UC Merced

UC Merced Electronic Theses and Dissertations

Title
Uncovering Deep Phylogenetic Signal in Plastid Genomes

Permalink
https://escholarship.org/uc/item/2cf2n3xh

Author
Lawrence, Travis Joseph

Publication Date
2018

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.04

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2cf2n3xh
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Uncovering Deep Phylogenetic Signal in Plastid
Genomes

A dissertation submitted in partial fulfillment of the requirements for
the degree Doctor of Philosophy
in
Quantitative and Systems Biology
by
Travis Joseph Lawrence

Committee in Charge:
Professor Carolin Frank
Professor David Ardell
Professor Clarissa Nobile
Professor Emily Jane Mctavish
Professor Suzanne Sindi

2018



Chapter 5 (©)Lawrence, Kauffman, Amrine, Carper, Lee, Becich, Canales, and
Ardell 2015

All other chapters: (C)
Travis Joseph Lawrence, 2018
All Rights Reserved



The dissertation of Travis Joseph Lawrence is approved:

Faculty Advisor:

Committee Members:

David H. Ardell, Ph.D.

Chair: Carolin Frank, Ph.D.

Clarissa Nobile, Ph.D.

Suzanne Sindi, Ph.D.

Emily Jane Mctavish, Ph.D.

Date

il



Contents

List of Figures . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . ix
Acknowledgements . . . . . . ... X
Curriculum Vita . . . . .. ... xii
Abstract . . . . . . xiii
1 Introduction 1
1.1 Plastid Phylogenetics and Phylogenomics . . . . . . . . ... ... .. 1
1.1.1  Development of Plastid Genes and Genomes as a Phylogenetic
Marker . . . . . . .. 1
1.1.2  Complications of Plastid Genes and Genomes as a Phylogenetic
Marker . . . . . . ..o 2
1.2 A New Source of Phylogenetic Signal from Plastid Genomes . . . . . 3
1.2.1  tRNA Interaction Network . . . . . . . . ... ... ... ... 3
1.2.2  Estimating tRNA Identity Elements Using Information Theory 6
1.2.3  Detecting Phylogenetic Signal in tRNA CIFs . . . . . . .. .. 7
1.3 Organization of Dissertation . . . . . .. .. ... ... ... ..... 7
1.4 References . . . . . . . . L 8

2 A Robust tRNA-Based Phyloclassifier Predicts a Recent Divergence

of Plastids from Cyanobacteria 12
2.1 Abstract . . . . .. 12
2.2 Introduction . . . . .. ..o 13
2.3 Methods . . . . . . oL 14
231 tRNAdata . .. ... ... ... ... ... 14
2.3.2 Genome Scoring . . . . ... 15
2.3.3 Phyloclassifier training and selection . . . .. ... ... ... 16
2.3.4  Plastid classification . . . . .. ... ... 16
2.3.5 Evaluation of phylogenetic model adequacy . . . . . . . . . .. 16
24 Results. . . . . . 17
2.4.1 tRNA Data and CIF estimation . . . . . . ... .. ... ... 17
2.4.2  Training and Validation of a tRNA-Based Cyanobacterial Phy-
loclassifier . . . . . .. .. 20

v



2.4.3 The Paulinella chromatophora Chromatophore Classifies Con-
sistently to the Marine Prochlorococcus | Synechococcus Clade 20
2.4.4 Plastid Genomes Robustly Phyloclassify as Late-Branching Cyanobac-

teria . . ... 21

2.4.5 Phyloclassification of G. lithophora is Consistent with its Early
Divergence within Cyanobacteria . . . . . . ... .. ... .. 21

2.4.6 Inadequate Modeling of Systematic Biases Possibly Explains
Discrepancies with Prior Work . . . . . . ... ... .. .. .. 23
2.5 Discussion . . . . . .. 25
2.5.1 Origin of Plastids from Late-Branching Cyanobacteria . . . . 25
2.5.2  Phylogenetic Model Adequacy . . . . . . ... ... ... ... 27
2.6 Supplementary Material . . . . ... ... 28
2.7 References . . . . . . . . 34

tRINA Class Informative Features Support Gnetophytes as Sister to

Conifers 39
3.1 Abstract . . . . . . .. 39
3.2 Introduction . . . . . . ... 39
3.3 Methods . . . . . . . . .. 41
3.3.1 tRNAdata . ... ... . ... .. ... ... 41
3.3.2 tRNA CIF estimation . . .. ... .. ... ... ....... 42
3.3.3 Distance calculation . . . ... ... ... ... ... ..... 42
3.3.4 Phylogenetic analysis . . . . . .. ... ... 43
3.4 Results. . . . . . . 43
3.4.1 tRNA data and CIF estimation . . . ... ... .. ...... 43
3.4.2 Phylogenetic analysis . . . . . . ... 43
3.5 Discussion . . . . . . ... 48
3.6 Conclusion . . . . . . . . .. 52
3.7 References . . . . . . . . 52
tsfm - tRNA Structure Function Mapper 58
4.1 Abstract . . . . . .. 58
4.2 Background . . . ... ..o 58
4.3 TImplementation . . . . . . ... 60
4.3.1 tRNA CIF prediction . . . . . . . ... ... ... ... .... 62
4.3.2 Statistical testing . . . . ... oo 69
4.3.3 tRNA CIF distance metrics . . . . . . ... ... ... .... 69
4.3.4 Graphical output . . . . .. ..o 69
4.4 Conclusion . . . . . . . .. 70
4.5 Availability and Requirements . . . . . . ... ... oL 70

4.6 References . . . . . . . 70



5 FAST: FAST Analysis of Sequences Toolbox
5.1 Abstract . . . . . . .
5.2 Introduction . . . . . . ...
5.3 Design and Implementation of FAST Tools . . . . . . . ... ... ..
5.3.1 The FAST Data Model . . . . . . .. ... ... .. ... ...
5.3.2 Overview of the FAST Tools . . . . . . ... ... ... ....
5.3.3  General Implementation and Benchmarking . . . . . ... ..
5.3.4 Installation and Dependencies . . . . . . . ... ... ... ..
5.3.5 Implementation and Usage of Individual Tools . . . . . . . ..
5.4 Composing Workflows in FAST . . . .. ... ... ... ... ....
5.5 Further FAST Workflow Examples . . . . . ... . ... ... ....
5.5.1 Selecting Sites from Alignments by Annotated Features . . . .
5.5.2 Selecting Sequences by Encoded Motifs . . . . .. .. ... ..
5.5.3 Sorting Records by Third Codon Position Composition . . . .
5.5.4 More Advanced Merging of Data Records . . . . . . .. .. ..
5.6 Further Documentation and Usage Examples . . . . . . .. .. .. ..
5.7 Concluding Remarks and Future Directions. . . . . . . ... ... ..
5.8 References . . . . . ..

6 Conclusion
6.1 Scientific Impact . . . . .. ..o
6.2 Next Steps . . . . . . . .

vi



List of Figures

1.1 Tertiary and secondary structure of tRNA . . . . . ... .. ... .. 4
1.2 Diagram of tRNA interaction network . . . . . . . ... ... ... .. )
1.3 Example of a cytosine function logo produced by tsfm. . . . . . . .. 6
2.1 Schematic overview of CYANO-MLP workflow. . . . . ... ... .. 18
2.2 Null distribution of average accuracy using LOOCYV estimated by 100,000
label swapping permutation datasets. . . . . . ... ... ... ... 21

2.3  Average classification and median bootstrap results of plastid groups,
the chromatophore of P. chromatophora, and the cyanobacterium G.

lithophora with CYANO-MLP. . . . . . . . ... ... ... ... ... 22
2.4 Classification results of 100 bootstrap replicates of each Rhodophyta

derived plastid genome. . . . . . . ..o 24
2.5 Classification results of 100 bootstrap replicates of each Chloroplastida

derived plastid genome. . . . . . . ... 24

2.6 Results of posterior predictive analyses of phylogenomic datasets of

Shih et al., 2013, Ponce-Toledo et al., 2017, and Ochoa de Alda et al.,

2014, . .. 25
S2.1 Classification results of 100 bootstrap replicates of each Rhodophyta

derived plastid genome for cyanobacterial clades C1, C3, E, F, and G. 29
S2.2 Classification results of 100 bootstrap replicates of each Chloroplastida

derived plastid genome for cyanobacterial clades C3 and E. . . . . . . 29
S2.3 Function logos for Cyanobacterial Clade A. . . . . . . . . .. ... .. 30
S52.4 Function logos for Cyanobacterial Clade B1 . . . . . . .. .. .. .. 30
S2.5 Function logos for Cyanobacterial Clade B23 . . . . . . . . .. .. .. 31
S2.6 Function logos for Cyanobacterial Clade C1 . . . . . .. .. ... .. 31
S2.7 Function logos for Cyanobacterial Clade C3 . . . . . . ... ... .. 32
52.8 Function logos for Cyanobacterial Clade E . . . . . . ... ... ... 32
52.9 Function logos for Cyanobacterial Clade F . . . . . . . .. .. .. .. 33
S2.10Function logos for Cyanobacterial Clade G . . . . . . . .. .. .. .. 33
3.1 Adenine function logo for each seed plant clade. . . . . . . . .. ... 44
3.2 Cytosine function logo for each seed plant clade. . . . . . . . . . . .. 45
3.3 Guanine function logo for each seed plant clade. . . . . . . . . . . .. 46
3.4 Uracil function logo for each seed plant clade. . . . . . . . ... ... 47
3.5 BIONJ tree annotated with bootstrap support . . . . . . . ... ... 49

vil



3.6
3.7

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

Neighbor-joining tree annotated with bootstrap support . . . . . . ..
Minimum evolution tree annotated with bootstrap support . . . . . .

Overview of the tsfm workflow. . . . . .. .. ... .. .. ... ...
Entropy estimator comparison for a distribution with a true entropy
of 446 bits. . . . . . L
Entropy estimator comparison for a distribution with a true entropy
of 3.62 bits. . . . . ..
Entropy estimator comparison for a distribution with a true entropy
of 266 bits. . . . . ..
Entropy estimator comparison for a distribution with a true entropy
of 1.86 bits. . . . . . ..
Entropy estimator comparison for a distribution with a true entropy
of 0.91 bits. . . . . . .
Entropy estimator comparison for a distribution with a true entropy
of 0.51 bits. . . . . . .
Example of a cytosine function logo produced by tsfm. . . . . . . ..

Overview of the first major release of FAST with data and workflow
dependencies indicated . . . . .. ...
Average processor time of 100 repetitions required to complete analysis
using indicated utility. . . . .. ..o L oo



List of Tables

2.1

2.2
2.3

24

3.1
3.2

5.1
5.2

Summary statistics of the genomes and tRNA genes for Cyanobacterial
clades and plastid groups. . . . . .. ... Lo
LOOCV classification results for CYANO-MLP. . . . . ... ... ..
Classification results for plastid genomes and the chromatophore of P.
chromatophora using CYANO-MLP. Results are summarized by plastid
groups. Number of genomes classifying to each Cyanobacterial clade
and percent are shown. . . . . . . ... ... L
Results of the posterior predictive analyses presented as z-scores. . . .

Summary statistics of the genomes and tRNA genes. . . . . . .. ..
Bootstrap replicate rooted clade frequencies. . . . . . . . . ... ...

Utilities in first major release of FAST. . . . . . . ... .. ... ...
Molecular population genetic statistics in FAST. . . . . . . . . .. ..

X



Acknowledgments

I would like to express my gratitude to my advisor, David Ardell, for his guidance,
encouragement, and dedication throughout these last five years. I will miss our dis-
cussions on science and research over tacos and beers at J&R Tacos. I would like
to thank the members of my PhD committee: Carolin Frank, Clarissa Nobile, Emily
Jane McTavish, and Suzanne Sindi. I would also like to thank Zhong Wang for my ex-
perience at the Joint Genome Institute, providing research advice, and for providing
insight into career opportunities at National Laboratories. Finally, I want to thank
my wife, Dana Carper, for her love, encouragement, and being a sounding board for
my ideas. Her support and advice made this work possible.



Curriculum Vita

EDUCATION

Doctor of Philosophy in Quantitative and Systems Biology, 2013-2018
University of California, Merced

Master of Science, Biology, 2010-2013
California State University, Sacramento

Baccalaureate of Science, Biology 2006-2010
California State University, Sacramento

PUBLICATIONS

Kristen M. Valentine, Dan Davini, Travis J. Lawrence, Genevieve Mullins, Miguel
Manansala, Mufadhal Al-Kuhlani, James M. Pinney, Jason K. Davis, Anna E. Beaudin,
Suzanne S. Sindi, David M. Gravano, Katrina K. Hoyer (2018) “CDS8 follicular T cells
promote B cell antibody class-switch in autoimmune disease.” Journal of Immunol-
ogy, 198(1) doi: 10.4049/jimmunol.1701079

Giosa D., Felice M.R., Lawrence T.J., Gulati M., Scordino, F., Giuffre L., Passo
C.L., D’Alessandro E., Criseo G., Ardell D.H., Hernday A.D., Nobile C.J., and Romeo,
0. (2017). “Whole RNA-sequencing and transcriptome assembly of Candida albicans
and Candida africana under chlamydospore-inducing conditions” Genome Biology

and Evolution, 9(7):1971-1977 doi: 10.1093/gbe/evx143

Lawrence T.J. and Datwyler S.L. (2016). “Testing the Hypothesis of Allopolyploidy
in the Origin of Penstemon azureus (Plantaginaceae)” Frontiers in Ecology and Evo-
lution, 4. doi: 10.3389 /fevo.2016.00060

Lawrence, T.J., Kauffman, K.T., Amrine, K.C.H., Carper, D.L., Lee, R.S., Becich,
P.J., Canales, C.J., and Ardell, D.H. (2015). “FAST: FAST Analysis of Sequences
Toolbox” Frontiers in Genetics, 6. doi: 10.3389/fgene.2015.00172

PRESENTATIONS

x1



xii

Conference Talks:
Lawrence, T.J. ‘tRNA Interaction Network Sheds Light on the Origin of Chloro-
plast” Northern California Computational Biology Student Symposium 2017

Lawrence, T.J., Ardell, D.H. “tRNA Interaction Network Sheds Light on the Origin
of Chloroplast” Botany 2017

Lawrence, T.J., Datwyler, S. “Using low copy nuclear genes to test the allopolyploid
origin of Penstemon azureus” Botany 2012

Conference Posters:
Lawrence, T.J., Ardell, D.H. “Using tRNA class informative features to determine
the phylogenetic placement of Gnetophyta” Botany 2016

Lawrence, T.J., Amrine, K., Swingley, W., Ardell, D.H. “Exploring the origin of
chloroplast using the tRNA-protein interaction network” Evolution 2016

Lawrence, T.J., Datwyler, S. “The allopolyploid origin of Penstemon azureus”
Northern California Botany 2013

Lawrence, T.J., Datwyler, S. “Using low copy nuclear genes to determine the al-
lopolyploid origin of Penstemon azureus” CSUPERB 2012



Abstract of the Dissertation

Uncovering Deep Phylogenetic Signal in Plastid Genomes
by
Travis Joseph Lawrence
Doctor of Philosophy, Quantitative and Systems Biology
University of California, Merced, 2018
Advisor: Prof. David H. Ardell

The overall aim of my dissertation is to show that a novel source of phylogenetic
information from the plastid genome, the tRNA interaction network, coupled with
machine-learning and distance-based methods, is capable of accurately reconstructing
deep phylogenetic relationships. First, we review the history of the plastid genome as
a source of phylogenetic information, discuss sources of systematic biases of plastid
sequence data, and introduce the transfer RNA (tRNA) interaction network as a
source of phylogenetic data.

Second, I determine the phylogenetic origin of plastids within the Cyanobacteria
tree of life (CyanoToL). Previous studies have strongly supported contradictory con-
clusions, with plastids branching either early or late within the CyanoToL. I begin
by predicting structural features that determine the charging potential of a tRNA
with its cognate amino acid, termed tRNA Class Informative Features (CIFs) for 113
Cyanobacterial genomes within eight Cyanobacterial clades. I show that predicted
tRNA CIFs differ between Cyanobacterial clades in a phylogenetically informative
way that can be exploited to accurately classify Cyanobacterial genomes using a
machine-learning algorithm known as a multilayer perceptron (MLP), which we have
named CYANO-MLP. I then use CYANO-MLP to test competing hypotheses of the
origin of plastids by classifying 440 plastids genomes. I found support for the origin
of plastids among a late-branching clade of starch-producing marine/freshwater dia-
zotrophic cyanobacteria. Finally, I show that previously used phylogenetic models are
unable to accommodate systematic biases possibly explaining conflicting hypotheses.

Third, I use tRNA CIFs to determine the phylogenetic placement of gnetophytes,
a small clade of plants, within the seed plant phylogeny. The location of gnetophytes
has been contentious with phylogenomic studies supporting several relationships with
cone-bearing seed plants (conifers). Here I use the Jensen-Shannon divergence to cal-
culate a pairwise distance matrix between seed plant clades for plastid tRNA CIFs.
Using standard distance-based phylogenetic algorithms I found support for gneto-
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phytes as sister to conifers.

Lastly, I describe the implementation of two software packages. The first is tsfm:
tRNA structure function mapper, that provides methods for predicting tRNA CIFs.
The second is a suite of tools modeled after GNU Textutils named, FAST: FAST
Analysis of Sequences Toolbox, for processing of molecular sequence data on the
command line.



Chapter 1

Introduction

1.1 Plastid Phylogenetics and Phylogenomics

1.1.1 Development of Plastid Genes and Genomes as a Phy-
logenetic Marker

Shortly after the discovery of the plastid genome (Ris and Plaut, 1962) it became
widely adopted as a valuable source of phylogenetic information for reconstructing
evolutionary relationships of plastid-bearing eukaryotes (Vedel et al., 1978; Rhodes
et al., 1981; Palmer et al., 1988) because of the conservation of gene content and
relatively low rate of nucleotide substitution in non-parasitic lineages (Palmer et al.,
1988; Davis et al., 2014). The plastid genome contains between 120-235 genes on av-
erage, however, plastids within parasitic host lineages can have highly reduced gene
sets (Bellot and Renner, 2016; Figueroa-Martinez et al., 2017), most are a single circu-
lar molecule (Oldenburg and Bendich, 2015; Oldenburg and Bendich, 2016) and have
a quadripartite organization with two inverted repeats separated by short and long
single copy regions (Davis et al., 2014; Munoz-Gémez et al., 2017). Plastid genome
sizes range broadly from 11.4kb in the holoparasite Pilostyles aethiopica, caused by
the loss of photosynthetic genes and reduction of the number and length of introns
and intergenic regions (Bellot and Renner, 2016; Figueroa-Martinez et al., 2017), to
1.1Mb in the red algae Corynoplastis japonica mostly explained by expansion of in-
trons and intergenic regions (Munioz-Gémez et al., 2017). Early phylogenetic studies
generated data from plastid genomes using restriction fragment length polymorphism
(RFLP) in which isolated plastid DNA was digested by several restriction enzymes
and the presence/absents of different DNA fragments were recorded after digestion
and separation by gel electrophoresis (Perl-Treves and Galun, 1985; Shinozaki et al.,
1986; Vedel et al., 1978; Jansen and Palmer, 1988; Rhodes et al., 1981; Palmer et al.,
1988). These early studies were able to include large numbers of species and score
markers with high reproducibility (Powell et al., 1996; Russell et al., 1997), how-
ever, they suffered from limited ability to resolve phylogenetic relationships above
the family level, likely caused by homoplasy and limited number of phylogenetic



markers (Palmer et al., 1988). Despite the first plastid genome being published in
1986 (Shinozaki et al., 1986) RFLPs remained the primary source of phylogenetic in-
formation from the plastid genome through the early 1990’s because of the prohibitive
cost of DNA sequencing. However, exponential decreases in sequencing cost starting
in the mid 1990’s (Check, 2014) produced a shift from RFLPs to sequencing several
plastid genes with wide species sampling providing additional phylogenetic markers
increasing the utility of the plastid genome to resolve evolutionary relationships (Soltis
et al., 2002; Datwyler and Wolfe, 2004). The cost of sequencing precipitously dropped
starting in 2006 with the advent of second-generation sequencing technology (Check,
2014) allowing investigators to fully exploit the phylogenetic information within the
plastid genome sequence data by making it feasible to gather complete plastid genome
sequences from hundreds of species (Davis et al., 2014). Despite the ability to easily
generate plastid phylogenomic datasets several plastid evolutionary relationships re-
main unresolved or different plastid phylogenomic datasets have strongly supported
contradictory hypotheses.

1.1.2 Complications of Plastid Genes and Genomes as a Phy-
logenetic Marker

The plastid genome has been and remains an invaluable source of phylogenetic in-
formation for the reconstruction of evolutionary relationships, successfully resolving
countless relationships among plastid-bearing eukaryotes (Ruhfel et al., 2014; Munoz-
Goémez et al., 2017). However, the use of plastid genes and genomes in phylogenetic
analyses are complicated by systematic biases caused by non-stationary compositions
of genomes (Li et al., 2014), site-specific constraints of nucelotides/amino acids (Ochoa
de Alda et al., 2014), and obfuscation of phylogenetic signal caused by substitutional
saturation (Ruhfel et al., 2014). These complications are most significant when plastid
genomes are used to reconstruct deep evolutionary relationships.

If systematic biases are not accounted for in phylogenetic models, they may affect
the accuracy of phylogenetic reconstructions possibly leading to artefactual groupings
in phylogenies. This can lead to persistent controversy where contradictory hypothe-
ses with strong statistical support are recovered, which are entirely dependent on
the dataset (Blanquart and Lartillot, 2008). Yet, commonly used phylogenetic mod-
els employed for deep plastid phylogenetics are time- and site-homogeneous mod-
els, which fail to accommodate non-stationary compositions and/or site-specific con-
straints (Blanquart and Lartillot, 2008; Jackson et al., 2018). Futhermore, it has
been shown site-homogeneous models are sensitive to substitutional saturation lead-
ing to long-branch attraction artefacts (Halpern and Bruno, 1998). Although phy-
logenetic models exist that are capable of accommodating compositional biases (Li
et al., 2014) and/or site-specific constraints (Lartillot et al., 2007; Blanquart and
Lartillot, 2008) unfortunately they are computationally intractable for large phyloge-
nomic datasets (Wang et al., 2018). The inability to adequately model systematic
biases for large plastid phylogenomic datasets in a computational tractable way sug-



gests that new phylogenetic markers that are resistant to these systematic biases
are needed to accurately reconstruct difficult phylogenetic relationships using plastid
genomes. Additionally, computational efficient methods to exploit the phylogenetic
information in these markers will be required.

1.2 A New Source of Phylogenetic Signal from Plas-
tid Genomes

1.2.1 tRNA Interaction Network

Transfer RNAs (tRNA) are short non-coding RNAs mainly involved in protein syn-
thesis acting as adaptor molecules converting the information contained in the genome
into proteins (Marck and Grosjean, 2002). To function as adaptor molecules during
protein synthesis tRNAs must participate in two separate but equally important re-
actions. First, tRNAs must be recognized and aminoacylated by an aminoacyl tRNA-
synthetase (aaRS) based on its amino acid identity (Goodman and Rich, 1962). The
second reaction involves the recognition of an mRNA codon by the tRNA anticodon
at the ribosome followed by the donation of a charged amino acid (Ogle et al., 2001).

tRNAs involved in protein synthesis must conform to the same general tRNA
structure for efficient and comparable activity on general translation factors and the
ribosome. This structure is routinely referred to as a clover leaf shape, despite the
fact that the tertiary structure resembles an inverted capital “L”, consisting of three
stem-loops, a variable loop, a base-paired stem, and an unpaired tail (Fig. 1.1). The
acceptor stem contains the 5" and 3’ ends (Fig. 1.1 purple) and the CCA tail (Fig. 1.1
yellow) which is typically added post-transcriptionally in Eukaryotes and in several
Bacterial and Archaeal groups (Deutscher and Ni, 1982; Marck and Grosjean, 2002;
Xiong and Steitz, 2004) with the site of aminoacylation occurring at the 2’ or 3’
hydroxyl of the terminal adenosine (Delagoutte et al., 2000; Xiong and Steitz, 2004).
The anticodon loop (Fig. 1.1 blue) contains the anticodon triplet which interfaces
with the codons of the mRNA through the ribosome (Fig. 1.1 gray) and is the conical
location for introns (Marck and Grosjean, 2002). The D and T C stem loops (Fig.
1.1 red and green respectively) are involved in interactions to form and stabilize the
tertiary structure of the tRNA molecule (Butcher and Pyle, 2011). Lastly, the variable
loop is typically between 3-21 nucleotides (Fig. 1.1 orange) and is mostly found in
tRNAs that decode serine, tyrosine, and leucine codons (Marck and Grosjean, 2002).

Despite the very high structural similarity of all tRNAs engaged in protein syn-
thesis (Fig. 1.1) each must interact productively with only one type of aaRS to be
charged with its cognate amino acid and must avoid interacting productively with
others (Fig. 1.2) to ensure accurate translations of the genetic code. Typically, there
is one population of an aaRS in a cell for each of the 20 canonical amino acids. The
charging capacity of a tRNA, termed its functional class, relies on a set of struc-
tural features called identity determinants that promote recognition by its cognate



Figure 1.1: Tertiary and secondary structure of tRNA. CCA tail in yellow, acceptor stem in purple,
variable loop in orange, D arm in red, anticodon arm in blue with anticodon in black, T arm in
green. Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10312097
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Figure 1.2: Diagram of tRNA interaction network. Source: Amrine et al., 2014

aaRS and anti-determinants that discriminate against noncognate aaRSs (Freyhult
et al., 2006; Giegé et al., 1998). Previously discovered tRNA identity determinants
are mostly concentrated along the acceptor stem, the anticodon itself, and the dis-
criminator base (structural position 73). Identity determinants found outside these
locations tend to be species- and lineage-dependent and are distributed throughout
the tRNA strucuture, however, these elements, individually, tend to be weaker deter-
minants (Giegé et al., 1998).

Traditionally, identity determinants have been investigated experimentally mostly
focusing on one functional class for a single organism. These types of investigations
are labor intensive yielding limited results. Even more importantly, these investiga-
tions are unable to adequately accommodate that identity elements do not operate in
isolated systems partitioned by functional class, but instead the set of determinants
and anti-determinants of each functional class must act in concert within the cell to
facilitate the correct charging of each tRNA functional class. To fully elucidate the set
of identity elements that describe the aaRS-tRNA interaction network of an organism
the interdependencies of identity elements across tRNA functional classes can not be
ignored suggesting that a systems biology approach is required. The computational
method introduced by Freyhult et al., 2006, which I briefly describe below and fully
in Chapter 4, seems the best approach to address the interdependencies of identity
elements and is utilized in this work to identify tRNA identity elements.
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Figure 1.3: Example of a cytosine function logo produced by tsfm.

1.2.2 Estimating tRNA Identity Elements Using Information
Theory

For the purpose of estimating the complete set of tRNA identity elements for a given
system, termed class informative features (CIFs), a structural feature is defined as
the Cartesian product of a state x € X where X = {A,C,G,U,—} and | € L where
L is equal to the length of the sequence 1 <[ < L. For example, a structural feature
would be a cytosine at position 48. tRNA CIFs are determined from the creation of
a function logo for each of the possible states x. A function logo is calculated in a
conditional probability framework using the methods of molecular information theory
(Shannon, 1948; Schneider and Stephens, 1990), which I will briefly describe.

For the purpose of using information theory to estimate tRNA CIFs the possible
functional classes of tRNAs are denoted by Y = {A,C,D,E, F,G,H,1,J, K, L, M,
N,P,Q,R,S,T,V,W, X, Y}. Furthermore, the functional information [;(Y|z) that a
state x confers about the frequencies of different classes Y at position [ is: [;(Y|z) =
H(Y) —e(n(x)) — H(Y|z)), where H|(Y|z) = —=X,eypi(y|z)loga(pi(y|z)) is the class
entropy or level of uncertainty about the functional class of tRNAs that carry state x
at position [, H(Y') = =X,y p(y)logz(p(y)) is the background entropy which depends
on relative frequency of sequences belonging to different classes, 0 < p(y), pi(y|z) <
L Yevp(y) = 1, Eeypi(ylzr) = 1 and emy(x)) is a correction factor to correct for
biases caused by small sample size.

Function logos follow the format of sequence logos (Schneider and Stephens, 1990)
by plotting functional information as a stacked bar graph with sequence position
on the x-axis and information on the y-axis in bits. Each element of a stack is a
symbol for a functional class y € Y. Symbol height is determined using the method
of Gorodkin et al. (1997) so that a symbol y at position [ as height: height, =
(pi(ylx) /(W) (Bweypi(w|z)/p(w))[(Y]z) and then symbols are sorted by heights
with the symbols with largest height appearing on top. An example function logo is
shown in figure 1.3. From this function logo it can be seen that having a cytosine at
postion 11 is a strong CIF for the aspartic acid functional class with an information
content of roughly 4 bits out of a theoretical maximum of 4.2 bits. This indicates
that tRNAs that have the a cytosine at position 11 are very likely to belong to the
aspartic acid functional class.



1.2.3 Detecting Phylogenetic Signal in tRNA CIFs

These sets of structural features that determine a tRNAs charging capacity are not
static and have been shown to vary widely across the tree of life (Marck and Gros-
jean, 2002; Freyhult et al., 2007; Amrine et al., 2014). Furthermore, tRNA CIFs
have been shown to change in a phylogenetically informative manner that may be
exploited to reconstruct deep evolutionary relationships among genomes (Amrine et
al., 2014). Additionally, tRNA CIFs seem resistant to compositional biases remain-
ing AT-rich regardless of the nucleotide composition of the genome (Amrine et al.,
2014). Theses attributes suggest that tRNA CIFs are an ideal phylogenetic marker
for reconstructing deep evolutionary relationships. I implemented two methods to
reconstruct evolutionary relationships using the phylogenetic information contained
within tRNA CIFs, which I will briefly describe here and more fully in Chapter 2
and 3. The first approach is a machine learning based phyloclassifier that implements
an artificial neural network algorithm to probabilistically assign genomes to prede-
fined evolutionary clades. This method is utilized in Chapter 2 to classifier plastid
genomes to cyanobacterial clades. The second approach makes use of distance based
phylogenetic reconstruction algorithms using a variation of the Jensen-Shannon diver-
gence (Endres and Schindelin, 2003) between function logos as the distance metric.
This approach is applied in Chapter 3 to reconstruct the phylogenetic position of
gnetophytes among seed plants.

1.3 Organization of Dissertation

The research from this dissertation are contained in four self-contained chapters writ-
ten in manuscript format. In Chapter 2, “A Robust tRNA-Based Phyloclassifier Pre-
dicts a Recent Divergence of Plastids from Cyanobacteria” I test competing hypothe-
ses about the phylogenetic position of plastids within Cyanobacterial using tRNA
CIFs and a machine-learning approach. Additionally, I critically evaluate the ability of
commonly used phylogenetic models to accommodate site- and lineage-heterogeneity
of previously published phylogenomic datasets possibly explaining conflicting results
of previous analyses. Chapter 2 is being prepared for submission. In Chapter 3, “tRNA
Class Informative Features Support Gnetophytes as Sister to Conifers” I determine
the phylogenetic relationship of the gnetophytes, an enigmatic group of plants, within
the seed plant phylogeny using tRNA CIFs and an information distance metric.
In Chapter 4, I describe the implementation of tsfm - tRNA Structure Function
Mapper, a command line tool for estimating tRNA CIFs and calculating distance
metrics between sets of function logos. Lastly, in Chapter 5 “FAST: FAST Analy-
sis of Sequences Toolbox” I develop a set of command-line tools designed to filter,
transform, annotate and analyze biological sequence data. This manuscript was pub-
lished in Frontiers in Genetics on May 19 2015 (Lawrence et al., 2015). All proceeding
chapters are written using the pronoun “we” referring to co-authors and myself.
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Chapter 2

A Robust tRNA-Based
Phyloclassifier Predicts a Recent
Divergence of Plastids from
Cyanobacteria

In preparation for submission; Authors: Travis J. Lawrence, Katherine C. H.
Amrine, Wesley D. Swingley, and David H. Ardell

2.1 Abstract

The trait of oxygenic photosynthesis was acquired by the last common ancestor of
Archaeplastida — a eukaryote supergroup comprising glaucophytes, red algae, green
algae and land plants — through endosymbiosis of the cyanobacterial progenitor of
modern-day plastids. Although a single origin of plastids by endosymbiosis is broadly
supported, the location of the root of plastids within Cyanobacteria remains con-
troversial. Recent phylogenomic studies report contradictory evidence for plastids
branching either early or late within the cyanobacterial Tree of Life. Here we de-
scribe CYANO-MLP, a general-purpose phyloclassifier of cyanobacterial genomes im-
plemented using a Multi-Layer Perceptron that exploits phylogenetic signals in the
evolving structure-function maps that we infer bioinformatically from cyanobacterial
tRNA gene complements. CYANO-MLP robustly and accurately classifies cyanobac-
terial genomes into one of eight well-supported cyanobacterial clades. Our results
with CYANO-MLP support a late-branching origin of plastids: we classify 99.32% of
440 plastid genomes into one of two late-branching cyanobacterial clades with strong
statistical support, and confidently assign 98.41% of plastid genomes to one late-
branching clade of starch-producing marine/freshwater diazotrophic cyanobacteria.
CYANO-MLP correctly classifies the chromatophore of Paulinella chromatophora and
rejects sisterhood of plastids with the early-branching cyanobacterial species Gloeo-
margarita lithophora. We reconcile our results with previous studies by showing that
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recently applied phylogenetic models and character recoding strategies fit cyanobac-
terial /plastid phylogenomic datasets poorly, because of both site-heterogeneity in
substitution processes and lineage-heterogeneity in compositions.

2.2 Introduction

The acquisition of a cyanobacterial endosymbiont by the last common ancestor of
Archaeplastida (Adl et al., 2012) transferred the trait of oxygenic photosynthesis to
eukaryotes over one billion years ago (Falcon et al., 2010). The diversity of eukary-
otic photoautotrophs radiating from this event profoundly transformed the terrestrial
biosphere through changes to primary biomass production, atmospheric oxygenation,
and the colonization of new ecosystems (Kenrick and Crane, 1997).

Despite substantial progress and consensus on a robust Cyanobacterial Tree of
Life (CyanoToL) (Ochoa de Alda et al., 2014; Shih et al., 2013; Schirrmeister et
al., 2015; Latysheva et al., 2012; Blank and Sanchez-Baracaldo, 2010), the root of
plastids within the CyanoTol. remains controversial. Recent phylogenomic studies
have strongly supported contradictory conclusions, with plastids diverging either
early (Bhattacharya and Medlin, 1995; Turner et al., 1999; Shih et al., 2013; Criscuolo
and Gribaldo, 2011; Ponce-Toledo et al., 2017; Sanchez-Baracaldo et al., 2017) or
late (Ochoa de Alda et al., 2014; Falcén et al., 2010; Blank, 2013; Dagan et al., 2013)
within the CyanoToL.. However, orthogonal evidence from endosymbiotic gene trans-
fers (Deusch et al., 2008) and eukaryotic evolution of glycogen and starch metabolic
pathways (Deschamps et al., 2008; Ball et al., 2011) have more consistently supported
a late origin of plastids within the CyanoToL.

Phylogenetic inferences concerning plastid origin are complicated by large evolu-
tionary distances accumulated over at least one billion years of vertical descent, by
extreme genome reduction in plastids (Martin et al., 1998; Timmis et al., 2004) and
Cyanobacteria (Rocap et al., 2003; Dufresne et al., 2003; Dufresne et al., 2005), and
by a number of secondary and tertiary endosymbiosis events during plastid evolution.
Genome reduction alters the stationary compositions of genomes and gene products,
violating the assumptions and applicability of many phylogenetic models (Philippe
and Roure, 2011; Blanquart and Lartillot, 2008; Lartillot et al., 2007; Domman et al.,
2015; Foster and Schultz, 2004).

Recently, we introduced a machine learning approach to the phyloclassification
of genomes based on functional signatures of tRNA gene complements (Amrine et
al., 2014). We demonstrated the strong recall and accuracy of a tRNA-based alpha-
proteobacterial phyloclassifier despite convergent non-stationary compositions of al-
phaproteobacterial tRNAs and likely horizontal transfers of genes for tRNAs and
tRNA-interacting proteins (Amrine et al., 2014). Our tRNA phyloclassifier uses in-
formation theoretical signatures of tRNA functional features that we call Class-
Informative Features (CIFs) (Freyhult et al., 2006).

In the present work, we improved our tRNA-based phyloclassifier approach and
applied it to investigate the origin of plastids within the CyanoToL. Based on 5,476
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tRNA gene sequences from 113 cyanobacterial genomes, our CYANO-Multi-Layer
Perceptron (CYANO-MLP) phyloclassifier consistently classifies over 400 plastid ge-
nomes within the B2 and B3 sister clades of Cyanobacteria (Shih et al., 2013), which
contain starch-producing marine/freshwater unicellular diazotrophic species, consis-
tent with previously described evidence from metabolism and endosymbiotic gene
transfers (Deusch et al., 2008; Deschamps et al., 2008; Falcon et al., 2010; Ochoa de
Alda et al., 2014). Furthermore, we reconcile our results with prior work by show-
ing that recently applied phylogenetic models and character recoding strategies fit the
combined CyanoToL/plastid phylogenomic datasets poorly because of lineage-specific
compositional biases.

2.3 Methods

2.3.1 tRNA data

We downloaded the set H of 117 cyanobacterial genomes analyzed in Shih et al.,
2013, the set Gl of one genome of the cyanobacterium Gloeomargarita lithophora, re-
cently argued to be a sister to plastids (Ponce-Toledo et al., 2017; Sdnchez-Baracaldo
et al., 2017), and the set Pc of one genome of the chromatophore of the fresh-water
amoeba Paulinella chromatophora from NCBI. Let C' = H U Gl U Pc. For every
genome g € C, we annotated a set T, of tRNA genes as the union of predictions
from tRNAscan-SE v1.31 (Lowe and Eddy, 1997) in bacterial mode and ARAGORN
v1.2.36 (Laslett and Canback, 2004) with default settings. We downloaded a set P
of 440 complete plastid genomes containing representatives from all three lineages
of Archaeplastida (Glaucocystophyta, Rhodophyta, and Viridiplantae) from NCBI.
We annotated tRNA genes in plastid genomes similarly to cyanobacterial genomes,
however, predictions by ARAGORN v1.2.36 (Laslett and Canback, 2004) contain-
ing introns in tRNA isotypes that have not been previously described to contain
introns (Manhart and Palmer, 1990; Vogel et al., 1999; Simon et al., 2003) were
discarded as likely false positives. Additionally, tRNA genes containing anticodons
identified as absent in most land plant plastids (Osawa et al., 1992; Sugiura and
Wakasugi, 1989; Alkatib et al., 2012) were filtered from land plant plastids.

We annotated tRNAs containing the CAU anticodon as initiator tRNA M¢t elon-
gator tRNA Met or tRNA " o,y using TFAM v1.4 (Ardell and Andersson, 2006)
with the covariance model used in Amrine et al., 2014. We aligned tRNA sequences
using COVEA v2.4.4 (Eddy and Durbin, 1994) using the prokaryotic tRNA covari-
ance model in Lowe and Eddy, 1997. We edited the alignment by first removing sites
containing 99% or more gaps using FAST v1.6 (Lawrence et al., 2015), followed by
removal of sequences with unusual secondary structure. Lastly, we mapped sites to
Sprinzl coordinates (Sprinzl et al., 1998) and removed the variable arm, CCA tail,
and sites not mapping to a Sprinzl coordinate manually using Seaview v4.6.1 (Gouy
et al., 2010).

Cyanobacterial tRNAs were partitioned into sets Tj, for each genome g of ori-
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gin, and separately into sets Tx by cyanobacterial clade of origin, with X € C =
{A, B1,B23,C1,C3, E, F,G}. These clade labels correspond to those identified in
Shih et al., 2013 except for replacement of clades B2 and B3 by their union B23, and
the omission of clades C2 and D for insufficient data, as those were represented by
fewer than 120 tRNA sequences (Fig. 2.1 and Table 2.1). There were 113 cyanobac-
terial genomes remaining after exclusion of clades C2 and D.

The consolidation of tRNAs genes into these partitions for function logo calcu-
lations is justified because it has been previously shown that tRNA CIFs diverge in
a phylogenetically informative way (Amrine et al., 2014; Freyhult et al., 2007) and
the molecular information calculations used in function logos weights tRNA CIFs
based on their conservation within the clade. We decided against consolidating clades
C2 and D into their next largest monophyletic grouping because the next largest
clade would have combined clades C1, C2, C3, and D. This combined clade would
have been dominated by the large number of sequences in C1 (marine Prochloro-
coccus | Synechococcus) effectively masking the diversity of clade C3 in addition to
the diversity of the smaller clades C2 and D possibly leading to a greater decrease
in phylogenetic diversity represented in our function logos than if we just excluded
clades C2 and D from our data analysis.

2.3.2 Genome Scoring

Following Amrine et al., 2014, we produced training data for our classifier by first
calculating clade-dependent Gorodkin heights (Gorodkin et al., 1997; Amrine et
al., 2014) h;‘;, in function logos (Freyhult et al., 2006) for all clades X € C =
{A, B1,B23,C1,C3, E, F,G} and for all features f; € {A,C,G,U} x SC, where SC
is the set of Sprinzl Coordinates (Sprinzl et al., 1998) from input tRNA gene sets T'y.
A Gorodkin height hjé is proportional to the gain in functional information about a
tRNA after observing that its sequence contains feature f;.

For any tRNA gene complement T}, of tRNA genes from any cyanobacterial or
plastid genome h, we calculated a vector of tRNA CIF-based scores, S, = (S;}, SP1,
S§B2 gC1 5O GEF SF SEY in which score components S;¢ of genome h € H with
clade X € C' is the average over T}, of the sum of the Gorodkin heights (Gorodkin
et al., 1997) of its features in a function logo (Freyhult et al., 2006) representation of
clade X:

SffzﬁZth{, (2.1)

teTy fiet

where tRNA gene t is represented by a set of features We computed function logos
using custom software available at https://github.com/tlawrence3/tsfm/tree/v0.9.6.
Following standard recommendations (Ching et al., 2018), we standardized our score
vectors before training as follows:

SX1 = (s;f - S_X) JoX, (2.2)


https://github.com/tlawrence3/tsfm/tree/v0.9.6
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where SX = > ner Sit/IH| is the average score of cyanobacterial genomes h € H
against clade X, and o is the standard deviation of scores of cyanobacterial genomes
h € H against clade X. Denote by Sj, the vector of standardized scores for genome
h, ordered correspondingly to Sy,.

2.3.3 Phyloclassifier training and selection

We implemented our multilayer neural network phyloclassifier using the MLPClas-
sifier API of scikit-learn v0.18.1 (Pedregosa et al., 2011) using Python v3.5.2. We
trained CYANO-MLP from the standardized score vectors S; from cyanobacterial
genomes (g € H) using up to 2000 training epochs stopping early if for two consecu-
tive iterations the Cross-Entropy loss function value did not decrease by a minimum
of 1 x 107*, with random shuffling of data between epochs. We used the rectifier acti-
vation function for hidden layer neurons, the L-BFGS algorithm for weight optimiza-
tion, and an alpha value of 0.01 for the .2 regularization penalty parameter. Lastly,
the softmax function was applied to the output to calculate classification probability
vectors. We evaluated the performance of all permutations of neural network archi-
tectures composed of one to four hidden layers each containing eight to sixteen nodes,
with the parameters values described above, using the average accuracy from leave-
one-out cross validation (LOOCV) as our metric. To test the statistical significance
of the average accuracy from LOOCYV, we used a permutation test producing the null
distribution from 100,000 datasets with clade labels randomly swapped between score
vectors, followed by retraining of the classifier, and calculated average accuracy using
LOOCYV for each permuted dataset. To test the robustness of our classifications with
respect to our tRNA CIF data, we performed 100 bootstrap replicates, re-sampling
sites in our tRNA alignment data, and retrained bootstrap replicates of the CYANO-
MLP model. We summarized bootstrap results for cyanobacterial genomes by the
number of replicates in which the most probable classification for a genome was its
clade of origin.

2.3.4 Plastid classification

For each genomic tRNA gene set 7}, from each genome p in the set P of 440 genomes
from plastids and the chromatophore genome of P. chromatophora, we produced stan-
dardized scores vectors S}, using eq. 2.2. Next, we used CYANO-MLP or its bootstrap
replicates to produce vectors of classification probabilities and bootstrap distributions
thereof.

2.3.5 Evaluation of phylogenetic model adequacy

We examined the goodness of fit of the dataset of Shih et al., 2013 and the chloroplast-
marker dataset of Ponce-Toledo et al., 2017, which both supported an early-branching
position of plastids, and dataset 11 of Ochoa de Alda et al., 2014 which supported
a late-branching position of plastids, with the substitution models originally used by
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Shih et al., 2013 and Ochoa de Alda et al., 2014; Ponce-Toledo et al., 2017, LG+TI" (Le
and Gascuel, 2008) and CAT-GTR+I" (Lartillot and Philippe, 2004; Lartillot et al.,
2007) respectively.

Posterior Predictive Analyses (PPA) were performed to test model fit for site-
specific constraints using PPA-DIV (Lartillot et al., 2007) and across-lineage com-
positional biases using PPA-MAX and PPA-MEAN (Blanquart and Lartillot, 2008).
Briefly, PPA-DIV uses the mean number of distinct amino acids observed at each
site as the test statistic, where both PPA-MAX and PPA-MEAN use the deviation
between individual taxon amino acid frequencies and dataset frequencies, either us-
ing the maximum squared deviation over all taxa or the average squared differences
across all taxa respectively. PPA analyses were conducted using Phylobayes MPI
v1.8 (Lartillot et al., 2013) using at least 1,000 replicates. Additionally, we assessed
model adequacy under three amino acid recoding strategies, Dayhoff-6 (Day6) (Day-
hoff et al., 1978), 6-state recoding strategy of Susko and Roger (SR6) (Susko and
Roger, 2007), and the 6-state recoding strategy of Kosiol et al. (KGB6) (Kosiol et al.,
2004). PPA results were interpreted using z-scores under the assumption that the
test statistics follow a normal distribution. We used a z-score threshold of > |5] as
strong evidence for rejecting the model. We performed phylogenetic analyses using
Phylobayes MPI v1.8 (Lartillot et al., 2013) running two MCMC chains in parallel for
each analysis. Convergence of analyses was assessed using TRACECOMP and BB-
COMP utilities provided with Phylobayes MPI. Convergence was assumed when the
discrepancies of model parameters and bipartition frequencies between independent
chains was less than 0.18. The number of cycles to discard as burn-in was determined
by visually examining the traces of the log-likelihood and other model parameters for
stationarity using Tracer v1.6.0.

2.4 Results

2.4.1 tRNA Data and CIF estimation

We annotated and extracted 5,476 tRNA gene sequences from the 117 cyanobacterial
genomes analyzed in (Shih et al., 2013) averaging 48.46 tRNA genes per cyanobac-
terial genome, 14,841 tRNA gene sequences in 440 Archaeplastida plastid genomes
averaging 33.73 tRNA genes per plastid genome, 44 tRNA gene sequences from the
cyanobacterium Gloeomargarita lithophora, and 42 tRNA gene sequences from the
chromatophore genome of the fresh-water amoeba Paulinella chromatophora (Table
2.1; Dataset S1). We estimated informative function logos for cyanobacterial clades A,
B1, B23, C1, C3, E, F, and G (Fig. 2.1, S2.3-S2.10). The C1 clade is the best-sampled
clade with a divergent composition, elevated in contents of G and C and diminished
in contents of A and U (Table 2.1). This clade exhibited many gains of information
in Uracil CIFs (Fig. 2.1B) and also Adenine CIFs (Figs. S2.3-52.10).
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Figure 2.1: Schematic overview of CYANO-MLP workflow. (A) Cyanobacterial phylogeny from (Shih
et al., 2013) used to define cyanobacterial clades from which to estimate tRNA CIFs. Cyanobacterial
clades are indicated by background color and annotated with labels from (Shih et al., 2013) except
for clade B23, which is combination of clade B2 and B3. Clades with grey backgrounds were excluded
from analysis because of limited number of genomes. (B) Uracil function logos (Freyhult et al., 2006)
for each cyanobacterial clade with background colors corresponding to background colors in (A).
(C) and (D) Notional diagram illustrating generation of an input score vector from the tRNA gene
complement T} of genome g, the neural network architecture of CYANO-MLP, and the classification
probability vector output from CYANO-MLP, represented as a stacked bar chart.
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Table 2.1: Summary statistics of the genomes and tRNA genes for Cyanobacterial clades and plastid
groups. Statistics include the number of genomes (G), the number of tRNAs genes (T), average
number of tRNA genes per genome (T/G), total number of nucleotides contained in tRNA genes
(N), average number of nucleotides per tRNA gene (N/T), the percent of adenine (%A), thymine
(%T), guanine (%G), and cytosine (%C) nucleotides contained in tRNA genes.

Clade G T T/G N N/T %A %T %G %C
Cyanobacteria

A 11 555 50.45 40,362 7272 20.1 23.3 31.2 254

B1 27 1,395 51.67 101,640 72.86 19.7 23.3 316 254

B23 30 1,314 43.80 95,685 72.82 19.5 23.0 32.0 255

C1 29 1,205 41.55 87,856 7291 188 21.8 32.7 26.7

C2 2 90 45.00 6,550 72.78 19.5 21.9 322 264

C3 3 142 4734 10,346 72.86 19.1 22.8 32.3 25.7

D 2 116 58.00 8,430 72.67 19.7 233 31.7 253

E 5 266 53.20 19,378 72.85 19.3 22.8 32.1 258

F 4 211 52775 15339 7270 20.1 234 31.3 252

G 4 182 4550 13,218 72.63 18.7 21.7 328 26.8

G. lithophora 1 44 44 3,194 7259 18.8 22.7 323 26.2

Plastids

Charophyta 10 352 35.20 25,513 7248 21.1 242 30.1 24.6

Chlorophyta 7 226 3229 16,436 72.73 219 254 29.1 23.6

Cryptophyta 4 117 29.25 8,512 72.75 20.9 242 299 25.0

Heterokonta 33 992 30.06 72,229 72.81 21.2 25.1 29.6 24.1

Eudicots 191 6,593 34.52 478,337 72.55 21.4 252 29.7 23.7

Euglenaceae 10 276 27.60 20,070 72.72 223 27.1 284 22.3

Monilophytes 8 270 33.75 19,641 72.74 21.2 245 30.0 24.3

Gymnospermae 26 824 31.69 59,867 72.65 21.9 246 29.6 23.9

Haptophyta 4 111 27.75 8,079 72.78 21.0 25.1 29.7 24.2

Monocots 112 3,930 35.10 285,302 72.60 21.7 25.2 29.5 23.7

Magnoliids 9 315 35.00 22856 72.56 21.3 24.9 29.7 24.0

Nymphaeales 2 68 34.00 4,934 7256 21.4 25.1 29.8 23.7

Rhodophyta 20 624 31.20 45,438 72.82 21.9 252 29.1 238
Bryophyta 3 108  36.00 7,845 72.64 222 254 29.0 234
Glaucocystophyta 1 35 35 2,543 72.66 204 23.7 30.9 25.0
P. chromatophora 1 42 42 3,060 72.86 19.1 21.7 32.7 26.5
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Table 2.2: LOOCYV classification results for CYANO-MLP.

Labeled Clade A Bl B23 C1 c3 E F G

A 6 (54.55%) 1 (9.09%) 3 (27.28%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 1 (9.09%)
Bl 1(3.70%) 26 (96.30%) 0 (0.00%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
B23 2 (6.67%) 0 (0.00%) 28 (93.33%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
C1 0 (0.00%)  0(0.00%) 0 (0.00%) 29 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
c3 0 (0%) 0(0%)  1(3333%) 0(0%) 2(66.67%) 0 (0%) 0 (0%) 0 (0%)
E 1(20.00%) 0 (%) 2 (40.00%) 0 (0%) 0(%)  2(40.00%) 0 (0%) 0 (0%)
F 0(0%)  1(25.00%) 1(25.00%) 0 (0%) 0 (0%) 0(0%) 2 (50.00%) 0 (0%)
G 0(0%)  1(25.00%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 3 (75.00%)

2.4.2 Training and Validation of a tRNA-Based Cyanobac-
terial Phyloclassifier

We trained our cyanobacterial phyloclassifier, termed CYANO-MLP, based on cyanobac-
erial clade CIFs, that takes as input tRNA gene complements from a test genome, and
labels them as belonging to one of the eight cyanobacterial clades or grades shown
in Fig. 2.1. Based on a systematic optimization over neural network architecture pa-
rameters, we selected a neural network consisting of a single hidden layer of 13 nodes
(Fig. 2.1), which achieved an average accuracy score of 0.8673 (p = 0.0001), calculated
using Leave One Out Cross-Validation (LOOCV; Fig. 2.2; Table 2.2). These results
demonstrate the ability of CYANO-MLP to correctly classify cyanobacteria. When
trained on the full cyanobacterial dataset CYANO-MLP accurately classified 100%
of cyanobacteria to their respectful clades. Additionally, all cyanobacterial classifica-
tions received at least 97% bootstrap support suggesting a consistent phylogenetic
signal across tRNA CIFs.

2.4.3 The Paulinella chromatophora Chromatophore Classi-
fies Consistently to the Marine Prochlorococcus / Syn-
echococcus Clade

The engulfment of a cyanobacterium by the ancestor of the freshwater P. chro-
matophora represents a second and more recent primary endosymbiosis event within
eukaryotes (Parfrey et al., 2006; Keeling, 2004). The phylogenetic position of P. chro-
matophora’s photosynthetic organelle, called the chromatophore, as sister to the ma-
rine Prochlorococcus | Synechococcus clade (clade C1; Fig. 2.1) is uncontroversial and
well-supported by several phylogenomic analyses (Bhattacharya and Medlin, 1995;
Shih et al., 2013; Sanchez-Baracaldo et al., 2017), likely because of its more recent
origin. Because of this, our first goal was to determine if CYANO-MLP could repro-
duce previous results of the phylogenetic relationship of the chromatophora to ex-
tant cyanobacterial clades. CYANO-MLP confirmed previous results classifying the
chromatophore to clade C1 with 99.98% probability with 100% bootstrap support
(Fig. 2.3; Table 2.3).
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Figure 2.2: Null distribution of average accuracy using LOOCYV estimated by 100,000 label swapping
permutation datasets. Black dotted line is the expected average accuracy if cyanobacteria genomes
were randomly classified. Green dotted line is the average accuracy using our single hidden layer
phyloclassifier.

2.4.4 Plastid Genomes Robustly Phyloclassify as Late-Branching
Cyanobacteria

Our main motivation was to determine the phylogenetic origin of the primary en-
dosymbiosis event leading to Archaeplastida plastids. We classified 437/440 (99.32%)
of plastid genomes to late-branching clades of Cyanobacteria with 433 plastid ge-
nomes classifying to clade B23 and 4 plastid genomes classifying to clade A with
high probability (Fig. 2.3; Table S2). Plastid genomes from all three Archaeplas-
tida lineages, Rhodophyta, Chloroplastida, and Glaucocystophyta, classified to the
late-branching clade B23. Furthermore, the majority of plastid bootstrap replicates
classified to late-branching clades A, B1, and B23 with the median bootstrap of plas-
tid groups for clade B23 at or above 70, except for the Glaucocystophyta genome
(Fig. 2.3,2.4,2.5,52.1,52.2). The remaining three genomes classified to early diverg-
ing lineages with two plastid genomes classifying to clade F and one plastid genome
classifying to clade G (Fig. 2.3, Table 2.3).

2.4.5 Phyloclassification of G. lithophora is Consistent with
its Early Divergence within Cyanobacteria
Recent phylogenomic analyses have supported plastids as sister to an early-diverging

lineage with Gloeomargarita lithophora as its only member (Ponce-Toledo et al., 2017;
Sénchez-Baracaldo et al., 2017). Unfortunately, since this lineage only contains a
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Figure 2.3: Average classification and median bootstrap results of plastid groups, the chromatophore
of P. chromatophora, and the cyanobacterium G. lithophora with CYANO-MLP. Row labels are col-
ored by the three main lineages of Archaeplastida (Red: Rhodophyta, Green: Chloroplastida, Blue:
Glaucocystophyta, Black: non-Archaeplastida). (Lower Diagonals) Heatmap of the average classifi-
cation probability vector for groups and single genomes. Numbers within squares indicate percentage
of genomes classifying to the Cyanobacterial clade. Locations without annotations indicate that zero
genomes from that group classified to the particular Cyanobacterial clade. Asterisks indicate that
the group contains a single genome. (Upper Diagonals) Heatmap of median of bootstrap values over
genomes for each group or single genome. Annotations are the median bootstrap value for each group
or single genome. Locations lacking annotation indicate zero bootstrap replicates.
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Table 2.3: Classification results for plastid genomes and the chromatophore of P. chromatophora
using CYANO-MLP. Results are summarized by plastid groups. Number of genomes classifying to
each Cyanobacterial clade and percent are shown.

Plastid Clade A B1 B23 C1 C3 E F G
Chlotophyta 0 (0%) 0 (0%)  7(100%)  0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Charophyta 1(10%) 0 (0%) 8 (80%) 0(0%) 0(0%) 0(0%) 0(0%) 1 (10%)
Cryptophyta 0 (0%) 0(0%) 4 (100%)  0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Heterokonta 0(0%) 0(0%) 33 (100%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Eudicots 1(0.52%) 0 (0%) 189 (98.95%) 0 (0%) 0 (0%) 0 (0%) 1(0.52%) 0 (0%)
Euglenaceae 0(0%) 0(0%) 10 (100%) 0(0%) 0(0%) 0(0%) 0 (0%) 0 (0%)
Monilophytes 0(0%) 0(0%) 8 (100%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Gymnospermae 0(0%) 0(0%) 26 (100%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Haptophyte 0(0%) 0(0%) 4 (100%) 0(0%) 0(0%) 0(0%) 0 (0%) 0 (0%)
Monocots 0(0%) 0(0%) 112 (100%) 0(0%) 0(0%) 0(0%) 0 (0%) 0 (0%)
Magnoliids 0(0%) 0(0%) 9 (100%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Nymphaeales 0 (0%) 0 (0%) 2 (100%)  0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Rhodophyta 2 (10%) 0 (0%) 17 (85%) 0(0%) 0(0%) 0(0%) 1(%) 0 (0%)
Bryophyte 0(0%) 0 (0%) 3 (100%) 0(0%) 0(0%) 0(0%) 0 (0%) 0 (0%)
Glaucocystophyta 0 (0%) 0 (0%) 1 (100%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
Plastid total  4(0.91%) 0 (0%) 433 (98.41%) 0 (0%) 0 (0%) 0 (0%) 2 (0.45%) 1 (0.23%)
P. chromatophora 0 (0%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

single genome there were insufficient tRNA sequences to estimate informative function
logos so we were unable to include this lineage in CYANO-MLP. However, we classified
G. lithophora using CYANO-MLP to determine if it classified similarly to plastids,
which would suggest that G. lithophora could not be rejected as sister to plastids.
The majority of the classification probability of G. lithophora was contained within
early-diverging lineages with clade F receiving 57.3%, clade G receiving 18.4%, and
clade E receiving 3.2%, however, G. lithophora also received a 20.3% probability of
belonging to the later diverging clade A (Fig. 2.3). This result supports G. lithophora
as an early-diverging cyanobacterial lineage in agreement with recent phylogenomic
analyses (Ponce-Toledo et al., 2017; Sédnchez-Baracaldo et al., 2017), but rejects the
sister relationship with plastids.

2.4.6 Inadequate Modeling of Systematic Biases Possibly Ex-
plains Discrepancies with Prior Work

We found site-specific amino acid constraints a critical process to describe in Cyanobac-
terial /plastid phylogenomic datasets (Figure 2.6A; Table 2.4). Unsurprisingly, LG,
an empirical matrix model, was unable to account for site-specific constraints in all
three datasets (Figure 2.6A). The inability of empirical matrix models to describe
site-specific constraints has been previously reported (Lartillot and Philippe, 2004;
Lartillot et al., 2007) and is known to result in long-branch attraction artefacts caused
by an underestimation of homoplasy (Lartillot et al., 2007). In contrast, the CAT
model, specifically designed to accommodate site-specific constraints, was able to ade-
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Figure 2.4: Classification results of 100 bootstrap replicates of each Rhodophyta derived plastid
genome. Results are summarized by Red plastid group with boxes spanning from the 25th percentile
(bottom) to the 75th percentile (top) of bootstrap replicates classifying to the indicated Cyanobac-
terial clade per genome with the bisecting line marking the median value. Error bars indicate the
shorter of either + the interquartile range or the span of bootstrap replicates per genome. Dots
show bootstrap replicates for individual genomes. Cyanobacterial clades C1, C3, E, F, and G were
omitted because a limited number of bootstrap replicates per genome classified to these clades (see

Fig. S2.1).
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Figure 2.5: Classification results of 100 bootstrap replicates of each Chloroplastida derived plastid
genome. Cyanobacterial clades C3 and E were omitted because a limited number of bootstrap
replicates per genome classified to these clades (see Fig. S2.2). Results are summarized identically
to Fig. 2.4.
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Figure 2.6: Results of posterior predictive analyses of phylogenomic datasets of Shih et al., 2013,
Ponce-Toledo et al., 2017, and Ochoa de Alda et al., 2014. Rows represent phylogenomic dataset
and columns indicate the posterior predictive test statistic. Observed values calculated for each test
statistic is represented by vertical lines. Color and patterns of vertical lines indicate amino acid
recoding strategy (NR: No recoding, DAY6: six state Dayhoff recoding, SR6: six state recoding
strategy of Susko and Roger, 2007, KGB6: six state recoding strategy of Kosiol et al., 2004). Sym-
bols specify the average value for each posterior predictive test statistic calculated from simulated
datasets. Error bars depict + 5 standard deviations. Symbol shape and color indicate phylogenetic
model (LG: LG+4G, CAT: CAT-GTR+4G) and recoding strategy used for simulating data for pos-
terior predictive test statistic calculations. If similarly colored error bars and vertical lines overlap
the phylogenetic model is considered able to adequately describe the systematic bias of the dataset.
(A) Results of PPA-VAR assessing the ability to describe site-specific amino acid constraints. (B)
Results of PPA-MAX assessing the ability to describe lineage-specific compositional biases.

quately describe this process in each dataset (Figure 2.6A; Table 2.4). Additionally, we
found that none of the model /amino acid recoding combinations adequately described
lineage-specific compositional biases with all being strongly rejected (| z-score | > 5)
(Figure 2.6B; Table S3). It has been shown when lineage-specific compositional biases
are not described adequately unrelated sequences sharing similar compositions may
cluster together leading to artefacts during phylogenetic tree reconstruction (Blan-
quart and Lartillot, 2008).

2.5 Discussion

2.5.1 Origin of Plastids from Late-Branching Cyanobacteria

Based on the classifications of CYANO-MLP, the tRNA CIF evidence strongly sup-
ports a late-branching origin of plastids, likely within or closely related to the B23
clade of the CyanoToL, with 437/440 (99.32%) of plastid genomes classified within
late-branching clades A and B23, of which, 433 classify to B23 including plastid ge-
nomes from all three lineages of Archaeplastida (Fig. 2.1,2.3; Table 2.3). Furthermore,
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Table 2.4: Results of the posterior predictive analyses presented as z-scores.

Data Model Recoding PPA-Div. PPA-MAX PPA-Mean
Shih LG+4G None 64.3264 308.247 1124
CAT-GTR+4G None 3.48296 199.277 125.469
CAT-GTR+4G Dayhoft6  -2.41113 276.471 76.2146
CAT-GTR+4G KGB6 -1.54966 183.227 75.4934
CAT-GTR+4G SR6 -3.4146 272.776 75.4335
Ponce LG+4G None 102.301 57.7857 178.858
CAT-GTR+4G None 4.10787 41.3374 142.932
CAT-GTR+4G Dayhoff6  -2.18521 16.1799 25.4514
CAT-GTR+4G KGB6 -1.01998 8.22212 29.0685
CAT-GTR+4G SR6 -1.86252 11.4145 27.5351
Ochoa D11 LGH+4G None 27.8436 56.6042 49.6017
CAT-GTR+4G None 1.78031 56.2285 55.5332

CAT-GTR+4G Dayhoft6  -0.391998 14.0614 13.6587
CAT-GTR+4G KGB6 -0.242077 32.7976 20.3679
CAT-GTR+4G SR6 -0.449035 27.7049 16.1347

these classifications are robust to bootstrap resampling of tRNA structural positions
with the majority of plastid bootstrap replicates classifying to late-branching clades
A, Bl1, and B23 with the median bootstrap of plastid genome groups for clade B23
above 70, except for the Glaucocystophyta genome which had 34 and 66 bootstrap
replicates classifying to clade A and clade B23 respectively (Fig. 2.3,2.4,2.5,52.1,52.2).
This suggests that the late-branching classification of plastids is driven by a consistent
signal across the tRNA structure. Notably, our results are consistent with indepen-
dent metabolic hypotheses which suggested that plastids originated from a starch-
producing diazotrophic species (Deschamps et al., 2008; Ball et al., 2011), and with
the hypothesis of a low-salinity origin and early diversification of photosynthetic eu-
karyotes (Blank, 2013; Sdnchez-Baracaldo et al., 2017) based on a recent study where
ancestral habitat types were reconstructed (Sanchez-Baracaldo et al., 2017).
Interpreting the predictions of a neural network in context to the hypotheses being
tested and the system under study remains challenging (Ching et al., 2018). Beyond
accurately classifying training data, to produce meaningful results the learned model
linking input features to predictions should capture the structure of the data impor-
tant to the hypotheses under investigation. To test if the classifications of CYANO-
MLP were a result of learning the phylogenetic signal contained in cyanobacterial
tRNA CIFs from clade labeled score vectors, we created permuted cyanobacterial
datasets with clade labels randomly shuffled among score vectors to obliterate the
phylogenetic structure of these datasets, retrained, and evaluated the performance
of CYANO-MLP on these permuted datasets. For the majority of permuted datasets
CYANO-MLP performed worse than randomly assigning genomes to clades (Fig. 2.2).
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Moreover, the highest accuracy of a permuted dataset was 0.407 which was signifi-
cantly lower than the 0.8673 accuracy obtained on the true training set. These results
suggest that the classifications of CYANO-MLP are driven by the phylogenetic sig-
nal contained in tRNA CIFs. Next, the unique selective pressures experienced by
organelle genomes may result in idiosyncratic score vectors not represented in the
training set possibly misleading CYANO-MLP. However, this seems unlikely based
on the classification of the P. chromatophora chromatophore genome to clade C1 (ma-
rine Prochlorococcus / Synechococcus) with 100% bootstrap support (Fig. 2.3) which
is consistent with previous studies (Bhattacharya and Medlin, 1995; Shih et al., 2013;
Sénchez-Baracaldo et al., 2017). Lastly, to determine if the classifications of plas-
tids to clade B23 was an artifact caused by the absence of a closely related clade
in the training data we scored and classified the early-branching cyanobacteria G.
lithophora (Sanchez-Baracaldo et al., 2017; Ponce-Toledo et al., 2017) which lacks
a closely related sister clade in the training data. Additionally, this allowed us to
test recent hypotheses supporting G. lithophora as sister to plastids (Ponce-Toledo
et al., 2017; Sdnchez-Baracaldo et al., 2017). If plastid genome classifications were an
artifact caused by lack of a closely related clade and/or were closely related to G.
lithophora we would expect the classification results of plastids and G. lithophora to
be similar. However, the classification of G. lithophora to the early-branching clade F
suggests that plastids classifications are likely not an artifact and rejects a close rela-
tionship between G. lithophora and plastids (Fig. 2.3). Furthermore, the classification
probabilities and bootstrap results of G. lithophora were more equivocal than other
cyanobacteria and plastid genomes (Fig. 2.3) suggesting that dispersed classification
probabilities and bootstrap replicates may indicate the absence of a closely related
clade in the training data.

2.5.2 Phylogenetic Model Adequacy

Although limited sampling of cyanobacterial genomes and genes may have contributed
to early conflicting results on the origin of plastids, several large-scale phylogenomic
datasets have been analyzed that have strongly supported either a late- or early-
branching position of plastids (Bhattacharya and Medlin, 1995; Turner et al., 1999;
Shih et al., 2013; Criscuolo and Gribaldo, 2011; Ponce-Toledo et al., 2017; Sanchez-
Baracaldo et al., 2017; Ochoa de Alda et al., 2014; Falcon et al., 2010; Blank, 2013;
Dagan et al., 2013). When different phylogenomic datasets recover strongly supported,
yet conflicting hypotheses about evolutionary relationships the reason is unlikely to
be from a lack of information or errors caused by stochastic data sampling, but more
likely a consequence of poor fitting phylogenetic models unable to adequately describe
systematic biases of the data (Philippe and Roure, 2011; Blanquart and Lartillot,
2008; Sullivan and Swofford, 1997).

Comparable to previous studies, our posterior predictive analyses showed that
both site-specific constraints and lineage-specific compositional biases are critical pro-
cesses to model (Fig. 2.6; Table 2.4). We showed that site-specific constraints are well
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modeled using the CAT model (Fig. 2.6A; Table 2.4), however, the tested amino
acid recoding strategies were unable to fully mitigate lineage-specific compositional
biases (Fig. 2.6B; Table 2.4). Besides amino acid recoding strategies, Li et al., 2014
were effective in accommodating lineage-specific compositional biases by explicitly
modeling shifts in composition along the tree, but site-specific constraints was not
modeled. Our results suggest that to accurately reconstruct the position of plastids
within the CyanoTol. a model that can accommodate both site-specific constraints
and lineage-specific compositional biases, such as, CAT-BP (Blanquart and Lartillot,
2008) is required. Unfortunately, the computational complexity of CAT-BP renders
it intractable for large phylogenomic datasets. Notably, the only study, known to the
authors, to accommodate both of these biases by using the CAT-GTR model and re-
moving the most compositional divergent taxa, albeit using 16S nucleotide data, are
consistent with our results supporting a late-branching position of plastids (Ochoa de
Alda et al., 2014).

2.6 Supplementary Material
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Figure S2.1: Classification results of 100 bootstrap replicates of each Rhodophyta derived plastid
genome for cyanobacterial clades C1, C3, E, F, and G. Results are summarized identically to Fig.
2.4.
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Figure S2.3: Function logos for Cyanobacterial Clade A.

Figure S2.4: Function logos for Cyanobacterial Clade B1
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Figure S2.5: Function logos for Cyanobacterial Clade B23
Figure S2.6: Function logos for Cyanobacterial Clade C1
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Chapter 3

tRINA Class Informative Features
Support Gnetophytes as Sister to
Conifers

3.1 Abstract

The phylogenetic position of gnetophytes has been one of the most confounding issues
in resolving relationship among seed plants. Early morphological studies supported a
close relationship between flowering plants and gnetophytes. However, phylogenomic
studies have suggested a close relationship to conifers supporting one of three con-
flicting hypotheses. The Gnepine hypothesis that supports a sister relationship with
Pinaceae conifers, the Gnecup hypothesis that recovers a sister relationship with Cu-
pressales conifers (non-Pinaceae conifers), and the Gnetifer hypothesis that supports
gnetophytes as sister to all conifers. In this work, we introduce a novel approach to re-
constructing phylogenies by coupling distant-based methods with an information the-
ory distance metric to quantify differences between the evolving structure-function
maps of plastid tRNA gene complements. Using the tRNA gene content from 397
plastid genomes, including representatives from all three lineages of gnetophytes, we
show that the structure-function maps of plastid tRNA genes contain phylogenetic
information about seed plant relationships that can be detected using distance-based
methods. Furthermore, we recovered gnetophytes as sister to conifers in all our analy-
ses providing evidence from a novel source of phylogenetic information supporting the
Gnetifer hypothesis. Low bootstrap support prevents us from unequivocally support-
ing the Gnetifer hypotheis, but we recovered negligible support for either the Gnecup
or Gnepine hypotheses.

3.2 Introduction

Extant seed plants are represented by five lineages — angiosperms (flowering plants),
cycads (Cycadidae), Ginkgo biloba, gnetophytes, and conifers which are split into three
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lineages: Cupressales (Cupressaceae, Taxaceae, and Cephalotaxaceae), Araucariales
(Araucariaceae and Podocarpaceae), Pinaceae. Gnetophytes are a small gymnosperm
clade of about 90 species of evergreen trees, shrubs, and lianas that have been one of
the most enigmatic problems in seed plant phylogenetics (Ruhfel et al., 2014; Davis et
al., 2014; Burleigh and Mathews, 2004; Doyle, 2012). Early studies using morphology,
first placed gnetophytes as sister or within flowering plants based on the presences
of vessel elements in xylem, net-veined leaves, and the resemblance of gnetophytes’
reproductive organs to simple unisexual flowers (Arber and Parkin, 1907; Arber and
Parkin, 1908). Yet, later studies based on morphology supported a sister relation-
ship or within conifers determining that vessel elements in gnetophytes and flowering
plants were homoplastic, deriving from different types of vascular tissue (Eames, 1952;
Bailey, 1944; Doyle, 1978). Furthermore, these studies also discovered that conifers
and gnetophytes lacked scalariform pitting in their xylem, and argued that similar
leaf morphology between conifers and gnetophytes was a shared derived trait (Eames,
1952; Bailey, 1944; Doyle, 1978).

The first set of phenetics studies using morphological data supported a sister rela-
tionship with gnetophytes with flowering plants (Doyle and Donoghue, 1986; Crane,
1985; Nixon et al., 1994) appearing to confirm the results of earlier morphologi-
cal studies (Arber and Parkin, 1907; Arber and Parkin, 1908). However, the sister
relationship of gnetophytes and flowering plants was disputed by early molecular
phylogenetic studies that recovered gnetophytes as sister to all seed plants (Albert
et al., 1994), sister to extant gymnosperms (Goremykin et al., 1996), or sister to
conifers (Qiu et al., 1999; Chaw et al., 2000). Moreover, subsequent phylogenetic
studies have been unsuccessful in eliminating uncertainty about the phylogenetic po-
sition of gnetophytes recovering conflicting topologies depending on the phylogenetic
tree estimation methods and phylogenomic dataset (Bowe et al., 2000; Hajibabaei et
al., 2006; Mathews, 2009; Wang and Ran, 2014; Wan et al., 2018). This inconsistency
between phylogenomic datasets has resulted in five conflicting topologies being sup-
ported: 1) the Gnecup hypothesis that supports gnetophytes as sister to Cupressales
conifers (Nickrent et al., 2000; Doyle, 2009; Xi et al., 2013; Ruhfel et al., 2014), 2)
the Gnepine hypothesis that supports a sister relationship between gnetophytes and
Pinaceae conifers (Bowe et al., 2000; Gugerli et al., 2001; Soltis et al., 2002; Burleigh
and Mathews, 2004; Hajibabaei et al., 2006; Xi et al., 2013), 3) the Gnetifer hypoth-
esis that supports gnetophytes as sister to conifers (Wickett et al., 2014), 4) sister to
gymnosperms (McCoy et al., 2008; Lee et al., 2011; Li et al., 2017), or 5) sister to
all seed plants (Li et al., 2017). However, recent studies and reanalysis of previous
studies have converged on hypotheses supporting a close relationship between gneto-
phytes and conifers (Wickett et al., 2014; Wan et al., 2018). Phylogenetic inference of
gnetophytes within seed plants is complicated by deep divergences between seed plant
clades (Lu et al., 2014), elevated rates of nucleotide substitution within gnetophytes
leading to substitutional saturation (Zhong et al., 2010; Wickett et al., 2014; Wan
et al., 2018), and loss of species diversity within gymnosperms and especially within
gnetophytes (Lu et al., 2014).
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Here we introduce a novel approach to reconstructing phylogenies by coupling
distance-based reconstruction algorithms with an information theory distance metric
to quantify differences between the evolving structure-function maps of plastid tRNA
gene complements. tRNAs engaged in protein synthesis must interact productively
with their cognate aminoacyl tRNA-synthetase (aaRS) to be charged with the correct
amino acid and must avoid interacting productively with other aaRSs to ensure accu-
rate translations of the genetic code. These functional interactions are determined by
a set of structural features called identity determinants, which promote interaction
with its cognate aaaRS, and anti-determinants that discriminate against noncognate
aaRSs (Giegé et al., 1998). We have previously shown that these identity determi-
nants, which we call Class-Informative Features (CIFs) (Freyhult et al., 2006), slowly
diverge in a phylogenetically informative manner (Amrine et al., 2014) making them
an ideal phylogenetic marker for reconstructing deep relationships. Using the tRNA
gene content of 379 seed plant and 18 fern (monilophytes) plastid genomes with our
novel distance-based marker we found support for the Gnetifer hypothesis placing
gnetophytes sister to conifers. Notably, we found negligible support for either the
Gnecup or Gnepine hypotheses.

3.3 Methods

3.3.1 tRNA data

We downloaded 397 plastid genomes containing 18 Monilophytes, 11 Cycadidae, 27
Pinaceae, 24 Cupressales, 7 Araucariales, 7 gnetophytes, 191 Eudicot, and 112 Mono-
cot genomes from NCBI. The plastid genomes included representatives from all three
lineages of gnetophytes. For every genome we annotated tRNA genes as the union of
predictions from tRNAscan-SE v1.31 (Lowe and Eddy, 1997) in organelle mode and
ARAGORN v1.2.36 (Laslett and Canback, 2004) with the option to detect tRNAs
with conical introns. Predictions by ARAGORN v1.2.36 (Laslett and Canback, 2004)
containing introns in tRNA isotypes that have not been previously described to con-
tain introns (Manhart and Palmer, 1990; Vogel et al., 1999; Simon et al., 2003) were
discarded as likely false positives. Finally, tRNA genes containing anticodons identi-
fied as absent in most land plant plastids (Osawa et al., 1992; Sugiura and Wakasugi,
1989; Alkatib et al., 2012) were discarded.

We annotated tRNAs containing the CAU anticodon as initiator tRNA Met elon-
gator tRNA Met or tRNA ¢ o,y using TFAM v1.4 (Ardell and Andersson, 2006)
with the covariance model used in Amrine et al., 2014. We aligned tRNA sequences
using COVEA v2.4.4 (Eddy and Durbin, 1994) using the prokaryotic tRNA covari-
ance model in Lowe and Eddy, 1997. We mapped sites to Sprinzl coordinates (Sprinzl
et al., 1998) and removed the variable arm, CCA tail, and sites not mapping to a
Sprinzl coordinate manually using Seaview v4.6.1 (Gouy et al., 2010).
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3.3.2 tRNA CIF estimation

Plastid tRNAs were partitioned into sets X based on current species circumscrip-
tions, where X = {Monilophytes, Cycadidae, Pinaceae, Cupressales, Araucariales,
gnetophytes, Eudicots, Monocots}. The consolidation of tRNA genes into these par-
titions for tRNA CIFs estimation is justified for three reasons. First, it has been
shown that tRNA CIFs diverge in a phylogenetically informative way (Amrine et
al., 2014; Freyhult et al., 2007) suggesting that individual genomes in each parti-
tion should carry similar information. Second, the molecular information calculations
used in function logos weights tRNA CIFs based on their conservation resulting in the
up-weighting of tRNA CIFs that are consistent across genomes within the partition.
Lastly, consolidation is required because approximately 120 tRNAs are required to
estimate informative function logos.

To estimate tRNA CIFs we adopt the molecular information theory approach
of Freyhult et al., 2006, which we briefly describe here. For the purpose of calculating
tRNA CIFs the possible functional classes of tRNAs are denoted by their [UPAC
one-letter amino acid code, Z = {A,C,D,E,F,G,H,I,J, K,L, M,N,P,Q,R,S,T,
V,W, X, Y} and features F' is the Cartesian product n; € {A,C,G,U} x SC, where
n; is the set of possible nucleotides and SC' is the set of Sprinzl Coordinates (Sprinzl
et al., 1998). The functional information I7(Z|f;) that feature f; € F' confers about
the frequencies of different functional classes Z for clade X is defined as: I ;{ (Z|f:) =
HX(Z) — e(n(.)) — HX(Z1£,)), where HX(Z|f) = —S.ezp(2] f)loga(p(=[f;)) is the
class entropy or level of uncertainty about the functional class of tRNAs with fea-
ture f; for clade X. HX(Z) = —%.czp(2)loga(p(2)) is the background entropy for
clade X which depends on relative frequency of sequences belonging to different func-
tional classes, and by definition: 0 < p(2),p(z|fi) < 1,E,e2p(2) = 1, 3.c2p(2| f;) = 1.
e(n(f;))) is a correction factor for biases caused by small sample size which is calcu-
lated exactly for sample sizes < 10 following the method of Schneider and Stephens,
1990 and estimated for sample sizes > 10 using the method of Nemenman et al.,
2004. Finally, the proportion of functional information I7(Z|f;) attributed to each
functional class z € Z is calculated using Gorodkin heights (Gorodkin et al., 1997)
where b5 = (p(z]f;)/p(2))/Zwezp(w!f;)/p(w)), hi is the vector of Gorodkin heights
Vz € Z at feature f; for clade X, and by definition Eh;ﬁ = 1. The program tsfm v0.9.10
(https://github.com/tlawrence3/tsfm) was used to perform these calculations and to
generate function logo graphics. The -x 10 and --entropy NSB options were pro-
vided to tsfm to calculate the exact sample correct sample sizes < 10 and to use the
NSB estimator for samples sizes > 10.

3.3.3 Distance calculation

To produce a pairwise distance matrix for clades z(; ) € X we used a modified version
of the Jensen-Shannon distance (JSD), an information theory metric for quantifying
similarity between two probability distributions (Endres and Schindelin, 2003). We
weighted the JSD calculation by the sum of the functional information I of the


https://github.com/tlawrence3/tsfm
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feature f; for clades z(;x) and summed over all features f; € F' (equation 3.1). The
function H() in equation 3.1 is the Shannon entropy (Shannon, 1948) defined as:

H(V) = =327 p(vi)loga(p(vi))-

Yo |H Y Ik | = Y IpmH (hgr) (3.1)

fieF me{jvk} me{.j7k}

In addition to the pairwise distance matrix using all features f; € F we produced 100
bootstrap replicates by subsampling f; with replacement.

3.3.4 Phylogenetic analysis

We reconstructed distance-based phylogenetic trees using three different algrorithms:
neighbor-joining (Saitou and Nei, 1987), BIONJ (Gascuel, 1997), and minimum evo-
lution (Rzhetsky and Nei, 1992; Rzhetsky and Nei, 1993). Monilophytes were used
as the outgroup to root phylogenetic trees. We used the R package ape v5.1 (Paradis
et al., 2004) in R 3.4.3 (R Core Team, 2017) to perform all phylogenetic estima-
tions. Bootstrap replicates were summarized and mapped onto the phylogenetic tree
estimated using the full dataset with the sumtrees.py utility provided in DendroPy
4.4.0 (Sukumaran and Holder, 2010).

3.4 Results

3.4.1 tRNA data and CIF estimation

We annotated and extracted 13,326 tRNA gene sequences from the 397 plastid ge-
nomes from an average of 31.74 tRNA genes per genome (7). The annotated and
extracted tRNA genes were distributed as follows: 535 (29.72 T,) Monilophytes,
371 (33.73 T,) Cycadidae, 777 (28.78 T,) Pinaceae, 671 (27.96 T,) Cupressales, 206
(29.43 T,) Araucariales, 243 (34.71 T,) gnetophytes, 6,593 (34.52 T,) Eudicots, and
3,930 (35.10 T;) Monocots (Table 3.1). We estimated informative function logos for
Monilophytes, Cycadidae, Pinaceae, Cupressales, Araucariales, gnetophytes, Eudi-
cots, Monocots (Fig. 3.1-3.4).

3.4.2 Phylogenetic analysis

BIONJ, neighbor-joining, and minimum evolution methods recovered the same topol-
ogy with slight differences in bootstrap support (Fig. 3.6-3.7). We recovered strongly
supported angiosperm and gymnosperm clades in all three analyses. Additionally, all
analyses recovered a moderately supported conifer clade. Gnetophytes were recovered
as sister to conifers in the BIONJ, neighbor-joining, and minimum evolution analy-
ses with 51, 46, and 44 bootstrap support respectively (Fig. 3.6-3.7; Table 3.2). The
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Table 3.1: Summary statistics of the genomes and tRNA genes. Statistics include the number of
genomes (G), the number of tRNAs genes (T), average number of tRNA genes per genome (T ), total
number of nucleotides contained in tRNA genes (N), average number of nucleotides per tRNA gene
(N/T), the percent of adenine (%A), thymine (%T), guanine (%G), and cytosine (%C) nucleotides
contained in tRNA genes.

Clade G T T/G N N/T %A %T %G %C
Monilophytes 18 535 29.72 38,886 72.68 214 241 299 247
Cycadidae 11 371 33.73 26,901 7251 21.1 242 30.0 24.7
Pinaceae 27 777 2878 0 56,373 7255 222 24.0 29.1 24.7

Cupressales 24 671 27.96 48,690 7256 22.1 247 29.4 23.8
Araucariales 7 206 29.43 14,940 72.52 21.8 24.7 29.5 24.0
gnetophytes 7 243 3471 17,640 72.59 21.8 24.3 294 245
Eudicots 191 6,593 34.52 478,337 72.55 214 252 29.7 23.7
Monocots 112 3,930 35.10 285,302 72.60 21.7 25.2 29.5 23.7
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Figure 3.1: Adenine function logo for each plant clade. The y-axis of each function logo is the
functional information for each position in the tRNA (x-axis) measured in bits. Stacked letters are
amino acid IUPAC one-letter codes. The height of each letter represents the amount of functional
information attributed to that amino acid for each position.
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Figure 3.2: Cytosine function logo for each plant clade. The y-axis of each function logo is the

functional information for each position in the tRNA (x-axis) measured in bits. Stacked letters are

amino acid IUPAC one-letter codes. The height of each letter represents the amount of functional

information attributed to that amino acid for each position.
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Figure 3.3: Guanine function logo for each plant clade. The y-axis of each function logo is the

functional information for each position in the tRNA (x-axis) measured in bits. Stacked letters are

amino acid IUPAC one-letter codes. The height of each letter represents the amount of functional

information attributed to that amino acid for each position.
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Figure 3.4: Uracil function logo for each plant clade. The y-axis of each function logo is the functional

information for each position in the tRNA (x-axis) measured in bits. Stacked letters are amino acid

TUPAC one-letter codes. The height of each letter represents the amount of functional information

attributed to that amino acid for each position.
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Table 3.2: Bootstrap replicate rooted clade frequencies. for neighbor-joining (NJ), BIONJ, and min-
imum evolution (ME) analyses. G - gnetophytes, P - Pinaceae, Cu - Cupressales, A - Araucariales,
Cy - Cycadidae.

Bipartition NJ BIONJ ME
(G, (P, (Cu, A)) 46 51 44
(G, Cy) 34 34 42
(G, (Cu, A)) 11 0 0
(Cu, G) 2 2 2
(P, G) 1 0 5

second most frequent bipartition in the bootstrap replicates recovered gnetophytes
and cycads as sister possibly an artefact caused by the absence of Ginkgo biloba or
the elevated rates of nucleotide substitution of gnetophytes’ plastid genomes (McCoy
et al., 2008) affecting the rate of tRNA CIF turnover. Notably, there was minimal
bootstrap support for either the Gnepine or Gnecup hypotheses (Table 3.2).

3.5 Discussion

The exact phylogenetic relationship of gnetophytes has remained one of the most
perplexing issues remaining in seed plant phylogenetics (Wickett et al., 2014; Wan
et al., 2018). Using plastid tRNA CIFs, coupled with distance-based phylogenetic re-
construction methods we found support for gnetophytes as sister to conifers (Gnetifer
hypothesis). Low bootstrap support of the Gnetifer hypothesis prevents us from un-
equivocally resolving the root of gnetophytes within seed plants, however, we found
negligible support for either the Gnecup or Gnepine hypotheses. These results are
similar to those of Wickett et al., 2014 that found support for the Gnetifer hypothesis
using their full dataset. However, most single gene trees did not strongly support
Gnetifer hypothesis, but did strongly support the monophyly of conifers rejecting
both the Gnecup and and Gnepine hypotheses (Wickett et al., 2014). The lack of
robust support for the phylogenetic placement of gnetophytes has been attributed
to the several extinctions followed by rapid radiations experienced by conifers and
gnetophytes resulting in short internal branches between conifer clades and long ter-
minal branches (Wang and Ran, 2014). This pattern of diversification may result in
limited characters reflecting the internal branching topology possibly explaining the
low statistical support. Additionally, long terminal branches may cause substitutional
saturation, which has been shown to cause support for the Gnecup hypothesis (Zhong
et al., 2010). Our results show a similar topology of short internal branches and long
terminal branches (Fig. 3.5-3.7) possibly explaining the low bootstrap support for
these nodes in our trees. However, it seems unlikely although not impossible, based
on combinatorial reasoning, that long terminal branches would result in saturation of
tRNA CIFs leading to similar artefacts in tree reconstruction. On the other hand, the
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second most common bootstrap topology in our analyses grouped cycads and gneto-
phytes as sister to the remaining gymnosperms (Table 3.2), which is most certainly
incorrect. This may be a systematic bias caused by assuming independence of tRNA
CIFs, which work in concert to ensure proper charging of tRNAs. Additionally, this
could be the result of excluding G. biloba, which could not be included because the
limited number of plastid tRNA genes did not allow for the estimation of tRNA CIFs.

The persistent uncertainty of the phylogenetic results for the placement of gneto-
phytes has motivated consideration of rare genomic events, which have been mainly
interpreted as support for the Gnepine hypothesis. The most notable has been the loss
of all 11 plastid ndh genes in gnetophytes and Pinaceae, which has been considered
a synapomorphy supporting the Gnepine hypothesis (Braukmann et al., 2009). How-
ever, different patterns of loss of plastid- and nuclear-encoded components of the NDH
complex in gnetophytes and Pinaceae suggests parallel loss of ndh genes (McCoy et
al., 2008; Wu et al., 2011; Ruhlman et al., 2015), which is compatibility with both the
Gnetifer or Gnepine hypotheses. Moreover, the loss of the plastid ndh gene complex is
not uncommon in seed plants with multiple independent losses in Orchidaceae (Kim
and Chase, 2017) and Geraniales (Ruhlman et al., 2015) further suggesting parallel
loss in gnetophytes and Pinaceae.

3.6 Conclusion

Ours results provide additional evidence from a novel source of phylogenetic infor-
mation supporting the Gnetifer hypothesis. However, low bootstrap support, similar
to other studies (Zhong et al., 2010; Wickett et al., 2014), prevents us from making
strong conclusions about the placement of gnetophytes. Future studies using tRNA
CIFs to resolve the phylogenetic placement of gnetopytes would likely benefit from
the inclusion of G. biloba by using nuclear encoded tRNA sequences, which are more
numerous. However, currently there are no Cupressales nuclear genomes available
which precludes testing between Gnecup, Gnepine, or Gnetifer hypotheses.
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Chapter 4

tsfm - tRNA Structure Function
Mapper

4.1 Abstract

Transfer RNAs (tRNAs) are short non-coding RNAs acting as adaptor molecules in
the process of translating the information stored in nucleotide sequences into proteins.
To ensure faithful translations of the genetic code tRNAs must interact productively
with the correct aminoacyl-tRNA synthetase (aaRS) to be charged with its cognate
amino acid while avoiding productive interactions with non-cognate aaRSs. A tR-
NAs specificity is determined by a set of identity determinants, which are defined as
the nucleotide state (e.g. A,C,G,U) at structural positions along the tRNA molecule.
These identity determinants are not static and have been shown to vary widely across
the tree of life. Here we introduced tsfm - tRNA structure function mapper, a Python
application with C extension modules implementing a previously described informa-
tion theory approach for predicting tRNA identity determinants. We improve on the
original approach by implementing a more accurate entropy estimator. Additionally,
we expand on the original work by introducing calculations for basepair features,
methods for statistical significance testing, and we implement a distance metric to
quantify overall similarity of tRNA identity determinants between genomic sets of
tRNAs. Moreover, given recent interest in targeting interactions between tRNAs and
aaRSs for therapeutic drug development we believe that tsfm will be a valuable tool
for this community by predicting potential targets for additional testing and devel-
opment.

4.2 Background

Transfer RNAs (tRNA) are short non-coding RNAs mainly involved in protein syn-
thesis acting as adaptor molecules converting the information contained in the genome
into proteins (Marck and Grosjean, 2002). To operate as an adaptor molecule during
protein synthesis, tRNAs are involved in two spatially and temporally separated re-
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actions. First, tRNAs are recognized by an aminoacyl-tRNA synthetase (aaRS) that
charges the tRNA by attaching a specific amino acid to its 3" end. The amino acid
attached to a tRNA is determined by the tRNA’s charging capacity referred to as
its functional class (Berg and Offengand, 1958; Zamecnik et al., 1958; Goodman and
Rich, 1962; McClain, 1993; Giegé et al., 1998). Mostly, there exists an aaRS enzyme
specific for each amino acid that charges a cognate tRNA (Chaliotis et al., 2017). The
second reaction occurs during translation and is facilitated by the ribosome, where
mRNA codons are decoded by pairing with charged tRNAs with complementary an-
ticodons followed by the donation of a charged amino acid to the nascent polypeptide
chain (S6ll et al., 1965; Nirenberg et al., 1965; Ogle et al., 2001).

tRNAs involved in protein synthesis must conform to the same general tRNA
structure for efficient activity with general translation factors and the ribosome. This
structure is routinely referred to as a clover leaf shape, consisting of three stem-loops,
a variable loop, a base-paired stem, and an unpaired tail. Despite the very high struc-
tural similarity of all tRNAs engaged in protein synthesis each must interact produc-
tively with the correct aaRS to be charged with its cognate amino acid while avoid-
ing productive interactions with others to ensure faithful translations of the genetic
code (Normanly and Abelson, 1989; McClain, 1993; Giegé et al., 1998). The proper
charging of a tRNA relies on a set of identity features, which are defined as the nu-
cleotide state (e.g. A,C,G,U) at structural positions along the tRNA molecule (Giegé
et al., 1998). Collectively, the features that determine the charging capacity of a tRNA
are called tRNA Class Informative Features (CIFs) and contain identity determinants
that promote recognition by its cognate aaRS and anti-determinants that discrimi-
nate against noncognate aaRSs (Giegé et al., 1998; Freyhult et al., 2006). Previously
discovered tRNA CIFs are mostly concentrated along the acceptor stem (Giegé et al.,
1998), the anticodon itself (Ho et al., 2018), and the discriminator base (structural
position 73) (Crothers et al., 1972). Identity determinants found outside these loca-
tions tend to be species- and lineage-dependent and are distributed throughout the
tRNA structure (Giegé et al., 1998; Freyhult et al., 2007; Ho et al., 2018).

Experimental approaches to elucidate tRNA CIFs are labor intensive. To date the
tRNA CIFs required for unambiguous charging of tRNAs have only been determined
biochemically for Escherichia coli (Ibba and S6ll, 2000; Ho et al., 2018). While several
tRNA CIFs are strongly conserved across lineages others vary widely across the tree
of life especially within eukaryotes (Freyhult et al., 2007; Amrine et al., 2014; Ho et
al., 2018) limiting the applicability of previous experimental results to novel systems.
Consequently, this motivated the development of a bioinformatic approach to predict-
ing tRNA CIFs by using the information theoretical metric entropy (Shannon, 1948;
Schneider and Stephens, 1990) to quantify the association of tRNA functional classes
with identity features (Freyhult et al., 2006). In this work we introduce tsfm - tRNA
structure function mapper, where we reimplement and expand on the bioinformatic
method introduced by Freyhult et al., 2006 in a Python application with C extension
modules. We improve on the original molecular information theoretical approach to
predicting tRNA CIFs by implementing the more accurate, eponymously named NSB
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entropy estimator (Nemenman et al., 2004) and by including basepair features in our
tRNA CIF estimation. Furthermore, we have introduced new functionality provid-
ing statistical significance testing of tRNA structural features functional information
content and feature-tRNA class association. We also implemented a distance metric
option that quantifies overall similarity of tRNA CIFs between genomic sets of tR-
NAs using the Jensen-Shannon distance (Endres and Schindelin, 2003). The distance
functionality is designed in a object-oriented programming approach, which is easily
extended to include additional distance metrics. Lastly, given recent interest in target-
ing interactions between tRNAs and aaRSs for therapeutic drug development (Jain
et al., 2017; Pasaje et al., 2016; Ho et al., 2018), we believe the development of tsfm is
timely and will prove to be a valuable tool given its ability to estimate tRNA features
critical for interactions between tRNAs and cognate aaRSs and to quantify differences
between genomic sets of tRNAs.

4.3 Implementation

tsfm is written in Python with compiled C extension modules and has a command
line user interface. As input tsfm expects files of structurally aligned tRNA sequences
in clustal or fasta format partitioned by functional class. The naming convention ex-
pected for these files is <dataset name>_<IUPAC AA one-letter code>.(aln|fna)
for example: dataset1_F.aln. We recommend using either COVE (Eddy and Durbin,
1994) or Infernal (Nawrocki and Eddy, 2013) to produce structural alignments. If
predicting tRNA CIF's for basepair features a separate file containing the consensus
secondary structure annotation in the extended dot bracket notation format out-
putted by COVE (Eddy and Durbin, 1994) or Infernal (Nawrocki and Eddy, 2013)
is required. When calculating distance metrics between datasets either tRNA CIFs
must be predicted for both datasets at the same time by providing alignment files
for each or results from previous analyses may be used. The final output of tRNA
CIF predictions and distance metrics are tab-delimited text files, and if the option is
selected, function logo post-script graphics which are fully described below. Lastly,
an overview of the standard workflow for tsfm is provided in figure 4.1.



Functional class Structural
alignments annotation

Generate label Permutation
permuted datasets testing

Generate null
distribution

Entropy
estimation

Distance Distance
metric calculation

Result table Distance table

Statistical testing

Figure 4.1: Overview of the tsfm workflow.
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4.3.1 tRNA CIF prediction

Here we describe the molecular information theory approach for predicting tRNA
CIFs (Freyhult et al., 2006) followed by descriptions of the methods implemented for
entropy estimation in small sample sizes.

For the purpose of calculating tRNA CIFs the possible functional classes of tRNAs
are denoted by their IUPAC one-letter amino acid code, Z = {A,C, D, E, F,G, H, I,
J,K,L, M,N,P,Q,R,S, T,V,W, X, Y} and features F is the union of two Cartesian
products n; x SC U (n; x n;) x BP, where n; € {A,C,G,U, —} is the set of pos-
sible states of an alignment position, SC' is the set of Sprinzl Coordinates (Sprinzl
et al., 1998), and BP is the set of Sprinzl Coordinate pairs involved in basepairs
of the tRNA secondary structure. The functional information Iy, (Z|f;) that feature
fi € F confers about the frequencies of different functional classes Z is defined as:
1,(Z1f) = H(Z) — e(n(fs)) — H(Z|£)), where H(Z|) = —S-czp(z|f)log(p(:1 )
is the class entropy or level of uncertainty about the functional class of tRNAs
with feature f;. H(Z) = —X,czp(2)loga(p(z)) is the background entropy which de-
pends on relative frequency of sequences belonging to different functional classes,
and by definition: 0 < p(2),p(z|fi) < 1,8.ezp(2) = 1,X.c2p(z|f;) = 1. Finally,
the proportion of functional information Iy, (Z|f;) attributed to each functional class
z € Z is calculated using Gorodkin heights (Gorodkin et al., 1997) where h} =
(p(2]fi)/p(2))/ Ewezp(w]|fi)/p(w)), hy, is the vector of Gorodkin heights Vz € Z at
feature f;, and by definition Ehj{ =1.

It is known that calculating entropy from the maximum likelihood estimates of
p(z) and p(z| f;) from sampled frequencies will underestimate the true entropy (Basharin,
1959). We reimplement the exact method described in Schneider and Stephens, 1990
denoted above as e(n(f;))), which is correction for biases caused by small sample
size. It is calculated for each sample size 1,...,n where n is provided as an option to
tsfm. The calculation of the exact method is implemented as a compiled C extension
and computed in parallel over sample sizes, still it becomes prohibitively costly to
calculate beyond a sample size of 17. To estimate entropy for larger sample sizes we
reimplemented the Miller-Madow (Miller, 1955) estimator originally used by Freyhult
et al., 2006 and an improved entropy estimator using the NSB method (Nemenman
et al., 2004). The Miller-Madow (Miller, 1955) method provides an improvement over
using the maximum likelihood frequencies, however, it only utilizes information from
the sample size and is not dependent on the distribution of classes, which can lead to
inaccurate estimates at smaller sample sizes. Consequently, we also implemented the
improved NSB (Nemenman et al., 2004) estimator which uses a Bayesian approach
to utilize information from the sample size and distribution of classes which has been
shown to lead to better estimates at small sample sizes (Nemenman et al., 2004).

To confirm that the NSB estimator provides better entropy estimates we simu-
lated distributions with 4.46, 3.62, 2.66, 1.86, 0.91, and 0.51 bits of entropy, randomly
sampled these distributions for every sample size between 1..50, and calculated the
entropy using the maximum likelihood frequency estimate, Miller-Madow (Miller,
1955), and NSB (Nemenman et al., 2004). We repeated this 100 times for each sam-
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pling depth calculating the average and standard deviation. Based on our simulations
the NSB (Nemenman et al., 2004) consistently provides an improvement over the
Miller-Madow (Miller, 1955) estimator at smaller sample sizes except for the highest
entropy level where they performed similarly (Fig. 4.2-4.7).
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Figure 4.2: Entropy estimator comparison for a distribution with a true entropy of 4.46 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.
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Figure 4.3: Entropy estimator comparison for a distribution with a true entropy of 3.62 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.
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Entropy: 2.66
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Figure 4.4: Entropy estimator comparison for a distribution with a true entropy of 2.66 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.
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Figure 4.5: Entropy estimator comparison for a distribution with a true entropy of 1.86 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.
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Figure 4.6: Entropy estimator comparison for a distribution with a true entropy of 0.91 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.



68

Entropy: 0.51

e NSB
8 } e Miller

: }}
oy
it

0 10 0 4 0 5 10 15 20
N

Figure 4.7: Entropy estimator comparison for a distribution with a true entropy of 0.51 bits. (Left
panel) The y-axis is entropy measured in bits and the x-axis is the sampling depth. Dots represent
the average entropy estimated over 100 replicates at each sampling depth for each estimator. Error
bars are + one standard deviation. The horizontal dashed green line is the true entropy for the
distribution. (Right panel) A histogram representing the discrete probability distribution over 22
states that was used for random sampling.
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4.3.2 Statistical testing

To provide statistical significance testing of the information content of features, f; €
F', and of the information associated with a functional class, z € Z within a feature
we implemented permutation based testing. The null distribution for both tests is
generated by shuffling the functional class labels of input sequences followed by the
calculation of the information content. The permutation p-values are calculated as
(Napove + 1)/ (n 4+ 1), where ngpove is the number of permutations with an information
value greater than the feature, f;, or functional class, z depending on the test and
n is the total number of permutations. To correct for multiple testing we provide
all the options available within the multitest module of the statsmodels package,
which provides several methods for controlling the family-wise error rate or the false
discovery rate.

4.3.3 tRNA CIF distance metrics

To measure pairwise distances between datasets x(;x) € X where X is a set of datasets
we have implemented a modified version of the Jensen-Shannon distance (JSD), an
information theory metric for quantifying similarity between two probability distri-
butions (Endres and Schindelin, 2003). We weighted the JSD calculation by the sum
of the functional information /7 of the feature f; for datasets z(;x) and summed over
all features f; € F' (equation 4.1). The function H() in equation 4.1 is the Shannon
entropy (Shannon, 1948) defined as: H(V) = — > p(v;)loga(p(v;)).

DU+ 1) [H X Tk | = > T H (hr) (4.1)

fieF me{j,k} me{j,k}

Although, we only provide a single distance metric the object-oriented programming
design of tsfm easily allows the addition of new distance metrics by extending the
Distance class.

4.3.4 Graphical output

The graphical output of tsfm follows Freyhult et al., 2006 by producing function logos
by plotting functional information as a stacked bar graph with structural position on
the x-axis and information on the y-axis in bits. Each element of a stack is a symbol
for a functional class z € Z. Symbol heights are the product of the information
content for f; and the Gorodkin height (Gorodkin et al., 1997) of z. Symbols are
sorted by heights with the symbols with largest height appearing on top. An example
is provided in Figure 4.8.
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Figure 4.8: Example of a cytosine function logo produced by tsfm.

4.4 Conclusion

Here we introduced tsfm - tRNA structure function mapper, an easily installed and
widely available Python application with C extension modules for predicting tRNA
features that provide charging specificity using the approach introduced by Freyhult
et al., 2006. We improve on the original method by implementing the more accurate
NSB entropy estimator (Nemenman et al., 2004). Moreover, we also expanded on the
original work by introducing calculations for basepair features, statistical significance
testing, and a method to quantify overall similarity of tRNA CIFs between genomic
sets of tRNAs. Given recent interest in targeting interactions between tRNAs and
aaRSs for therapeutic drug development (Jain et al., 2017; Pasaje et al., 2016; Ho et
al., 2018) we believe that tsfm will be a valuable tool for this community by predicting
potential targets for further testing and development.

4.5 Availability and Requirements

Project name: tsfm - tRNA structure function mapper
Project home page: https://github.com/tlawrence3/tsfm
Operating system: MacOSX and Linux

Programming language: Python (> 3.4) and C99

Other requirements: numpy, statsmodels, pandas, mpmath
License: LGPL-3.0
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Chapter 5

FAST: FAST Analysis of Sequences
Toolbox

5.1 Abstract

FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source
command-line tools to filter, transform, annotate and analyze biological sequence
data. Modeled after the GNU (GNU’s Not Unix) Textutils such as grep, cut, and tr,
FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expres-
sive bioinformatic workflows in a compact and generic command vocabulary. Com-
pact combinatorial encoding of data workflows with FAST commands can simplify
the documentation and reproducibility of bioinformatic protocols, supporting better
transparency in biological data science. Interface self-consistency and conformity with
conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy
and rewarding to learn. FAST automates numerical, taxonomic, and text-based sort-
ing, selection and transformation of sequence records and alignment sites based on
content, index ranges, descriptive tags, annotated features, and in-line calculated ana-
lytics, including composition and codon usage. Automated content- and feature-based
extraction of sites and support for molecular population genetic statistics make FAST
useful for molecular evolutionary analysis. FAST is portable, easy to install and secure
thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases
posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are
available on the FAST GitHub repository at https://github.com/tlawrence3/FAST.
The default data exchange format in FAST is Multi-FastA (specifically, a restric-
tion of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are
also supported. FAST makes it easier for non-programmer biologists to interactively
investigate and control biological data at the speed of thought.
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5.2 Introduction

Bioinformatic software for non-programmers is traditionally implemented for user
convenience in monolithic applications with Graphical User Interfaces (GUIs) (Smith
et al., 1994; Rampp et al., 2006; Librado and Rozas, 2009a; Waterhouse et al., 2009;
Gouy et al., 2010; Stothard, 2000). However, the monolithic application paradigm
is easily outscaled by today’s big biological data, particularly Next Generation Se-
quencing (NGS) data at gigabyte- and terabyte-scales. Better empowerment of non-
programmers for genome-scale analytics of big biological data has been achieved
through web-based genome browser interfaces (Markowitz et al., 2014; Cunningham
et al., 2015; Rosenbloom et al., 2015). On the other hand, for smaller datasets, se-
quence and alignment editor applications encourage manual manipulation of data,
which is error-prone and essentially irreproducible. To reduce error and increase re-
producibility in the publishing of bioinformatic and biostatistical protocols it is im-
portant to facilitate the documentation and automation of data science workflows
through scripts and literate programming facilities (Knuth, 1984) such as emacs org-
mode (http://orgmode.org), as demonstrated in, for example (Delescluse et al., 2012)
that both completely document and encode scientific workflows for machine process-
ing of biological data.

Reproducibility in bioinformatics and biostatistics protocols is crucial to main-
taining public trust in the value of its investments in high-throughput and high-
dimensional measurements of complex biological systems (Baggerly and Coombes,
2009; Hutson, 2010; Baggerly and Coombes, 2011; Huang and Gottardo, 2013). In
one analysis, only two of 18 published microarray gene-expression analyses were com-
pletely reproducible, in part because key analysis steps were made with proprietary
closed-source software (loannidis et al., 2008). Furthermore, even though analyti-
cal errors are a major source of retractions in the scientific literature (Casadevall
et al., 2014), peer-review and publication of scientific data processing protocols is
generally not yet required to publish scientific studies. Adequate documentation of
bioinformatic and biostatistical workflows and open source sharing of code upon pub-
lication (Peng, 2009) facilitates crowd-sourced verification, correction and extension
of code-based analyses (Barnes, 2010; Morin et al., 2012), and reuse of software and
data to enable more scientific discovery returns from public data (Peng, 2011). Peer
review and publication of the data science protocols associated to scientific studies
stems temptation to overinterpret results and encourages more objectivity in data
science (Boulesteix, 2010). The ultimate remedy for these problems is to expand lit-
eracy in modern computational and statistical data science for science students in
general (Morin et al., 2012; Joppa et al., 2013).

Web-based open-source workflow suites such as Galaxy (Blankenberg and Hillman-
Jackson, 2014), Taverna (Oinn et al., 2006) and BioExtract (Lushbough et al., 2011)
are a recent innovation in the direction of greater reproducibility in bioinformatics
protocols for genome-scale analytics. However, the most powerful, transparent and
customizable medium for reproducible bioinformatics work is only available to bioin-
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formatics specialists and programmers through Application Programming Interfaces
(APIs) such as BioPerl and Ensembl (Yates et al., 2015).

Yet workflow design suites and programming APIs require dedication and time
to learn. There is a need for more bioinformatics software in between GUIs and
APIs, that empowers non-programmer scientists and researchers to interactively and
reproducibly control, process and analyze their data without manual interventions.
Closer inspection of data and interactive construction and control of data workflows
makes it so much easier to rapidly prototype error-free workflows, nipping errors in
the bud that can completely confound downstream analyses. In scientific computing,
the time-tested paradigm for rapid prototyping of reproducible data workflows is the
Unix command-line.

In this tradition we here present FAST: FAST Analysis Sequences Toolbox, mod-
eled after the standard Unix toolkit (Peek, 2001), now called Coreutils. The FAST
tools follow the Unix philosophy to “do one thing and do it well” and “write programs
to work together.” (Stutz, 2000). FAST workflows are completely automated; no man-
ual interventions to data are required. FAST falls between a GUI and an API, because
it is used through a Command-Line Interface (CLI). Although the FAST tools are
written in Perl using BioPerl packages (Stajich et al., 2002), FAST users do not need
to be able to program Perl or know BioPerl. FAST users only need basic competence
in Unix and the modest skill to compose command pipelines in the Unix shell. FAST
therefore supports an emerging movement to empower non-programmer biologists to
learn Unix for scientific computing. Books and courses in this emerging market in-
clude the recent “UNIX and Perl to the Rescue!” (Bradnam and Korf, 2012) and the
Software Carpentry and Data Carpentry Foundations workshops (Wilson, 2014).

Unix command pipe-lines are the paradigmatic example of the “pipes and filters”
design pattern that embodies serial processing of data through sequences of modular
and reuseable computations. The “pipes and filters” design pattern is a special case
of component-based software engineering (Mcllroy, 1969) and a core paradigm in
software architecture (Garlan and Shaw, 1994). The component-wise organization of
FAST affords access to an infinite variety of customizable queries and workflows on
biological sequence data using a small command vocabulary and combinatorial logic.
Component-based software is easier to learn, maintain and extend. It also makes it
easy for users to interactively develop new protocols through the modular extension
and recombination of existing protocols. As shown from the examples below, non-
trivial computations may be expressed on a single line of the printed page. Thus,
FAST can help empower non-biologist programmers to develop and communicate
powerful and reproducible bioinformatic workflows for scientific investigations and
publishing.

Open-source command-line utilities for bioinformatics such as the EMBOSS pack-
age (Rice et al., 2000), the FASTX tools (Gordon, 2009) or the scripts that come with
BioPerl (Stajich et al., 2002) typically offer suites of tools with simple, well-defined
functions that lend themselves to scripting, but are not necessarily designed according
to the Unix toolbox philosophy specifically to interoperate through serial composition
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over pipes. Similarly, FaBox (Villensen, 2007) is a free and open online server with
functions that overlap with FAST tools, but is not designed for serial composition.
On the other hand, the Unix toolbox model has been used before in more or less more
specialized bioinformatics applications such as the popular SAMTools suite (Li et al.,
2009) and in the processing of NMR data (Delaglio et al., 1995). A toolsuite called bp-
utils, with a similar design philosophy and some overlapping functionality with FAST,
has recently been released at http://diverge.hunter.cuny.edu/labwiki/Bioutils.

We have written extensive documentation for each FAST utility along with useful
error messages following recommended practice (Seemann, 2013). FAST is free and
open source; its code is freely available to anyone to re-use, verify and extend through
its GitHub repository.

5.3 Design and Implementation of FAST Tools

5.3.1 The FAST Data Model

The Unix Coreutils paradigm allows users to treat plain-text files and data streams
as databases in which records correspond to single lines containing fields separated
by delimiters such as commas, tabs, or strings of white-space characters. FAST ex-
tends this paradigm to biological sequence data, allowing users to treat collections
of files and streams of multi-line sequence records as databases for complex queries,
transformations and analytics. FAST generalizes the GNU Coreutils model exactly
because it models sequence record descriptions as an ordered collection of description
fields (see below).

Another design feature of Unix tools that also characterizes the FAST tools is
their ability to accept input not only from one or more files but also from what
is called standard input, a data-stream supported by the Unix shell, and to output
analogously to standard output. It is this facility that allows FAST tools to be serially
composed in Unix pipelines that compactly represent an infinite variety of expressive
bioinformatic workflows.

The default data exchange format for FAST tools is the universally recognized
FastA format (Lipman and Pearson, 1985). While no universal standard exists for
this format, for FAST, “FastA format” means what is conventionally called “multi-
fasta” format of sequence or alignment data, largely as implementated in BioPerl in
the module Bio: :SeqI0: :fasta (Stajich et al., 2002).

In the FAST implementation of FastA format, multiple sequence records may
appear in a single file or input stream. Sequence data may contain gap characters. The
logical elements (or fields) of a sequence record are its identifier, its description and its
sequence. The identifier (indicated with id in the illustration below) and description
(desc) together make the identifier line of a sequence record, which must begin with
the sequence record start symbol > on a single line. The description begins after the
first block of white-space on this line (indicated with <space>). The sequence of a
record appears immediately after its identifier line and may continue over multiple
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lines until the next record starts.

In FAST, users may alter how description fields are defined in sequence records
by using Perl-style regular expressions to define delimiters (indicated by <delim>).
FAST uses one-based indexing of description fields.

The FAST data model is illustrated as follows:

>seql-id<space>seql-desc-fieldl

<delim>seql-desc-field2<delim>. ..

seql-sequence

seql-sequence

seql-sequence
>seq2-id<space>seq2-desc-fieldl
<delim>seq2-desc-field2<delim>. ..
seq2-sequence

seq2-sequence

seq2-sequence

In FAST, the sequence identifier is thought of as the Oth field of the identifier
line. One-based indexing of description fields in FAST is therefore consistent with
zero-based indexing in Perl and one-based indexing of sequence coordinates, making
all indexing consistent and uniform in FAST.

Most FAST tools extend the field-based paradigm further by supporting tagged
values in sequence record descriptions. Tagged values are name-value pairs with a for-
mat “name=value” as common in General Feature Format (GFF) used in sequence
annotation (see e.g., https://www.sanger.ac.uk/resources/software/gff/) or an alter-
native “name:value” format that certain FAST tools themselves can annotate in-line
into sequence records by appending a new field to sequence record descriptions. Sup-
port for tagged values in FAST makes it possible to operate on sequence records with
unordered or heterogeneous description fields.

5.3.2 Overview of the FAST Tools

FAST utilities may be assigned to categories according to their default behavior and
intended use. There are FAST tools for selection of data from sequence records, trans-
formation of data, annotation of sequence record descriptions with computed charac-
teristics of the data, and analysis. A complete description of all utilities included in
the first major release of FAST is shown in Table 5.1.

The analysis class is distinguished from the other classes because by default, these
utilities output tables of plain-text data rather than sequence record data in FastA for-
mat. T'wo other tools, fasconvert and gbfcut, are designed to either input or output
FastA format sequence records by default. Standardization of the FAST data model
allows users to serially compose FAST tools into pipelines at the Unix command-line,
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Table 5.1: Utilities in first major release of FAST.
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Tool/Category Function Coreutil analog Operates by default upon
SELECTION

fasgrep Regex selection of records grep Identifiers
fasfilter Numerical selection of records Identifiers
fastax Taxonomic selection of records Descriptions
fashead Order-based selection of records head Records
fastail Order-based selection of records tail Records
fascut Index-based selection and reordering of data cut Sequences
gbfcut Extract sequences by regex matching on features Features
alncut Selection of sites by content Sites
gbfalncut Selection of sites by features Sites
TRANSFORMATION

fassort Numerical or text sorting of records sort Identifiers
fastaxsort Taxonomic sorting of records Identifiers
fasuniq Remove or count redundant records uniq Records
faspaste Merging of records paste Sequences
fastr Character transformations on records tr Identifiers
fassub Regex substitutions on records Identifiers
fasconvert Convert sequence formats Records
ANNOTATION

faslen Annotate sequence lengths Descriptions
fascomp Annotate monomeric compositions Descriptions
fascodon Annotate codon usage Descriptions
fasxl Annotate biological translations Descriptions
fasrc Annotate reverse complements Descriptions
ANALYSIS

alnpi Molecular population genetic statistics Sites

faswc Tally sequences and characters we Sequences
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which is indicated as the “main workflow” in the overview of the project shown in
Figure 5.1.

5.3.3 General Implementation and Benchmarking

The BioPerl backend of FAST 1.x is version 1.6.901 downloaded in January, 2012.
Bio::SeqI0 components were updated to version 1.6.923 on June 4, 2014 and some
Bio: :Root components were updated on July 10, 2014 (github commit 50{87e9a4d).
We introduced a small number of customizations to the BioPerl code-base, primarily
to enable the translation of sequences containing gaps. All of the BioPerl dependencies
of FAST are isolated under its own FAST name-space. To help reduce the overall
installation footprint of FAST, BioPerl dependencies of FAST scripts were analyzed
with the Cava packager (http://www.cavapackager.com).

Nearly all FAST utilities process sequence records inline and therefore have linear
runtime complexity in the number of sequences. Exceptions are fassort and fastail
which both require some paging of data into temporary files. We performed bench-
marking of FAST tools using randomly generated sequences of even composition
sourced generated in Python and the Benchmark v1.15 Perl module on a MacBook
Pro 2.5 Ghz Intel i7, with 8 Gb of RAM. We examined average CPU runtime over
100 replicates, comparing input sizes of 25K, 250K, or 1M sequence records of length
100, 10K, 100K, or 1M bp. Our benchmarking results show that despite data paging,
fassort runtimes scale linearly with input size (Figure 5.2). FAST is not designed
to be fastest at computing its solutions. Rather the fastness of FAST lies in how
quickly an adept user can interactively prototype, develop, and express bioinformatic
workflows with it.

5.3.4 Installation and Dependencies

FAST requires a working Perl installation, with official releases distributed through
the Comprehensive Perl Archive Network (CPAN). A small footprint of BioPerl de-
pendencies has been packaged together in the FAST namespace. Other CPAN de-
pendencies may be detected and installed by the cpan package manager. A fully
automated install from CPAN may on many systems be initiated by executing perl
-MCPAN -e ‘install FAST’. A manual install follows standard Perl install proce-
dure. After downloading and unpacking the source directory, change into that direc-
tory and execute: perl Makefile.PL; make; make test; (sudo) make install.

We recommend that first-time users first complete the automated install from
CPAN which will handle prerequisites, and then download and open the source code
directory in order to practice the example usage commands (such as those in the
sequel) on sample data provided within.


http://www.cavapackager.com
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Figure 5.1: Overview of the first major release of FAST with data and workflow dependencies indi-
cated. Inputs to FAST tools are shown at the top of the figure with outputs at the bottom. Outlined
in blue is the primary working model, in which Multi-fastA sequence or alignment data is succes-
sively annotated, selected upon and transformed into new Multi-fastA data, or fed into a utility in
the analysis category for tabular output of data summaries. Many of the utilities in the annotation
category are also optionally capable of tabular output.
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Figure 5.2: Average processor time of 100 repetitions required to complete analysis using indicated
utility. Utilities were run on six datasets consisting of (A) 25,000, 2,50,000, and 10,00,000 100 bp
sequences and (B) 10,000, 1,00,000, and 10,00,000 1000 bp sequences.
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5.3.5 Implementation and Usage of Individual Tools

Further implementation and usage details of individual FAST tools follows. Usage
examples for individual tools refer to example data that ships with the FAST source-
code installer, available from CPAN. The most recent version at the time of publica-
tion is 1.06, available from http://search.cpan.org/~dhard/FAST-1.06/. However we
recommend to use the most recent version of FAST. For maximum reproducibility,
always cite the version number when publishing results with FAST. These usage ex-
amples should be able to run from within the installation directory after installation
has completed.

fasgrep supports reqular expression-based selection of sequence records. FAST
uses Perl-style regular expressions, which are documented freely online and within
Perl, and are closely related to Unix extended regular expressions. For reference on
Perl regular expressions, try executing man perlre or perldoc perlre. For example,
to print only protein sequences that do not start with M for methionine, execute:

fasgrep -s -v ‘‘"M’’ t/data/P450.fas
In the above command the -s option directs fasgrep to search the sequence data
of each record. The v option directs fasgrep to print records that do not match the
pattern given by its argument, which is the regular expression "M, in which the
anchor “"7 specifies the beginning of the sequence data. fasgrep uses the BioPerl
Bio::Tools: :SeqgPattern library to support ambiguity expansion of IUPAC codes
in its regular expression arguments. Thus, to show that a segment of Saccharomyces
cerevisiae chromosome 1 contains at least one instance of an “Autonomous Consensus
Sequence” characteristic of yeast origins of replication (Leonard and McHali, 2013),
look whether the following command outputs a sequence or not (note that all com-
mands reproduced here should be entered on a single line at the Unix shell prompt):

fasgrep -se ‘WTTTAYRTTTW’ t/data/chrO1l.fas
which is equivalent to:

fasgrep -se ‘[AT]JTTTA[CT] [AGITTT[AT]’ t/data/chrOl.fas
These examples demonstrate queries on sequence data, but fasgrep may be directed
to search against other parts of sequence records including identifiers, descriptions,
fields and more.

fasfilter supports precise numerical-based selections of sequence records from
numerical data in identifiers, descriptions, fields or tagged-values in descriptions.
fasfilter supports open ranges such as 100-, meaning “greater than or equal to
100,” closed ranges like 1e6-5e8 (meaning 1 * 10¢05 * 10%) and compound ranges
such as 200400, 500-. Ranges may be specified in Perl-style (or GenBank coordi-
nate style) like from. .to, in R/Octave-style like from:to or UNIX cut-style as in
from-to. For example, to print records with gi numbers between 200 and 500 million,
try executing:

fasfilter -x ‘‘gi\l(\d+)’’ 2e8..5e8 t/data/P450.fas
This example uses the -x option which directs fasfilter to filter on the value within
the capture buffer which occurs within the left-most pair of parentheses of the argu-
ment, here (\d+), and \d+ is a regular expression matching a string of one or more
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digits from 0 to 9. The backslash after gi in the first argument quotes the vertical
bar character to make it literal, since the vertical bar character is a special character
in regular expressions.

fascut supports index-based selections of characters and fields in sequence records
allowing repetition, reordering, variable steps, and reversals. Ranges are specified oth-
erwise similarly to fasfilter. Negative indices count backwards from last characters
and fields. fascut outputs the concatenation of data selections for each sequence
record. Variable step-sizes in index ranges conveniently specify first, second or third
codon positions in codon sequence records, for example. Examples using this syntax
appear in the sequel. To print the last ten residues of each sequence, execute:

fascut -10..-1 t/data/P450.fas

alncut implements content-based selection of sites in alignments including gap-
free sites, non-allgap sites, variable or invariant sites and parsimoniously informa-
tive sites, or their set-complements, all with the option of state-frequency-thresholds
applied per site. By default, alncut prints only invariant sites. To print the set-
complement, or only variable sites, use the -v option:

alncut -v t/data/popset_32329588.fas
To print sites in which no more than two sequences contain gaps, execute:

alncut -gf 2 t/data/popset_32329588.fas

gbfcut allows annotation-based sequence-extraction from GenBank format se-
quence files, useful for extracting all sequences that correspond to sets of the same
type of annotated features in genome data. For example, to output 5 and 3’ Un-
translated Region (UTR) sequences from a GenBank formatted sequence of a gene,
we use the -k option to restrict matching to features whose “keys” match the regular
expression “UTR”:

gbfcut -k UTR t/data/AF194338.1.gb
gbfcut can handle split features such as a coding region (CDS) that is split over
several exons:

gbfcut -k CDS t/data/AF194338.1.gb
More fine-grained queries of features are possible using qualifiers defined with the -q
option. Multiple qualifiers may be provided at once, specifying the selection of records
for which all qualifiers apply (conjunction). For example, compare the output of the
following two commands:

gbfcut -k tRNA t/data/mito-ascaris.gb

gbfcut -k tRNA -q product=Ser -q note”AGN t/data/mito-ascaris.gb
The second command queries for features with key “tRNA” containing at least one
qualifier “/product” whose value matches the string literal “Ser” and no qualifiers of
type “/note” whose values match the string literal “AGN”.

gbfalncut automates the selection of sites from alignments that correspond to one
or more features annotated on one of the sequences in a separate GenBank record.
This workflow eliminates the need for manual entry of coordinates and implements a
useful bioinformatic query in terms of known and reproducible quantities from public
data and sequence records, allowing users to query sites based on biological vocab-
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ularies of sequence features. For an example of its use see the section “Composing
Workflows in FAST” in the sequel.

faspaste concatenates data from records input in parallel from multiple data-
streams or files, record-by-record. The user may paste data from the standard input
stream and from multiple input files, in an order defined by the arguments. Records
from standard input may be used multiple times in concatenating data. Like in some
implementations of the Unix tool paste, a hyphen input argument - to faspaste
refers to the standard input stream and may be used more than once as an input
argument. For maximum configurability, faspaste concatenates only one data field
type (i.e., sequences or descriptions) at a time. Users may select which data stream
will provide templates to receive concatenated data in output records. For example,
to paste sequences of corresponding records from two data-files together and output
them with the identifiers and descriptions of the data in the first file, execute:

faspaste datal.fas data2.fas
See the sequel for more advanced usage examples with faspaste.

fassort and fasuniq are designed to be often used together in Unix pipelines.
The fassort utility implements numerical and textual sorting of sequence records
by specific fields. The fasuniq utility removes (and optionally counts) records that
are redundant with respect to a specific field, such as sequences or identifiers. In
the implementation of fassort, pages of data are sorted with optimized routines in
Perl Sort::Key that, if necessary, are written to temporary files and merged with
Sort: :MergeSort. Like its Unix Coreutil analog uniq, fasuniq compares only im-
mediately successive input records. Therefore, users will usually want to first sort
data with fassort before passing it to fasuniq. To illustrate, the following example
combines and sorts input records from two instances of the same file, and then counts
and removes each redundant record:

fassort -s t/data/P450.fas t/data/P450.fas | fasuniq -c
This example illustrates that the same file may be specified as an input stream more
than once to any FAST command.

fastax and fastaxsort implement taxonomic searching and sorting of sequence
records, whose records are already annotated with NCBI taxonomic identifiers us-
ing taxonomic data from NCBI taxonomy (Benson et al., 2009; Sayers et al., 2009).
For example, a query of “Metazoa” would match records labeled “Homo sapiens”,
“Drosophila melanogaster”, and “Lepidoptera” but not “Candida albicans” or “Al-
phaproteobacteria”. Taxonomic selections may be logically negated and/or restricted
to only those records containing valid NCBI taxonomic identifiers. Purely for his-
torical reasons, the internal implementation of NCBI taxonomic data is custom to
FAST rather than the Bio::Taxonomy libraries in BioPerl. A sample of data from
tRNAdb-CE (Abe et al., 2014), in which data records are annotated with valid NCBI
taxonomic identifiers in specific description fields, is included with the FAST installa-
tion package. After downloading datafiles “nodes.dmp” and “names.dmp” from NCBI
Taxonomy, the following command filters sequences from Rhizobiales, assuming that
records are labeled with their species (and strain) of origin in the third field of the
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description of the sample data file:

fastax -f 3 -S ‘¢ \| ’’ nodes.dmp names.dmp Rhizobiales \

t/data/tRNAdb-CE.sample2000.fas

fastr and fassub handle, respectively, character- and string-based transforma-
tions of sequence records. The utility fastr handles character-based transliterations,
deletions and “squashing” (deletion of consecutive repeats), sequence degapping, and
restriction or remapping of sequence data to strict or [IUPAC ambiguity alphabets.
For example, to lower-case all sequence characters, execute:

fastr -s ‘A-Z’ ‘a-z’ t/data/P450.fas
Degapping requires only the simple command:

fastr --degap t/data/P450.clustalw2.fas
The utility fassub allows more arbitrary substitutions on sets of strings matched to
Perl regexes, implemented through direction of the Perl s/// substitution operator on
specific fields. Capture buffers may be used to refer to matched data in substitutions,
for example, to reverse the order of genus and species in a file in which scientific
names occur in descriptions enclosed with square brackets:

fassub -d ‘(\w+) (\w+)’ “[21]° t/data/P450.fas

fascomp, fasxl and fascodon provide for annotation and analytics of composi-
tions, translations, and codon usage frequencies of sequence records (with start and
stop codons counted distinctly, in the last case). All genetic codes included in BioPerl,
ultimately from NCBI Entrez, are supported.

alnpi outputs molecular population genetic statistics cited in Table 5.2 for each
alignment on input. It can output a set of statistics for each alignment on input in
plain text or TEXformat. alnpi also supports sliding window and pairwise analysis
of input data. Data and command examples are provided to reproduce the tables and
sliding window analyses of statistics published in Ardell et al., 2003. Purely for his-
torical reasons, alnpi does not use the perlymorphism routines in the BioPerl library
Bio: :PopGen (Stajich et al., 2002). However, all of the code for these calculations has
been reviewed and compared against calculations produced from DNASP (Librado
and Rozas, 2009b) as described previously (Ardell, 2004).

5.4 Composing Workflows in FAST

Here we show how to interactively prototype a pipeline that computes the sliding
window profile of Tajima’s D of Figure 4A in Ardell et al., 2003 from a publicly avail-
able datafile. The datafile associated to this figure is an NCBI PopSet with accession
ID 32329588 containing an alignment of a fully annotated ciliate gene (accession
AF194338.1) against several partially sequenced allelic variants. One of the variants
with accession 1D AY243496.1 appears to be partly non-functionalized. First to see
this data, we view it in the pager less (press “q” to quit and “space” to page):
less t/data/popset_32329588.fas
A key feature of the Unix shell allows users to recall previous commands in their

so-called history, usually by typing the “up-arrow”, for possble re-use and editing. To
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Table 5.2: Molecular population genetic statistics in FAST.

Statistic Symbol Citation

Number of sequences n

Number of alleles/distinct sequences k

Number of segregating sites S

Fraction of segregating sites S

Average number of pairwise differences (Nei and Li, 1979)

Nucleotide diversity s (Nei and Li, 1979)

Watterson estimator Oy (Watterson, 1975)

Expected number of alleles E(K)  (Ewens, 1972)

Tajima’s D D (Tajima, 1989)

Fu and Li’s D* D (Fu and Li, 1993)

Fu and Li’s F* F* (Fu and Li, 1993)
(Simonsen et al., 1995)

Fu and Li’s Eta S s (Fu and Li, 1993)

Fu and Li’s Eta n (Fu and Li, 1993)

check the number of sequences and characters in the alignment, execute:

faswc t/data/popset_32329588.fas
To compute our population genetic statistics we wish to remove the annotated ref-
erence sequence, the deactivated allele, and one additional sequence from analysis,
which we can do using fasgrep, and verify that it reduced data by the correct num-
ber of records (six) by piping to faswc (the command is broken over two lines here
but may be entered as one line on the Unix prompt):

fasgrep -v ¢‘(AF194|349([06])’’ t/data/popset_32329588.fas | faswc
We can check the identifier lines by modifying the end of this pipeline:

fasgrep -v ‘¢ (AF194|349[06])’’ t/data/popset_32329588.fas | grep \>
Sequencing ambiguities and gap-characters can introduce noise and uncertainty in
the execution and documentation of bioinformatic workflows. For some computations,
for example in molecular population genetics, one may want to be conservative and
remove ambiguity- and gap-containing sites from an alignment. We can check for
ambiguities in our data by outputing a composition table:

fasgrep -v ‘‘(AF194|349[06])°° t/data/popset_32329588.fas | \

fascomp --table
To remap ambiguities to gap characters, with the intent of removing all sites con-
taining either ambiguities or gaps, we may use fastr to remap all non-strict DNA
characters to gap (=) and verify the result using fascomp again:

fasgrep -v ‘‘(AF194|349[06])’’ t/data/popset_32329588.fas | \

fastr --strict -N - | fascomp --table
Now, with confidence in our remapping, we extract exclusively gap-free sites from the
alignment using alncut, and verify that we reduced alignment size with faswc:
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fasgrep -v ‘‘(AF194|349[06])’’ t/data/popset_32329588.fas | \

fastr --strict -N - | alncut -g | faswc
Finally, we pass the verified pipeline output to alnpi for sliding-window analysis of
Tajima’s D in overlapping windows of width 100 and step size 25:

fasgrep -v ‘‘(AF194|349[06])°° t/data/popset_32329588.fas | \

fastr --strict -N - | alncut -g | alnpi --window 100:25:d

5.5 Further FAST Workflow Examples

5.5.1 Selecting Sites from Alignments by Annotated Fea-
tures

Another example, that reproduces a published result from (Ardell et al., 2003),

demonstrates the utility of combining gbfalncut with alnpi, allowing users to select

sites from alignments corresponding to features annotated on one of the sequences

in a separate GenBank file. For example, to calculate a Tajima’s D statistic for 5’

UTRs, corresponding to the the last line in Table 5.1 of that work, execute:
gbfalncut -k t/data/AF194338.1.gb 5.UTR t/data/popset_32329588.fas \
| fasgrep -v ¢‘(AF194|349[06])’’ | fastr --strict -N - | alncut -g \
| alnpi

5.5.2 Selecting Sequences by Encoded Motifs

An advantage of the annotation approach in FAST is the ability to select and sort
sequences by attributes computed and annotated into data by utilities upstream in
the pipeline. For example, to select protein-coding genes from a file cds.fas whose
translations contain the N-glycosylation amino acid motif (Kornfeld and Kornfeld,
1985), one could execute:

fasxl -a cds.fas | fasgrep -t x10 ‘‘N["P][STI["P]’’ | \

fascut -f 1..-2
The first command in the pipeline translates each sequence and appends the transla-
tion to the description with the tag “x10” (indicating translation in the zeroth reading
frame). The second command in the pipeline uses a regular expression to represent the
N-glycosylation amino acid motif pattern as the value of a “name:value” pair in the
description with tag “x10”, hence processing the annotations produced by fasxl. The
regex argument to fasgrep is quoted to protect the argument from interpretation by
the shell. The last command in the pipeline removes the last field in the description,
restoring records as they were before they were annotated by fasx1.

5.5.3 Sorting Records by Third Codon Position Composition

Another example illustrates the powerful expression of ranges in fascut. An optional
“by” parameter in ranges allows increments or decrements in steps larger than one.



88

To extract third-position bases from codon sequence records, compute and annotate
their compositions into record descriptions, ultimately sorting records by their third-
position adenosine contents, do:

fascut 3:-1:3 cds.fas | fascomp | fassort -nt comp_A

5.5.4 More Advanced Merging of Data Records

More advanced usage of faspaste requires Unix pipelines. For example to join both
descriptions and sequences from two data-files, execute:
faspaste datal.fas data2.fas | faspaste -d - data2.fas
The hyphen second argument (=) to the second instance of faspaste refers to the
input received from standard input through the pipe. This example works because by
default, faspaste uses (“mutates”) records from the data stream named in its first
argument to receive the data concatenated from all records.
To prepend the first sequence of one file repeatedly to every sequence in another file,
execute:
fashead -n 1 t/data/fasxl test4.fas | faspaste -r - \
t/data/fasx]l_test4.fas
To prepend the first sequence of one file repeatedly to every other sequence in another
file, using identifiers and descriptions from the second file in the output, execute:
fashead -n 1 t/data/fasxl test3.fas | faspaste -r -R 2 - \
t/data/fasxl_test4d.fas

5.6 Further Documentation and Usage Examples

Upon installation, FAST generates and installs a complete man page for each FAST
utility, which should be accessible by one or both of the following commands:

man fasgrep

perldoc fasgrep

In addition, a FAST Cookbook has been contributed by the authors and is avail-
able with the source code distribution or from the project GitHub repository at
https://github.com/tlawrence3 /FAST.

5.7 Concluding Remarks and Future Directions

Planned additions in future versions of FAST include fasrand and alnrand for auto-
mated sampling, permutations and bootstrapping of sequences and sites, respectively,
and fasgo and fasgosort for selection and sorting of records by Gene Ontology cat-
egories (The Gene Ontology Consortium, 2015).
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Chapter 6

Conclusion

6.1 Scientific Impact

In this dissertation, we have successfully demonstrated that plastid tRNA CIFs con-
tain phylogenetic information about deep evolutionary relationships that can be de-
tected using machine-learning and distance-based methodology. In Chapter 2, we were
successful in training a machine-learning algorithm to accurately classify Cyanobac-
terial genomes and applied this algorithm to test hypotheses of the origin of plastids.
We found strong support for the origin of plastids among a late-branching clade of
starch-producing marine/freshwater diazotrophic cyanobacteria. This has added to
our understanding of this early evolutionary event that had a profound impact on
the Tree of Life. In Chapter 3, we provided evidence from a novel source supporting
a sister relationship between conifers and gnetophytes helping resolve the seed plant
phylogeny. In Chapter 4, we describe the implementation of an open-source command
line application for predicting tRNA CIFs from genomic sets of tRNAs, testing statis-
tical significance of tRNA CIFs, and quantifying similarities in tRNA CIFs between
genomic datasets. Currently, this is the only program for predicting and analyzing
tRNA CIFs, greatly increasing the accessibility of these methods. This will hasten
the discovery and experimental validation of tRNAs CIF's that are relevant to several
fields of scientific inquiry including the development of therapeutic drugs targeting
the tRNA interaction network. Lastly, in Chapter 5 we introduce a suite of open-
source command line tools for processes and analyzing biological sequence data that
encourages reproducible bioinformatic workflows.

6.2 Next Steps

In Chapter 2, increasing the sampling of the smaller Cyanobacterial clades would
likely improve the accuracy of classifying genomes from these clades. The majority
of misclassified genomes belong to these smaller clades, consequently any improve-
ment of their classification would greatly increase the overall accuracy of CYANO-
MLP. However, the small clades might be a reflection of low species diversity making
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deeper sampling impossible. Another approach would be to construct a reduced, but
representative phylogenomic dataset that we could analyze with a sophisticated phylo-
genetic model that can fully describe the systematic biases of Cyanobacteria/plastid
datasets. We are currently testing the computational feasibility of several datasets
with the phylogenetic model CAT-BP.

In Chapter 3, the conclusions would be stronger if we could have included Ginkgo
biloba in the phylogenetic analysis, because of its position as sister to cycads. However,
the extant diversity of only a single species within the Ginkgo clade makes it impos-
sible to predict plastid tRNA CIFs using our methods. We could include G. biloba if
we predicted tRNA CIFs from the nuclear genome, which tends to contain enough
tRNAs for CIF prediction. Unfortunately, nuclear genomes are available for all seed
plant clades except Cupressales, which is pivotal for testing competing hypotheses of
the location of gnetophytes.

In Chapter 4, we plan on simplifying the process for adding custom distance
metrics to tsfm for quantify similarity between datasets. For Chapter 5, we are porting
the suite of utilities from perl to C++ to provide significant speed improvements. This
will increase the applicability of the FAST utilities to gigabase and terabase datasets.
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