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AMOEBA force field using energy decomposition analysis of electronic 

structure calculations 
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1Departments of Chemistry, 2Bioengineering, 3Chemical and Biomolecular Engineering  

†Kenneth S. Pitzer Center for Theoretical Chemistry 
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Abstract 

In this work we evaluate the accuracy of the classical AMOEBA model for representing many-body 

interactions such as polarization, charge transfer, and Pauli repulsion and dispersion, through 

comparison against an energy decomposition method based on absolutely localized molecular orbitals 

(ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body 

contributions according to the many-body expansion are analyzed for the ion-water trimer systems 

examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible 

under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in 

AMOEBA’s 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for 

the missing effects of charge transfer and incorrectness in the distance dependence for polarization when 

compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body 

polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter 

in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points 

about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be 

reproduced. The results suggest there is a need for re-examining the damping and polarization model 

used in the AMOEBA force field, and provide further insights into the formulations of polarizable force 

fields in general. 
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1. INTRODUCTION 

Classical molecular mechanics (MM) force fields are a computationally tractable approximation to the 

true quantum mechanical (QM) potential energy surface such that they afford the ability to calculate 

condensed-phase properties for large systems. Typically, force fields rely on a potential energy 

functional form of the atomic nuclear positions involving a sum of terms: a harmonic potential for 

covalent bonds and angles, a truncated Fourier series for describing torsional motions, and a model for 

non-covalent interactions that is often represented by pairwise-additive point-charge electrostatics and a 

Lennard-Jones potential (or a close variation thereof) for Pauli repulsion and dispersion. Recently, there 

has been significant growth in the development of force fields that take into account more advanced 

molecular interactions such as charge penetration1-6, charge transfer7-15, as well as the leading many-

body effect of polarization explicitly9, 11, 16-25. In principle, these additions would improve the 

transferability of the force field by enhancing the ability to better describe heterogeneous molecular 

systems as well as to be able to model behavior across the phase diagram from gas to liquid to solid22, 26-

32. Moreover, improvements in software implementations33-38 have rendered advanced force fields more 

amenable to the types of computationally intensive applications that heretofore were only accessible by 

the simpler pairwise-additive force fields.   

 Nevertheless, while advanced force fields that include many-body interactions in principle afford 

better physics, their inherent accuracy is also inextricably linked to the choice of the underlying 

functional form of the relevant molecular interactions and the correctness of their parameterization. To 

illustrate, polarization of well-separated molecular species can be described rigorously as a power series 

expansion in terms of polarizabilities and higher-order hyperpolarizabilities39, 40. The formulation of 

polarization in the polarizable AMOEBA force field19, 22, 41, 42 is based on this description, truncating at 

first order and formulating its polarization as atom-centered point inducible dipoles that respond linearly 

to the electrostatic field according to an isotropic polarizability parameter, α. While this model for 

polarizability is formulated to be accurate at long range, the simple description of distorted electron 

distributions as point inducible dipoles becomes inaccurate for small intermolecular separations, and 

therefore accounting for the finite nature of the distorted electron distribution becomes necessary for an 

accurate model. This short-ranged polarization description is typically achieved by a damping function, 

often exponential or Gaussian in form, which effectively “smears out” the point multipoles43-45.  In 

addition to providing an improved model of the physics, the damping function has the practical 

mathematical effect of obviating the so-called polarization catastrophe, wherein atomic sites at short 

distance separation may polarize each other to infinity. In AMOEBA, damping is implemented using a 



	 3	

damping function originally developed by Thole43 that assumes the following smeared charge 

distribution: 

𝜌 =
3𝑎
4𝜋 exp −𝑎

𝑟!"!

𝑎!𝑎!
!
!

                                                                   (1)  

where rij is the distance between atomic sites i and j, αi and αj are their polarizabilities, and a is a 

dimensionless width parameter that effectively controls the strength of the damping43.  It should be 

noted that this is strictly an empirical formula, and is one of many that Thole formulated in his original 

work. 

Regarding the issue of parameterization, the overall accuracy of classical force fields rests on a 

delicate cancellation of errors among the non-bonded energetic terms that are accounted for explicitly – 

such as permanent electrostatics and van der Waals (vdW) interactions – and their ability to implicitly 

account for the missing terms such as charge penetration (formally two-body) and the many-body effects 

in terms such as charge transfer, Pauli repulsion, dispersion, and polarization if any of these are absent 

from the force field. Another assumption is that while the individual non-covalent terms in the potential 

are parameterized separately, they are finely tuned together in a final stage to reproduce properties that 

are a function of all the terms together, such as total QM energies of molecular clusters or condensed-

phase properties such as densities and heats of vaporization46. For example, AMOEBA assumes 

isotropic, strictly atom-centered polarizabilities, and furthermore assumes that atomic polarizabilities for 

use in condensed-phase simulations may be adequately parameterized by a fit to gas-phase molecular 

polarizabilities. It is realized that such polarizabilities must be subsequently more finely tuned, as in the 

case of AMOEBA’s water model, whose polarizability parameters, α (for O and H) and a, were further 

adjusted to better reproduce the QM energies of water clusters22.	 

Quantum mechanical calculations are used in part or in total	 9, 11, 23, 47-54 to parameterize force 

fields, as well as to appraise their quality. While the current practice of comparing total MM energies 

and forces to total QM energies and forces is helpful, it is desirable to be able to appraise the quality of 

individual non-covalent terms in the force field given its piece-wise nature. Energy decomposition 

analysis55-57 (EDA) is a means to decompose the QM interaction energy into chemically sensible terms 

that in some instances have direct correspondence to the non-covalent terms of force fields, or can 

evaluate how physical effects not evaluated explicitly in dedicated force field terms are captured 

implicitly in other terms. Broadly speaking, EDA methods may be categorized into perturbative58-60 or 

variational approaches55, 61-68. While the asymptotic behavior of the components is usually (but not 
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always) uniquely defined for a given level of wavefunction or DFT theory for either type of EDA, the 

decomposition of the total QM energy into chemically intuitive components becomes more difficult to 

uniquely define in the regime where the electron densities of the different chemical species overlap. 

Nonetheless, many well-designed EDA schemes are able to yield chemically sensible decompositions in 

the overlapping regime.  

In a previous article69, we assessed the accuracy of the non-covalent terms in AMOEBA for the 

water dimer and a series of water-ion dimers using a variational EDA approach based on absolutely 

localized molecular orbitals (ALMO)	67, 70 at the highly accurate ωB97X-V/def2-QZVPPD QM level of 

theory71, 72. The properties of the second generation ALMO-EDA approach that we find desirable 

include: (1) the energy decomposition relies on a series of intermediate wavefunctions that each obeys 

anti-symmetry; (2) the better handling of strongly interacting systems where the accuracy of perturbative 

approaches might be undermined by convergence issues; (3) the use of a high-quality density functional 

that adequately captures electron correlation and other effects for weakly interacting systems as 

benchmarked against the references obtained with high-level correlated methods (see Ref. [61]	 for the 

protocols of the latter); and (4) the ability to separate the induction term into polarization and charge 

transfer contributions, which is not naturally enabled in a perturbative approach such as symmetry-

adapted perturbation theory (SAPT)73, 74.  

 In our study, we found that the parameterization of the AMOEBA model indeed rested on a 

delicate cancellation of error among the permanent electrostatics, buffered 14-7 vdW potential75, and 

many-body polarization to yield any agreement in the intermolecular energy of water and ion-water 

dimers as a function of distance and orientation with the ALMO-EDA result. We found universally that 

AMOEBA’s multipolar permanent electrostatics were systematically too unfavorable, becoming most 

pronounced in the overlapping regime, and this was clearly attributable to a lack of charge penetration, 

an effect completely absent from the point multipole formalism of AMOEBA’s permanent electrostatics. 

This missing effect, however, was partially but imperfectly recovered through AMOEBA’s vdW 

potential in an implicit manner, entailing that there is some degree of softening of the repulsive wall. In 

addition, this softened vdW potential also accounts for charge transfer, a formally many-body non-

covalent term, that has no explicit correspondence among the energy components of AMOEBA. Naively, 

one might expect the charge transfer to be incorporated implicitly into AMOEBA’s polarization, as 

charge transfer and polarization may be viewed collectively under the more general term “induction”, 

with charge transfer being considered an extreme case of polarization wherein the distorted electron 

density on one molecule is delocalized into another to which it is not covalently bound.  However, 
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combining ALMO-EDA’s charge transfer with its polarization term did not systematically improve 

agreement with AMOEBA’s polarization throughout the entire range of intermolecular separations, 

especially in the compressed region where charge transfer is most pronounced. On the other hand, for 

almost all the investigated systems, adding the charge transfer term to the counterparts of the vdW term 

in ALMO-EDA (Pauli repulsion and dispersion) systematically improved the agreement with 

AMOEBA’s 14-7 vdW potential throughout the range of intermolecular separations. 

The agreement of AMOEBA’s explicit accounting of polarization with that of ALMO-EDA was 

found to be system-dependent and of variable quality depending on the region of the distance and 

orientation scans examined. Near equilibrium, AMOEBA’s polarization of water-halide complexes was 

too favorable compared with that of ALMO-EDA. However, this trend was reversed in the compressed 

region, where the Thole damping per Eq. (1) was too strong due to the larger polarizabilities of the 

halides. In the cases of the water-metal complexes, for the compressed and even for the equilibrium 

region in some cases, AMOEBA was found to be over-polarized due to the smaller polarizabilities of the 

metals and therefore weaker damping. Interestingly, while the asymptotic behavior of the polarization is 

reasonable for the water-monovalent metal complexes, the polarization is underestimated in the 

asymptotic region of the water-divalent ion complexes, which is noteworthy since divalent cations 

should provide the best “stress test” as the most strongly polarizing environment.   

Clearly, the formulation of polarization in AMOEBA deserves further attention. In this work, we 

extend our analysis of the many-body, non-covalent interactions, represented solely by polarization in 

AMOEBA, and by polarization, charge transfer, Pauli repulsion, and dispersion under ALMO-EDA, for 

the water trimer and a series of water-halides and water-metal ionic trimer systems. To this end, we 

analyze the total energies and energetic components, and isolate separate 2- and 3-body contributions to 

the energetic components by means of the many-body expansion (MBE)	76-78: 

𝑈!~   𝑈! + 𝑈! + 𝑈! +⋯     (2a) 

where  

𝑈! = 𝑈 𝑖!
!!!        𝑈! = 𝑈 𝑖, 𝑗 − 𝑈 𝑖 − 𝑈 𝑗!

!!!!!
!!!
!!!       (2b)  

𝑈! = 𝑈 𝑖, 𝑗, 𝑘 − 𝑈 𝑖, 𝑗 − 𝑈 𝑖, 𝑘 − 𝑈 𝑗, 𝑘 + 𝑈 𝑖 + 𝑈 𝑗 + 𝑈 𝑘!
!!!!!

!!!
!!!!!

!!!
!!!   (2c) 

For the trimer systems examined in this work, Eq. (2) expanded to 3rd order (N=3) is exact; furthermore, 

for the AMOEBA model the non-covalent energy for the 1-body term is zero, so only 2- and 3-body 

contributions will be analyzed. In addition to our appraisal of polarization in AMOEBA, we assess the 

validity of the pairwise-additive approximation of van der Waals interactions as represented by the 
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buffered 14-7 potential for Pauli repulsion and dispersion, and how the 3-body contributions from 

charge-transfer are accounted for in the MM model.  Building on our previous finding concerning the 

strong disagreement of polarization with ALMO-EDA in the compressed regime, we also assess whether 

we can tune the Thole damping parameters that gives maximal agreement with the corresponding 

ALMO-EDA term.   

 This article is organized as follows. In Section 2, we present the relevant details of the 

AMOEBA MM force field and the ALMO-EDA. In Section 3, we present the total energies and energy 

term breakdowns in the asymptotic, equilibrium, and compressed regions of the distance scans for the 

water trimer, as well as a series of water-ion trimer systems comprised of either two water molecules 

and one ion, or one water molecule and two ions. The implications of our findings are discussed in 

Section 4. 

2. THEORY AND METHODS 

AMOEBA force field. The details of the AMOEBA model have been described elsewhere22, 41, although 

we briefly describe its salient features for non-covalent interactions here. The non-covalent terms of the 

AMOEBA force field include van der Waals (vdW) interaction, as well as permanent and 

induced electrostatics. For the vdW interaction, AMOEBA adopts a pairwise additive (strictly 2-body) 

buffered 14-7 originally proposed by Halgren75, where the repulsive “14” term mimics Pauli repulsion, 

while the attractive “7” term in principle corresponds dispersion. 

𝑈!"# = 𝜀!"
1+ 𝛿
𝜎!" + 𝛿

! 1+ 𝛾
𝜎!"! + 𝛾

− 2                                                  (3)
𝑖!𝑗

 

where 𝜀!" is the depth of the potential well, 𝜎!" = 𝑟!! 𝑅!"!  is the dimensionless distance between sites i 

and j (𝑅!"!  refers to the minimum energy separation), and 𝛾 and 𝛿 are two constants whose values are set 

to 0.12 and 0.07, respectively.  

The permanent electrostatics in AMOEBA is modeled by interactions between atom-centered 

point multipoles that generally includes monopoles q, dipoles 𝜇, and quadrupoles Q:  

𝑴!
! =  𝑞! , 𝜇!" , 𝜇!" , 𝜇!" ,𝑄!"" ,𝑄!"# ,𝑄!"# ,𝑄!"" ,𝑄!"#        (4) 

For the atomic ions studied in this work, the RHS of Eq. (4) contains monopoles only. The total 

permanent electrostatics contribution is then evaluated as a pairwise sum 

𝑈!"!#
!"#$ = 𝑴!

!𝑻!"𝑴!
𝑖!!

                                                                           (5) 
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where 𝑻!" is the multipole interaction tensor whose elements contain appropriate derivatives of 1 𝑟!" 

according to the multipole expansion. The set of permanent multipoles are derived from a QM electronic 

density using the distributed multipole analysis (DMA) due to Stone79, whose values are further refined 

by a fit to an electrostatic potential generated by a higher level of QM theory41.  The electrostatic energy 

in AMOEBA for covalently bound atoms is computed according to exclusion rules similar to those of 

other force fields, with 1-2 and 1-3 interactions set to zero; 1-4 interactions and those further separated 

are evaluated without any attenuation	41, 42. 

 As we have mentioned, permanent electrostatic interaction described by distributed point 

multipoles starts to break down in the overlapping regime due to the charge penetration effect. Two 

models previously explored by Rackers et al.80 that are able to incorporate this effect in AMOEBA are 

considered in this work: one by Gordon and co-workers.1, 3 (originally used in the EFP model) and 

another by Piquemal et al.2 (used in the SIBFA model). In both models, the monopole charge is divided 

into a core nuclear charge and an electron portion that is smeared in a spherically symmetric fashion 

about the nucleus. Thus, the charge-charge interaction between two sites can be split into three 

contributions as follows: 

𝑈!"!#
!"#!!"# = 𝑈!"#$!!"#$ + 𝑈!"#$!!"#$%#& + 𝑈!"#$%#&!!"#$%#&                                (6) 

The two models share the common functional forms for the first two terms in the above equation: 

𝑈!"#$!!"#$ 𝑟!" =
𝑍!𝑍!
𝑟!"

                                                                      (7a) 

𝑈!"#$!!"#$%#& 𝑟!" =  
𝑍!𝑞!
𝑟!"

𝑓!
!"#$ 𝑟!" +

𝑍!𝑞!
𝑟!"

𝑓!
!"#$ 𝑟!"                                    (7b) 

where Zi and qi are the core and smeared charges at site i, respectively. 𝑓!
!"#$(𝑟!") is an exponential 

damping function that has a common form in these two models: 

𝑓!
!"#$ 𝑟!" = 1− exp −𝛽!𝑟!"                                                   (8) 

In the model by Gordon and co-workers, the atomic number of each site is taken as the core 

charge, while in the Piquemal model the number of valence electrons is used instead. Besides that, the 

most pronounced difference between these two models rests in the description of interaction between 

two smeared charges: the former model uses the so-called “one-center” approach81 to approximate this 

interaction: 

𝑈!"#$%#&!!"#$%#& =
𝑞!𝑞!
𝑟!"

1−
𝛽!!

𝛽!! − 𝛽!!
exp −𝛽!𝑟!" −

𝛽!!

𝛽!! − 𝛽!!
exp (−𝛽!𝑟!")               (9) 
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whereas the latter adopts a different formula: 

𝑈!"#$%#&!!"#$%#& =
𝑞!𝑞!
𝑟!"

1− exp −𝑘𝛽!𝑟!" 1− exp −𝑘𝛽!𝑟!"                   (10) 

Here 𝛽! is the same parameter as in Eq. (8), and k is a universal scaling parameter for all atom pairs. 

Note that when 𝛽! = 𝛽!, Eq. (9) becomes singular so a slightly modified form 

𝑈!"#$%#&!!"#$%#& =
𝑞!𝑞!
𝑟!"

1− exp −𝛽!𝑟!" (1+
1
2𝛽!𝑟!")                              (11) 

is employed. Taken together, the Coulomb interaction between two smeared charges can be described by 

the following general form: 

𝑈!"#$%#&!!"#$%#& =
𝑞!𝑞!
𝑟!"

𝑓!"
!"#$ 𝑟!"                                                     (12) 

where 𝑓!"
!"#$(𝑟!") is a two-site damping function that relies on both 𝛽! and 𝛽! (different than the one-site 

damping function  𝑓!
!"#$(𝑟!")). 

For permanent electrostatics, we only implement these charge penetration models for interactions 

between permanent monopoles (the “charge-charge damping” model in Ref. [71]. This is mostly for the 

sake of simplicity, as the accuracy of the strictly 2-body permanent electrostatics is not the focus of our 

present paper. The equations required for extending these models to higher-order multipoles can be 

derived by appropriately differentiating the one- and two-site damping functions, which were reported 

by Rackers et al.80 

The polarization effect in AMOEBA is modeled by induced dipoles,  𝝁!!"#, placed on each 

atomic site i, whose magnitude is determined by a site-specific isotropic polarizability 𝛼!  and the total 

external electric field exerted: 

 𝝁!!"# = 𝛼! 𝑬! + 𝑬!!                                                                  (13) 

where 𝑬! is the electric field due to permanent multipoles: 

𝑬! = 𝑻!"!𝑴!
!

                                                                        (14) 

and 𝑬!! is the field arising from induced dipoles on other sites: 

𝑬!! = 𝑻!"!!!𝝁!!"#

!!!

                                                                   (15) 
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Here 𝑻!"!  refers to the blocks of the multipole interaction tensor (𝑻!") that correspond to interaction 

between dipole and all other multipoles, and 𝑻!"!!! is specifically for dipole-dipole interactions. Once all 

𝝁!!"#’s are self-consistently solved, the polarization energy is determined by 

𝑈!"!#!"# = −
1
2 𝝁!!"#𝑬!

𝑖

                                                            (16) 

 As already mentioned, a Thole-type damping scheme is employed in the original AMOEBA 

model assuming a smeared charge distribution described by Eq. (1). It is consistently applied to the 

evaluation of electric field due to permanent multipoles and induced dipoles (Eqs. (14) and (15)). 

Denoting 𝑢 = 𝑟!" 𝛼!𝛼!
!/!

, the block of 𝑻!" corresponding to the electric field arising from monopoles 

can be expressed as 

𝑇!",!!!! = − 1− exp −𝑎𝑢!
𝑟!",!
𝑟!"!

, 𝛾 = 𝑥,𝑦, 𝑧                                 (17) 

and the Thole-damped electric field due to dipoles and quadrupoles can be derived by differentiating the 

RHS of Eq. (17) with respect to 𝐫!. The reader is referred to Ref. [22] where many of the specifics of 

AMOEBA’s formulation of polarization were introduced.   

 Similar to other non-covalent terms such as permanent electrostatics, the calculation of the 

polarization energy for covalently bound atoms is also governed by exclusion rules that affect the 

calculation of the direct and mutual electrostatic fields.  The direct polarization is defined by so-called 

polarization groups, whereby direct polarization can occur among atoms from different groups, but not 

among atoms within a group	 41, 42. Here, the only species with any covalent structure is the water 

molecule, and all its atoms are designated as a single polarization group.  Mutual polarization, on the 

other hand, occurs among all atoms in the system, regardless of whether or not they are covalently 

bound	41, 42. 

 In this work, we also investigate the effect of charge penetration on AMOEBA’s polarization. 

Similar to how the Thole-damped higher-order elements of 𝑻!"  can be derived by taking the appropriate 

derivatives of Eq. (17) according to the multipole expansion, so can the same procedure be followed 

using the charge penetration model for the damping.  A key yet subtle distinction between the two 

damping models is that the lowest-order interaction in the Thole damping corresponds to the induced 

dipole-permanent monopole interaction, whereas the lowest-order interaction in the charge penetration 

model is the charge-charge interaction whose damped T matrix element is given by:   
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𝑇!",!!!! = 1− exp −𝛽!𝑟!"
1
𝑟!"

                                                                  (18) 

The analogue of Eq. (17) corresponding to the induced dipole-monopole interaction under charge 

penetration can be obtained by taking the first derivative of Eq. (18):   

𝑇!",!!!! = − 1− 1+ 𝛽!𝑟!" exp −𝛽!𝑟!"
𝑟!",!
𝑟!"!

, 𝛾 = 𝑥,𝑦, 𝑧                                    (19) 

In order to investigate the full effect of charge penetration, the smearing is also applied to permanent 

dipoles and quadrupoles, which is analogous to the application of Thole damping to higher-order 

multipoles22, 80.  The damped 𝑻!"  elements corresponding to induced dipole-permanent dipole and 

induced dipole-permanent quadrupole are given, respectively, by Eq. (20a) and Eq. (20b) below: 

 𝑇!",!"!!! = − 1− 1+ 𝛽!𝑟!" exp −𝛽!𝑟!"
𝛿!"  
𝑟!"!

                                                                 

+ 1− 1+ 𝛽!𝑟!" +
!
!
𝛽!𝑟!"

! exp −𝛽!𝑟!"
3𝑟!",!𝑟!",!

𝑟!"!
         𝛾, 𝜀 = 𝑥,𝑦, 𝑧     20𝑎  

   𝑇!",!"#
!!!  = 1− 1+ 𝛽!𝑟!" +

!
!
𝛽!𝑟!"

! exp −𝛽!𝑟!"
3(𝑟!",!𝛿!" + 𝑟!",!𝛿!" + 𝑟!",!𝛿!") 

𝑟!"!
                             

− 1− 1+ 𝛽!𝑟!" +
!
!
𝛽!𝑟!"

! + !
!"
𝛽!𝑟!"

! exp −𝛽!𝑟!"
15𝑟!",!𝑟!",!𝑟!",!  

𝑟!"!
  𝛾, 𝜀, 𝜁 = 𝑥,𝑦, 𝑧    (20𝑏) 

Following the convention adopted in Ref. [22], we display for the sake of clarity in Eq. (21) below the 

damping coefficients λ1, λ3, λ5, λ7, corresponding to terms  ~1/r, ~1/r3, ~1/r5, and ~1/r7, respectively, 

from Eq. (18-20): 

𝜆! = 1− exp −𝛽!𝑟!"                                                                            (21𝑎) 

𝜆! = 1− 1+ 𝛽!𝑟!" exp −𝛽!𝑟!"                                                              (21𝑏) 

𝜆! = 1− 1+ 𝛽!𝑟!" +
!
!
𝛽!𝑟!"

! exp −𝛽!𝑟!"                                                  (21𝑐) 

𝜆! = 1− 1+ 𝛽!𝑟!" +
!
!
𝛽!𝑟!"

! + !
!"
𝛽!𝑟!"

! exp −𝛽!𝑟!"                                 (21𝑑) 

Note that once a charge penetration model is applied, the original Thole damping scheme is no longer 

applied for the electric field due to those smeared multipole moments (and their paired core charges), 

while it remains for the mutual induction between inducible dipoles (the evaluation of 𝑬!!).  

 Energy decomposition analysis. As in our prior work	 69, a slightly modified version of the 

second-generation ALMO-EDA	 67, 70 is utilized to separate the intermolecular interaction energy into 
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contributions from permanent electrostatics, Pauli repulsion, dispersion, polarization and charge 

transfer: 

𝐸!"# = 𝐸!"!# + 𝐸!"#$% + 𝐸!"#$ + 𝐸!"# + 𝐸!"                                           (22) 

Here we briefly recapitulate the feature of this EDA approach. The first three terms on the RHS 

of Eq. (22) constitute the frozen interaction energy (𝐸!"#), which corresponds to the energy change 

associated with bringing infinitely separated fragments into the complex geometry without relaxing their 

molecular orbitals (MOs): 

𝐸!"# = 𝐸 𝐏!"# − 𝐸!
𝑨

𝐏!                                                                (23) 

where 𝐏!"# is the one-particle density matrix (1PDM) associated with the antisymmetric wavefunction 

constructed from unrelaxed fragment MOs, and 𝐸! ’s are converged SCF energies of fragments 

computed in isolation. In order to further decompose the frozen term, we first define the permanent 

electrostatic contribution as the classical Coulomb interaction between charge distributions of isolated 

fragments (including their nuclei and electrons): 

𝐸!"!# = 𝜌!!"!(𝐫!
!!!

)
1
𝐫!"

𝜌!!"! 𝐫! d𝐫!d𝐫!                                                 (24) 

The choice of this “classical” definition of permanent electrostatics (rather than its original definition in 

Ref. [73]) is because of its better physical correspondence to AMOEBA’s permanent electrostatics based 

on distributed multipoles. The definition of the dispersion term, however, remains unchanged as in  Ref. 

[73], which is defined as the difference between the exchange-correlation contribution to the frozen 

energy and the same quantity evaluated with a “dispersion-free” (DF) functional: 

𝐸!"#$ = 𝐸!" 𝐏!"# − 𝐸!" 𝐏!
!

− 𝐸!"!" 𝐏!"# − 𝐸!"!" 𝐏!
!

                    (25) 

where 𝐏!’s are distorted fragment densities obtained from an orthogonal decomposition  of 𝐏!"# (the 

reader is referred to Horn et al.70 for more details on this procedure). Finally, the contribution from Pauli 

repulsion is then simply defined as the remainder of the frozen term: 

𝐸!"#$% = 𝐸!"# − 𝐸!"!# − 𝐸!"#$                                                               (26) 

 The separation of the polarization contribution utilizes the so-called “SCF for molecular 

interaction” (SCF-MI) approach	 82-84, which variationally lowers the energy of the complex under the 

constraint that the MOs of each fragment are expanded only by the basis functions on its own fragment 
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(absolutely localized). Once the SCF-MI calculation is converged, the energy lowering due to the on-

fragment relaxation of MOs is defined as the polarization term: 

𝐸!"# = 𝐸 𝐏!"#$ − 𝐸 𝐏!"#                                                            (27) 

where 𝐏!"#$  is the 1PDM constructed from the polarized ALMOs. The last contribution, charge 

transfer, is then given by performing a fully relaxed SCF calculation:  

𝐸!" = 𝐸 𝐏!"# − 𝐸 𝐏!"#$                                                              (28) 

 In the original ALMO-EDA scheme67, fragment AO basis functions were utilized to enforce the 

absolute locality of the MOs. This approach lacks a well-defined basis set limit, as when large basis sets 

with diffuse functions are used (desired by modern density functionals for intermolecular binding 

energies), the boundary between intra- and intermolecular relaxations becomes obscure74, 85. In this work, 

the basis of each fragment is prepared by means of the recently developed approach based on fragment 

electrical response functions	85 (FERFs), which is then utilized to compute the polarization energy via a 

generalized SCF-MI scheme. The FERFs provide only the variational degrees of freedom that are 

pertinent to the response of fragment MOs to a uniform external electric field (dipolar response) and its 

field gradient (quadrupolar response). Unlike the original AO-based approach, the resulting polarization 

energy manifests a well-defined basis set limit, as established by numerical tests. 

 Computational details. Energy calculations using the AMOEBA force field are performed in the 

Tinker7 molecular modeling package86.  The most recently released parameters are used for all species: 

“amoebapro13” is used for water-water, water-cation, and water-Cl- interactions, while for water-F- and 

water-Br-, parameters are obtained from  “amoeba09”, which corresponds to the latest parameterization 

for these two halides. Neither periodic boundary conditions nor distance cutoffs are adopted for any of 

these calculations; therefore, permanent electrostatics and polarization are performed in a standard, no-

cutoff direct space interaction. Induced dipoles are self-consistently determined and the convergence 

criterion is set to 10-12 Debye.  

Unless otherwise noted, the corrections for charge penetration are not employed in the 

AMOEBA calculations. The implementation details of the charge penetration models for permanent 

electrostatics and polarization have been introduced in Sec. 2, and the parameters required are taken 

from the work by Rackers et al.80, which were derived by a fit to SAPT2+ electrostatics	87. The SAPT2+ 

electrostatics corresponds to the interaction between charge distributions of isolated monomers without 

any effects of antisymmetry and, as such, are equivalent to the classical definition of permanent 

electrostatics in ALMO-EDA (Eq. (24)). The only difference between the electrostatics of these two 

energy decomposition methods rests in the treatment of intramolecular electron correlation (perturbation 
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theory vs. KS-DFT), while similar results should be produced by these two approaches. Note that in Ref.	

[71], the parameters for halogens were parameterized for covalently bonded environment but not for the 

halide anions. Nonetheless, these parameters are employed for F-, Cl- and Br- in this work for a proof-of-

concept purpose. Also, no charge penetration parameters were developed for metal cations in Ref.	[71], 

so in the present work we only investigate the effects of charge penetration on pure water and water-

halide clusters. 

 All the ALMO-EDA calculations are performed with the Q-Chem 4.4 software package	88. The 

ωB97X-V functional71, which is a range-separated hybrid GGA that incorporates the VV10 nonlocal 

correlation functional	89 for dispersion correction, is used together with the def2-QZVPPD basis set	72 to 

compute the intermolecular interaction energies (without counterpoise corrections since they are 

negligible in this basis). The XC functional is evaluated on a (99, 590) grid, while the SG-1 grid90 is 

employed for the integration of the nonlocal correlation functional (VV10). In ALMO-EDA calculations, 

the “FERF-DQ” model 85 that incorporates dipolar and quadrupolar responses is employed for the 

evaluation of 𝐸!"#, which, in principle, provides eight polarization functions per occupied orbital. Also, 

in order to separate out the dispersion term, the Hartree-Fock theory is chosen to be the auxiliary 

“dispersion-free” functional paired with ωB97X-V, which is used to compute the latter two terms in Eq. 

(25). 
  (a)                             (b)                                                          (c)                          

      
    (d)     (e) 

                         
Figure 1. Illustrations of the scans performed for the water trimer and ion-water trimers. (a) (H2O)2Mn+, 
(b) (H2O)2X–, (c) water trimer, (d) H2O(Mn+)2, (e) H2O(X–)2.  

 Definition of distance scans. The distance scans performed for the study of 2- and 3-body 

interactions are illustrated in Figure 1, in which the monomer geometries all remain unrelaxed. For the 

water trimer and systems containing two water molecules and one ion, we choose their equilibrium 

geometries optimized at the ωB97X-V/def2-QZVPPD level of theory as the starting points of the scans 
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(which are marked as the origins in Figure 1). The distance coordinate corresponds to displacement from 

equilibrium from the reference geometries shown here, in the directions indicated by arrows. 

 The Mn+(H2O)2 systems are of C2v point group symmetry, and two O-Mn+ distances are altered 

simultaneously along the 2-fold axis. For the X–(H2O)2 systems (or the water trimer), we shift X– (or one 

of the water molecules) along the distance from the centroid (not mass-weighted) of the triangle formed 

by the three heavy atoms at the equilibrium structure to X– (or to the oxygen atom of the displaced 

water). The structures for the H2O(Mn+)2 and H2O(X–)2 systems are prepared differently, since no 

meaningful equilibrium geometries can be obtained due to the strong repulsion between two like ions. 

For systems containing two cations, the angles between the O-Mn+ distances and the bisector of the H2O 

molecule are constrained to be 45°, and the initial O-Mn+ distances are chosen to be the same as that in 

the optimized structure of the corresponding Mn+(H2O) dimer. For systems containing two anions, the 

initial structure for the scan is simply prepared by a reflection of the O-H--X– angle under the 

equilibrium geometry of the X–(H2O) dimer so that the supersystem has C2v symmetry, and two O--X– 

distances are then modified simultaneously. 

3. RESULTS 

The general positive features and documented problems of the AMOEBA potential revealed in our prior 

study based on the water dimer and an extensive series of ion-water dimers persist in all of the trimer 

systems examined here, which is not surprising given the dominant effect of 2-body compared to 3-body 

contributions to the MBE. Figure 2a shows that for the water trimer the total intermolecular energy 

curve is underbound throughout the entire range of distances, which is primarily due to the imperfect 

cancellation of errors between the dominant 2-body terms: the insufficiently favorable permanent 

electrostatics that arise from use of point multipoles, and the 14-7 van der Waals, whose excessively soft 

repulsive wall only partially compensates. Similar to the case of the water trimer, the water-cation 

(H2O)2Mn+ and H2O(Mn+)2
 systems (Mn+=Li+, Na+, K+, Ca2+ and Mg2+; Figure S1) are also underbound 

throughout the distance scan (shown specifically for (H2O)2Mg2+ in Figure 2b). This again is due to a 

lack of charge penetration as observed for the water trimer, but the onset of charge penetration error 

occurs at shorter range for the cation-water systems due to the more compact electron density 

distributions of the cations than that of the water molecule. As was observed in our study of the dimer, 

all of the water-halide trimer systems (H2O)2X–  and H2O(X–)2
  systems (X–= F–, Cl–, and Br–) exhibit a 

distorted shape and shifted minima in their total intermolecular AMOEBA energy profiles compared 
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with the ωB97X-V benchmark; this is shown specifically for (H2O)2F– in Figure 2c, which serves to 

illustrate the same general trends we observed for all halide-water systems (Figure S1).  

    (a)                (b)    

	
       (c)    

	
Figure 2. Comparison of the total intermolecular energy profile for AMOEBA and the ωB97X-V DFT 
benchmark and AMOEBA polarization against the ALMO-EDA polarization. (a) water trimer, (b) 
(H2O)2Mg2+, and (c) (H2O)2F–. These three representative examples illustrate the trends observed for the 
water trimer and the replacement of one or two waters for the alkali, alkali earth metals, or halide ions. 
In this and all subsequent plots, the distance coordinate corresponds to displacement from equilibrium 
from the reference geometries. 

 The primary new feature of this study is how AMOEBA reproduces the 2- as well as 3-body 

energies in the distance scans for the genuinely many-body terms of ALMO, which are the Pauli 

repulsion, dispersion, polarization, and charge transfer contributions. Since AMOEBA’s only many-

body term arises from Thole-damped polarization, the question we address here is how successfully it 

renders agreement with the corresponding ALMO-EDA polarization. While Figure 2a-2c and S1 show 
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that the total polarization for AMOEBA ranges from quite good agreement for the water trimer, to quite 

poor agreement for the ion-water systems, we examine whether the 3-body sum of ALMO’s Pauli 

repulsion, dispersion and charge transfer terms are thus being captured by 3-body polarization or 

whether it is spread “incoherently” across, for example, the 2- and 3-body polarization contributions that 

might explain the discrepancies in the total polarization profile.  

 At the start we can state the 3-body sum of ALMO’s Pauli repulsion and dispersion terms is 

negligible at equilibrium, and only becomes significant in the compressed region (illustrated in Figure 3 

for the water trimer and the (H2O)2Cl– trimer). The trends of the 3-body contributions to the Pauli and 

dispersion terms are opposite to those of their 2-body counterparts, with an attractive 3-body Pauli term 

and a repulsive 3-body dispersion term that is smaller in magnitude, which together combine to form an 

attractive (cooperative) term. However, even in the compressed region, the sum of the 3-body Pauli and 

dispersion amounts to no more than 0.5-1.0% of the total Pauli repulsion and dispersion contribution 

across all trimer systems examined here, and therefore we do not consider these negligible 3-body terms 

further. Therefore, the trimer systems examined in this study afford the opportunity to ascertain the 

success of the AMOEBA potential when it is broken down into 2- and 3-body polarization contributions 

that can be compared against the same 2- and 3-body polarization terms for the ALMO-EDA profiles, 

and to assess the quite sizeable 3-body charge transfer, both of which can show cooperative and anti-

cooperative behavior.  
    (a)                    (b)                              

 
Figure 3. The sum of the ALMO’s 3-body contribution to the vdW interaction (Pauli repulsion + 
dispersion) for the (a) water trimer and (b) (H2O)2Cl– trimer. AMOEBA’s buffered 14-7 van der Waals 
potential is strictly pairwise additive and contributes no 3-body contribution. 
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 In order to proceed with the many-body analysis of agreement between AMOEBA and ALMO-

EDA, we return to one of the dominant errors in the 2-body interactions, namely the lack of charge 

penetration for the permanent electrostatics. This is because the many-body polarization term (Eq. (16)) 

is formulated from the dipole response to the electric field arising from point permanent multipoles (Eq. 

(14)) – which is known to be in error– as well as the field arising from other inducible dipoles (Eq. (15)). 

Therefore, in this work we have explored two charge penetration models (introduced in Section 2) that 

better reproduce ALMO-EDA’s permanent electrostatics, thereby better isolating remaining differences 

(if any) to just the polarization model. Compared to the previous study by Rackers et al.80, what differs 

here is that we evaluate the improvement in the AMOEBA electrostatics against ALMO-EDA as 

opposed to their comparison to SAPT2+87, and we also explicitly consider the effect of these charge 

penetration models on AMOEBA’s polarization as well, as the electric field due to permanent 

multipoles is altered once they are smeared.  

 Figures 4 and S2 show unambiguously that either monopole charge penetration model alters 

AMOEBA’s permanent electrostatics to dramatically improve agreement with the ALMO-EDA result, 

with the improvement most noticeable for atoms with larger electron clouds. Even so, using the supplied 

parameters for the monopole-only charge penetration models derived by other groups, the Piquemal 

model is quantitatively better across the halide systems that have been examined (Figure 4 and S2). 

Since the optimization of those parameters was based on fits to SAPT2+, it indirectly implies that the 

permanent electrostatic component given by ALMO-EDA and SAPT2+ decompositions are in very 

good accord. What is even more striking is the dramatic improvement achieved in the H2O(Cl–)2 system, 

even though the parameters for covalently bound (neutral) Cl atom is utilized, suggesting that the charge 

penetration parameters are relatively robust to changes in atomic radii or chemical microenvironment at 

least in this specific case. Nonetheless, we do not make strong distinction between the Piquemal and the 

Slipchenko-Gordon charge penetration models for their performances on these ion-water systems, since 

(1) the overall functional forms are very similar, (2) the possibility that the charge penetration model 

extended to dipoles and quadrupoles may change the quantitative conclusion, (3) parameters for 

covalently bonded halogen atoms are used here, and (4) the latter model could rather easily be 

reparameterized to improve agreement with the ALMO-EDA result if desired.  

 For the assessment of permanent electrostatic energies, the charge penetration corrections are 

only applied to the permanent monopoles. However, as mentioned in Section 2, in our investigation of 

the effect of charge penetration on polarization, smeared permanent dipoles and quadrupoles are also 

employed to compute their contributions to the electric field. Note that in the calculation of the 
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permanent field contribution to the induced dipoles (Eq. (14)) and the calculation of the polarization 

energy (Eq. (16)), the original Thole-damped terms are replaced by Eqs. (19-20), as the charge 

penetration and Thole damping models assume different smeared charge distributions, and it would be 

unreasonable to include both damping models for the permanent field terms. However, we find that the 

Thole model must be retained for the damping of the mutual polarization between induced dipoles (Eq. 

(15)), as use of the damping function from charge penetration models instead results in a failure for the 

induced dipoles to converge properly. 

         (a)                   (b)                              

	
         (c)                   (d)                              

 
Figure 4. Comparison of no charge penetration and with charge penetration (monopole only) for 
AMOEBA permanent electrostatics against the ALMO-EDA classical electrostatics using (H2O)3 (a and 
c) and H2O(Cl–)2 (b and d) as examples. a and b: charge penetration model from Piquemal2 and (c and d) 
charge penetration model due to Gordon and Slipchenko1, 3, 45 with parameters derived for both models 
by Rackers et al.80 
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 Figures 5 and S3 show that the incorporation of charge penetration for the higher order 

multipoles results in reasonable behavior in the long range, but overpolarization in the compressed 

region that can be quite drastic (as shown in Figure 5a and Figure S3(a-c)). This is probably for the 

trivial reason that the AMOEBA force field is now imbalanced with the introduction of the new physics 

that essentially assumes a wholly different charge distribution than the one assumed by Thole damping, 

and a total reparameterization would have to be undertaken to account for the different charge 

distribution. Furthermore, it is known that separating the nuclear and electron charges and smearing only 

the latter makes the issue of the missing exchange effect in polarization more pronounced,91 which could 

otherwise curb the overpolarization observed in the short range. The main conclusion from the charge 

penetration analysis is that we can proceed with the analysis of the AMOEBA polarization against the 

ALMO-EDA polarization using the original Thole prescription for charge distribution, since the error in 

the permanent electrostatic field arising from point multipoles does not dominate the polarization errors.   

         (a)                    (b)                              

 
Figure 5. Comparison of AMOEBA’s polarization energies evaluated with permanent field arising from 
point multipoles and multipoles with charge penetration against ALMO-EDA’s polarization term for (a) 
the water trimer and (b) H2O(Cl–)2 as an example. Results are shown here for the Piquemal model and 
parameters from Rackers et al.	80. 

 The sole many-body effect in AMOEBA, the polarization, shows small quantitative differences 

to large qualitative disagreement with the ALMO-EDA profiles in the equilibrium and compressed 

regimes for all trimer systems studied. Figure 6a shows that the 2-body polarization for the water trimer 

is well reproduced by the AMOEBA potential in the asymptotic region and near equilibrium, but then 

shows an inflection point that makes it unfavorable in the compressed region – a short-range effect 

arising from Thole damping. In contrast, AMOEBA’s 3-body polarization energy is seen to be too 



	 20	

negative throughout most of the intermolecular distances examined, and especially in the compressed 

region and near equilibrium distances as seen in Figure 6b. Interestingly, the agreement between 3-body 

effects for the water trimer improves significantly if we instead compare AMOEBA’s 3-body 

polarization against the sum of ALMO’s 3-body polarization and 3-body charge transfer, which mostly 

(but not completely) corrects for the 3-body differences.  

         (a)                       (b)                              

 
Figure 6. Comparison of AMOEBA 2-body and 3-body polarization against the ALMO-`EDA 
polarization for the water trimer. (a) The 2-body polarization energy for one of the three pairs in the 
trimer.  (b) The 3-body polarization as well as the sum of ALMO’s 3-body polarization and charge 
transfer terms. 

 Unlike the water trimer system, where both 2- and 3-body polarization energies are favorable, we 

find in the (H2O)2Mn+ systems that the 2- and 3-body polarization terms are favorable (Figure 7a) and 

unfavorable (Figure 7b), respectively, as shown for the representative case of (H2O)2Mg2+. In general, 

both the 2- and 3-body polarization energies of (H2O)2Mn+ are underdamped at short range; this is partly 

attributable to the functional dependency of Thole damping on the polarizability, which is smaller for 

both cations relative to water. Although the damping parameter has been adjusted to much smaller 

values for Mg2+ (a =0.0952)28 relative to that of water and the monovalent cations and anions (a=0.39), 

corresponding to a stronger damping effect according to Eq. (17), it is not enough to correct for the 

underdamping in the short range. While the effect of charge transfer is negligible for the (H2O)2Mg2+ 

system, it is more significant for the (H2O)2Na+ system (Figure S4c and S4d), and we see that 

AMOEBA’s 3-body polarization captures 3-body charge transfer at best in the compressed region but 

not at longer distances, unlike the case of the water trimer.  
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         (a)                   (b)                              

 
Figure 7.  Comparison of AMOEBA 2-body and 3-body polarization against the ALMO-EDA 
polarization for the (H2O)2Mg2+ system. (a) The 2-body polarization energy for one of the ion-water 
pairs in the trimer.  (b) The 3-body polarization as well as the sum of ALMO’s 3-body polarization and 
charge transfer terms. 
 
 The water dimer-halide (H2O)2X– (X=F, Cl, and Br) systems also deserve to be considered 

together due to overall similarities in their total intermolecular energies and energy breakdowns upon the 

distance scan, since all exhibit a distorted shape and shifted minima in their total intermolecular 

AMOEBA energy profiles compared with the ωB97X-V benchmark (Figure 2 and S1). While this poor 

overall agreement arises in part from inadequate cancellation of error in the strictly 2-body terms as 

discussed previously, it also arises from errors in the net polarization, with defects in the anti-

cooperative 3-body polarization as large as the leading order cooperative 2-body term as illustrated for 

(H2O)2F– (Figure 8). Both 2- and 3-body polarization exhibit inflection points in the compressed region 

due to the onset of Thole damping. As the halides are of higher polarizabilities, these systems are subject 

to stronger damping effect, but again, polarization is overestimated relative to the ALMO-EDA result at 

almost all investigated ranges. AMOEBA’s 3-body polarization energy is in better agreement with the 

sum of ALMO-EDA’s 3-body polarization plus charge transfer than with polarization solely, and this is 

notable particularly for (H2O)2F–. Nonetheless, this correspondence between AMOEBA’s 3-body 

polarization and ALMO’s 3-body polarization and charge transfer is not as clear-cut as for the water 

trimer, as AMOEBA’s 3-body polarization for the halide systems is still too anti-cooperative (Figure 8 

and S4). 
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(a)                   (b) 

 
Figure 8.  Comparison of AMOEBA 2-body and 3-body polarization against the ALMO-EDA 
polarization for the (H2O)2F– system. (a) The 2-body polarization energy for one of the ion-water pairs 
in the trimer.  (b) The 3-body polarization as well as the sum of ALMO’s 3-body polarization and 
charge transfer terms for the  system.   

 To assess the robustness of AMOEBA under a more strongly polarizing environment, we also 

performed scans consisting of two ions and a single water molecule (Figure 9, S5, and S6); to a large 

degree, the profiles in these scans only serve to amplify any defects observed in the case consisting of a 

single ion with two waters, but there are notable differences among some of the ion-water profiles that 

are worth mentioning. On a positive note, we see that the 2-body ion-ion polarization energies are in 

much better agreement with those of ALMO compared with the 2-body ion-water terms (Figure 9(a)-(c), 

Figure S5, and Figure S6). However, the overall trend of AMOEBA’s 3-body polarization for 

H2O(Na+)2 is incorrect just beyond equilibrium, lacking the anti-cooperative behavior of that given by 

ALMO-EDA (Figure 9d). Similar to H2O(Na+)2, AMOEBA’s 3-body polarization for H2O(Mg2+)2 

(Figure S5i) also displays an incorrect cooperative trend just beyond equilibrium compared with the 

anti-cooperative result from ALMO-EDA. H2O(Li+)2 (Figure S5c) and H2O(Ca2+)2 (Figure 9e) display 

even more striking disagreement in their 3-body polarization, as they completely fail to show the correct 

anti-cooperative behavior of ALMO’s corresponding 3-body polarization, which for these two cations is 

anti-cooperative throughout the distance range. Surprisingly, this qualitatively incorrect behavior for the 

3-body polarization is not borne out for H2O(K+)2, where the correct anti-cooperative behavior is 

observed. The 3-body polarization terms of the H2O(X-)2 systems also display the correct anti-

cooperative behavior (Figure 9f, S5l, and S5o). 
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   (a)       (b) 

   
(c)       (d) 

  
          (e)                                                (f) 

 
Figure 9. Comparison of AMOEBA 2-body and 3-body polarization against the ALMO-EDA 
polarization. (a)-(c): The 2-body polarization energy for the ion-ion pair in the trimer and (d)-(f): The 3-
body polarization as well as the sum of ALMO’s 3-body polarization and charge transfer terms for the 
systems, for the H2O(Na+)2, H2O(Ca2+)2, and H2O(F-)2

 systems. 
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 Given the functional form for Thole damping in Eq. (1), we sought to determine whether we 

could tune the atomic polarizabilities (αi and αj) and/or the Thole damping parameter a to improve the 

agreement with ALMO-EDA’s polarization. AMOEBA assumes isotropic, strictly atom-centered 

polarization, and furthermore assumes that atomic polarizabilities for use in condensed-phase 

simulations may be adequately parameterized by a fit to gas-phase molecular polarizabilities. The 

appropriateness of this is controversial, as there are strong reasons to believe that the effective 

polarizabilities of atoms will be different in the condensed phase as compared with their values in the 

gas phase. In fact, the observed AMOEBA polarization profiles compared with those of ALMO-EDA 

suggest a general trend that halide polarizabilities are too large and those of metal cations are too small.  
(a)                       (b) 

 
(c)                              

 
Figure 10.  The effect of modifying the ion polarizability for water-ion interactions in systems 
representative of the types of interacting species: a.) (H2O)2F-.  b.) (H2O)2Na+.  c.) (H2O)2Mg2+.  In all 
cases, AMOEBA’s default ion polarizability is represented by the blue dashed curve curve. 

We first examined the water trimer and confirmed that AMOEBA’s default polarizabilities yielded the 

best agreement between AMOEBA’s total polarization energy and the sum of ALMO-EDA’s total 
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polarization and 3-body charge transfer energy (Figure S7a). Keeping the polarizabilities of the water’s 

atoms fixed at their default values, we then attempted to tune the ion polarizabilities. Interestingly, the 

improvements in polarization near equilibrium afforded by tuning the ion polarizabilities are negligible 

for all ion-water trimers, with any apparent effect only in the compressed region due to the dependency 

of the damping on the polarizability (Figure 10 and S7). 

 We then turn to the dimensionless width parameter a. We first assessed the Thole damping 

parameter of the water trimer and found that the default value of 0.39 in AMOEBA did in fact provide 

the best agreement with the sum of ALMO’s total polarization and 3-body charge transfer (Figure S8a).   
(a)                   (b) 

 
(c)                              

 
Figure 11.  The effect of modifying the Thole damping parameter a for water-ion interactions in 
systems representative of the types of interacting species:  a.) (H2O)2F-.  b.) (H2O)2Na+.  c.) (H2O)2Mg2+.  
For all species, the default values for a in AMOEBA is 0.39, except for Mg2+, whose a value is 0.0952; 
in all cases, the curve corresponding to the default value is dashed blue. 

Following this, we then fixed the damping parameter between water O and H at 0.39, and varied the 

damping parameter of the water-ion interactions. In all the systems studied, we find that no single value 
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of a can yield a polarization profile that agreed with the ALMO curve throughout the distance range. If 

we focus on just points near equilibrium, in all the systems studied, a smaller a that corresponds to 

stronger damping could improve the agreement with ALMO’s polarization (Table S2). Significantly, the 

same value that leads to improvement in the 2-body polarization can be as or as near optimal for the 3-

body polarization and implicit incorporation of 3-body charge transfer (Figure 11 and S8). The real test 

is to see whether ion solvation free energies would benefit from these parameter changes. Nonetheless, 

we note that since the shape of the energy curve is wrong for a range of values, energy gradients that are 

critical for accurate MD would likely be in error. 

 Recently, the polarizabilities, damping parameter, and two different models of the damping were 

investigated and optimized by Liu and co-workers for a range of interactions, including ion/water and 

pure water systems92, and therefore differ from the publically available versions from the TINKER 

designated download that we use here. Both models that were developed had slightly modified 

polarizabilities for Na+, Mg2+, and Ca2+ and were derived from RI-MP2 data. Figure S9 show that the 3-

body energies of ALMO-EDA generated with the ωB97X-V functional are in good agreement with the 

3-body energies of the RI-MP2 benchmark used in [92]. We then tested whether these models provide 

improved agreement for the systems and coordinate scans presented here against ALMO-EDA (Figure 

S10-S14). Model 1 used a slightly stronger damping parameter a (0.34) for all interactions, except for 

that of the direct field for Mg2+ and Ca2+, for which a was set to 0.060 and 0.280, respectively. Overall 

Model 1 yields marginal improvement over standard AMOEBA, primarily near equilibrium geometries 

of the trimer systems examined here, compared to ALMO-EDA. Model 2 adopts an exponent of 3/2 for 

u instead of the original cubic power in the damping of the direct field (Eq. (7) in [92]) along with 

different damping parameters a, while the functional form and damping parameter for the mutual field 

are unchanged from standard AMOEBA. Model 2 is similar to AMOEBA and Model 1 with the 

exception of the (H2O)2Cl- and (H2O)2Br- trimers, where Model 2 is a significant improvement near 

equilibrium geometries over AMOEBA when benchmarked against ALMO-EDA. However, Model 2 

shows large discrepancies with ALMO-EDA in the asymptotic region (especially for the water trimer) 

that are not problematic for standard AMOEBA and Model 1. 

4. DISCUSSION  

In this work, we assessed how well the many-body energy is captured by the AMOEBA force field by 

comparing against a variational, single-determinant EDA of a DFT energy calculated using a range-

separated, dispersion-corrected functional with exact Hartree-Fock exchange.  In our previous work on 
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water-ion and pure water dimers, we demonstrated good agreement of the ωB97M-V functional with the 

CCSD(T)/CBS “gold standard”, indicating that the dispersion correction provides a reasonable 

description of true electron correlation. While we did not directly compare total DFT energies against 

CCSD(T) for the trimer systems in this work, we refer to work by Beran, Hobza, and co-workers that 

showed that for complexes dominated by polarization, such as those represented here, the most 

important component of a density functional in capturing many-body energy was the amount of true 

Hartree-Fock exchange that was present93, justifying the use of  the functional used here.  Moreover, we 

showed that the major contributions to ALMO’s 3-body energy are in near perfect accord with those 

obtained in a recent study using a variant of MP2 (RI-MP2)92.   

 Overall, the AMOEBA force field benefits from a finely tuned cancellation of errors, yielding 

total energies that are in reasonable agreement with QM energies near equilibrium and for symmetric 

structures containing monovalent ions54, 92. However, further from equilibrium, agreement with QM 

breaks down, as demonstrated by angular and distance scans69, 94.  Here we use the ALMO-EDA to 

reveal which components of AMOEBA are contributing to the 2- and 3-body errors and to what degree.  

We note that an EDA is not uniquely defined in the compressed regime, and the use of other EDA 

schemes might give rise to different conclusions in terms of the comparison against force field terms. 

For example, the density-based EDA (DEDA)66 suggested by Wu et al. intuitively would be ideal to 

guide force field95, 96, as its frozen density energy is variationally optimized while constraining the total 

system density to reproduce the sum of the densities of isolated monomers96, yielding a more favorable 

frozen energy and smaller polarization and CT terms than those of the ALMO-EDA. Nevertheless, it 

was recently revealed that the energy lowering caused by the variational relaxation of the frozen 

wavefunction is largely due to the so-called “constant-density CT” effect68, indicating that a strongly 

many-body effect is effectively absorbed into the Pauli term. Since the repulsive vdW term of 

AMOEBA is purely pairwise additive, the results of the many-body analyses of AMOEBA and QM 

might be even more discrepant if DEDA is employed. 

Taken together, these findings point to a deficiency in how AMOEBA models the polarization of 

ion-water interactions, and the imperfect transferability of AMOEBA’s water parameters and model to 

other systems. Although the validity of the assumption of linear dependency of the point inducible 

dipole on the field may be questioned, and quadratic and higher-order hyperpolarizabilities terms may 

be important39, 40, these higher-order terms are deemed to be non-negligible only in the presence of 

strong electrostatic fields. In addition, the polarization may also involve dependencies on field gradients 

in addition to the field itself.  Dependencies on the first and second derivatives of the field are associated 
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with induced quadrupoles and octupoles, respectively, and in fact, the FERF-DQ model used in the 

ALMO-EDA calculations takes the effect of quadrupolar polarization into account explicitly. However, 

according to the investigation by Soderhjelm et al.97, these higher-order polarization effects are found to 

be of much less importance and urgency compared to the dominant effect of the need to account for 

Pauli repulsion through damping.  

Therefore, the leading order error that lies in the form of the damping function within the point 

dipole model deserves further scrutiny. In his original work, Thole introduced a host of empirical 

damping functions, but only the functional form of Eq. (1) is in use in the AMOEBA force field. Masia 

et al.	 44 found that for cation-water interactions, a linear form was superior in reproducing ab initio 

results to the form of Eq. (1). Slipchenko and Gordon tested damping functions for a range of 

interactions in the context of EFP calculations, including charge penetration, dispersion, and 

polarization45.  For polarization, a Gaussian form and a form where the argument of the exponential is 

linear in interatomic distance were investigated, and it was found that the Gaussian damping function is 

better for benzene dimers, while the exponential form performs better for hydrogen-bonded complexes. 

Clearly, more attention needs to be paid to the functional form and system-specific predilections of the 

damping. This was recognized by developers of the AMOEBA potential, and modification of both the 

damping parameter and the functional form were proposed92.  These modifications were tested on the 

trimer systems presented here, and showed that no single modified damping could consistently improve 

the agreement with the QM reference across the board for all systems, consistent with the observations 

of Slipchenko and Gordon 45 and Masia et al.44 that different damping schemes were optimal for 

different systems.  In this work, we have explored an additional damping model for the permanent field 

by incorporating the effect of charge penetration, which, like polarization damping, is a manifestation of 

the finite nature of the electron density. The caveat here is that we had to adopt a certain prescription for 

partitioning the monopole into core and smeared charge, and that the parameters are optimized to fit 

SAPT2+ permanent electrostatics, not the polarization. Indeed, the modeling of exchange-polarization 

coupling, manifested in the polarization damping function, used in conjunction with a charge penetration 

model for the permanent electrostatics may require special considerations in the parameterization of 

polarizable force fields, even though they are both models for the finite extent of molecular charge 

distributions.   

It is also remarkable how much poorer AMOEBA’s polarization model captures 3-body charge 

transfer in the ion-water trimer systems than in the water trimer. To shed some light on this discrepancy, 

we turn to the parameterization process of AMOEBA, specifically, the fine-tuning of AMOEBA’s sole 
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many-body polarization term. In the course of parameterizing the AMOEBA water model, it was found 

that the Thole damping parameter had to be reduced from the original value of 0.59, which had been 

found ideal for reproducing gas-phase molecular polarizabilities, to its current value of 0.39, which 

results in a total molecular mechanical energy that better matches QM22.  In other words, the 

polarization parameters for pure water in AMOEBA have been tuned to be more appropriate for 

calculations in the condensed phase, and an indirect result is that the many-body charge transfer is better 

captured implicitly through AMOEBA’s sole many-body term. In contrast, no such procedure was used 

to optimize the polarizability parameters for ion-water clusters. While the Thole damping parameters 

were optimized for Ca2+ and Mg2+, this was performed only for water-ion dimers28, and therefore we 

cannot expect that the 3-body charge transfer would be captured in a systematic fashion through the 

polarization for these systems.  

Lastly, we turn to the issue of anisotropy, which can be manifested in two ways.  The first of 

these is the polarizability, which in principle is a rank-two tensor. In AMOEBA and other point 

inducible dipole models, the anisotropic polarizability is approximated as a single scalar isotropic 

polarizability. The other aspect of anisotropy is the addition of extra polarizable sites in areas of 

significant electron density distal from the atom center. A clear example of this in the systems studied 

here is the electron density corresponding to the lone-pair electrons on the water oxygen. Harder et al.98 

found that both anisotropic polarizability and inclusion of polarization centers on lone-pair oxygen sites 

improved geometries and energies for water dimers in the context of their Drude oscillator-based model. 

Interestingly, they found that polarization centers on lone-pair sites was more important than the use of 

anisotropic polarizabilities, and this conclusion was also found to be true in the development of the 

SIBFA potential (personal communication).  Our results suggest the importance of anisotropy in the 

polarization for lone-pair species in two respects.  First, we note the poorer performance of AMOEBA in 

modeling its 2-body ion-water polarizations compared with ion-ion polarizations in the H2O(Mn+/X-)2 

systems. Secondly, the poorer performance of AMOEBA in modeling the 3-body polarization for 

H2O(Mn+)2 than for H2O(X-)2 is likely related to the proximity of the cations to the lone-pair sites on the 

water oxygen in the distance scans.  

5. CONCLUSION  

In this article, we have extended the prior findings from our work on the dimer by focusing on the 

contrast of specifically many-body energetic components of the polarizable, multipole-based force field 

AMOEBA with their ab initio counterparts obtained by means of the ALMO-EDA method. By 
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performing distance scans of (H2O)2Mn+ and (H2O)2X- for a “dilute” ion regime as well as trimer 

systems consisting of H2O(Mn+/X-)2 to mimic a concentrated ion environment, we have assessed how 

well the pairwise-additive approximation in AMOEBA holds for describing many-body dispersion and 

Pauli repulsion, how well AMOEBA’s distributed inducible point dipoles with empirical Thole damping 

models a QM-derived polarization term, and how well charge transfer is implicitly captured through 

other terms in the AMOEBA force field.   

 First, the validity of the pairwise-additive approximation for the Pauli repulsion and dispersion 

terms, often collectively referred to as the vdW term modeled by the buffered 14-7 potential in 

AMOEBA, is supported by ALMO-EDA’s Pauli and dispersion terms whose 3-body effects only 

become significant at very close intermolecular separation and amount to less than 1% of the total 

energy for all trimer systems evaluated. We note that dispersion is not the dominant binding force for the 

systems investigated here, although there is evidence for the importance of many-body dispersion in the 

condensed phase.86 Thus it is worthwhile to extend the analysis to systems consisting of organic or 

hydrophobic moieties for which dispersion plays a more significant role so that its many-body effect 

may be non-negligible.  

 Therefore, in trimers, the remaining many-body effects that are appraised rest in polarization and 

charge transfer, the former of which is explicitly accounted for in AMOEBA whereas the latter is not. 

Given the fact that charge transfer and polarization may be grouped together as induction, we would 

have perhaps expected the 2-body polarization in AMOEBA to implicitly capture charge transfer, as 

does AMOEBA’s 3-body polarization. Interestingly, and as a general rule across all dimer and trimer 

systems we have analyzed, the 2-body ALMO-EDA charge transfer is largely captured through 

AMOEBA’s pairwise additive 14-7 van der Waals term, whereas AMOEBA’s 3-body polarization 

agrees better with the sum of ALMO-EDA’s 3-body charge transfer and polarization, particularly for the 

water trimer system. This may arise from the parameterization protocol. In the parameterization of 

AMOEBA03 water model, the parameters for the 14-7 potential were tuned to simultaneously reproduce 

the water dimer binding energy and geometry as well as the density and internal energy of liquid water 
22, offering a likely explanation for the absorption of effects like charge transfer that are not accounted 

for explicitly at the 2-body level into the vdW potential. Furthermore, the polarization of water is also 

tuned (through its Thole width parameter) to match the reference total QM energies of water clusters, 

thereby providing a possibility for the absorption of the 3-body charge transfer.  Such a tuning procedure 

was, however, not performed with the water-ion clusters, and therefore the 3-body polarization in water-

ion trimer systems does not account for charge transfer as well as in the water trimer.  
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 While AMOEBA’s total polarization for the water trimer matches reasonably well the sum of 

ALMO-EDA’s total polarization plus its 3-body charge transfer term, it is often not the case for ion-

water systems. For the cation-water systems, AMOEBA’s total polarization profile is excessively 

unfavorable (underbound) at and beyond equilibrium but excessively favorable in the compressed region, 

while the opposite trend is usually observed for the halide-water systems. In the halide-water systems, 

the effect of Thole damping to reduce the polarization in the compressed region is pronounced owing to 

its functional dependency on polarizabilities, which are larger for the halides.  When turning to the 

many-body effects, the 3-body polarization in AMOEBA is excessively large in magnitude for the 

(H2O)2Mn+, (H2O)2X-, and H2O(X-)2 systems, even when measured against the sum of ALMO’s 3-body 

polarization and charge transfer. The anti-cooperative behavior, on the other hand, is correctly displayed 

for these halide-water systems. In contrast, for all the H2O(Mn+)2 systems with the exception of 

H2O(K+)2, a qualitatively incorrect cooperative behavior is observed in all or part of the distance range 

for the 3-body polarization in AMOEBA.   

 While the incorporation of charge penetration improves agreement of AMOEBA’s permanent 

electrostatic energy with its counterpart in ALMO-EDA dramatically, the same improvement is not 

observed for the polarization term when corrections for charge penetration are applied to the evaluation 

of the permanent field. Rather, the total polarization energy tended to be excessively favorable in the 

compressed region, reflecting the dominant 2-body trend, and the 3-body polarization is grossly inflated 

in magnitude with charge penetration in place. This is due in part to the documented effect that the 

improper modeling of the coupling of Pauli exchange and polarization becomes a more pronounced 

issue when permanent multipoles are separated into core and smeared valence components91. It could be 

argued that the Thole damping of the multipoles and the effect of charge penetration on the permanent 

electrostatic field are both manifestations of the finite nature of the charge distribution. However, once 

the Thole damping for the permanent electric field in Eq. (13) is replaced entirely with the damping 

terms that are prescribed by the charge penetration model, the resulting polarization energies are often 

significantly overestimated in the short range, suggesting that such a direct substitution might not be the 

proper way to incorporate the charge penetration model consistently for both permanent electrostatics 

and polarization. Further scrutiny on this is essential for the development of the next-generation 

AMOEBA force field that accounts for the finite extent of charge distributions. 
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SUPPORTING INFORMATION. The complete set of numerical comparison between AMOEBA and 

ALMO-EDA over distance scan PESs of any water trimer and water-ion trimers not represented in the 

main text. 
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