) > 0 case:

i+avg,i6=0 =
(

vTpwm

∫
0

iH(tH)dtH +
(1−v)Tpwm

∫
0

iL(tL)dtL
)
/Tpwm

= is(2v − 1− ωr). (4.18)

Solving the equation for u < 0 and i(t0) < 0 case using the same methodology yields

the following average current:

i−avg,i6=0 = −is(2v − 1 + ωr), (4.19)

with the domain for where i(t0) < 0 being:

ev Tr > (eTr(1− ωr) + 1 + ωr)/2. (4.20)

4.3.2 Case i(t0) = 0

In this case, the current is fully drained during the low PWM signal, and the draining

time must be derived in order to solve for the iL(t). Solve for the u > 0 case first by using (4.11),
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(4.12) and (4.13) with i(t0) = 0. Then solve for the time where the current is fully drained (td):

iL(td) = is e
−td/Te

(
2 + e−v Tr(ωr − 1)

)
− is(1 + ωr) = 0 (4.21)

td = −Te log
(
ev Tr (1 + ωr)

2ev Tr − 1 + ωr

)
. (4.22)

This log function must have a real solution for the domain where i(t0) = 0. Using v ∈ (0, 1],

ωr ∈ [−1, 1] and Tr > 0, the log function is valid everywhere except for ωr = −1. However

ωr = −1 is always within the domain for i(t0) > 0, so the log function is always valid. The

current is fully drained during the low PWM signal, so td ≤ (1− v)Tpwm is set as a constraint.

This constraint can be solved further into:

ev Tr ≤ (eTr(1 + ωr) + 1− ωr)/2, (4.23)

which is the complete opposite of the domain for i(t0) > 0 in (4.17). This means that the initial

current i(t0) ≥ 0 covers for all u > 0 and ωr ∈ [−1, 1]. Finally, solve for the average current in

one time-periodic PWM pulse for the u > 0 and i(t0) = 0 case:

i+avg,i0=0 =
(

vTpwm

∫
0

iH(tH)dtH +
td

∫
0
iL(tL)dtL

)
/Tpwm

= is
Tr

(
v Tr(1− ωr) + (1 + ωr)log

(
ev Tr(1 + ωr)

2ev Tr − 1 + ωr

))
. (4.24)

Using the same methodology to solve for the u < 0 and i(t0) = 0 case yields the following

average current:

i−avg,i0=0 = − is
Tr

(v Tr(1 + ωr)

+ (1− ωr)log
(
ev Tr(1− ωr)

2ev Tr − 1− ωr

)
),

(4.25)
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and the following domain where i(t0) = 0:

ev Tr ≤ (eTr(1− ωr) + 1 + ωr)/2. (4.26)

4.3.3 Summary

Let v = |u| ∈ [0, 1], ωs = sign(u)ωr, ωr ∈ [−1, 1], and the the domain for i(t0) 6= 0 is:

V =
{
v | v > 1

Tr

log
(1

2(eTr(1 + ωs) + 1− ωs)
)}

. (4.27)

Then average current iavg of the time-periodic PWM pulse as a function of motor command

u, scaled rotor speed ωr, and a constant Tr can be calculated with the following algorithm:

if v = 0 then

iavg,v=0 = 0 (4.28)

else if v ∈ V then

iavg,i0 6=0 = is (2u− sign(u)− ωr) (4.29)

else

iavg,i0=0 = is (u (1− ωs)

+
(

sign(u) + ωr

Tr

)
log

(
ev Tr(1 + ωs)

2ev Tr − 1 + ωs

)
)

(4.30)

end if

As shown above, the average current is nonlinear especially when i(t0) = 0. The average current

equations are defined using the is and unitless parameters ωr, Tr, and u.
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4.4 Real-Time Implementation Strategy

In order to be used in a controller, the motor command u must be solved given the target

average current it and the measured rotor speed ω. Solving for u in the i0 6= 0 case from (4.29)

is easy. However, as shown in the (4.30), the drive/coast model is nonlinear in the i0 = 0 case,

making it difficult to solve for u(it, ωr) directly. Solving for v = |u| in the i(t0) = 0 case can be

done by using scalar iterative methods such as the Newton-Raphson method [13]. Our tests have

shown that this algorithm converges within 3 to 5 iterations which is quick enough to be used in

real-time computations. The equations to be used in the Newton-Raphson method can be seen

below:

f(v) = iavg,i0=0 − it = 0, (4.31)

f ′(v) = 2 is (ev Tr − 1)(sign(it)− ωr)
2 ev Tr + ωs − 1 (4.32)

vn+1 = vn − f(vn)/f ′(vn). (4.33)

Then the method to solve for v can be outlined below:

1. sign(u) = sign(it). If it = 0, then v = 0.

2. else, assume i(t0) 6= 0 and solve for v using (4.29) then check if v ∈ V and v ∈ (0, 1].

3. If v /∈ V or v /∈ (0, 1], then we have the i(t0) = 0 case and solve for v with Newton-

Raphson method using (4.30) to (4.33). Set the initial guess v0 to be the middle of the

range of v for i(t0) = 0:

v0 = 1
2 Tr

log
(

1
2(eTr(1 + ωs) + 1− ωs)

)
. (4.34)

In addition, there are two edge cases for the model in (4.27) to (4.30): the case of lim
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Table 4.2: Experiment Motor and Motor Driver List

No. Motors Motor Drivers

1 Maxon A-Max 22 110160, 14:1 DRV8871 (3A imax)
2 Maxon 273688, 13mm, 17:1 DRV8881P (2.5A imax)
3 eduMIP motor, 6.6:1 MC33926 (5A imax)

Figure 4.3: Experimental setup diagram of the dynamometer for the drive/coast model
validation.

Tr → 0 and lim Tr →∞ which represent very high and very low PWM frequency respectively.

Solving the model using the limits and L’Hospital Rule yields the following results:

Case lim Tr → 0: u = (it/is + sign(it) + ωr)/2 (4.35)

Case lim Tr →∞: u = (it/is)/(1− sign(it)ωr). (4.36)

4.5 Model Validation Experiment

To validate our drive/coast model, we compared the estimated and actual current mea-

surements of a motor-flywheel system (Mini-Dyno [14]). First we identify the motor parameters,

shown in Table 4.3, using the procedure outlined in [14]. Using these parameters and a known
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Table 4.3: Identified Motor Parameters

Parameters Motor No.
1 2 3

Resistance, R (Ω) 6.49 15.4 9.06
Inductance, L (mH) 0.362 0.0494 2.36
Motor gain, k (N.m/A) 0.133 0.161 0.127

0 10 20 30 40 50 60 70

Time (s)

-1

0

1

M
ot

or
 C

om
m

an
d Experiment Motor Command

Figure 4.4: Plot of the motor command u signal for the experiment in the following sequence:
sine chirp, ramping sine chirp, and random walk.

input signal we were able to estimate the drive/coast model and compare it to the actual output

data.

4.5.1 Experimental Setup

The Mini-Dyno [14] is a low cost motor dynamometer that consists of a weighted

flywheel of known inertia attached to a motor and an optical encoder (US Digital E6-2500-250).

The motor is attached to a motor driver, a current sensor (INA219), and driven by a single board

computer (Beaglebone Black), as shown in Fig. 4.3.

We conducted this experiment with three different motors and motor drivers which are

listed in Table 4.2. The motor drivers were selected because they are commonly used in small

ground robots, have off-the-shelf breakout boards, and feature drive/coast operating modes. Two

different high quality Maxon motors with datasheets were selected to provide a benchmark of

performance. The last motor is a low-cost toy motor used in the eduMIP robots with unknown
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parameters. We selected this motor to demonstrate that the drive/coast model is accurate with

low quality motors that have higher inductance and friction. The motors’ resistance and torque

constant were identified using the methodology outlined in [14] but with one important note: the

identification must be done with a drive/brake motor driver to avoid the nonlinear drive/coast

dynamics. We estimated the motor’s inductance by measuring the rise time of the voltage across

the shunt resistor on the current sensor with an oscilloscope. The identified motor parameters are

shown in Table 4.3.

To excite the motor across a range of frequencies and amplitudes, the motor was driven

by a sequence of open loop input signals: sine chirp, ramping sine chirp, and random walk, as

shown in Fig. 4.4. The sine chirp is a sine signal with frequency ramping up from 0.5 Hz to 2

Hz and back down to 0.5 Hz. The ramping sine chirp is a sine chirp with varying amplitude.

The random walk is a sum of a uniform random variable, uk+1 = uk + unif(−0.3, 0.3), and the

same random walk signal was used for each experiment. Each motor and motor driver pairs were

tested at PWM frequencies of 500 Hz, 1 kHz, 5 kHz, 10 kHz and 20 kHz. The low range was

chosen because 500 Hz is the default PWM frequency of certain microcontrollers (e.g. Arduino)

and 20 kHz is ultrasonic and inaudible. During this experiment, the motor command u, current i,

battery voltage V and the flywheel angle φ were recorded. From the input and output data, we

estimated the current of the drive/coast system using the model from (4.27) to (4.30). In order

to show the inaccuracy of using the drive/brake model with a coasting motor driver, we also

estimated the current by using the linear model in (4.3) for motors with driver 1, such that:

iavg,lin = (uV − k ω)/R. (4.37)

R2 and RMSE values of the estimated drive/coast current with respect to the current measurement

are used to compare model accuracy. The RMSE values are represented as a percentage of the

motor stall current is.
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Figure 4.5: Plot of measured current vs. current estimate from the drive/coast model and the
linear motor model. The data shown is of motor 1 & driver 1 at 20kHz PWM frequency.

4.5.2 Model Validation Results

The drive/coast model has high R2 values and low RMSE values, as shown in and Table

4.4 and 4.5 respectively, which indicates an accurate model. The drive/coast model has an

average RMSE error of 6.5% is while the linear model has an average RMSE error of 22.5%

is. From Fig. 4.5, we can see how much more accurate the drive/coast model is compared to

the linear model especially at low duty cycles. As shown in Table 4.4 and 4.5, the drive/coast

model is accurate and consistent for all PWM frequencies, motor, and motor driver combinations.
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Table 4.4: R2 Values of the Current Measurement vs. Model Estimate

Motor & Mtr. Driver PWM Frequency (Hz)
500 1000 5000 10000 20000

vs. coast model:
Motor 1 & driver 1 0.964 0.969 0.980 0.964 0.962
Motor 1 & driver 2 0.971 0.973 0.973 0.650 0.937
Motor 1 & driver 3 0.987 0.986 0.984 0.972 0.964

Motor 2 & driver 1 0.982 0.985 0.982 0.980 0.973
Motor 2 & driver 2 0.979 0.979 0.973 0.968 0.959
Motor 2 & driver 3 0.986 0.985 0.984 0.982 0.973

Motor 3 & driver 1 0.962 0.967 0.949 0.944 0.929
Motor 3 & driver 2 0.965 0.959 0.929 0.902 0.865
Motor 3 & driver 3 0.982 0.974 0.965 0.954 0.913

vs. linear model:
Motor 1 & driver 1 0.753 0.746 0.642 0.470 0.413
Motor 2 & driver 1 0.841 0.844 0.740 0.628 0.516
Motor 3 & driver 1 0.783 0.713 0.358 0.315 0.244

However, the low quality eduMIP motor (motor 3) has an increased error as PWM frequency

increases. We believe that this might have been caused by inaccuracies in some parameter values,

or nonlinearities such as static friction and backlash which are commonly seen problems in low

cost motors. However, the drive/coast model still yielded a significantly more accurate estimates

than the linear model.

4.6 Real-Time Implementation Experiment

We used an eduMIP to demonstrate the viability of our drive/coast model on an unstable,

real-time system. A MIP balancing about it’s equilibrium point requires small amount of torque

to stabilize the system. Since a drive/coast system is highly nonlinear about low duty cycles, a

MIP robot is a perfect test platform.
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Table 4.5: RMSE Values of the Current Measurement vs. Model Estimate as a Percentage of
Stall Current is

Motor & Mtr. Drv. PWM Frequency (Hz)
500 1000 5000 10000 20000

vs. coast model:
Motor 1 & driver 1 7.72% 6.70% 5.12% 5.44% 6.48%
Motor 1 & driver 2 6.95% 6.61% 5.76% 6.16% 7.69%
Motor 1 & driver 3 4.58% 4.65% 4.38% 5.47% 5.98%

Motor 2 & driver 1 6.16% 5.56% 5.39% 5.33% 5.93%
Motor 2 & driver 2 6.33% 6.41% 6.46% 6.50% 6.92%
Motor 2 & driver 3 5.16% 5.07% 4.85% 4.75% 5.65%

Motor 3 & driver 1 7.69% 6.73% 7.57% 7.89% 8.78%
Motor 3 & driver 2 5.25% 5.70% 6.27% 7.62% 11.4%
Motor 3 & driver 3 6.88% 6.82% 7.88% 8.89% 10.1%

vs. linear model:
Motor 1 & driver 1 20.3% 20.1% 21.9% 23.9% 25.6%
Motor 2 & driver 1 18.5% 17.9% 20.6% 22.9% 25.2%
Motor 3 & driver 1 18.4% 20.0% 26.7% 27.6% 28.6%

4.6.1 Experimental Setup

We fitted an eduMIP with two DRV8871 motor drivers which can toggle between

drive/brake and drive/coast mode. We used a state feedback controller designed for MIP with

drive/brake motor drivers for this experiment. Using the same balancing controller, we allowed

the robot to balance in place under three modes: drive/brake, and drive/coast with and without

coasting model compensation. The coasting model compensation adjusts the PWM duty cycle

given by the drive/brake controller to the equivalent duty cycle for drive/coast systems, as

discussed in Section 4.4. Assuming that the coasting model is correct, then the control torque

of the drive/coast with compensation should be the same as the drive/brake, resulting in a

similar balancing performance. The balancing performance under each mode was evaluated by
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Figure 4.6: Plot of the robot attitude angle variance between drive/brake mode, and drive/coast
mode with and without compensation.

calculating the variance of the robot’s attitude angle during the position hold.

4.6.2 Experimental Results

The drive/coast system performance is significantly improved by implementing the

coasting compensation as shown in Fig. 4.6. With compensation, the drive/coast system

has approximately the same performance as the drive/brake system across all tested PWM

frequencies, except at PWM frequency of 1000 Hz. We concluded that the compensated PWM

duty cycle in this particular frequency hit the sweet spot for small amplitude but high frequency

limit cycle for the robot. Without any compensation, the drive/coast system is significantly

less stable especially as the PWM frequency increases. This demonstrates that our drive/coast

model is accurate and we can effectively compensate the control signal of a drive/coast system

in real-time.

In this chapter, we mathematically derived a novel model for drive/coast systems and

demonstrated its accuracy with real-world experiments. In addition, we proposed a real-time

implementation method of the model by using the target current and rotor speed to calculate a

motor command which compensates for the nonlinearies of a drive/coast system. Finally, we
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demonstrated the performance of the drive/coast model and coasting compensation in real time

on an eduMIP which showed a significant improvement in stability. This new model opens

up the possibility of designing more accurate system dynamic models when using drive/coast

motor drivers to offer different system behaviors and advantages compared to its drive/brake

counterpart.

Although we showed the effectiveness of the model on a MIP robot, we suggest to

experiment further with different types of robots or controls applications that can take advantage

of free-spinning motors. In addition, although coasting motor drivers can recharge the battery, we

believe that more experimentation should be done to compare overall energetic efficiency between

drive/brake and drive/coast motor drivers in low torque and speed applications. Regardless of

efficiency, in practice, some robotic systems are bound to use drive/coast motor drivers, and our

work provides an accurate method of modeling the dynamics of such drivers.
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Chapter 5

MBBR High Yaw-Rate Dynamic Modeling

The state estimation and control of a ball-balancing robot under high yaw rate is a

challenging problem due to its highly nonlinear 3D dynamic. The small size and low-cost

components in our Micro Ball-Balancing Robot makes the system inherently very noisy and

has nontrivial friction, which further increases the complexity of the problem. In particular, the

double-rows omniwheels can have microslips when transitioning between the two rows of the

wheel’s rollers, adding vibrations and noise into the measurements. In order to drive the robot

more aggressively such as translating and spinning at the same time, a good state estimator which

works well under high yaw rates and noisy system is required. This motivated us to develop an

EKF which uses a high yaw-rate dynamic model, which if worked well can improve the state

estimation accuracy and stability under high yaw-rates.

Past works in this topic include the indirect Kalman Filtering used by Rezero [1]. In

their work, the states were estimated using Kalman Filter (KF) from the kinematic relationship

between the IMU and the encoder measurements. The formulation of a BBR 3D dynamic model

has been done by [2] and [3]. However, [2] did not use the model in an estimator or controller.

The KF used in [3] was not explained in detail and they assumed that robot’s attitude angles

can be directly measured. The linearized BBR dynamic model was used by most of the existing

BBRs where the model was simplified down into two decoupled Mobile Inverted Pendulum

(MIP) problems in the x-y plane (roll and pitch). The MIP dynamic model is well known and
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can easily be linearized [4], and used in linear controllers and estimators. This was also the

controller used in the initial MBBR prototypes and this controller has poor stability when the

robot starts spinning. As shown in Chapter 3 , the attitude estimation accuracy can be improved

by using a high yaw-rate dynamic model in an Extended Kalman Filter (EKF) [5]. Implementing

the same methodology for the MBBR might also improve the state estimation accuracy which

means better stability under nontrivial yaw-rates. The implementation of a high yaw-rate BBR

dynamic model in an EKF using on board raw measurement data is novel and the methodology is

extensible to other lightweight low-cost robots. The EKF is chosen instead of the other nonlinear

KFs, such as Unscented KF, because it is simple to implement. The Jacobian of the high yaw-rate

model is also easy to calculate which makes the implementation of the EKF easier than other

nonlinear KFs.

This chapter presents the derivation of a high yaw-rate Ball-Balancing Robot dynamic

model and the simplified model which will be used in an Extended Kalman Filter (EKF). The

controller and estimator design, together with the motion capture experiment to verify the

estimator and controller performance are shown in Chapter 6. This chapter is outlined as

follows: MBBR frame of references, kinematic modeling, Lagrangian dynamic modeling, and

the simplified model which will be used for controller and estimator design.

5.1 Ball-Balancing Robot Model Derivations

This section contains the derivations of the BBR dynamic equation of motion using

Lagrangian Dynamics, which follows similar derivations done by Hoshino [6]. The equation of

motion is derived symbolically in ’Wolfram Mathematica 10.0’, which then is simplified into the

high yaw-rate model used in the EKF. The list of parameters and variables used in the derivations

can be seen in Table 5.1.
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Figure 5.1: Diagram of the frame of references, some position vectors, and angular speed.

5.1.1 Frames of Reference and Wheel Transformation

The frames of reference used in the derivations are the inertial and the body frames,

as shown in Fig. 5.1. The variables defined in the body frame are represented by using the

superscript B. The transformation from body to inertial frame is shown in (5.1) below:

x = RB(θ)xB, θ =
[
θx θy θz

]T

RB(θ) = Rz(θz)Ry(θy)Rx(θx),
(5.1)

where Rx(θx), Ry(θy) and Rz(θz) are the rotation matrices of the Euler rotations about the

inertial frame’s x, y and z axis respectively. Then RB(θ) is the body’s intrinsic rotation in the

body’s z-y′-x′′ axis (intrinsic yaw-pitch-roll), which is one of the standard Tait-Bryan angles.

The omniwheels in the MBBR are aligned perpendicularly as shown in Chapter 2, Fig.

2.9. α is the omniwheel contact angle from the ball’s north pole about the body frame and β is

the omniwheel’s tilt angle about the wheel’s axis perpendicular to the surface of the ball. The

normalized vectors ŵi, i = {1, 2, 3}, represent the omniwheel’s spinning axis and the direction
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Table 5.1: List of parameters and time varying variables. CoM = Center of Mass, CoR = Center
of Rotation, which is also the ball’s CoM.

Parameter List Time Varying Variable List, i = {1, 2, 3}
mt = top body mass. θx = roll angle.
mb = ball mass. θy = pitch angle.
Ît = top body inertia about CoM. θz = yaw angle.
Îb = ball inertia about CoM. φx, φy, φz = ball rotation angles.
Iw = wheel inertia about its CoR. ux, uy, uz = control commands in body frame.
r = ball radius. ϕi = encoder i rotation.
rw = omniwheel radius. ui = motor i PWM command ∈ [−1, 1].
l = length of body’s CoM from CoR. τi = motor i torque.
k1 = motor torque gain. pt = top body CoM position vector.
k2 = motor back EMF gain. pb = ball CoM position vector.
g = gravity constant. lb = length vector from CoR to body’s CoM.

lf = length vector from CoR to the ground.
la = length vector from CoR to the IMU.

of the torque τi applied by the motor i. The optical encoder attached on the motor i measures

the angle ϕi which is the ball rotation angle relative to the body. This measurement can be

used to determine the ball inertial rotation angle φ. For clarity, the variable ϕ is used for the

rotation angles from the encoder measurement while φ is used for the ball rotation angles about

the inertial frame. Assuming that there is no slip between the omniwheels and the ball, the

applied torque and encoder measurement at omniwheel i in body coordinates are (r/rw)τiŵi

and (rw/r)ϕiŵi respectively. Let ϕB be the ball rotation angle as measured by the encoders and

τB be the total torque applied to the ball. Then ϕB and τB can be calculated from τi and ϕi as

shown below:

ϕw =
[
ϕ1 ϕ2 ϕ3

]T

, τw =
[
τ1 τ2 τ3

]T

(5.2)

ϕB = (rw/r)
∑3

i=1 ϕiŵ
i = (rw/r)Tobϕw (5.3)

τB = (r/rw)∑3
i=1 τiŵ

i = (r/rw)Tob τw, (5.4)
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where the matrix Tob =
[
ŵ1|ŵ2|ŵ3

]
is the transformation matrix from the omniwheel axis

to the body frame. The omniwheels are placed perpendicularly from each other, therefore

(Tob)−1 = (Tob)T .

5.1.2 Kinematic Formulation

This section derives the body and the ball kinematic equations which will be used for

deriving the kinetic and potential energy of the system. The inertia of the body and the ball,

represented by the matrix Ît and Îb respectively, are shown below:

ÎB
t = diag(It1, It2, It3) Îb = Ib I3×3. (5.5)

The length vectors used in the derivation are defined below:

lBb =
[
0 0 l

]T

, lf =
[
0 0 −r

]T

. (5.6)

The body rotational speed Ω about the inertial frame:

Ω = Rz(θz)Ry(θy)


θ̇x

0

0

+Rz(θz)


0

θ̇y

0

+


0

0

θ̇z

 . (5.7)

The ball rotational speed ω about the inertial frame:

ω =
[
φ̇x φ̇y φ̇z

]T

= RB(θ) ϕ̇B + Ω. (5.8)

The ball linear velocity ṗb can be derived by using the no slip conditions between the ball and
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the ground, as shown below:

ṗb = lf × ω, φ̇z = 0. (5.9)

This constraint is applied here in order to avoid the use of Lagrange Multiplier in the dynamic

equation. This no slip condition also constrains the φ̇z to zero, which affects the encoder

measurement ϕ̇ in (5.8). Then ϕ̇ can be expressed in terms of φ̇x and φ̇y as shown below:

ϕ̇B = RB(θ)T

([
φ̇x φ̇y 0

]T

−Ω
)
. (5.10)

Finally, we have the body linear velocity:

ṗt = d
dt

(
RB (θ) lBb

)
+ ṗb. (5.11)

5.1.3 Motor Dynamics

The back electromotive force (EMF) from the DC brushed motors used in the robot also

contributes to the system dynamic. The torque applied by each motor is:

τi = k1ui − k2ϕ̇i, i = 1, 2, 3, (5.12)

where ui = [−1, 1] is the PWM command into the motor. Using the transformations in (5.3) and

(5.4) into (5.12) yields:

τB = k1u− k2 (r/rw)2 ϕ̇B (5.13)

u =
[
ux uy uz

]T

= (r/rw)Tob

[
u1 u2 u3

]T

. (5.14)
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5.1.4 Lagrangian Dynamics Formulation

The BBR dynamic equation is derived using Lagrangian Dynamics which then simplified

and transformed into the state space form. The energy equations for the Lagrangian are derived

for the top body, the ball and the wheels. The potential and the linear kinetic energy of the wheels

are assumed to be negligible compared to the body and the ball due to their small mass. However,

the no slip constraint between the ball and the wheels creates a coupling. This coupling and

the fast wheel speed may cause a nontrivial increase in the rotational energy. In order to keep

the equations simple and prevent cross terms between the Ω and ω, we assume that Ω is much

smaller than the wheel speed ϕ̇i. Then the wheel i’s angular velocity vector ωwi is shown below:

ωwi = Ω + ϕ̇i ŵ
i ≈ ϕ̇i ŵ

i. (5.15)

Let Iw be the wheel inertia about its axis of rotation. Then the total angular kinetic energy of the

wheels Kw is:

Kw =
3∑

i=1

Iw

2 ω
T
wiωwi = Iw

2 ϕ̇
T
w ϕ̇w

= (Iw/2)(r/rw)2(ϕ̇B)T ϕ̇B. (5.16)

The kinetic and potential energy of the body and the ball are:

Kt = 1
2(RT

B Ω)T ÎB
t (RT

B Ω) + 1
2 mt ṗ

T
t ṗt

Kb = 1
2 ω

T Îbω + 1
2 mb ṗ

T
b ṗb

Ut = −mt

[
0 0 −g

]
pt, Ub = 0.

(5.17)
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The following states x(t) are used in the dynamic equation:

x(t) =

q
q̇

 , q =
[
θx θy θz φ∗x φ∗y

]T

, (5.18)

where φ̇∗x and φ̇∗y are the inertial frame ball rotation speeds rotated about the inertial z-axis by θz

as shown below:

φ̇∗x = cos (θz) φ̇x + sin (θz) φ̇y (5.19)

φ̇∗y = − sin (θz) φ̇x + cos (θz) φ̇y. (5.20)

By choosing φ∗x and φ∗y as the states, all sin (θz) and cos (θz) terms are eliminated after the

simplification in Section 5.1.6. Then the Lagrangian of the system is:

L(q, q̇) = Kt +Kb +Kw − Ut. (5.21)

The system dynamic equation can be solved by using the Lagrange’s Equation:

d

dt

∂L

∂q̇
− ∂L

∂q
− τL = 0, (5.22)

where τL is the total generalized force applied by all the motors through the omniwheels. τL is

defined as follows:

τLj = (τB)T

(
∂ϕ̇B

∂q̇j

)
, j = {1, 2, 3, 4, 5}, (5.23)

where τLj and q̇j are the j-th component of τL and q̇ respectively. The no slip constraints are

already applied during the kinematic formulations, so there is no Lagrange Multiplier due to

system constraints. The acceleration states q̈ can be derived by forming (5.22) into the standard
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form:

M(q) q̈ = b(q̇, q,u) (5.24)

The system dynamic equation ẋ(t) = f(x(t),u(t)) can then be calculated by solving for

q̈ = M(q)−1 b(q̇, q,u). The full symbolic form of the (5.24) can be seen in the Appendix A.2.

This equation needs to be simplified before being used in the EKF because of its length and

nonlinearities.

5.1.5 Sensor Dynamics

The MBBR uses the following sensors to estimate the states: the optical encoders and

IMU gyrometer and accelerometer measurements. In particular, the accelerometer is greatly

affected by the dynamic of the robot. Therefore, we need to derive the sensor dynamics before

they can be used in the EKF. The encoders measure the ball rotation angle with respect to the

body frame (yB
en = ϕB), where ϕ̇B was derived in (5.10). The gyrometer measures the body

angular velocity (yB
gy = ΩB) which was derived in (5.7). The accelerometer measures the linear

acceleration at the IMU’s position about the body frame. Let pa be the position of the IMU

in the inertial frame and lBa = [lax, lay, laz]T is the length vector from ball’s center of mass to

the IMU. Then using a similar kinematics derivation to (5.11), we can derive the accelerometer

measurement dynamics below:

ṗa = d
dt

(
RB(θ) lBa

)
+ ṗb (5.25)

yB
ac = RB(θ)T

([
0 0 −g

]T

− p̈a

)
. (5.26)

The acceleration components of p̈a can be derived from the system dynamic equation ẋ(t) =

f(x(t),u(t)) solved in the Lagrangian Dynamics Section above. Nonzero lax and lay can cause

a bias in the accelerometer measurement due to the centripetal force. However, we assume that

the lax and lay values are zero in order to keep the equations simple.
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5.1.6 Simplifications

The dynamic equation and sensor dynamics must be simplified before they can be used

in the EKF due to the sheer size and nonlinearities in the equations. We can use the linear BBR

model’s assumptions without the trivial yaw rate assumption. Therefore, we assume that θx, θy,

θ̇x, and θ̇y are small. This assumption works under the knowledge that a stable BBR system

has small perturbations on these variables. Then we can use the small angle approximation for

the sine and cosine functions such that sin(θ) ≈ θ, cos(θ) ≈ 1 for both θx and θy. Also, all of

the multiplications between θx, θy, θ̇x, and θ̇y, or with themselves are approximately equal to

zero (e.g. θx θx ≈ 0, θ̇x θy ≈ 0). If φ∗x and φ∗y are used as the states, then there is no sin(θz) and

cos(θz) left in the dynamic equation. The high yaw-rate model can’t be simplified further, but

the linear model can be derived from here by using θ̇z = 0 and uz = 0.

5.2 MBBR Numerical Model

This section shows the MBBR numerical model by plugging in all the corresponding

parameter values shown in Table 5.2 into the simplified model. This will be the model used

for developing the controller and the state estimators. The high yaw-rate model is the linear

model with some additional nonlinear terms, so the linear model is derived first in the following

subsection.

5.2.1 Linear MBBR Model

The linear MBBR model can be simplified into two decoupled MIP systems about the

roll and pitch. The yaw dynamics can’t be simplified into a linear equation just from the small

yaw-rate assumption, so all of the yaw dynamic components are ignored in this model. The yaw

rate can be measured by the gyrometer while the robot’s heading must be estimated by using

other means. A simple gyrometer integration or magnetometer measurement can be used to
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Table 5.2: MBBR Parameter Values.

Parameter Value Parameter Value

mt 550 g It1 2.42 10−3 kg.m2

mb 150 g It2 2.42 10−3 kg.m2

r 32 mm It3 0.79 10−3 kg.m2

rw 12.5 mm Ib 8.46 10−5 kg.m2

l 100 mm Iw 1.20 10−5 kg.m2

lax 0 mm k1 0.176 N.m
lay 0 mm k2(r/rw)2 0.011 N.m.s/rad
laz 130 mm g 9.8 m/s2

dt 0.005 s

estimate the robot’s heading. In our experiements, we used the IMU’s DMP heading estimate for

controlling the linear model Kalman Filter’s heading.

The linear model uses the following states, input and output vectors respectively:

xL = [θx, θy, φ
∗
x, φ

∗
y, θ̇x, θ̇y, φ̇

∗
x, φ̇

∗
y]T

uL = [ux, uy]T

yL = [ΩB
x ,ΩB

y , ϕ
B
x , ϕ

B
y , y

B
ac1, y

B
ac2]T .

(5.27)

Then by using the parameter values listed in Table 5.2, the continuous time linear dynamic model

for the MBBR is:

ẋL = fL(xL,uL)

fL
1 = θ̇x, fL

2 = θ̇y, fL
3 = φ̇∗x, fL

4 = φ̇∗y

fL
5 = 130 θx − 8.9 θ̇x + 8.9 φ̇∗x − 130ux

fL
6 = 130 θy − 8.9 θ̇y + 8.9 φ̇∗y − 130uy

fL
7 = −280 θx + 34 θ̇x − 34 φ̇∗x + 410ux

fL
8 = −280 θy + 34 θ̇y − 34 φ̇∗y + 410uy,

(5.28)
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where fL
i is the i-th component of the vector fL. The sensor dynamic equation for this model is:

yL = hL(xL,uL)

hL
1 = θ̇x, hL

2 = θ̇y

hL
3 = φ∗x − θx, hL

4 = φ∗y − θy

hL
5 = −4.6 θy + 0.5 θ̇y − 0.5 φ̇∗y + 7.8uy

hL
6 = 4.6 θx − 0.5 θ̇x + 0.5 φ̇∗x − 7.8ux,

(5.29)

where hL
i is the i-th component of the vector hL.

5.2.2 High Yaw-Rate MBBR Model

The high yaw-rate model uses the following states, input and output vectors respectively:

xN = [θx, θy, θz, φ
∗
x, φ

∗
y, θ̇x, θ̇y, θ̇z, φ̇

∗
x, φ̇

∗
y, x

N
11, x

N
12, x

N
13]T

uN = [ux, uy, uz]T

yN = [ΩB
x ,ΩB

y ,ΩB
z , ϕ

B
x , ϕ

B
y , ϕ

B
z , y

B
ac1, y

B
ac2]T .

(5.30)

The additional states xN
11 through xN

13 in (5.30) are the augmented states used for the encoder

measurement dynamics. The ϕ̇B defined in (5.8) needs to be integrated to derive the encoder

measurement ϕB which is represented by these additional states. The encoder measurement

dynamics after the simplification are shown below:

ϕB =


ϕB

x

ϕB
y

ϕB
z

 =


φ∗x − θx +

∫
(θy θ̇z)dt

φ∗y − θy −
∫

(θx θ̇z)dt

−θz +
∫

(θy φ̇
∗
x − θx φ̇

∗
y)dt

 =


φ∗x − θx + xN

11

φ∗y + xN
12

−θz + xN
13


xN

11 =
∫

(θy θ̇z)dt, xN
12 = −

∫
(θx θ̇z)dt, xN

13 =
∫

(θy φ̇
∗
x − θx φ̇

∗
y)dt.

(5.31)
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Then the continuous time high yaw-rate dynamic model is:

ẋN = fN(xN ,uN)

fN
1 = θ̇x, fN

2 = θ̇y, fN
3 = θ̇z, fN

4 = φ̇∗x, fN
5 = φ̇∗y

fN
6 = fL

5 + θ̇z(−12 θy + 1.8 θ̇y + 0.0029 φ̇∗y) + 0.80 θx θ̇
2
z − 310 θy uz

fN
7 = fL

6 + θ̇z(12 θx − 1.8 θ̇x − 0.0029 φ̇∗x) + 0.80 θy θ̇
2
z + 310 θx uz

fN
8 = −15θ̇z − 220uz + φ̇∗x (14 θy + 0.015 θ̇y)− φ̇∗y (5.2 θx + 0.015 θ̇x)

+ θ̇z (0.012 θxφ̇
∗
x + 0.015 θyφ̇

∗
y) + 7.5 θy ux − 140 θx uy

fN
9 = fL

7 + θ̇z(−6.5 θy + 0.44 θ̇y − 0.0062 φ̇∗y) + 0.44 θx θ̇
2
z + 400 θy uz

fN
10 = fL

8 + θ̇z(6.5 θx − 0.44 θ̇x + 0.0062 φ̇∗x) + 0.44 θy θ̇
2
z − 400 θx uz

fN
11 = θy θ̇z, fN

12 = −θx θ̇z, fN
13 = θy φ̇

∗
x − θx φ̇

∗
y,

(5.32)

where fN
i is the i-th component of the vector fN . The sensor dynamic model is:

yN = hN(xN ,uN)

hN
1 = θ̇x − θy θ̇z, hN

2 = θ̇y + θy θ̇z hN
3 = θ̇z

hN
4 = φ∗x − θx + xN

11, hN
5 = φ∗y − θy + xN

12, hN
6 = −θz + xN

13

hN
7 = hL

5 + θ̇z (0.32 θx − 0.022 θ̇x + 0.00032 φ̇∗x) + 0.022θy θ̇
2
z − 3.1 θx uz

hN
8 = hL

6 + θ̇z (0.32 θy − 0.022 θ̇y + 0.00032 φ̇∗y)− 0.022θx θ̇
2
z − 3.1 θy uz,

(5.33)

where hN
i is the i-th component of the vector hN . The discrete time equation for the EKF can be

derived by using the same methodology as in 6.1.
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5.3 Friction Model Identification

The linear and high yaw-rate models shown in §5.2.1 and §5.2.2 were used to design

some preliminary KF/EKF and linear state feedback controller. Numerical simulations has

shown some success with the estimator and controller designed this way and can achieve a

stable and good position tracking performance under high yaw-rates. Chapter 6 will show more

details on the controller, estimator design, simulations, and experiment done on the MBBR. The

MBBR were successfully balanced and spun in place using these controllers, however the ball

position and speed estimations were about 2.5 times larger compared to what the encoders were

measuring. These error posed a serious problem to achieve a good ball position control and must

be resolved. The encoder measurements might have some noise due to slipping, backlash, and

motor imbalance; however, this error is way too large to be attributed to these problems. This

kind of error is very likely to caused by friction, one of the major issue caused by miniaturization,

which is not modeled in the dynamics formulation above. Adding a Coulomb and viscous friction

model to the simulation caused a similar result, which makes friction compensation a critical

element for achieving good state estimation and control performance. This will be explained in

more detail in §6.3 and 6.4.

A test setup shown in Fig. 5.2 was made in order to determine the MBBR friction model

as it is being driven in the x and y directions. Unfortunately, the setup is incapable of identifying

the z direction, which should be a part of future work. The friction in the z direction is likely to

be more complex than the other two orientations. The omniwheels placement and orientation

causes the motor to push the ball into or away from the motors depending on the direction of the

spin, which may cause different friction for each spinning direction.

The experiment followed the same methodology as the motor system identification in [7]

which is also done in Chapter 4. A sine sweep signal was sent to the controller to spin the ball

forward and backwards, which also spun the weighted flywheel as we measured the flywheel
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rotation angle using the optical encoder. Unlike the motor identification experiment, the torque

was estimated by using the motor model identified in Chapter 4. This was done by assuming that

the motor model used in the estimator was correct.

Figure 5.2: Friction identification setup, which allows identification in x and y plane.

The experiment identified the friction model by assuming that the friction can be modeled

by using a simple Coulomb and viscous friction model. Let µc and µv be the Coulomb and

viscous friction coefficient respectively. The friction model of the MBBR is shown below:

fcx = −µc sign(ϕ̇x)− µvϕ̇x

fcy = −µc sign(ϕ̇y)− µvϕ̇y.

(5.34)

fcx and fcy were identified separately as the experiment was done in x and y directions. Assuming

that there is no slip in between the ball and the flywheel, then φf and ϕx or ϕy have the following

kinematic relationship:

φf/ϕx = r/rf

φf/ϕy = r/rf

(5.35)

82



0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
or

qu
e 

(N
.m

)

Friction model ID: X-direction, R2=0.93527

torque estimate

J*phidd + m*c*sign(phid) + m2*b*phid

J =0.0015474
b =0.0012376
c =0.050602

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
or

qu
e 

(N
.m

)

Friction model ID: Y-direction, R2=0.93042

torque estimate

J*phidd + m*c*sign(phid) + m2*b*phid

J =0.0017256
b =0.0010561
c =0.052651

Figure 5.3: System identification regression fit for the friction model, m = rf/r, c = µc, b = µv.
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Using the motor model in (5.13), the dynamics equation for the flywheel is:

Jf φ̈f = k1ux − k2 (r/rw)2ϕ̇x + fcx (rf/r)

Jf φ̈f = k1uy − k2 (r/rw)2ϕ̇y + fcy (rf/r),
(5.36)

where Jf and φf are the flywheel inertia and rotation angle respectively. Then the linear

regression model for the system identification in the x direction is:

[
Jf µc µv

]


φ̈f

sign(φ̇f ) (rf/r)

φ̇f (rf/r)2

 = k1ux − k2 (r/rw)2ϕ̇x. (5.37)

The input signal ux and uy used the sine chirp signal, with amplitude of 3, run time of 20

seconds, initial and peak frequency of 0.1 Hz and 2 Hz respectively. The experimental data and

regression model model fitting can be seen in Fig. 5.3. The identified friction parameters fits

the experimental data fairly well, with the averaged R2 value of 0.93. The data does not fit very

well near the start and end of the experiment, which indicates that there might be an unmodeled

dynamic when the ball starts or stops spinning. This could be caused by static friction, but

identifying the static friction behavior of the robot can be very difficult. More work can be done

to fully identify the friction model, but it might not be necessary.

The estimated inertia of the flywheel Jf should also be approximately the same value

between the two experiments, but the regression parameter for the y direction is 11.5% larger than

the x direction. This is very likely caused by a torque imbalance between the three motors which,

despite the relatively small difference, might cause some issue during the control. Unfortunately,

we don’t have the friction parameter model for the z direction. As mentioned earlier, the

identification of the z friction model can be a part of the future work. In order to keep the model

simple, we used the values µc = 0.05265 N.m and µv = 0.001056 N.m.rad/s for all of the x, y,

and z directions. The viscous friction model is linear and can be added to the dynamic model for
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the estimators while the Coulomb model is discontinuous at zero speed. The methodology for

the friction modeling and compensation is explained in more detail in §6.1 and §6.2.2.
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Chapter 6

MBBR Controller and Estimation

This chapter discusses the MBBR estimator and controller design, numerical simulation,

and the motion capture (mocap) experiments. Several preliminary controllers and estimators

were designed by using the simplified the MBBR high yaw-rate model derived in Chapter 5.

The feedback stabilizing controllers were designed by using a simple linear feedback controller,

which were shown to be adequate and can achieve good position tracking under high yaw rates in

both the simulation and the actual robot. The simulation results will be shown in more detail in

§6.3. Linear state feedback controller is also the controller of choice in most of the existing BBRs

[1] [2] [3]. A simulated adaptive model predictive control framework for controlling a BBR has

been presented by [4]. Using a more complex or nonlinear controller which compensates for

the nonlinearities caused by nontrivial yaw rates might improve the robustness of the controller.

Designing a nonlinear controller is a highly challenging problem and can be a part of the future

work. This chapter is outlined as follows: the estimator design, controller design, numerical

simulations, and the mocap experiments.

The mocap experiments were done to show the estimator’s accuracy and the controller’s

ball position and velocity tracking performance. The estimation accuracy of both the linear model

KF and the high yaw-rate EKF were compared under several yaw rates and driving conditions. In

addition to this, the InvenSense MPU-9250 DMP estimation is also compared using the mocap

at the same time. Our previous work (see Chapter 3) has shown that the DMP estimations is
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fairly accurate even under high yaw rates dynamics. The mocap experiments can show whether

this result is also can be reproduced in the MBBR and also verify the estimation accuracy of the

state estimations.

6.1 Estimators Design

This section describes the linear model KF and the high yaw-rate model EKF which were

used in the motion capture experiments. The discrete time dynamic models used in KF and EKF

are derived by using a simple Explicit Euler integration as shown below:

xk+1 = xk + dtf(xk,uk) + vk

yk = h(xk,uk) +wk,

(6.1)

where dt is the sampling period, vk and wk are the process and the measurement noise vectors

respectively. The length of the vectors depends on the model used as shown in §5.2.1 and §5.2.2.

The high yaw-rate model has 13 states, 3 inputs, and 8 outputs while the linear model has 8

states, 2 inputs, and 6 outputs. Let Q = E(vT
k vk) and R = E(wT

k wk) be the process and

measurement noise covariance matrix respectively. The following Q and R matrices were used

in the motion capture experiment:

QL = diag(qL
1 , q

L
2 , . . . , q

L
8 ) RL = diag(rL

1 , r
L
2 , . . . , r

L
6 )

QN = diag(qN
1 , q

N
2 , . . . , q

N
13) RN = diag(rN

1 , r
N
2 , . . . , r

N
8 ),

(6.2)

where the superscript L and N represents the linear and high yaw-rate model respectively.

The values for Q and R matrices are listed for each motion capture experiment in §6.4. The

covariance matrix is chosen to be diagonal to make designing the KF and EKF simpler.

The friction model or the nonlinearities caused by the drive/coast motors are not included

in either estimators. The linear model can’t model any of the nonlinearities, so it must use the
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inputs before the friction and drive/coast compensations for the KF updates and assume that the

compensation has successfully linearized the model. On the other hand, the EKF can model

these nonlinearities, but using the same assumption as the KF case works just as well which can

be seen in the motion capture experiments. The setup and results of the friction compensation

will be discussed in more detail in §6.4.2. In order to keep similar controller structure between

the two controller, both estimators use the uncompensated inputs for the KF and EKF updates.

Of course, it is likely that there are modeling errors and significant unmodeled dynamics, such as

the static friction, motor backlash, omniwheel slips, etc. These errors are assumed to be a part of

the process noise which makes selecting the appropriate Q matrix important to achieve the best

estimation accuracy.

6.1.1 Inertial Ball Angle and Velocity Estimation

Both estimators do not estimate the inertial ball angle and velocity directly. Instead, the

yaw-normalized ball velocities states are rotated back into the inertial frame and then integrated

to estimate the inertial ball angles. The inertial frame ball angular velocities are:

φ̇x = cos (θz) φ̇∗x − sin (θz) φ̇∗y

φ̇y = sin (θz) φ̇∗x + cos (θz) φ̇∗y,
(6.3)

which are integrated using the Explicit Euler scheme to estimate the inertial ball angles:

φx,k+1 = φx,k + φ̇x,k dt

φy,k+1 = φy,k + φ̇y,k dt.

(6.4)

Augmenting the inertial ball angle states into the EKF is possible but has no particular benefit.

The system dynamics is not affected by the ball angles and the encoders only directly measure the

yaw-normalized ball angles. Therefore, calculating the inertial frame states can be done outside

of the EKF. The inertial ball position must be integrated, so it is highly prone to integration
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error which will build up over time. Therefore, this method can only be used to estimate the

“approximate” inertial position. Inertial position tracking under high yaw rates is already a

difficult problem, so this approximate position works well enough for us. This can be a reason to

use the yaw-normalized states under trivial yaw rates as it is less prone to the integration build

up. However, in order to keep the controller simple, we only used the inertial ball position states

and references in the controller.

6.2 Controller Design

The MBBR was controlled by using a linear state feedback controller and the estimated

states from either the KF or the EKF. The controller gains were determined from the linear

model’s LQR controller gains which then were tuned by hand afterwards. The same controller

was used to test both the KF and the EKF in the §6.4. The full control algorithm for the MBBR

is shown in the block diagram in Fig. 6.1. The “reference and state error calculator” block uses

the EKF state estimation and the Bluetooth remote control commands to calculate the state errors

for the linear feedback controller. The block diagram for the reference and state error calculator

can be seen in Fig. 6.2. The system inputs are defined with respect to the robot’s body frame of

reference, which means that the inertial ball angle and velocity state errors must be rotated back

into the yaw-normalized frame. This process can be seen in the lower left part of Fig. 6.2. The

MBBR has the following omniwheels axis to body frame transformation matrix:

Tob =


−0.7344 0.0583 0.6761

0.3567 −0.8144 0.4577

0.5744 0.5744 0.5774

 , (6.5)

which corresponds to α = 60◦, β = 48.2◦, rotated about the yaw axis by −140◦. The α and

β angles corresponds to the omniwheel midlatitude and orthogonal placement as described in

§2.3.2.
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Figure 6.1: The control block diagram of the MBBR.

Figure 6.2: The block diagram of the reference and state error calculator.
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Figure 6.3: The non-minimum phase behavior of an inverted pendulum robot using a SLC outer
loop and ball velocity reference.
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As a type of an inverted pendulum system, the MBBR also has the non-minimum phase

dynamics which is caused by an unstable zero in the system. This non-minimum phase dynamics

affects the relationship between the upper body attitude angles (θx and θy) and the ball position

or velocity (φx and φy). Applying torque to the ball in order to spin the ball forward will also

apply counter torque into the upper body in the reverse direction and away from the equilibrium.

This means that the torque controlling the ball and the upper body act in the opposite directions

to each other. The Successive Loop Closure (SLC) controller which was used in the MIP in

Fig. 3.3 calculates the upper body attitude angles required to move the ball position or velocity

according to the non-minimum phase dynamics. An example of this can be seen in Fig. 6.3,

where the outer loop controller D2(s) = Θ(s)/Φ(s) calculates the reference value for the upper

body angle θ. The θ must tilt forward in order to move the ball (or the robot itself) forward,

which results in the initial reverse ball movement as shown in Fig. 6.3. The SLC controller used

in the MBBR will be explained in more detail in §6.2.1.

The friction and drive/coast compensation is done after the KF and EKF prediction

updates as discussed in §6.1. A low-pass filter is used on the KF or EKF φ̇x and φ̇y state errors

before the linear feedback controller because of the highly noisy estimation from these two states.

Not using the low-pass filter makes the MBBR extremely jittery and very difficult to control

while spinning fast. These vibrations also prevent the robot from using the control gains derived

from the LQR, to the point that it have can only use around 20% of the suggested ball velocity

gains. Unfortunately, we have not yet found the covariance matrices values that can eliminate

this noise while also having accurate θ estimates. Discovering a way to reduce the noise in the

ball velocity estimations can be a part of the future work.

Let xe ∈ R10 be state error with respect to the reference. The elements of xe are:

xe =
[
∆θx ∆θy ∆θz ∆φ∗x ∆φ∗y ∆θ̇x ∆θ̇y ∆θ̇z ∆φ̇∗LP x ∆φ̇∗LP y

]T

(6.6)
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∆θx = θr
x − θ̂x, ∆θy = θr

y − θ̂y, ∆θz = θr
z − θ̂z

∆θ̇x = θ̇r
x −

˙̂
θx, ∆θ̇y = θ̇r

y −
˙̂
θy, ∆θ̇z = θ̇r

z −
˙̂
θz,

(6.7)

where the hat symbol and the superscript r represents the state estimations and references

respectively. The KF does not estimate θz and θ̇z, so the IMU’s DMP yaw angle estimates and

raw gyro measurements are used instead. The errors ∆φ∗x, ∆φ∗y, ∆φ̇∗LP x, and ∆φ̇∗LP y requires

some additional steps to compute. ∆φ∗x and ∆φ∗y are the yaw-normalized ball angle errors, as

shown below:
∆φ∗x = cos(θ̂z) (φr

x − φ̂x) + sin(θ̂z) (φr
y − φ̂y)

∆φ∗y = − sin(θ̂z) (φr
x − φ̂x) + cos(θ̂z) (φr

y − φ̂y)
(6.8)

Similarly, ∆φ̇∗x and ∆φ̇∗y are the yaw-normalized ball angular velocity errors, as shown below:

∆φ̇∗x = cos(θ̂z) (φ̇r
x −

˙̂
φx) + sin(θ̂z) (φ̇r

y −
˙̂
φy)

∆φ̇∗y = − sin(θ̂z) (φ̇r
x −

˙̂
φx) + cos(θ̂z) (φ̇r

y −
˙̂
φy).

(6.9)

∆φ̇∗LP x and ∆φ̇∗LP y are the low-pass filtered signal of ∆φ̇∗x and ∆φ̇∗y respectively. The details

of the reference states calculation and the low-pass filter can be seen in §6.2.1. Finally, the

following linear state feedback controller is used to stabilize the robot:


ux

uy

uz

 = −Kc xe, Kc =


c1 0 0 c2 0 c3 0 0 c4 0

0 c1 0 0 c2 0 c3 0 0 c4

0 0 c5 0 0 0 0 c6 0 0

 . (6.10)

The values for the gain Kc differ in some of the mocap experiments, so these values will be listed

in each of the experiments in §6.4. The controller gains were also gain scheduled based on the

reference yaw rates, which vary in between each experiments as well. The reference states, SLC

outer loop controller, friction and drive/coast compensations will be discussed in the following

subsections.
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6.2.1 Reference States Calculations

The reference states φ̇r
x, φ̇r

y, and θ̇r
z came from the Bluetooth dongle (JY-MCU HC-06)

which is connected to the user by using an Android Bluetooth remote control app called “4joy

Remote”. This remote control feeds in the reference for the yaw rate and ball inertial velocity,

which are integrated to calculate the heading and ball inertial position references, as shown

below:
φr

x,k+1 = φr
x,k + φ̇r

x,k dt

φr
y,k+1 = φr

y,k + φ̇r
y,k dt

θr
z,k+1 = θr

x,k + θ̇r
x,k dt.

(6.11)

The remote control’s inertial frame “forward” direction is set when the MBBR starts balancing

or when the “heading reset button” is pressed in the remote control. A discrete set of yaw rates

reference were tested in the motion capture experiment, which consists of the yaw rates 0.25 Hz,

0.5 Hz, 0.75 Hz, 1 Hz, and 1.5 Hz in the clockwise and counter-clockwise directions.

The ball velocity estimation is highly noisy which is also reflected in the encoder mea-

surements. There are several possible cause of noise, such as omniwheels slipping, DROW roller

transition, static friction, and backlash. These noises are part of the process noise and their

effects are also reflected in the measurements. The encoder measurements are the most affected

by these noises, which means very noisy ball velocity estimations. Even though it might be not

ideal, filtering the EKF ball velocity estimates can be done to reduce the noise caused by these

problems. Preliminary motion capture experiments without filtering the ball velocity estimates

has shown that the estimated states were relatively accurate but was riddled with vibration which

was dominant in the frequency range of 18 to 23 rad/s. This experiment and the data will be

discussed in §6.4.3. Both ∆φ̇∗x and ∆φ̇∗y are low-pass filtered by using a discrete time low-pass

filter with cutoff frequency of 10 rad/s. This cutoff frequency is relatively low for spinning at 1

Hz and 1.5 Hz which are some of the yaw rates tested in the mocap experiments. Therefore, the

low-pass filter cutoff frequency is increased to 15 and 20 rad/s for the yaw rates 1 Hz and 1.5
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Hz respectively. The experiments done in §6.4.5 and §6.4.6 have shown that the robot can spin

relatively well under these cutoff frequencies.

The reference states for the θx, θy, θ̇x, and θ̇y need to be calculated by using a filter which

predicts the non-minimum phase dynamics of an inverted pendulum robot. This filter uses the

same principle as an outer loop of a Successive Loop Closure (SLC) controller which is used in

the MIP robot in Chapter 3. The SLC control algorithm seen in the Fig. 3.3 was used on a MIP

robot, but the same principles can also be applied here. The outer loop controller of the SLC can

be used to determine the state reference values θr
x and θr

y. These can then be differentiated by

using a simple backwards difference scheme to determine the θ̇r
x and θ̇r

y, as shown below:

θ̇x,k = (θx,k − θx,k−1)/dt

θ̇y,k = (θy,k − θy,k−1)/dt
(6.12)

These reference angles for the upper body angles follows the robot’s natural non-minimum phase

trajectory, which allows for a faster ball position and velocity tracking with less overshoot. The

outer loop controller used in the MIP outputs the reference θ for the inner loop controller which

is not a state space controller. The state space controller also has ball position and velocity gains

which have the same purpose as the outer loop controller: achieving ball position and velocity

tracking. Therefore, we don’t need to use high gains for the outer loop controller like the MIP

case. It is enough for the outer loop to help pushing the upper body to tilt into the right direction

which allows robot move smoothly from one position into another.

The SLC outer loop controller was designed by using the linear MBBR numerical model

in (5.32). The controller takes in the yaw-normalized ball velocity state error ∆φ̇∗ as an input

and outputs the corresponding non-minimum phase θ reference angles. The following SLC outer
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loop controller is used in the MBBR controller:

Dx(z) = Θr
x(z)

∆Φ̇∗x(z)
= cSLC

−0.000985
z − ωSLC

Dy(z) =
Θr

y(z)
∆Φ̇∗y(z)

= cSLC
−0.000985
z − ωSLC

(6.13)

The outer loop controller pole (ωSLC) and gain (cSLC) are updated as the depending on the

Bluetooth yaw rate command. The poles and gains may vary in between the experiments done in

the §6.4, which will be listed in each of the experiment subsections.

6.2.2 Friction Compensation

The friction model is defined in the body frame of reference while the drive/coast

compensation is applied on each motor commands. Therefore, the friction compensation must

be done before the drive/coast compensations. The total torque applied in the x direction can be

expressed as:

Στx = k1 ux − k2(r/rw)2ϕ̇x − µc sign(ϕ̇)− µv ϕ̇x

= k1 (ux − (µc/k1) sign(ϕ̇x))− (k2(r/rw)2 + µv) ϕ̇x.

(6.14)

The viscous friction model is linear and can simply be added into the system dynamic model.

Therefore, the only friction being compensated is the Coulomb friction which is nonlinear and, as

mentioned in §6.1, is not modeled in either KF or EKF. The compensation in the x direction can

be done by adding (µc/k1) sign(ϕ̇x) into the ux. However, the sign function can add vibrations

near zero speed because of the discontinuity. The MBBR uses the smoothed sign function shown

below:

sign(x) ≈


1− e−2 x if x > 0

−1 + e2 x if x < 0.
(6.15)
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This function is smooth near zero speed and reach 95% value at approximately x = 3. Using

k1, µc, and µv values listed in Chapter 5, (µc/k1) and µv have a value of 0.30 (unitless) and

0.001056 N.m.rad/s respectively. As mentioned in §5.3, the friction is assumed to be the same in

all directions which means that the friction in the y and z directions can be derived in the same

way.

6.2.3 Drive/Coast Compensation

The drive/coast compensation follows the same algorithm as shown in §4.4 and is applied

on each motors. The motor parameters have been identified, with motor resistance of 3.385 Ω,

motor gain post 12:1 gear reduction of 0.0742 N.m/A, and inductance of 0.585 mH. Using these

parameters, 20 kHz PWM frequency, and the nominal voltage of 8 V, we have the following

drive/coast parameters:

is =2.36 A, Tr =0.289, ωnl =108 rad/s. (6.16)

The inputs before the drive/coast compensation must be scaled with respect to the nominal

voltage of 8V. This is done by measuring the current battery voltage Vb and then scaling the

inputs by 8V/Vb. The rotor speed of the motor must be estimated for this algorithm to work, so a

simple filtering algorithm [5] is used to estimate the rotor i speed directly from the encoder i

measurements ϕi, i = {1, 2, 3}. Let fk be the noisy measurement at time step tk. We may fit the

5 previous time steps tap delayed measurements into a 1st order polynomial:

f (k)(t) = c
(k)
0 + c

(k)
1 t. (6.17)
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Using the time step of 0.005 s, we need to solve the following equation:



1 0

1 −0.005

1 −0.010

1 −0.015

1 −0.020

1 −0.025



c
(k)
0

c
(k)
1

 =



fk

fk−1

fk−2

fk−3

fk−4

fk−5



↔ A c(k) = f (k) (6.18)

The time derivative of the measurement can be estimated as:

(
df

dt

)
t=tk

=
[
0 1

]
A+ f (k) (6.19)

where A+ is the pseudo-inverse of A. Then we can solve for the time derivative by using the

following equation:

(
df

dt

)
t=tk

=
[
28.6 17.1 5.71 −5.71 −17.1 −28.6

]
f (k) (6.20)

6.3 Numerical Simulation

The full MBBR dynamic model shown in the Appendix A is used in the simulation

together with the high yaw-rate model EKF and controller derived above. The friction and its

compensation were modeled in the simulation. However, the drive/coast dynamics were not

modeled in the simulation due to the complexity of simulating each individual wheels/motors.

The simulation was done using the 4th order Explicit Runge-Kutta scheme [5], which is simple

and easy to use. The simulation also simulates the estimator and controller for the high yaw-rate

EKF, using the same sampling rate as the MBBR (200 Hz). The simulation time step is 1 ms

(1/5 of the sampling period) and used the same process and measurement noise as the EKF’s Q
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and R matrices. Using this process noise in the simulation is very likely not comparable with

the actual noise in the system, but we do not have the means of identifying the actual process

noise data. The actual robot has a highly noticeable noise in the frequency range of 20-30 rad/s

which is very likely caused by the roller transitions in the DROWs. This noise seems to vary

proportionally with respect to the drive speed, which adds the complexity of using this noise in

the simulation. The implementation of a more realistic noise as it appears in the actual robot can

be done as a part of the future work.

The simulation used the same controller and estimator structure as the one used in the

actual robot. However, this simulation does not use low-pass filter and gain scheduling in the

controller. The ball velocity estimate is not as noisy as the actual robot and the controller can use

a single gain for every yaw rates. The simulation used the following process and measurement

noise covariance matrices for the EKF:

qN
1 = qN

2 = 10−5, qN
3 = qN

4 = qN
5 = 10−4, qN

6 = qN
7 = 0.1,

qN
8 = qN

9 = qN
10 = 0.1, qN

11 = qN
12 = qN

13 = 10−3,

rN
1 = rN

2 = rN
3 = 2.08 · 10−6, rN

4 = rN
5 = rN

6 = 7.62 · 10−5, rN
7 = rN

8 = 1.41.

(6.21)

The simulation uses the following controller gains:

c1 =14, c2 =2, c3 =0.6, c4 =1.2,

c5 =0.4, c6 =1.2, cSLC =0.25, ωSLC =0.961
(6.22)

which are constant throughout the simulation. The following two subsections show the simulation

for friction compensations and the position tracking under high yaw rates.

6.3.1 Friction Model Simulations

Several simulations has been done to show the effect of the friction and determine the

best method to implement the friction compensation into the controller and estimators. The
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Figure 6.4: Simulated ball speed estimation without friction compensation or model.
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Figure 6.5: Motion capture measurements vs EKF estimation for the θ and φ̇ with and without
friction compensation.
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Coulomb and viscous friction model in §5.3 were used to simulate the friction.

Adding friction into the system and using no compensation caused the estimated ball

velocity states (φ̇x and φ̇y) to become too large compared to the true values. This phenomenon

happened to both in the simulation and in the MBBR, as shown in Fig. 6.4 and 6.5 respectively.

The φ̇ estimations of the MBBR were compared with the speed estimated from motion capture

experiment which will be discussed in more detail in §6.4.2. Both figures showed similar ball

velocity errors, which is approximately 1.5 to 2 times larger than what they should be. The errors

in the simulation seemed more random than in the actual robot. This is likely caused by the

simulated process noise in the simulation does not match the actual robot’s noise. The error is

mostly multiplicative while idling, so the MBBR can stabilize in place by using the correct gain

values. However, this become a huge problem for ball position and speed tracking due to the

incorrect estimations. Obviously, this problem must be resolved before we can even attempt

translation and spinning at the same time because it requires a more accurate inertial ball position

and velocity estimations.

The controller compensates the Coulomb friction by adding a constant value depending

on the sign of the encoder velocities. The estimator can either model the friction and use the

input post compensation for the prediction update, or omit the friction model and use the input

before the compensation. The former method can work as well as the latter, but the predicted

states tend to have huge noise near zero velocity. This is very likely caused by the nonlinearity in

the Coulomb friction model. So, we assumed that the compensation fully counteract the friction

and all of the errors become a part of the process noise. This is the method that works well in

both the simulation and the actual robot. The same principle is also applied to the drive/coast

compensation and it worked well in the real robot.
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6.3.2 High Yaw-Rate Simulations

This simulation is done to show that the inertial position tracking under high yaw rates is

possible by using a linear controller. The MBBR was idle and then simultaneously spinning and

translating starting from t = 10s to t = 20s. The yaw rate and ball velocity references were set

at 1 Hz and 20 cm/s respectively. The simulation result can be seen in Fig. 6.6. The inertial ball

position estimation slowly drifts away from the actual position, which can be seen in the inertial

ball position x plot. This is caused by the integration error build up which can happen due to

noise and estimation error.

As shown in the simulation result, a linear controller is sufficient to control the MBBR

for simultaneous translation and rotation at nontrivial yaw rates. The problem is that this

simulation does not model the problematic mechanical issue in the actual robot, which includes

the high frequency vibrations from using DROW, static friction, and backlash. The process noise

covariance used in the simulation was the similar to the one in the actual robot’s EKF, but the true

process noise is unknown. This simulation only shows that the linear controller can work under

ideal conditions, which might also work in the actual robot if the state estimation is accurate

enough.

6.4 Motion Capture Experiment

In this section, the accuracy of the EKF and the KF were evaluated by comparing the

estimated attitude angles and inertial ball velocities with the motion captured measurements.

Several experiments were designed to verify the estimation accuracy, controller stability, noise

frequency, and tracking performance.

The measurement noise covariance matrix remained constant throughout the experiments.

On the other hand, the process noise covariance matrix may change slightly in between the

experiments. The values for the process noise covariance matrix is listed in each motion capture

101



0 5 10 15 20 25

Time (s)

-0.2

-0.1

0

0.1

0.2

x 
(r

ad
)

Roll Angle
EKF
actual

0 5 10 15 20 25

Time (s)

-0.2

-0.1

0

0.1

0.2

y 
(r

ad
)

Pitch Angle
EKF
actual

0 5 10 15 20 25

Time (s)

-0.5

0

0.5

B
al

l p
os

iti
on

 x
 (

m
)

Inertial Ball Position x

EKF
actual
reference

0 5 10 15 20 25

Time (s)

0

1

2

3

B
al

l p
os

iti
on

 y
 (

m
)

Inertial Ball Position y

EKF
actual
reference

0 5 10 15 20 25

Time (s)

-1

-0.5

0

0.5

1

B
al

l V
el

oc
ity

 x
 (

m
/s

)

Inertial Ball Velocity x

EKF
actual
reference 0 5 10 15 20 25

Time (s)

-1

-0.5

0

0.5

1

B
al

l V
el

oc
ity

 y
 (

m
/s

)

Inertial Ball Velocity y

EKF
actual
reference

0 5 10 15 20 25

Time (s)

-5

0

5

H
ea

di
ng

 (
ra

d)

Heading Angle

EKF
actual
reference

0 5 10 15 20 25

Time (s)

0

2

4

6

8

Y
aw

 R
at

e 
(r

ad
/s

)

Yaw Rate

actual
EKF
reference

Figure 6.6: MBBR simulation plot, 1 Hz yaw rate and 20 cm/s drive rate.
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experiment subsection. The following measurement noise covariance matrices values were used

in all motion capture experiments:

rN
1 = rN

2 = rN
3 = rL

1 = rL
2 =2.08 · 10−6

rN
4 = rN

5 = rN
6 = rL

3 = rL
4 =7.62 · 10−5

rN
7 = rN

8 = rL
5 = rL

6 =1.41

(6.23)

The controller in the experiments were all run by using the EKF estimation states, except for the

last experiment where it used the DMP and KF estimations instead. The DMP is the proprietary

orientation algorithm native in the InvenSense MPU-9250 IMU which performance was shown

in §3.4.2. The accuracy of its orientation estimation is also shown in this section.

6.4.1 Motion Capture Setup and Calibration

A motion capture (mocap) system using four Optitrack Prime 13 cameras was used to

verify the accuracy of the estimated θ angles and the inertial frame ball angular velocities φ̇. The

MBBR was attached with 8 mocap markers, as shown in Fig. 6.7, and was balanced with the

controller in §6.2 using the estimated states from either the EKF or the KF.

The markers can be grouped up to form a rigid body model by using the mocap tracking

software. The mocap can measure the rigid body centroid position and orientation in quaternion.

This measurement can be transformed into the Euler roll-pitch-yaw angles and the ball velocity

after some calibrations and calculations. The Euler angles can be calculated by aligning the

mocap quaternion with the body’s axis and then transforming the quaternion into the correspond-

ing Euler angles. Once the Euler angles have been calculated, the ball speed can be estimated

by using kinematics relationship. The MBBR data was also recorded in the Beaglebone Black

internal storage, which must be calibrated to match the mocap data as much as possible post

recording.

The initial quaternion of the rigid body formed by the markers was set when the rigid
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Figure 6.7: MBBR with 8 motion capture markers attached.

body was defined. Therefore, the MBBR was set as upright as possible during this part of the

setup. Then, let the MBBR rest at an angle only in the x direction before starting the recording.

After the mocap starts recording, upright the MBBR as quickly as possible so that there is a huge

spike in the recorded data. This helps matching up the starting time between the mocap and

the data recorded in the Beaglebone Black. After matching up the time between both data, the

orientation is matched by rotating the quarternion angles and transform it into the roll-pitch-yaw

Euler angles. The resulting angles is matched to the IMU’s DMP measurements because the

EKF and KF are not active until the robot starts balancing. If there are some offsets, the angles

are adjusted further manually until the initial DMP orientation signals match the mocap.

After the Euler angles has been calibrated, they can then be used to estimate the ball

velocity. The markers centroid is defined as the rigid body position in the mocap data. The z

axis data while the MBBR is idling can be used to estimate the centroid’s height from the ball’s
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centroid. Let the vector pm be the markers centroid position, pbm be the mocap’s ball centroid

position, θm be the mocap Euler angles, and lm be the length vector from the ball to the marker

centroid. Then the ball position can be calculated as follows:

pbm =pm −Rb(θm) lm, lm =
[
0 0 0.164

]T

. (6.24)

Then the mocap’s ball velocity can be estimated by using the 1st order central difference formula:

ṗbm,k =(ṗbm,k+1 − ṗbm,k−1)/dtm, (6.25)

where dtm is the mocap sampling period (8.3 ms, or 120 Hz). This ball velocity is not measured

directly which makes it not as accurate as the mocap’s orientation measurements. However, it

certainly can capture the vibrations caused by the mechanical problems in the MBBR which is

primarily in the 20-25 rad/s frequency range.

6.4.2 Friction Compensation Experiment

This experiment is done to show that not compensating or modeling the friction resulted

in a much larger ball speed estimations than the actual value. This experiment were also done

to show that using the friction compensation can achieve a much more accurate ball speed

estimations. The following estimator process noise values were used in this experiment:

qN
1 = qN

2 =10−5, qN
3 =10−5, qN

4 = qN
5 = qN

6 = qN
7 =0.1

qN
8 =2, qN

9 = qN
10 =10−4, qN

11 = qN
12 = qN

13 =0.001.
(6.26)

The following controller values were used in this experiment:

c1 =8.5, c2 =0.3, c3 =0.4, c4 =0.65

c5 =0.4, c6 =0.9, cSLC =0.2, ωSLC =0.961
(6.27)

105



6 7 8 9 10 11 12 13 14

Time (s)

-5

0

5
A

cc
el

er
at

io
n 

x 
(m

/s
2
)

Acceleration x

No compensation
With compensation
and modeled in EKF

accelerometer
estimation

6 7 8 9 10 11 12 13 14

Time (s)

-5

0

5

A
cc

el
er

at
io

n 
y 

(m
/s

2
)

Acceleration y

No compensation
With compensation
and modeled in EKF

accelerometer
estimation

Figure 6.8: Accelerometer measurement vs EKF estimated sensor value with and without
friction compensation.

The experiment were done with zero yaw rate reference, so only one set of controller gains

were used. The EKF estimations of the θx, θy, φ̇x, and φ̇y for the case with and without friction

compensations can be seen in Fig. 6.5. The discussion of the result in Fig. 6.5 has already

been done in §6.3.1. The acceleration measurement and EKF estimated value are shown in

Fig. 6.8. This plot shows that by modeling the Coulomb friction in the EKF, the predicted

acceleration measurement has large spikes near zero speed due to the nonlinearity in the Coulomb

friction model. This might affect the state estimations near zero speed and produce a more noisy

estimation. Even though this might help fighting against the static friction, we decided to not

model the Coulomb friction in the EKF as mentioned in the §6.3.1.

6.4.3 Preliminary Motion Capture Experiment

This experiment is one of the preliminary experiments using the controller with SLC θ

references. At this point of time, we did not use gain scheduling and low-pass filtering on the ball

velocity estimates, which made the robot highly jittery and difficult to balance. The following
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estimator process noise values were used in this experiment:

qN
1 = qN

2 =10−5, qN
3 =10−5, qN

4 = qN
5 = qN

6 = qN
7 =0.1

qN
8 =2, qN

9 = qN
10 =10−4, qN

11 = qN
12 = qN

13 =0.001.
(6.28)

In this experiment, all controller gains are fixed which is shown below:

c1 =6.4, c2 =0.19, c3 =0.13, c4 =0.0125

c5 =0.4, c6 =0.9, cSLC =0.39, ωSLC =0.961
(6.29)

These gains are significantly different than the one used in the simulation (see §6.3.2, (6.22)),

particularly the extremely small c4 which is the ball speed gain. At the time of this experiment,

the control of the robot was extremely difficult which was likely caused by the highly noisy

ball speed estimates. Using c4 gain larger than 0.05 caused extreme vibrations which made

controlling the robot impossible. The cSLC value is also larger than the one used in the simulation

which was done to compensate the small c4. The SLC controller has a build in low-pass filter

which was the reason why the MBBR balanced well despite the large noise in the ball speed

estimation. The list of the RMS values of the estimation error vs mocap under the tested driving

conditions can be seen in Table 6.1. There is a trend where the estimation error increases as

the yaw rate and drive rate increases. This implies that driving at higher yaw rates and drive

rates is more unstable due to the increased estimation errors, which was the case in all of our

experiments. This controller was stable up to approximately 0.75 Hz yaw rate. At yaw rates of

1 Hz and higher, the controller struggles to balance and often can’t maintain position tracking

for an extended period of time. The RSME increases more with respect to the yaw rate than the

drive rate, which makes yaw rate the limiting factor in achieving simultaneous translation and

rotation.

The plots of the mocap measurement vs. EKF estimations in different driving conditions

can be seen in Fig. 6.9 to 6.12. The EKF θx estimation at the beginning of Fig. 6.9 has an offset
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Figure 6.9: EKF estimates vs mocap plots under 0 yaw rate and 20 cm/s drive rate.
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Figure 6.10: EKF estimates vs mocap plots under 0.25 Hz yaw rate and 10 cm/s drive speed.
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Figure 6.11: EKF estimates vs mocap plots under 0.5 Hz yaw rate and 10 cm/s drive speed.
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Figure 6.12: EKF estimates vs mocap plots under 1 Hz yaw rate and 5 cm/s drive speed.
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Figure 6.13: FFT plot of the φ̇x EKF estimation and mocap measurements.

112



Table 6.1: List of RMS error of the θ and φ̇ estimations vs mocap in the x and y directions.

Driving conditions RMSE θ (rad) RMSE φ̇ (cm/s)

Idle 0.017 8.3
Translate 20 cm/s 0.031 9.6
Spin 0.5 Hz 0.056 13
Spin 1 Hz 0.065 19
Translate 10 cm/s & spin 0.25 Hz 0.036 9.9
Translate 10 cm/s & spin 0.5 Hz 0.057 14
Translate 5 cm/s & spin 1 Hz 0.077 21

error that slowly disappeared which we believe was caused by initialization error. Otherwise,

there is no problem in the θx and θy estimates as the estimation errors are mostly offset errors.

The problem is in the ball velocity estimations, where both the mocap measurements and the

EKF estimates have large amount of noise. However, the signals seem to have approximately

the same averaged values which incentivized the use of low-pass filter in the following mocap

experiments.

The Fourier Transform plots of the ball velocity from the estimation and mocap can be

seen in Fig. 6.13. As shown in the FFT plot, the EKF estimations are very noisy when compared

to the mocap measurements. However, there is a significant high frequency response in the

system measured by the mocap at around 17 to 22 rad/s range. This might be attributed to the

DROW rollers transition which causes microslips and vibrations into the system. The mocap

experiment shown in §6.4.5 attempts to analyze if the driving speed also affects the frequency

response around this frequency range. The frequency separation between the important system

dynamics (< 5 rad/s) and the high frequency vibrations (18-25 rad/s) are relatively small. This

means that we need to use an aggressive low-pass filter with a cutoff frequency at no less than

10 rad/s in order to eliminate this noise. We choose to use a 1st order low-pass filter with

cutoff frequency of 10 rad/s which increases up to 20 rad/s as the desired yaw rate increases, as

mentioned in the §6.2.1.
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6.4.4 Estimation Accuracy Experiment

This experiment is designed to verify the estimation accuracy of the linear model KF,

high yaw-rate model EKF, and the DMP. The low-pass filtered ball velocity estimates were used

starting from this experiment, which helped balancing the robot more smoothly and stably. The

experiment tested the robot to spin in place under the following yaw rates: 0, ± 0.5, ± 1, and

± 1.5 Hz. Maintaining position hold while spinning in place is the prerequisite condition for

position tracking under nontrivial yaw rates. Since the KF can’t maintain position hold while

spinning, the controller used in this experiment only used the estimated states from the EKF. By

setting up the experiment this way, we can use the stable controller and compare the estimation

performance separately from the control problem. The estimated states of θx, θy, φ̇x, and φ̇y are

compared with the motion capture measurements.

The following process noise covariance matrices were used in this experiment:

qN
1 =qN

2 = 10−5, qN
3 =qN

4 = qN
5 = 10−4, qN

6 =qN
7 = 0.1

qN
8 =2, qN

9 = qN
10 = 0.1, qN

11 =qN
12 = qN

13 = 0.001
(6.30)

Table 6.2 lists the controller gains and SLC outer loop poles used in this experiment. It is very

difficult to control the MBBR with just a single control gains for all tested yaw rates, so the gains

were tuned manually for each target yaw rates.

Figure 6.14 shows the RMS error of the estimations vs. the mocap measurements. The

θx and θy compares the estimations from EKF, KF and DMP, while the φ̇x and φ̇y compares the

estimations from EKF and KF only. The EKF θ estimations is significantly more accurate than

the KF as we expected, but the DMP has even more accurate θ estimation than the EKF. We have

shown that the DMP has great estimations for θ in Chapter 3, and this experiment also shown the

same result. Surprisingly, the KF and EKF have almost identical φ̇x and φ̇y accuracy across all

tested yaw rates. This result implies that the MBBR can be controlled by using the θ from the
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Figure 6.14: The RMS of the estimation error of KF, EKF, and DMP estimations vs mocap.
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Figure 6.15: The estimations vs mocap and the estimation error plot at 0 Hz yaw rate.
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Figure 6.16: The estimations vs mocap and the estimation error plot at -1.5 Hz yaw rate.

15 15.5 16 16.5 17

Time (s)

-0.2

-0.1

0

0.1

0.2

 (
ra

d)

x Estimates vs Mocap

mocap
EKF
KF
DMP

15 15.5 16 16.5 17

Time (s)

-20

-10

0

10

20

d
 / 

dt
 (

ra
d/

s)

x Velocity Estimates vs Mocap

mocap
EKF
KF

15 15.5 16 16.5 17

Time (s)

-0.1

-0.05

0

0.05

0.1

 (
ra

d)

x Estimation ErrorEKF
KF
DMP

15 15.5 16 16.5 17

Time (s)

-20

-10

0

10

20

d
 / 

dt
 (

ra
d/

s)

x Estimation Error
EKF
KF

Figure 6.17: The estimations vs mocap and the estimation error plot at -1.0 Hz yaw rate.
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Figure 6.18: The estimations vs mocap and the estimation error plot at -0.75 Hz yaw rate.
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Figure 6.19: The estimations vs mocap and the estimation error plot at -0.5 Hz yaw rate.
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Figure 6.20: The estimations vs mocap and the estimation error plot at 0.5 Hz yaw rate.
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Figure 6.21: The estimations vs mocap and the estimation error plot at 0.75 Hz yaw rate.
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Figure 6.22: The estimations vs mocap and the estimation error plot at 1.0 Hz yaw rate.
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Figure 6.23: The estimations vs mocap and the estimation error plot at 1.5 Hz yaw rate.

119



0 10 20 30 40 50

Frequency (rad/s)

0

20

40

60

80

100

F
F

T
 p

ow
er

 (
ra

d/
s)

2

FFT of Ball Velocity, 15 cm/s drive speed

20.6 rad/s

mocap
EKF

0 10 20 30 40 50

Frequency (rad/s)

0

20

40

60

80

100

F
F

T
 p

ow
er

 (
ra

d/
s)

2

FFT of Ball Velocity, 20 cm/s drive speed

27.9 rad/s

mocap
EKF

0 10 20 30 40 50

Frequency (rad/s)

0

20

40

60

80

100

F
F

T
 p

ow
er

 (
ra

d/
s)

2

FFT of Ball Velocity, 25 cm.s drive speed

32.6 rad/s

mocap
EKF

0 10 20 30 40 50

Frequency (rad/s)

0

20

40

60

80

100

F
F

T
 p

ow
er

 (
ra

d/
s)

2

FFT of Ball Velocity, 30 cm/s drive speed

39.1 rad/s 

mocap
EKF

Figure 6.24: The FFT of the ball speed EKF estimation and Mocap measurement across
different driving speed.
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Table 6.2: List of the control gains and SLC poles for each target yaw rates for the spinning in
place experiment.

Gains
Target yaw rate magnitude (rad/s)

0 0.5 0.75 1.0 1.5

c1 10 12 14 13 12
c2 0.4 0.4 0.4 0.4 0.6
c3 0.5 0.5 0.6 0.6 0.5
c4 0.075 0.10 0.10 0.075 0.060
c5 0.4 0.4 0.4 0.4 0.4
c6 1.2 1.2 1.2 1.2 1.2
cSLC 0.20 0.20 0.15 0.10 0.10
ωSLC 0.970 0.968 0.963 0.960 0.951

DMP estimation and the linear model KF’s estimations for the remaining states, which happened

to be true and will be demonstrated in §6.4.6.

Figures 6.15 to 6.23 show the estimated states vs the mocap measurement and their

estimation errors. The DMP and EKF θ estimations are relatively close to each other, but the

DMP’s estimation error almost always have smaller amplitude than the EKF. Both φ̇ estimations

and mocap measurements are very noisy in all driving conditions. Some of these vibrations might

be caused by the DROW roller transition, which means that some of the vibration frequency

increases linearly with respect to the drive rate. Figure 6.24 shows the FFT plot of the φ̇ from

EKF estimations and the mocap measurements. As shown in this figure, some of the mocap

FFT frequency responses seem to increase linearly in frequency as the drive rate increases. This

vibration pattern might be caused by the roller transition in the DROWs where the vibration

frequency increases as the drive rate increases. This implies that some of the high frequency noise

in the φ̇ estimates is inherent in the system and can’t be avoided. Therefore, a low-pass filter is

used to prevent these vibrations to negatively affect the controller. On average, the φ̇ estimation

errors have zero mean, which means that the inertial position drift due to the integration error of

the φ̇ states is relatively small. This result can be seen more in the position tracking experiments

in §6.4.5 and §6.4.6.
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6.4.5 EKF Control Experiments

In this experiment, the states estimations from the EKF is used to control the MBBR

and under several simultaneous spinning and translation rates. The DMP θ estimations are

also shown to compare them with the EKF’s estiamtions. The following estimated states are

compared with the mocap measurements: θx, θy, θz, θ̇z, ball inertial position and velocity. The

MBBR were tested under the following driving conditions:

• 0.5 Hz yaw rate and 20 cm/s drive rate.

• 0.75 Hz yaw rate and 15 cm/s drive rate.

• 1.0 Hz yaw rate and 10 cm/s drive rate.

• 1.5 Hz yaw rate and 5 cm/s drive rate.

The drive rates for each yaw rates are the fastest drive rate where the controller can reliably

stabilize the MBBR. It is possible to drive faster, but there will be more overshoot and less

stability. Table 6.3 lists the controller gains used in this experiment and we used the following

process noise covariance matrix values:

qN
1 =qN

2 = 10−5, qN
3 =qN

4 = qN
5 = 10−4, qN

6 =qN
7 = 0.1

qN
8 =2, qN

9 = qN
10 = 0.001, qN

11 =qN
12 = qN

13 = 0.001.
(6.31)

Figures 6.25 to 6.28 show the EKF and DMP estimated states, mocap measurements, and

the state reference values during the experiment. Note that the ball velocity shown are smoothed

due to excessive noise in both the mocap and estimation data. The actual estimated states and

measurements look more like the data in §6.4.3 and §6.4.4, so the data is smoothed out for clarity.

The smoothing function is a simple zero-phase 1st order low-pass filter with a cutoff frequency

of 10 rad/s. The low-pass filter is simply applied forward and backwards in time which then are

averaged to get the smoothed signal.
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Figure 6.25: The EKF estimation and control performance under 0.5 Hz yaw rate and 20 cm/s
drive rate.
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Figure 6.26: The EKF estimation and control performance under 0.75 Hz yaw rate and 15 cm/s
drive rate.
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Figure 6.27: The EKF estimation and control performance under 1.0 Hz yaw rate and 10 cm/s
drive rate.
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Figure 6.28: The EKF estimation and control performance under 1.5 Hz yaw rate and 5 cm/s
drive rate.
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Table 6.3: List of the control gains and SLC poles for each target yaw rates for the spinning EKF
control experiment.

Gains
Target yaw rate magnitude (rad/s)

0 0.5 0.75 1.0 1.5

c1 10 12 14 14 12
c2 0.4 0.4 0.4 0.5 0.6
c3 0.5 0.5 0.6 0.6 0.5
c4 0.075 0.10 0.10 0.085 0.060
c5 0.4 0.4 0.4 0.4 0.4
c6 1.2 1.2 1.2 1.2 1.2
cSLC 0.20 0.20 0.15 0.10 0.10
ωSLC 0.970 0.968 0.963 0.960 0.951

The MBBR have achieved a stable driving and good position tracking performance in all

tested yaw rates, except for the 1.5 Hz yaw rate case where it slowly lost balance after 8 seconds.

Figure 6.28 shows that both the θ and ball speed estimations are relatively inaccurate compared to

the lower yaw rates case. There are some integration error build up in the ball position estimates,

especially in the direction where the robot is not driving into. This behavior also appeared in the

simulation, which is shown in Fig. 6.6. However, this drift happened very slowly and generally

not a huge issue for a remote controlled robot. The robot only have the encoders measurements

for odometry and these measurements are not reliable under high yaw rates. The controller

seems to track the ball position reference almost exactly during the experiment, which showed

that the controller works well.

As shown in the data, the EKF θ estimation is less accurate when compared to the DMP

during high yaw rates driving. The DMP accuracy and the mocap experiment in §6.4.4 have

shown that the KF also have similar ball speed estimation accuracy as the EKF. All of the results

indicates that we might be able to control the robot by using the KF estimations and use the

DMP θ estimates. The controller did work very well and it showed that the driving performance

is more stable than what the EKF can achieve by itself, which will be shown in the following

subsection.
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6.4.6 KF with DMP Control Experiment

The control experiment in §6.4.5 is repeated, but by using the estimated states from the

DMP and linear model KF. The KF estimates all the states except for θx, θy, θz, θ̇z, which will

be covered by the DMP and raw gyro z measurement. The same controller gains as the EKF

case were used (see Table 6.3) and the following process noise covariance matrix were used:

qL
1 =qL

2 = 10−5, qL
3 =qL

4 = 10−4, qN
5 =qN

6 = 0.1, qN
7 =qN

8 = 0.001 (6.32)

Figures 6.29 to 6.32 show the estimation and control performance of the DMP+KF

controller. The EKF estimation were also shown in the θx and θy plots as a comparison to the

DMP’s performance. The performance of this controller is better than the controller which uses

the EKF estimations. This controller achieved a much stabler position tracking under 1.5 Hz

yaw rate, which is the yaw rate where the EKF was struggling to balance. The ball velocity

estimations at 1.5 Hz yaw rate has an offset error, but the estimated ball velocity states tracked

the reference states stably unlike the EKF’s case. The DMP+KF controller has similar ball

position drifts that the EKF has, but this is not a huge issue as mentioned in the EKF’s case.

The data showed in the θ estimations might show what the EKF is lacking compared

to the DMP. Even though the EKF estimated the θ value at the correct phase, the magnitude is

sometimes too large compared to the actual θ. The EKF’s magnitude error fluctuation seems to

be periodic in nature and might be the primary cause of instability.

6.5 Experimental Results Discussion

Several motion capture experiments have been done to show the state estimation and

controller performance of the EKF, KF and DMP to control the MBBR under various yaw and

drive rates. We have achieved our target performance for position tracking under high yaw rates
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Figure 6.29: The DMP+KF estimation and control performance under 0.5 Hz yaw rate and 20
cm/s drive rate.
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Figure 6.30: The DMP+KF estimation and control performance under 0.75 Hz yaw rate and 15
cm/s drive rate.
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Figure 6.31: The DMP+KF estimation and control performance under 1.0 Hz yaw rate and 10
cm/s drive rate.
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Figure 6.32: The DMP+KF estimation and control performance under 1.5 Hz yaw rate and 5
cm/s drive rate.
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which achieve simultaneous spinning and driving objectives that we have set during the design

phase.

It is unfortunate that the EKF is unable to outperform the DMP+KF controller, but it

can achieve a very close performance to the DMP+KF. The EKF can work as a standalone

estimator while the DMP+KF must use the proprietary DMP algorithm native to the InvenSense

MPU-9250 or other similar devices, which might not be available to some robots. The problem in

the EKF’s estimation might be caused by model inaccuracies and implementation errors. Some

of the unmodeled dynamics are the static friction, backlash, support balls interaction between the

ball and the casing, and DROW rollers transition. None of these are simple to model, so it is very

unlikely to include any of these dynamics into the model. The implementation of the EKF might

be able to be improved by using a non-diagonal noise covariance matrices. The states in the high

yaw-rate model are highly coupled to each other, which means that a non-diagonal process noise

covariance matrix might be more appropriate for this system. However, there are 13 states in the

EKF which means that there are 91 variables to tune and this can be extremely difficult to do.

Most of the coupling terms are with respect to the yaw rate, so it might be possible to tune just

the yaw rate components of the noise matrix.

Considering that the tracking performance is excellent with the DMP+KF combination,

there is no need to tune the EKF further in the MBBR. However, there might be a better

implementation of the EKF or the high yaw-rate BBR model in a different BBRs, such as when

the robot is not circular symmetric (different inertia in x and y directions). There might also be

other choice of model based nonlinear estimator other than EKF, such as the Unscented Kalman

Filter. Considering that the DMP estimation accuracy is extremely good, it is very likely that a

BBR can be balanced well by using the DMP with a good estimator for the ball inertial position

and velocity. There might be an estimator only for the ball inertial position and velocity which

works well and robust to the vibrations and model uncertainties in the BBR. Finding a better

implementation of the high yaw-rate model or finding a good odometry algorithm for other

miniature BBRs can be part of the future work.
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In conclusion, the high yaw-rate model and the EKF works well, but not as well as the

DMP+KF combination in the MBBR. In the case where an accurate orientation estimation such

as the DMP is not available, the EKF can be used for a full state estimation and it has good

estimation accuracy up to certain yaw rates. In addition, a linear controller is sufficient to achieve

position tracking under high yaw rates and the major difficulty in this problem lies in the state

estimations and minimizing the effect of the noise and vibration.
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Chapter 7

Results, Future Work, and Conclusions

The MBBR has proven to successfully balance and achieve inertial position tracking

for yaw rates up to 1.5 Hz. The high yaw-rate model of the MBBR works well when used in

the EKF and simulations which indicates an accurate model. A filter which takes advantage

of the non-minimum phase behavior of an inverted pendulum robot has also been successfully

implemented in the linear feedback controller. The mechanical build of the latest MBBR design

has proven to be very robust as it has been driven to its limits for more than a year and is still

working fine. A novel orthogonal and midlatitude omniwheel placements was also utilized in

this design worked very well. Additionally, the MBBR utilized a novel drive/coast model and

compensation algorithm that we developed and has proven to be usable in real-time controls

application. The EKF might not work as well as the DMP+KF on the MBBR, but the EKF by

itself have achieved some of the high yaw-rates performance that we desired, but only up to 1 Hz

yaw rates.

The future work can consist on improving the mechanical smoothness of the robot which

is the most serious mechanical flaw in the current prototype. The high frequency vibrations and

the friction problem in the robot must be addressed to deliver a smoother driving performance.

The vibrations can be reduced by using single-row omniwheels which has shown to deliver less

vibrations during the balancing. However, the fragility of the component must be addressed,

either by using stronger material or thicker cross-sections. On the other hand, the high friction in
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the current design is extremely hard to mitigate because the MBBR is very reliant on the support

balls to prevent the ball from losing contact with the omniwheels. These support balls add more

contact points on the ball which, in turn, also add more friction. We have not yet find a good

design solution to remove the need of using the support balls and that might be a good starting

topic when attempting to redesign the MBBR.

In order to make this robot into a commercial product, such as a toy robot which can

dance/spin around gracefully, one must address the component which takes the most resource

and time to produce: the omniwheels. In the current design for both SROW and DROW, each

individual rollers have their own metal axle pins. Assembling the omniwheel by inserting the

pins for each individual rollers takes a significant amount of time, which means high production

time and cost. A mass production plan to reduce assembly time and cost must be researched in

order to reduce the cost of production, which in turn, also reduce the cost of the final product.

There are several different design variation of the BBR based on the shape of the robot’s

body. One can design a saucer type of BBR which has a low center of gravity and more massive

inertia in the yaw direction. This type of robot can “glide” on the surface, mimicking a hovercraft

and possibly harder to control due to its lower center of gravity. The body can be wide enough to

mount some infra-red LEDs range finder on the edge of the body, which can be used to detect the

edge of a table when driven on top of it. Our MBBR is designed to be circularly symmetric, so a

design which has different inertia in the x and y directions can also be considered. For each of

these robots, the accuracy of the high yaw-rate model EKF can be tested to show that the same

estimator and controller design methodology in MBBR is extensible to other types of BBRs.

The friction in the z components has not yet been identified, so a future work to build

a system identification platform which can identify friction model in the yaw component can

be investigated. The omniwheels force the ball differently between spinning clockwise and

counter-clockwise, where they push the ball into and away from the omniwheels respectively. It

is likely that each directions has different friction parameters and building such test platform can

confirm this hypothesis.
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Both the high yaw-rate model EKF and linear model KF has high noise in the ball velocity

estimations. A more thorough investigation on whether this noise can be reduced by selecting

a different noise covariance matrices or state augmentations can be done in the future. The

noise covariance matrices used in this dissertation are all diagonal matrices. Considering that

the dynamics during high yaw rates are highly coupled, non-diagonal noise covariance matrices

might be more appropriate for this robot. This can be very difficult to investigate because the

EKF has 13 states and 8 measurements while the KF has 8 states and 6 measurements. Either

estimators have large states and figuring out the correct values for the covariance matrices will be

a challenging problem. We can also investigate the implementation of the high yaw-rate model

in a different nonlinear estimator, such as the unscented Kalman filter, and evaluate if there is an

improvement in the estimation accuracy.

The current linear feedback controller with SLC outer loop θ reference works well as

long as the robot has relatively accurate θ and ball velocity estimations. However, we can still

aim to improve the robustness of the controller to make the robot more stable even under less

accurate state estimations. The high yaw-rate model can be used to derive a nonlinear control

algorithm, which will be an extremely challenging problem. However, the current controller

works well enough that it might not be necessary to design a nonlinear controller.

Drive/brake motor drivers can also be used instead of drive/coast drivers which can

eliminate an additional complexity in the controller design. Some drive/brake drivers must be

driven with 2 PWM signals per motor, which might increase the product’s overhead if they need

to upgrade the microcontroller used. The energy efficiency of the drive/coast motor drivers has

not yet been investigated. There might be some energy savings due to the regenerative current

flowing back into the battery during the off cycle of the PWM signal. A more thorough research

will be necessary to back this claim.

In conclusion, a small ball-balancing robot using a novel orthogonal mid-latitude omni-

wheel placement, novel drive/coast compensation algorithm, and high yaw-rate dynamic model

Extended Kalman Filter has successfully achieved position tracking under very high yaw-rates.
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The target performance of inertial position tracking under very high yaw-rates, up to 1.5 Hz,

has been fulfilled and we have successfully build a robot that can show the fluid and graceful

movements that we desired in a ball-balancing robot.
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Appendix A

Complete Symbolic Dynamic Models

This appendix contains the symbolic derivations for the MIP and MBBR high yaw-rate

model in Chapter 3 and 5 respectively. These dynamic models were derived symbolically in

Wolfram Mathematica 11.0.

A.1 MIP Nonlinear Model

This section contains the full nonlinear dynamic model for the high yaw-rate MIP which

are derived in the Chapter 3. The full nonlinear MIP high yaw-rate model, which can be used in

a simulation, is shown below:

M(q) q̈ = b(q, q̇,u)

q(t) =


θ(t)

φ(t)

ψ(t)

 , u =

ux

uz

 , M(q) =


m11 m12 0

m21 m22 0

0 0 m33

 , b(q, q̇,u) =


b1

b2

b3

 .
(A.1)

The equation above can be used to solve the system’s acceleration q̈ = M(q)−1b(q, q̇,u), which

must be calculated during the simulation. The elements of M(q) and b(q, q̇,u) are shown
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below:
m11 = Ib1 + 2Iw1 + 2mw r

2 +mb (l2 + r2 + 2 l r cos(θ))

m12 = m21 = 2Iw1 + (mb + 2mw)r2 +mb l r cos(θ)

m22 = 2Iw1 + (mb + 2mw)r2

m33 = (r/d)(It2 + It3 + 2Iw2 + 2Iw3 + l2mb) + (d/r)(Iw1 +mwr
2)

− (r/d)(It2 − It3 + 2Iw2 − 2Iw3 + l2mb)r2 cos(2θ)

(A.2)

b1 = sin(θ)((It2 − It3 + 2Iw2 − 2Iw3 + l2mb) cos(θ)ψ̇2 + l mb (g + r θ̇2))

b2 = 2 (k1 ux − 2 k2φ̇) + l mb r sin(θ)θ̇2

b3 = 2 k1 uz − k2 (d/r) ψ̇ − (2/d)(It2 − It3 + 2Iw2 − 2Iw3 + l2mb) r sin(2θ) ψ̇ θ̇

(A.3)

The sensor measurements can be simulated by using the sensor dynamics equations

for the encoder, gyrometer and accelerometer measurements. The encoder and gyrometer

measurements are linear while the accelerometer measurements have some nonlinear dynamics.

After using the change of variables in (3.18), the encoders can directly measure the averaged

wheel rotation ϕ and the heading angle ψ. The gyrometer simply measures the attitude angle

rate of change (θ̇). Finally, the accelerometer measurement can be derived from the linear body

acceleration:

p̈b =


ax

ay

az

 =


ψ̇((r + 2l cos(θ))θ̇ + rφ̇) + l sin(θ) ψ̈

l cos(θ)sin(θ)ψ̇2 − (l + r cos(θ))θ̈ − r cos(θ)φ̈

−l sin(θ)2 ψ̇2 − lθ̇2 + r sin(θ)(θ̈ + φ̈)

 , (A.4)

where the acceleration terms θ̈, φ̈, and ψ̈ are derived from (A.1).
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A.2 MBBR Nonlinear Model

This section contains the nonlinear dynamic model for the high yaw-rate MBBR which

hich are derived in the Chapter 5. The full nonlinear MBBR high yaw-rate model, which can be

used in a simulation, is shown below:

M(q) q̈ = b(q, q̇,u)

q(t) =



θx(t)

θy(t)

θz(t)

φ∗x(t)

φ∗y(t)


, u =


ux

uy

uz

 , M(q) ∈ R5×5, b(q, q̇,u) =



b1

b2

b3

b4

b5


,

(A.5)

where the matrixM(q) is a 5 by 5 matrix with elementsmij in row i and column j. The elements

of the matrix M(q) and b(q, q̇,u) are shown below:

m11 = Itx + Iw + l2 mt

m12 = 0

m13 = −(Itx + Iw + l2 mt) sin(θy)

m14 = l mt r cos(θx)− Iw cos(θy)

m15 = −l mt r sin(θx) sin(θy)

m21 = 0

m22 = 1/2 (Ity + Itz + 2 Iw + l2 mt + (Ity − Itz + l2 mt) cos(2θx))

m23 = (Ity − Itz + l2 mt) cos(θx) cos(θy) sin(θx)

m24 = 0

m25 = −Iw + l mt r cos(θx) cos(θy)

(A.6)
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m31 =− (Itx + Iw + l2 mt) sin(θy)

m32 =(Ity − Itz + l2 mt) cos(θx) cos(θy) sin(θx)

m33 =1/2 (2 Iw + 2 Itz cos(θx)2 cos(θy)2 + 2 Ity cos(θy)2 sin(θx)2 + 2 Itx sin(θy)2

− 1/4 l2 mt (−6 + 2 cos(2θx) + cos(2 (θx − θy)) + 2 cos(2θy) + cos(2 (θx + θy))))

m34 =− l mt r cos(θx) sin(θy)

m35 =l mt r sin(θx)

m41 =l mt r cos(θx)− Iw cos(θy)

m42 =0

m43 =− l mt r cos(θx) sin(θy)

m44 =Ib + Iw + (mb +mt) r2

m45 =0

m51 =− l mt r sin(θx) sin(θy)

m52 =− Iw + l mt r cos(θx) cos(θy)

m53 =l mt r sin(θx)

m54 =0

m55 =Ib + Iw + (mb +mt) r2

(A.7)
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b1 =1/2 (−2 k1 ux + 2 g l mt cos(θy) sin(θx)− 2 k2 θ̇x − (Ity − Itz + l2 mt) sin(2θx) θ̇2
y

+ 2 k2 sin(θy) θ̇z + Ity cos(θx) sin(θx) θ̇2
z − Itz cos(θx) sin(θx) θ̇2

z

+ l2 mt cos(θx) sin(θx) θ̇2
z + Ity cos(θx) cos(θy)2 sin(θx) θ̇2

z

− Itz cos(θx) cos(θy)2 sin(θx) θ̇2
z + l2 mt cos(θx) cos(θy)2 sin(θx) θ̇2

z

− Ity cos(θx) sin(θx) sin(θy)2 θ̇2
z + Itz cos(θx) sin(θx) sin(θy)2 θ̇2

z

− l2 mt cos(θx) sin(θx) sin(θy)2 θ̇2
z + 2 k2 cos(θy) φ̇∗x + 2 l mt r sin(θx) sin(θy) θ̇z φ̇

∗
x

+ 2 θ̇y ((Itx + Iw + l2 mt + (Ity − Itz + l2 mt) cos(2θx)) cos(θy) θ̇z − Iw sin(θy) φ̇∗x)

+ 2 l mt r cos(θx) θ̇z φ̇
∗
y)

(A.8)

b2 =1/2 (−2 k1 uy cos(θx) + 2 k1 uz sin(θx) + 2 g l mt cos(θx) sin(θy)

− 2 (k2 − (Ity − Itz + l2 mt) sin(2θx) θ̇x) θ̇y − Ity cos(θy) sin(θy) θ̇2
z

− Itz cos(θy) sin(θy) θ̇2
z + l2 mt cos(θy) sin(θy) θ̇2

z + Ity cos(θx)2 cos(θy) sin(θy) θ̇2
z

− Itz cos(θx)2 cos(θy) sin(θy) θ̇2
z + l2 mt cos(θx)2 cos(θy) sin(θy) θ̇2

z

− Ity cos(θy) sin(θx)2 sin(θy) θ̇2
z + Itz cos(θy) sin(θx)2 sin(θy) θ̇2

z

− l2 mt cos(θy) sin(θx)2 sin(θy) θ̇2
z + Itx sin(2θy) θ̇2

z − 2 l mt r cos(θx) cos(θy) θ̇z φ̇
∗
x

− 2 θ̇x ((Itx + Iw + l2 mt + (Ity − Itz + l2 mt) cos(2θx)) cos(θy) θ̇z

− Iw sin(θy) φ̇∗x) + 2 k2 φ̇
∗
y)

(A.9)

b3 =− k1 uz cos(θx) cos(θy)− k1 uy cos(θy) sin(θx) + k1 ux sin(θy)

+ (Ity − Itz + l2 mt) cos(θx) sin(θx) sin(θy) θ̇2
y − k2 θ̇z

+ cos(θy) θ̇y (−(2 Itx − Ity − Itz + l2 mt + (Ity − Itz + l2 mt) cos(2θx)) sin(θy) θ̇z

+ l mt r cos(θx) φ̇∗x) + θ̇x (k2 sin(θy) + (Itx + Iw + l2 mt

− (Ity − Itz + l2 mt) cos(2θx)) cos(θy) θ̇y − (Ity − Itz + l2 mt) cos(θy)2 sin(2θx) θ̇z

− l mt r sin(θx) sin(θy) φ̇∗x − l mt r cos(θx) φ̇∗y)
(A.10)
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b4 =k1 ux cos(θy) + k1 uz cos(θx) sin(θy) + k1 uy sin(θx) sin(θy)

+ l mt r sin(θx) θ̇2
x + l mt r cos(θx) cos(θy) θ̇y θ̇z

+ θ̇x (k2 cos(θy)− Iw sin(θy) θ̇y − l mt r sin(θx) sin(θy) θ̇z)− k2 φ̇
∗
x

(A.11)

b5 =k1 uy cos(θx)− k1 uz sin(θx) + l mt r cos(θx) sin(θy) θ̇2
x + k2 θ̇y − k2 φ̇

∗
y

+ l mt r cos(θx) sin(θy) θ̇2
y + l mt r θ̇x (2 cos(θy) sin(θx) θ̇y − cos(θx) θ̇z)

(A.12)

The sensor measurements are all nonlinear. Let the yB
gy and yB

en be the gyrometer and

encoder measurements respectively in body frame, with the following sensor dynamics:

yB
gy =


ΩB

x

ΩB
y

ΩB
z

 =


θ̇x − sin(θy) θ̇z

cos(θx) θ̇y + cos(θy) sin(θx) θ̇z

− sin(θx) θ̇y + cos(θx) cos(θy) θ̇z

 (A.13)

yB
en =


ϕB

x

ϕB
y

ϕB
z

 =


−θ̇x + sin(θy) θ̇z + cos(θy) φ̇∗x

− cos(θx) θ̇y − cos(θy) sin(θx) θ̇z + sin(θx) sin(θy) φ̇∗x + cos(θx) φ̇∗y

sin(θx) θ̇y − cos(θx) cos(θy) θ̇z + cos(θx) sin(θy) φ̇∗x − sin(θx) φ̇∗y


(A.14)

Let yB
ac be the accelerometer measurement which has the following sensor dynamics:

yB
ac =

[
yB

ac1 yB
ac2 yB

ac3

]T

(A.15)

yB
ac1 =1/2 (2 g sin(θy) + 2 lax θ̇

2
y + lax θ̇

2
z + lax cos(θy)2 θ̇2

z − lax sin(θy)2 θ̇2
z

+ laz cos(θx) sin(2θy) θ̇2
z + lay sin(θx) sin(2θy) θ̇2

z − 4 θ̇x ((lay cos(θx)

− laz sin(θx)) θ̇y + cos(θy) (laz cos(θx) + lay sin(θx)) θ̇z)− 2R cos(θy) θ̇z φ̇
∗
x

− 2 laz cos(θx) θ̈y − 2 lay sin(θx) θ̈y + 2 lay cos(θx) cos(θy) θ̈z

− 2 laz cos(θy) sin(θx) θ̈z − 2R cos(θy) φ̈∗y)

(A.16)
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yB
ac2 =1/4 (−4 g cos(θy) sin(θx) + 4 lay θ̇

2
x + 4 sin(θx) (laz cos(θx) + lay sin(θx)) θ̇2

y

− 8 lay sin(θy) θ̇x θ̇z − 8 cos(θx) (laz cos(θx) cos(θy) + lay cos(θy) sin(θx)

− lax sin(θy)) θ̇y θ̇z + 3 lay θ̇
2
z + lay cos(θx)2 θ̇2

z − lay cos(θy)2 θ̇2
z

+ lay cos(θx)2 cos(θy)2 θ̇2
z − lay sin(θx)2 θ̇2

z − lay cos(θy)2 sin(θx)2 θ̇2
z

− laz sin(2θx) θ̇2
z − laz cos(θy)2 sin(2θx) θ̇2

z + lay sin(θy)2 θ̇2
z

− lay cos(θx)2 sin(θy)2 θ̇2
z + lay sin(θx)2 sin(θy)2 θ̇2

z + laz sin(2θx) sin(θy)2 θ̇2
z

+ 2 lax sin(θx) sin(2θy) θ̇2
z − 4R sin(θx) sin(θy) θ̇z φ̇

∗
x − 4R cos(θx) θ̇z φ̇

∗
y + 4 laz θ̈x

+ 4 lax sin(θx) θ̈y − 4 lax cos(θx) cos(θy) θ̈z − 4 laz sin(θy) θ̈z + 4R cos(θx) φ̈∗x

− 4R sin(θx) sin(θy) φ̈∗y)
(A.17)

yB
ac3 =1/4 (−4 g cos(θx) cos(θy) + 4 laz θ̇

2
x + 4 cos(θx) (laz cos(θx) + lay sin(θx)) θ̇2

y

− 8 laz sin(θy) θ̇x θ̇z + 8 sin(θx) (cos(θy) (laz cos(θx) + lay sin(θx))

− lax sin(θy)) θ̇y θ̇z + 3 laz θ̇
2
z − laz cos(θx)2 θ̇2

z − laz cos(θy)2 θ̇2
z

− laz cos(θx)2 cos(θy)2 θ̇2
z + laz sin(θx)2 θ̇2

z + laz cos(θy)2 sin(θx)2 θ̇2
z

− lay sin(2θx) θ̇2
z − lay cos(θy)2 sin(2θx) θ̇2

z + laz sin(θy)2 θ̇2
z

+ laz cos(θx)2 sin(θy)2 θ̇2
z − laz sin(θx)2 sin(θy)2 θ̇2

z + lay sin(2θx) sin(θy)2 θ̇2
z

+ 2 lax cos(θx) sin(2θy) θ̇2
z − 4R cos(θx) sin(θy) θ̇z φ̇

∗
x + 4R sin(θx) θ̇z φ̇

∗
y − 4 lay θ̈x

+ 4 lax cos(θx) θ̈y + 4 lax cos(θy) sin(θx) θ̈z + 4 lay sin(θy) θ̈z − 4R sin(θx) φ̈∗x

− 4R cos(θx) sin(θy) φ̈∗y).
(A.18)

The accelerations terms q̈ can be solved from (A.5).

146




