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Abstract 

Many classes of images contain some spatial regions which are more important than other regions. Compression methods 
which are capable of delivering higher reconstruction quality for the important parts are attractive in this situation. For 
medical images, only a small portion of the image might be diagnostically useful, but the cost of a wrong interpretation 
is high. Algorithms which deliver lossless compression within the regions of interest, and lossy compression elsewhere in 
the image, might be the key to providing efficient and accurate image coding to the medical community. We present and 
compare several new algorithms for lossless region-of-interest (ROI) compression. One is based on lossless coding with 
the S-transform, and two are based on lossy wavelet zerotree coding together with either pixel-domain or transform-domain 
coding of the regional residual. We survey previous methods for region-based coding of medical images. 

Viele Bilder enthalten einige raumliche Bereiche, die wichtiger sind als andere Bereiche. In dieser Situation sind kompres- 
sionsmethoden attraktiv, die Ii.ir die wichtigen Teile eine hiihere Rekonstruktionsqualitiit liefem k&men. In medizinischen 
Bildem ist miiglicherweise nur ein kleiner Ausschnitt diagnostisch brauchbar, jedoch sind die Kosten einer falschen Interpre- 
tation hoch. Ein bedeutender Schritt zu einem ethzienten und genauen Kodierverfahren fiir medizinische Anwendungen kann 
darin liegen, fiir wichtige Bereiche eine verlustlose Kompression zu erzielen, und verlustbehafiet in den ilbrigen Bildbe- 
reichen zu arbeiten. Wir stellen einige neue Algorithmen zur verlustfreien Kompression in wichtigen Bereichen (ROI) vor und 
vergleichen sie. Ein Algorithmus beruht auf der verlustfreien Kodierung mit Hilfe der S-Transformation, zwei andere beruhen 
auf der verlustbehafieten Wavelet-Baumkodierung entweder zusammen mit einer pixelorientierten oder einer transfotmations- 
orientierten Kodierung der wichtigen Bereiche. Friihere Methoden der bereichsorientierten Kodierung bei medizinischen 
Bildem werden referiert. 

Un bon nombre d’images contiennent des regions dam I’espace qui sont plus importantes que d’autres. Les methodes de 
compression qui sont capables de restituer la meilleure qualite de reconstruction pour ces parties importantes deviennent 
alors tres interessantes. Dam le cas des images medicales, seulement une seule portion d’image peut dtre utile pour etablir un 
diagnostic, mais le tout d’une mauvaise interpretation peut etre tres ClevC. Les algorithmes qui effectuent une compression 
sans perte dans les regions interessantes et une compression avec pertes partout ailleurs, pourraient etre la solution pour 
foumir un codage d’image efficace et precis pour le domaine medical. Nous presentons et comparons plusieurs algorithmes 
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pour la compression sans perte des rkgions d’interet (ROI). L’un est base sur le codage sans perte avec la transformation en 
S, et deux autres sont bases sur le codage avec pertes (ondelettes ‘zerotree’); parmi ces 2 demiers, en codant les residus par 
region, l’nn fonctionne clans le domaine des pixels, l’autre dans le domaine de la transforme par ondelette. Nous balayons 
rapidement les methodes deja publiees pour le codage bask sur le principe de regions. 

Keywords: Region-of-interest compression; Medical image compression; Regionally lossless coding; Radiology information 
systems 

1. Introduction 

The easy, rapid, and reliable digital transmission 

and storage of medical and biomedical images would 
be a tremendous boon to the practice of medicine. 
Patients in rural areas could have convenient access 
to second opinions. Patients readmitted to hospitals 
could have earlier imaging studies instantly available. 
Rather than waiting for others to finish with hard- 
copy films, medical and surgical teams collaborating 
on patient care could have simultaneous access to 
imaging studies on monitors throughout the hospital. 

This long-term digital archiving or rapid transmission 
is prohibitive without the use of image compression 
to reduce the file sizes. For example, a single ana- 
log mammogram might be digitized at 4096 x 4096 
pixels x 16 bpp. This file would be over 33 megabytes 
(MB). In lossless compression, the original image is 

exactly recoverable from the compressed format; with 
lossy coding, it is not, but vastly greater compression 

is achieved. However, lossy schemes are viewed with 
suspicion by many members of the medical and scien- 

tific community; image alteration might entail loss of 
diagnostic or scientific utility. Many physicians feel 
they cannot trust lossy compression which mostly de- 
livers exquisite quality and yet which can, without 
warning, introduce medically unacceptable artifacts 
into the image. After segmenting an image into re- 
gions (either automatically or manually) it is possible 
for a compression algorithm to deliver different levels 

of reconstruction quality in different spatial regions of 
the image. One could accurately (losslessly) preserve 
the features needed for medical diagnosis or for scien- 
mtific measurement, while achieving high compression 
overall by allowing degradation in the unimportant re- 
gions. Such coding, which we term regionally loss- 
less coding or lossless-ROI coding, may be the key to 
having physicians and scientists entrust image data to 
compression. 

In radiology, the discussion of image compression 
often divides into three separate uses: compression 
before primary diagnosis (for rapid transmission), 
compression after primary diagnosis (for long-term 

archiving), and compression for database browsing 
(where progressivity would be useful). Compres- 
sion occurring before primary diagnosis is the most 
controversial use of lossy compression. However, it 

might prove useful in cases where the interpreting ra- 
diologist is at a remote site and lossless compression 
cannot be used. For example, the patient’s situation 
might require such rapid action that the time for 
lossless transmission of original images cannot be 
countenanced, or the bandwidth for real-time lossless 
video transmission might not be available. Com- 
pression after primary diagnosis might be useful for 
long-term digital archiving. Here it is easy to imagine 
how region-based coding might play a role, since the 
primary interpretation of a film can perhaps be used 
for providing the region segmentation. A third use of 
compression is for providing progressive transmission 
capabilities when receiving images over a network. 
With progressive coding, image quality incrementally 
improves as more bits arrive. Early versions of an 

image can be good enough to show that the image 
is not of interest; transmission can then be ‘nipped 
in the bud’. Progressive codes can be designed to 
be eventually lossless, so that if the user waits long 
enough (e.g., 30s) the image will be exactly equal 
to the original, but over the short term (e.g., 0.5 s) 

the image would already be useful. Region-based 
methods that take image content into account might 
deliver a useful version more rapidly. 

Asan example, Fig. l(a) shows an MR brain scan 
with cancerous tumors circled. Following its use in 
primary diagnosis, this image could be compressed so 
as to perfectly preserve this region. Allowing grace- 
ful degradation in the rest of the image could yield 
high compression. The original image has a grayscale 



region shown at original accuracy 

resolution of 8 bits per pixel (bpp); Fig. l(b) shows it 

compressed to 0.08 bpp. This is not of sufficient qual- 
ity for a physician to measure the effects of a treatment. 

Fig. l(c) shows an example in which the compressed 
image has the circular tumor region at original quality, 
and it represents what one might wish to obtain from 
a regionally lossless scheme. This image is suitable 

for comparison and still provides dramatically higher 
compression than can be achieved by schemes which 
are lossless everywhere. This image could include a 
circle that makes clear the boundary of the lossless re- 
gion. In this example, the important region occupies 
only 4% of the pixels in the image. After the entire 
image has been compressed by a factor of 100 : 1, the 
important region would represent 80% of the total file 

size if it were not compressed. 

2. Background 

In region-based coding, the input image is seg- 

mented, i.e., divided into spatial regions. A schematic 
is shown in Fig. 2. The regions may differ in their 
grayscale characteristics or in their importance levels. 
The division into regions can be useful for two very 
distinct purposes. Segmentation can allow the use of 
encoding schemes tailored for the different regions, 
and it can allow the assignment of different quality 

levels to the different regions. In the first case, the dif- 
ference between quality levels Qi and Q2 might be 
negligible, but the segmentation allows the profitable 
use of different methods Ml and I&. In the second 
case, the methods might be identical except for their 

L 

Fig. 2. Region R is encoded with method MI to quality level (31. 

Region ri is encoded with method A42 to quality level Q2. 

bit allocations, and the goal is to produce different 
quality levels. It is possible, of course, that the seg- 
mentation might be useful for both purposes. 

2.1. Regions with different encoding methods 

Most work in region-based coding has focused on 
the former goal - identifying regions with different 

grayscale characteristics which would profit from the 
use of different encoding schemes. The earliest work 

on region-based coding called itself ‘contour-texture’ 
coding [25,27]. Region-growing segmentation was 
followed by approximation of internal areas using 
2-D smooth polynomial functions of order 0, 1 or 2. 
The region-growing was based on gray-level inten- 
sity, and a post-processing step merged small regions. 



158 J. Strijm, P. C. Cosman / Signal Processing 59 (1997) 155-171 

In coding, the boundaries were represented by a com- 
bination of straight lines, circular arcs, and pieces of 
original boundaries. Later variations on this theme 
included using split-and-merge segmentation [26], 
imposing smooth boundary constraints, allowing in- 
ternal behavior to be represented by either polynomial 
approximation or vector quantization [ 17,11,14] and 
a variety of other ideas. Boundaries can be described 
in a variety of different ways, including chain codes, 
polygonal approximations, signatures, and boundary 
segments [ 181. These boundary representations can 
be losslessly encoded. There is an inherent trade-off 
between the accuracy of object segmentation and the 
overhead for coding the description of the segmenta- 
tion. Segmentation can be very useful for videophone 
coding, where it is possible to exploit extensive a 
priori knowledge about the scene (e.g., existence of 
a face symmetry axis and relative approximate loca- 
tions of the primary facial features) (see, e.g., [29]). 

Several region-based coders have been used in the 
context of multiresolution decompositions. Baseri and 
Modestino applied methods of boundary description 
and parametric polynomial fitting to the baseband of a 
subband decomposition [ 11. In this way, the superior 
performance of subband coding could be combined 
with the ability of polynomial functions to model low- 
frequency regions of natural images. A division of 
subbands into edge regions (found separately in each 
subband), texture regions (in common for all sub- 
bands), and low-activity regions was proposed in [28]. 
Good results were obtained by extracting arbitrarily 
shaped regions in each band, and using different quan- 
tizers and different bit allocations for each class of 
sub-region in each band. 

2.1.1. Regions for motion compensation 
Region-based methods have been finding partic- 

ularly fruitful applications in the compression of 
motion sequences (see, e.g., [4,10,15,16,19,20,30- 
33,43,49,51,54,55]). These methods are often called 
‘object-oriented’ compression techniques, since a 
moving region is often a discrete object. Object- 
oriented approaches are generally aimed at very 
low bit-rate video coding. Typically, object-oriented 
coding algorithms segment each image into regions 
of uniform motion and estimate motion of these re- 
gions to generate more accurate motion compensated 

images. Compared with block-based motion compen- 
sation, object-oriented motion compensation requires 
extra computation to perform the segmentation, ex- 
tra bits to encode the boundary information (which 
is often encoded by a chain code), but fewer bits 
to encode the motion-compensated prediction error. 
Another slightly different approach is to use a sim- 
ple block-based motion estimator, and then to use an 
object-oriented approach to segmenting the motion- 
compensated difference frame. The difference image 
can, e.g., be segmented into regions of high and 
low activity, and the low activity regions can be left 
unencoded. 

2.2. Regions with diflerent quality levels 

A smaller number of studies on region-based cod- 
ing have focused on the second goal - providing 
different levels of quality in different spatial regions 
of an image. In [40], aerial images were segmented 
into non-homogeneous regions (e.g., roads, build- 
ings) which were considered important, and textured 
homogeneous regions (e.g., agricultural or undevel- 
oped areas) which were less important, The quality 
goals were to achieve ‘information preservation’ for 
the important parts, and ‘image realism’ for the re- 
mainder. Texture modeling was performed in the 
wavelet domain within polygonal regions that were 
defined by their relatively homogeneous statistics in 
the image domain. In the non-homogeneous regions, 
the subband data was adaptively scalar quantized. 
The quantized coefficients, texture parameters, and 
region geometries were then losslessly encoded. In 
this example, both different quality levels and dif- 
ferent encoding methods resulted from the segmen- 
tation. A similar goal appeared in [22], in which 
images were segmented and coded with polynomial 
approximations. Such schemes can be very inefficient 
for textured regions, since they tend to get approx- 
imated with a large number of uniform regions. 
A pre-processing step was used to identify textured re- 
gions and reduce the number of regions there. Cheng 
and Kuo used a JPEG-like scheme in which different 
quantization tables were used for different regions 
[9]. In this work, the block discrete cosine trans- 
form (DCT) was replaced with a fully decomposed 
wavelet transform. Coefficients from different bands 
were grouped into blocks, and JPEG-style quantiza- 
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Encode Segment Encoded Use segmentation 
ifi=l, then 

Baseband - & Reconstructed - to allocate bits w 
done encoding 

LL4 Band LLi to HLi, LHi, HHi 

1 

Inverse transform 

the reconstructed 

LLi, HL<, LHi, HHi 

ifi > 1, 
continue 

Fig. 3. The encoder in [36] achieves different quality levels by recursively segmenting, quantizing based on the segmentation, and inverse 

transforming. 

tion and entropy coding were then applied. A user 
selects a rectangular region of interest, and blocks in 
this region are subjected to a less coarse quantization. 

For a video application, the system tracks the position 
of the region of interest. Bedini et al. [2] focus on 
videotelephone sequences in which the speaker’s head 
is detected using active snakes. Internal facial fea- 
tures such as the eyes and the mouth are subsequently 
detected and coded more accurately. Similar goals for 
videotelephone sequences are discussed in [5]. 

2.2.1. Quality levels for medical images 
Several studies have focused on different region- 

based quality levels for medical applications 
[34-37,52,53,24,6,7]. The general theme is that 

diagnostically important regions must be preserved 
at high quality, whereas the rest of the image is only 
important in a contextual sense, helping the viewer 
to observe the position of the ROI within the origi- 
nal image. The proposed schemes differ according to 
the segmentation methods (manual versus automatic) 

and segmentation goals (a background/foreground 
distinction or a more focused segmentation), and ac- 

cording to the compression methods (DCT, vector 
quantization, wavelets, etc.) and compression goals 
(lossless ROI versus lossy ROI). 

In [35], MR brain images were segmented, and dif- 

ferent segments were encoded with vector quantizers 
at different rates. In this work, region boundaries were 
not explicitiy coded; the members of this class of im- 
ages were assumed to have sufficient spatial stationar- 
ity that the region locations could be assumed to match 
the standard. The algorithm was not robust against 

the situation where an individual scan had the brain 
portion significantly displaced with respect to the av- 
erage for the class. In later work, this problem was 
fixed and yet encoding of region boundaries was still 
avoided by basing the segmentation on the small, low 
resolution version of the image which was transmitted 
first [36]. The lowest band (LL4) of a 4-level wavelet 
decomposition was automatically segmented into 3 
regions of differing diagnostic importance. Based on 
this segmentation, bits and quality were allocated to 
the corresponding regions of the next subbands (LH4, 

HL4, HH4). These four encoded and reconstructed 
bands could then undergo a single round of inverse 
transforming to produce a new baseband (LL3). In 
its turn, this baseband could be segmented and bits 

could be assigned to the other bands. With a recursive 
application of inverse transforming and segmenting, 
occurring at both the encoder and decoder, the bit al- 
location could be tracked through all the bands. The 
structure is shown in Fig. 3. Another method that in- 
volved an automatic segmentation into 3 regions was 

[34], in which ventricular cineangiograms were com- 
pressed by forming differences within each region, and 
approximating those residuals with smooth functions. 

A region-based method using predictive pruned 
tree-structured vector quantization was reported in 
[37]. Here, simple methods based on thresholding, 
connectivity, and boundary smoothing were used to 
segment CT chest scans into foreground and back- 
ground. The boundary was encoded with a chain 
code. The background was not encoded, and was dis- 
played as black by the decoder. The paper showed 
that the segmentation improved performance not 



160 J. Striim, P. C. Cosman / Signal Processing 59 (1997) 155-l 71 

only because no bits would be wasted on the back- 

ground, but also because a more accurate predictor 
could be designed by using only the foreground re- 
gions of the training set. Another method focusing on 
foreground/background segmentation was [53] which 
exploited the fact that a large proportion of a mam- 
mogram consists of uninteresting background. A self- 
organizing neural network was first used to separate 

the breast area from the background. Then an opti- 
mized JPEG coding algorithm was used to code the 

segmented breast area only, at near lossless quality. 
In [52], an ROI-DCT algorithm was proposed, in 

which an 8 x 8 block DCT is performed on an image, 
and more DCT coefficients are retained for blocks in- 
side the ROI, so that the ROI ends up with high qual- 
ity. While not precisely segmentation-based methods, 
in [6,7], methods for adaptively quantizing wavelet 
coefficients were developed with an eye towards 
preserving strong edges. The goal is to accurately 
preserve structures and boundaries which might be 
subjected to quantitative measurements by a radiolo- 
gist. 

The studies described so far have been concerned 

with segmentation-based lossy coding of medical 
images, where the ROI gets higher, but not lossless, 
quality. A small number of previous studies have also 

focused on segmentation-based lossless coding of 
medical images, in which all regions retain lossless 
quality, but different lossless encoding methods might 
be used for different regions such as background and 
foreground (see [45,47]). One previous study fo- 
cused on lossless-ROI coding for medical images, in 
which the ROI is lossless but the remainder of the 
image sustains degradation [24]. This study compared 
three different methods: a DCT method, a DCT/HINT 
method and a HINT method. The DCT-based method 
was found to be the best among the three in terms 

of compression ratio, algorithmic complexity, and 
quality of reconstructed image. First the entire im- 
age was transformed, quantized and encoded using 
8 x 8 block DCTs, a scalar quantizer and Lempel- 
Ziv (LZ) coding. Then the image was reconstructed 
and a residual image was computed. The residuals of 
the pixels inside the ROI region were coded using 
LZ coding. This method is close to that described in 
[50], in which JPEG followed by adaptive prediction 
and adaptive arithmetic coding of the residual were 
used to encode an image losslessly in its entirety. 

A lossless-ROI scheme employing a version of pyra- 
mid coding (adapted MIP texture mapping) was 
described in [ 121 in the context of gaze-contingent 

displays, but specific compression results were not 

included. 

2.3. Multiresolution decompositions 

The goal of our work is to develop and compare 
algorithms which deliver different levels of recon- 

struction quality in different portions of the image, 
specifically where the region-of-interest R has no loss 

(perfect reconstruction). We focused on multiresolu- 
tion coding methods such as wavelet zerotree coding 
[44] and the S-transform [39,21,38], since multi- 
resolution methods are currently the basis for the best 
general-purpose lossy and lossless compression of 
still images (e.g., [44,42,41, 131). 

The basic concept of wavelet zerotrees is as follows. 
A subband decomposition is produced by an analy- 
sis filter bank followed by downsampling. Any or all 
of the resulting subbands can be further input to an 
analysis filter bank and downsampling operation, for 
as many stages as desired. In a two-channel separa- 

ble system, the initial high-pass and low-pass filters 
and downsampling are applied to the rows of an im- 
age. The subsequent filters and downsampling are then 

applied to the resulting columns. The image is split 
into four bands, denoted LL 1, LHt , HLr and HHi , 
according to whether the rows and columns received 
the low-frequency or high-frequency filtering. The re- 
construction operation consists of an upsampling op- 
erator followed by a synthesis filter bank. If only the 
low band LLr is further decomposed, this is referred to 
as an octave-band decomposition. In an octave-band 
decomposition, each coefficient Xi (except those in the 
lowest band and the three highest bands) is related 

to exactly four coefficients in the next higher band. 
Those four coefficients correspond to the same orien- 
tation and spatial location as Xi does in the original 
image. Each of these four is in turn related to four in 
the next band, and so on. These coefficients are collec- 
tively called the descendants of Xi. The relationship is 
depicted in Fig. 4. In an octave-band decomposition, 
it is often true of image data that when a coefficient 
Xi has magnitude less than some threshold T, all of 
its descendants will also. The collection of coefficients 
is then called a zerotree with respect to the thresh- 
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Fig. 4. Parent-child relationships in octave-band subbands 

old T, and the coefficient Xi is called the zerotree 

root. Shapiro’s embedded zerotree wavelet (EZW) al- 
gorithm uses this zerotree structure to efficiently ‘di- 
vide and conquer’ the coefficients in an iterative SQ 

approach. The zerotree root is the wavelet equivalent 
of the end of block (EOB) symbol in JPEG coding. 
That is, when a sequence of scanned coefficients ends 
with a tail of zeros, one simply cuts off the tail with 
a special symbol. The zerotree grows exponentially 
with the depth, while in JPEG, there is no such growth, 
thus making the zerotree potentially more powerful. 

A hierarchical subband decomposition must satisfy 
two conditions in order to allow lossless compres- 
sion. The filter bank must have the property of perfect 
reconstruction. This is not the case for standard QMF 
filters, which are called near-perfect-reconstruction 
(near-PR) filters [23]. Secondly, it must be possible 

to represent the subband coefficients with a limited 
number of bits. These considerations lead to a con- 
strained choice of filters. Egger and Kunt designed 
a lossless zerotree scheme based on a morphological 
subband decomposition, in which the coefficients of 
the subbands are signed integers, requiring 9 bits for 
their representation [ 131. Said and Pearlman designed 
a lossless zerotree scheme using what they called the 
S + P transform [42] a simple pyramid multiresolu- 
tion scheme (the S-transform) which was enhanced 
via predictive coding. 

The S transform allows perfect reconstruction, and 
has been used for lossless medical image compres- 

sion [39,21]. The one dimensional S-transform maps 
a sequence of integers c[n], n = 0,. . . , N - 1, into two 
sequences Z[n] and h[n] of half the length: 

Z[n] = [(c[2n] + c[2n + 1])/2j, n = 0,. , N/2 - 1, 

h[n] = c[2n] - c[2n + 11, n = 0,. . ,Nl2 - 1, 

where 1.1 denotes downward truncation. The trans- 
form is similar to the wavelet Haar transform. The 

two dimensional S-transform is performed by taking 
the one dimensional transform first on the rows, and 
then on the columns. The variation of the S-transform 
presented in [42,41], called the S + P transform, uses 
prediction to further lower first order entropy and im- 
prove the overall compression performance. 

3. Methods 

3.1. Segmentation 

In this work, the regions of interest were selected 
by hand. For a real application, a number of possi- 
ble scenarios can be envisioned. It is very common 
for radiologists today, looking at hardcopy diagnos- 

tic films, to make quick circles with a grease pencil 
around the things they find noteworthy in the image. 
Often the written or dictated report of the radiologist 
makes reference to something which was marked on 
the film. Radiologists cannot reasonably be asked to 
‘Mark the region which should get lossless compres- 
sion’. However, they could perhaps be encouraged to 
‘circle something if it is important’, especially if they 
were going to make some kind of mark anyway, as 
a reference point for their report. So, at the time of 

primary interpretation of the film, location of the ROI 
might be relatively easily obtainable. The information 
could then be used to compress it for long-term stor- 
age. However, it is reasonable to assume that greatest 
clinical utility would come only from a reliable au- 
tomatic segmentation system. We may not be far off 
from a time when computer segmentation could lo- 
cate a sensible region-of-interest in many images. The 
system would not have to be correct all the time in 
order to be useful. We can imagine, e.g., that radio- 
logic archiving systems might evolve into some kind 
of two-tiered structure. One tier will provide for long- 
term image accessibility in which all original images 
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are available with some delay. The second tier will 
have digital images available immediately, but only by 
employing heavy compression. Even if the automatic 

segmentation system only targets the correct ROI 80% 
of the time, in this two-tiered archive, lossless-ROI 
coding might be very useful. In 80% of cases the fast 

tier service would rapidly and conveniently provide 
the diagnostician with the accurate and confident in- 
formation of the correctly located lossless-ROI im- 
age. In the other 20% of the cases, the original image 
could be retrieved after some delay. In either situation, 
the initial interpretation would be performed on the 

original image, and the coding would be used after- 
wards for long-term storage. So viewing of the coded 
lossless-ROI image might only occur in the context 
of an already diagnosed patient who is being seen for 
later comparison. In this situation the radiologist could 
be assumed to know, upon viewing the coded image, 
whether the displayed ROI was in the right place, or 

whether retrieval of the original was called for. The 
validity of this assumption could be tested by simulat- 
ing the use of the ROI selection and encoding process 
in a clinical experiment. 

3.2. Encoding 

There are two basic approaches to providing a 
lossless region-of-interest using a multiresolution 
decomposition: 
1. Use a decomposition that permits perfect recon- 

struction. Quantize the coefficients for the entire 
image, to attain the desired bit-rate or quality con- 
straint for the background region j. Then, refine the 
quantization to the point of perfect reconstruction 
only for coefficients that impact on region R. 

2. Use a decomposition that does not necessarily per- 
mit perfect reconstruction. Quantize the coefficients 
for the entire image, to attain the desired bit-rate or 
quality constraint for the background region j. At 
this point, let 8 denote the lossy recontruction of R 
(see Fig. 5). We now have the option of comput- 
ing and losslessly encoding the regional difSerence 
image. This image contains zero values in the re- 
gion 1, and contains the difference between R and ri 
in the region R. Alternatively, once the desired bit- 
rate or quality constraint has been met for the back- 
ground region l?, we could continue for a while with 
refining the lossy representation of the important 

original 

E 

DI 

R 

Fig. 5. Regional difference image. 

region R, and then switch to lossless encoding of 
the regional difference image. In other words, once 

i is achieved, a lossless representation for R can 
be reached by apportioning different amounts of the 
work between the lossy algorithm used at the start 
and the lossless algorithm to be used at the end. 

There are two basic ways in which the regional dif- 
ference image can be losslessly compressed: 

- A pixel-domain lossless method, such as adaptive 
arithmetic coding or Lempel-Ziv coding, can be 
applied to the pixels inside the region R. 

- A transform-domain method might not be adapt- 

able to the arbitrary shape of R, and might have to 
include some or all of the (zero-valued) pixels out- 
side. A variety of methods have been recently in- 

troduced for transform coding of arbitrarily shaped 
regions (see, e.g., [8,46,3,48]) but the focus has 
been mainly on lossy techniques. 

In both cases, the decoder must either infer the loca- 
tion of the lossless region, or must be explicitly told 
the boundaries of the region. If the decoder is explic- 
itly told, those bits must be included in the final rate. 
In our work, we ignore the issue of region description, 

assuming that the lossless region will be composed 
of a small number of circles or rectangles that can be 
explicitly described with a negligible number of bits. 
For example, for a rectangle, the encoder could trans- 
mit the coordinates for one comer, and the height and 
width in pixels. For an image of size 5 12 x 512, this 

would entail at most 36 bits. Similarly, for a circle, 
one could transmit the coordinates of the center, and 
the radius. 

In the following, we present lossless ROI coding us- 
ing each of the two basic approaches outlined above. 
For the case where a lossy algorithm is used initially, 
necessitating a switch to a lossless algorithm, we ex- 
amine various possible divisions of effort between the 
coding stages. 
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transform domain 

END 

Fig. 6. Flow graph of the S-algorithm. 

Fig. 7. Block artifacts of the S-transform. 

3.3. The S-algorithm 

The first approach is to decompose the image using 
a method which allows perfect reconstruction. For this 
we chose the S-transform together with the zerotree- 
style successive refinement of coefficient values. Let 
RT~ denote all the coefficients in the transform domain 

that will have an impact on R after the inverse trans- 
form. The idea of the S-algorithm is to successively 
refine all coefficients until a certain bit budget B is ex- 
hausted. After this, only the coefficients in RT~ are re- 
fined, until they are losslessly described. Fig. 6 shows 
a flowchart of the algorithm. 

While the lossless S + P transform of [42] outper- 
forms the S-transform, the added element of prediction 
makes each coefficient dependent upon the previous 

one. An error in a coefficient that was outside RT~ (for 
the S-transform) can now propagate to a coefficient 
inside. Thus all coefficients in the decomposition must 
be lossless (which is not our goal) or else appropri- 
ate initial prediction conditions must be supplied for 
the arbitrarily shaped region. When decompressing, 
all the coefficients that affect R will be correct, and R 

will thus be losslessly recovered. A disadvantage of 
the S-transform is that it introduces block artifacts in 
the lossy parts (see Fig. 7), due to the short support 
of the S ‘filters’. 

transform domain 

Fig. 8. Flow graph of the WA-algorithm 

3.4. The WA-algorithm 

A second approach is to choose a filter that does 
a better job of decorrelating pixels but that does not 
provide perfect reconstruction, and then to make up 
the difference by lossless pixel-domain coding. Coef- 
ficients for the entire image are successively approxi- 
mated until the desired target bit-rate is met. Then the 
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Fig. 9. The quality from the ROI region (left) spreads out to the surrounding pixels (right). A background PSNR as low as 20 dB is used 

in this example to clearly show the effect. 

coefficients in RT~ are further refined until all the (in- 

verse transformed) pixels in R differ from the original 
image pixels by an amount less than d. Lastly, arith- 
metic coding is performed in the pixel domain on the 
residual for the R region. By changing d, one adjusts 

the workload between the wavelet zerotree encoder 
and the arithmetic encoder. We call this combined 
wavelet and arithmetic algorithm the WA-algorithm. 
Its flow graph is shown in Fig. 8. 

The wavelet zerotree encoder will generally per- 
form better with longer filters to decorrelate the pixels. 
Then the number of coefficients affecting each pixel 
is greater, and thus RT~ grows. The fraction of the 
subband contained in Rn grows as we go to lower 
resolution subbands. We will thus have a good rep- 
resentation of the higher frequencies only in R and 
immediately outside, while the lower frequencies will 
still be accurate a little further away from R. As shown 
in Fig. 9, this produces a graceful degradation in qual- 

ity as we move away from R. 

One might think that a bigger RT~ must imply a 
waste of bits and therefore worse rate/distortion per- 
formance. This need not be the case. If the encoding of 
R also improves the quality of the background ri, we 
do not need so many bits to describe the background 
in the first place, and we could terminate the first en- 
coding step earlier. This would correspond to stealing 
bits from the more remote parts of the background, at 
the expense of the nearer parts. The uneven distribu- 

tion of quality would not be properly reflected in the 
average PSNR score of the background. 

3.5. The WS+P algorithm 

The third approach begins as the second one does, 
with a lossy embedded wavelet zerotree coder, and 
then uses the lossless S + P transform to make up 
the difference as needed for R. The wavelet zerotree 

method provides a lossy representation of the image. 
This is then subtracted from the original to provide 
the regional difference image. As shown in Fig. 5, the 
regional difference image is set to zero everywhere 
outside R. Since the residual is to be encoded loss- 
lessly, modulo 256 arithmetic can be used, so that the 
residual image can be represented in 8 bits. A constant 
value of 128 (modulo 256) is added to all coefficients. 
This has the advantage of encoding residuals of sim- 
ilar magnitudes with bytes of similar values. For in- 
stance, the residual sequence - 1, 1, - I,1 is encoded 

with 127,129,127,129 instead of 255,1,255,1 which 
would yield large high frequency components in the 
transform. The residual is then transformed with the 
S + P transform. The coefficients are encoded with a 
zerotree successive approximation method. Since the 
image will be of constant intensity (128) outside R, 
the prediction quickly goes to zero. Thus the set of 
nonzero coefficients in the S + P transform domain is 
not much bigger than the set of RT~ pixels gotten from 



J. Striim, P. C. Cosman/ Signal Processing 59 (1997) 155-171 165 

I 1 no 

Fig. 10. Flow chart of the WSP-algorithm. 

an S-transform. The smallest set RT~ is found that com- 
pletely covers the non-zero coefficients. A few bits are 
used to described this set to the decoder, and the set 

is used to discriminate among the coefficients when 
encoding the zerotrees. The algorithm is referred to 

as the WS + P algorithm, and is described in the flow 
graph in Fig. 10. 

4. Experimental results 

The three algorithms were implemented by modi- 
fying the publicly available C code used in [42,4 l] to 
incorporate the various distinct methods for handling 
the ROI. The algorithms were tested on a variety 
of different images: magnetic resonance (MR) brain 
scans, MR chest scans, computerized tomographic 

(CT) chest scans, and mammograms. All images were 
&bit grayscale (the CT and mammographic images 
had their amplitude values linearly resealed down to 
the g-bit dynamic range). Image sizes ranged from 
256 x 256 up to 1500 x 2000. In each case, a single 
square ROI was selected. In the case of images dis- 
playing pathology, the ROI focused on a region of 
primary diagnostic importance. In the case of normal 

images, the ROI was located near the center of the 
image. Different sizes of the ROI region were exam- 
ined, ranging from only a few pixels on a side up to 
approximately 60% of the total area of the image. 
The methods were compared with different fixed val- 
ues of (average) background PSNR. In addition, the 

DCT/LZ method of [24] was implemented for com- 
parison. (Our implementation accomplished the LZ 
coding using UNIX gzip version 1.2.4, which may 
not be identical to their algorithm, since the exact 
version of LZ coding was not stated in [24]). We also 

implemented a Wavelet-LZ algorithm (W/LZ) sim- 
ilar to the DCT/LZ but with the wavelet algorithm 

from [41] instead of the DCT to provide the lossy 
image. For each ROI size, the file size in bytes was 
measured for all five algorithms. 

The results for the various algorithms were depen- 
dent on the selected background PSNR and the size 
of the ROI. For example, for an average background 
PSNR of 40dB, results are shown for various ROI 
sizes in Fig. 11 for a 5 12 x 5 12 CT scan. Note that the 
WA-algorithm (dotted line) performs well for small 
ROI sizes. When the ROI is small, the spillover of 

quality from the ROI is small and the good decorre- 
lation effect of the WA algorithm pays off. For large 
ROI sizes, it becomes less competitive. The DCT/LZ 

algorithm (denoted by + symbols) does poorly for all 
ROI sizes. The S-algorithm (solid line) is not very ef- 
ficient for small regions but for very large regions it 
does well. The W/LZ algorithm (dashed line) is the 

best for the smallest ROIs, but loses to the WS + P 
algorithm (crosses) for sidelengths bigger than ap- 
proximately 30 pixels. The WS + P method performs 
well throughout the range of sizes. These trends were 
similar for other images tested, although the exact 
crossing points varied. For example, for a 5 12 x 5 12 
section of a mammogram, the W/LZ algorithm was 
competitive with the WS + P algorithm up to an ROI 

side length of about 80 pixels, and the WS + P algo- 
rithm was superior for larger ROIs. 

The WA-algorithm includes an additional ad- 

justable parameter d. After the entire set of coef- 
ficients has been described to some desired (low) 
bit-rate, there remains the refinement of the ROI to 
lossless accuracy. The adjustable parameter controls 
the allocation of this refinement work between the 
lossy zerotree coder and the lossless arithmetic coder. 
A range of possibilities is shown in Fig. 12. In this 

example, the wavelet zerotree coder uses 0.0 13 bpp 
initially to produce a constant PSNR of 36 dB for the 
entire test image (a section of a mammogram). The 
WA-algorithm can use a variable number of extra 
zerotree bits for R, so that the maximum absolute 
error in the ROI is less than d. The x-axis shows the 
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Fig. 11. 
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maximum absolute error for the pixels in the ROI at 
the point when the coder switches from the wavelet- 
zerotree description to the arithmetic coder in the 
pixel domain. The dotted line is the number of extra 

kbytes used for describing the wavelet coefficients of 
region R. The dashed line represents the output from 
the arithmetic coding of the residual. The dot-dashed 
line is the total number of kbytes to describe the en- 
tire image (the two first lines + the constant amount 
used initially by the wavelet zerotree coder). So, in 
this case, the overall performance improves as the 
encoder shifts more work to the arithmetic coder. 

This is not always the case. In Fig. 13, the role of 
the arithmetic coder is examined at different back- 
ground PSNRs for a CT scan. For all 4 curves, the 
ROI was of fixed size 200 x 200 pixels. Each curve 
represents a different background PSNR value (which 
is also the initial PSNR of the ROI): 28 dB (solid), 
32 dB (dotted), 36 dB (dashed) and 40 dB (dash-dot). 
The y-axis shows file size in kbytes, and the x-axis 
shows maximum absolute error in the ROI at the 
point where the arithmetic coder takes over from the 

zerotree coder. High values of background PSNR 
make it profitable to let the arithmetic coder do as 
much work as possible. That is, the ROI is initially en- 
coded by the zerotree encoder to the same high PSNR 
as the background gets, and all further refinement of 
the ROI should be done by the arithmetic encoder. For 

lower values of background PSNR, however, contin- 
uing the refinement of the ROI in the wavelet domain 

past that background PSNR level is a useful way to ex- 
pend bits up to a point, and we get a minimum on the 
curve. 

Different shapes for the ROI region were also tried 
briefly. As expected, the WS + P algorithm gives best 

performance on square ROIs. Other shapes penalize 
the performance but do not affect the trend; when com- 
paring the WS + P algorithm to the WLZ algorithm, 
for instance, the WS + P algorithm was still superior if 
the ROI area was increased sufficiently. For example, 
a square with a side length of 60 pixels was enough 
for the WS + P algorithm to be superior to the other 
algorithm. A circular ROI had to have the same area 
as an 80 pixel wide square in order for the WS + P 
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Fig. 12. File size in kbytes versus maximum absolute error remaining in the ROI for arithmetic encoding. Dotted line: bytes used by the 

wavelet zerotree coder. Dashed line: bytes used by the arithmetic coder. Dot-dash line: total number of bytes. 

algorithm to be superior. Less compact shapes were 
also tried, with similar results. 

Pictorial examples of the results are given in Fig. 14. 

Fig. 14(a) shows an original CT chest scan, of size 
5 12 x 5 12, resealed to 8 bpp grayscale. The white out- 
line of a square ROI is displayed superimposed on 
the image. Fig. 14(b) shows the image compressed to 
3953 bytes (0.12 bpp) using the lossy wavelet zerotree 
method [41] without consideration of the ROI region. 
Fig. 14(c) shows the image compressed to 3953 bytes 
using the WS + P algorithm to ensure a lossless ROI. 
The bits required to make the ROI lossless have re- 
quired a considerable degradation in the rest of the im- 
age. Figs. 14(d) and (e) are zooms of Figs. 14(b) and 

(c), respectively, showing how the ROI compares for 
the lossy and lossless cases. For a situation where the 
radiologist intended to make a detailed measurement 
of a feature in this area, or a quantitative comparison 
to another scan, the lossless ROI would be preferable. 
Of course, with an additional expenditure of bits, one 

can have both lossless quality in the ROI and high 
quality in the remainder of the image (see Fig. 14(f), 

at 0.22 bpp). 

5. Conclusions 

There are quite a few applications in which one 
would like certain portions of an image to be encoded 
with higher quality than other portions (e.g., videotele- 
phone sequences where one would like better quality 
for the face, aerial or satellite images in which some 
portions are useless due to cloud obscuration, or are 
less important because they depict uninhabited terri- 
tory, etc.) Medical images and some scientific images 
are among the few where people argue that higher 
quality should actually mean lossless quality. (Indeed, 
many physicians and scientists have argued that med- 
ical and scientific images must always be compressed 
losslessly everywhere.) However, we propose that 
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Fig. 13. File size in kbytes versus maximum absolute error remaining in the ROI for arithmetic encoding. The ROI size is fixed. The 

background PSNR is varied: 28 dB (solid), 32 dB (dotted), 36 dB (dashed) and 40 dB (dash-dot). 

regionally lossless compression methods have the 
potential for widespread medical acceptance, since 
they are responsive to the nature of medical images 
(spatially varying importance levels and statistical 
characteristics) and to the needs of the radiologist 
(guaranteed accuracy for diagnostically important re- 
gions, no ambiguity about what portions are reliable). 

In this paper, we have investigated several possi- 
ble methods for providing lossless-ROI coding. With 

the goal of truly lossless coding of a region, quite dif- 
ferent techniques are needed compared with the goal 
of providing higher (but still lossy) quality. Powerful 
methods for lossy coding may perhaps be applicable 
only in conjunction with a lossless coder for the re- 
gional residual image. We found that the results de- 
pended on several factors, including the size and shape 
of the ROI, and the desired background PSNR. For 
almost all background PSNRs and larger ROT sizes 
of interest, a wavelet zerotree coder followed by loss- 

less encoding of the residual with an S + P transform 
(the WS + P method) gave the best results. For very 
small ROIs or very high values of background PSNR, 
simpler methods using wavelet zerotree coding fol- 
lowed by arithmetic or Lempel-Ziv coding became 
competitive with the wavelet/S + P method. For these 
simpler methods, the optimal division of the encod- 

ing work between the initial wavelet coder and the 
final entropy coder was found to depend on the back- 

ground PSNR chosen. These results makes sense. For 
very small ROIs or for very high values of background 
PSNR (which is the initial PSNR of the ROI) the 
residual ROI has very little structure remaining for the 
S + P transform to exploit. In these situations, simple 
entropy coding of the residual is a good solution. 

Quality evaluation for this type of coding is chal- 
lenging. While methods can be compared with a fixed 
(average) background PSNR, methods that provide 
different quality gradations in the background are 
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Fig. 14. Top row from left: (a) original image with circled ROI, (b) lossy image, size 3953 bytes, (c) lossless inside ROI. 3953 bytes; 

bottom row from left: (d) zoom on lossy ROI, (e) zoom on original ROI, (f) lossless inside ROI, 7189 bytes. 

not strictly comparable. Diagnostic accuracy simula- 

tion studies can be undertaken to determine whether 
images archived with lossless-ROI coding are as 
useful as archived original images when a patient 
returns to a hospital for a new imaging study, and a 
diagnostic comparison with the earlier archived im- 

age is required. It would also be of interest to see 
what percentage of the time the chosen ROI cor- 
responds to what the later interpreting radiologist 
needs to look at during the comparison. There will of 
course be cases when the ROT does not correspond 
to what the radiologist needs for comparison, for ei- 
ther manually selected or automatically segmented 
ROIs. 

Continuations of this project might include com- 
parisons of methods for multiple ROI regions, clinical 

simulations of the encoding methods in a radiolog- 
ical archiving system, and encoding ROI regions of 
arbitrary shapes. For arbitrary shapes, the actual ROI 

boundary description may become significant in the to- 
tal bit count. The requirement for lossless coding in the 
ROI will have to be factored in to the rate/distortion 
trade-off between the accuracy of the boundary de- 
scription and the overhead required for it. 
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