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Abstract 

Recently, Tanaka et al. (in press) have shown that 
subjects trained at the subordinate level (henceforth, 
“experts”) exhibit an advantage over subjects trained at 
the basic level on the same stimuli in performing 
discrimination tasks within their domain of expertise, 
showing that “mere exposure” to a category is not 
enough to induce discrimination behavior consistent with 
expertise. In addition, experts generalize their 
discrimination performance in a graded fashion to novel 
exemplars from known classes, as well as novel 
exemplars from novel, but related classes. We applied 
our two-component neurocomputational model of 
perceptual expertise to this domain (Sugimoto & Cottrell, 
2001; Joyce & Cottrell, 2004). To our surprise, we found 
that we could not match the data with our original model. 
Ironically, we needed to add a new component that 
models “mere exposure” in order to account for the 
discrimination performance on basic level categories. 

Introduction 
What is required for perceptual expertise? Is it simple 
exposure to lots of examples of a class, or is more required? 
Tanaka and colleagues have shown recently that frequent 
exposure to exemplars of a domain alone is not enough to 
reach expert levels of discrimination. Instead, they found, 
subordinate level labeling of stimuli is required, or at least, is 
sufficient. 

Tanaka et al. (in press) trained subjects on images of owls 
and wading birds. Half the subjects learned to label owls at 
the species level (e.g., “Great Grey Owl”), and the wading 
birds at the basic level (all were labeled “wading birds”). Half 
did the opposite. For simplicity, we will describe the results 
from the point of view of the subjects who were trained to 
discriminate owls at the species level. Subjects were tested 
before training on their ability to discriminate species in a 
same/different task. The discrimination test was repeated after 
training. The results were first, that the subordinate level 
training produced greater post-training gains in species 
discrimination relative to the basic level training. The 
advantage in discrimination also transferred to novel 
exemplars of trained owl species by a smaller amount, and 
finally, a small, but significant advantage for novel exemplars 
of novel species of owl was obtained. The trained images of 
wading birds only showed small gains over their pre-training 
baseline, and there was no advantage for untrained exemplars 
or novel species of wading birds. Transfer of discrimination 
thus only occurred in the category learned at the subordinate 

level, and was graded by similarity to previously learned 
items. 

In our previous studies, we have developed a 
neurocomputational model that can explain many face and 
emotion discrimination and perceptual expertise effects. Our 
neural network model has two modules that learn basic and 
subordinate level classification tasks simultaneously. In this 
paper, we apply our model to Tanaka et al.’s domain. We find 
it necessary to add an auto-encoder module (an unsupervised 
network that extracts compact representations of its 
environment) to our network to account for subjects’ 
discrimination performance on basic-level stimuli, since it 
helps to spread out the representation of basic stimuli as well 
as subordinate stimuli. The auto-encoder module can be 
considered as a model for mere exposure. As Harnad (1987) 
pointed out, there is a need for at least three capacities in 
order to categorize: discrimination, identification, and an 
invertible description. In our model, the first capacity falls out 
of the second two. It is the level of naming or identification 
that gives rise to differing levels of discrimination, but being 
able to describe the object well enough to reproduce it (as in 
the hidden layer of an autoencoder) is necessary to account 
for discrimination of basic level (but frequently encountered) 
objects. 

Tanaka’s Experimental Design and Results 
The stimuli consisted of digitized photographs of owls and 
wading birds (Figure 1). All participants had the same 
exposure to stimuli. Participants first completed a pre-
assessment “same/different” discrimination task to get the 
baseline for later comparison. In this task, participants were 
shown two bird images sequentially in time, and asked to 
respond either “same” or “different”. For “same” trials, the 
birds were two different images of the same species (e.g., two 
different images of “screech owls”). For “different” trial, the 
birds were images depicting two species from the same 
family (e.g., “screech owl” and “burrowing owl”). 

 
 

Figure 1: Tanaka’s stimuli. 
During training, participants were divided into two groups, 

one group learned to classify items as a wading bird (basic 
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level), and as one of ten species of owl (subordinate level), 
and the other group did the reverse. The participants 
performed various tasks such as a naming task, category 
verification, and object classification. For the keyboard 
naming task, participants were shown a bird image, and asked 
to identify the stimulus at either the subordinate level or the 
basic level by pressing the corresponding key (e.g., “k” for 
eastern screech owl, “w” for wading bird). For the category 
verification task, participants were presented first with a 
subordinate level word label (e.g., “eastern screech owl”) or 
basic level label (e.g., “wading bird”), and then a bird image. 
Their task was to identify whether the label and the image 
were a match. For the object classification task, participants 
were first shown a word label which was similar to the 
category verification task, and then two images side by side. 
Their task was to select the image corresponding to the label. 
Following training, participants were given a same/different 
sequential matching task which was the same task performed 
in the pre-training phase. The matching task was partitioned 
into three conditions: 1) old instances of old species (items 
seen during training) (OLD/OLD), 2) new instances of old 
species (new exemplars of species seen during training) 
(NEW/OLD), and 3) new instances of new species 
(exemplars of species not seen during training) (NEW/NEW). 
These three conditions are pictured in Fig. 1. 

They assessed d’ measures for each of these conditions for 
both the basic and subordinate level training which then was 
used to compare to baseline performance. The results are 
shown in Figure 2. 

 
Figure 2: Post-training discrimination. 

The Model 
Our multi-module neural network was trained to perform two 
different tasks: a basic classification and expert (subordinate) 
classification. We began with our standard 2-module neural 
network then add an auto-encoder module. In this section, we 
will describe the input database, the image pre-processing 
procedure, network configurations and the simulation 
procedures. 

Input Stimuli 
To simulate Tanaka’s experiment we performed all of our 
simulations using symmetric and asymmetric Greebles 
instead of owls and wading birds. Our network model is not 
designed to handle variations in pose, scale and lighting so we 
used simpler stimuli since these variations aren’t essential to 
the story. 

 
Figure 3: Greeble input stimuli. 

 
The images were 8-bit grayscale images consisting of 5 

basic classes: symmetric, asymmetric Greebles, cups, cans, 
and faces. Within the Greeble classes different exemplars of 
the same species are represented by different surface textures 
applied to the same Greeble. We also shifted the Greebles 
around by 2-3 image pixels to produce more within-species 
variations. 

Image Preprocessing 

 
Figure 4: Image Preprocessing. 

 
We followed the procedures introduced by Dailey and 

Cottrell (1999) to preprocess the images (Figure 4). First, 
each image was processed using 2-D Gabor wavelet filters (5 
spatial frequencies at 8 different orientations each), a simple 
model of complex cell responses in visual cortex. The filters 
were applied at 64 points in an 8x8 grid, resulting in a vector 
of 2560 elements (Dailey & Cottrell, 1999). The vectors were 
then normalized via z-scoring (scaled and shifted so that they 
had zero mean and unit standard deviation) on a per-filter 
basis, a local operation. A principal component analysis 
(PCA) was applied to the normalized vectors. The top 40 
components were saved and renormalized which constituted 
the input to the neural networks. 

Neural Network Parameters 
Networks were trained using a learning rate of 0.01 and 
momentum of 0.5. In all of our experiments, each module 
comprised of 40 input units, 20 hidden units. The number of 
output units was depended on the functionality of each 
module. Similarly, we trained all of our models until their 
RMSE reached 0.05. 

Experiment 
We ran each experiment on 50 networks. The training process 
is divided into 2 phases. In phase 1, the basic module and the 
expert module are pre-trained separately. The basic module is 
trained to classify cups, cans, asymmetric, and symmetric 
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Greebles at the basic level, and the subordinate module is 
trained to classify faces at the subordinate level. This initial 
training is motivated by the prior experience of human 
subjects before performing the actual experiment. After phase 
1, networks were tested on the symmetric and asymmetric 
Greeble images that will be trained in the next phase. Then 
we recorded the discrimination baseline for latter comparison. 

During phase 2, half of the networks were trained to 
classify asymmetric Greebles at subordinate level and 
symmetric Greebles at basic level, and the other half did the 
reverse. Each network was trained on 100 images: 5 
exemplars within 10 symmetric and 10 asymmetric Greeble 
species. 

Networks were then tested on 300 images comprised of all 
images used during training, 5 new exemplars within each of 
the 20 learned species, and 5 exemplars within 10 new 
symmetric and asymmetric Greeble species. 

We model discrimination performance as a function of the 
similarity of internal representations (hidden unit activations) 
between images. To measure the representational similarity, 
we computed the correlation between the vectors of hidden 
unit activations for two different input patterns. 

),(),( 2121 vvncorrelatiovvsimilarity =  
In Tanaka’s experiment, d-prime was used to quantify the 

“same/different” discrimination. As a simple model of d-
prime we assume that the discrimination performance is 
based on the difference in similarities between images from 
the same species versus the similarities between images of 
different species. Images from the same species will be highly 
similar; images from different species will not have a similar 
representation. We assume subjects’ discrimination scores are 
a function of the difference between these. Hence our 
measure of discrimination between two species is: 

where sp1 and sp2 are the two species being compared. The 
first term is the average similarity of exemplars within the 
two species, averaged together, and the second term is the 
average similarity of exemplars between the species.  

Experiment 1 
From the modeling stand point, it’s hard to train a single 
module network to perform both the basic and subordinate 
classification. In addition, we want separate representation of 
basic level classification and the fusiform face area recruited 
for expertise tasks since we assume that the brain functionally 
separates the processing of basic and subordinate level 
information. Therefore, we started with a 2-module neural 
network model (Figure 4) which includes a basic classifier 
and an expert classifier. 
 
Similarity Calculation There are two sets of hidden unit 
activations which come from the two modules of the network. 
During phase 1, the hidden layer of the basic module is used 
as the internal representation of the neural network to assess 
the baseline discrimination. This is similar to human subjects 

in Tanaka’s experiment since they didn’t have expert 
knowledge of owls and wading birds. 

In phase 2, the hidden layer of the basic module is used to 
learn basic discriminations; and similarly the hidden layer of 
the expert module is used to learn subordinate classification. 
Our assumption is that the brain functionally separates the 
processing of basic and subordinate level information. Later 
we show how this might be automated. Here we assume that 
the discrimination is based upon the module most suited to 
the task: 

 
 
Result and Discussion Subordinate level training produced 
greater advantages in the “same/different” discrimination than 
basic level training. The advantages also carried over to novel 
exemplars of trained species and novel exemplars of novel 
species. This result is consistent with the effect reported by 
Joyce and Cottrell (2004). They have shown if a category is 
learned at the subordinate level, their neural networks are 
more sensitive to the differences among the individuals in that 
category than the category they have only learned at the basic 
level, and that this generalizes to new domains. 

 
(a) “Same” and “Diff” are the average correlations between 
exemplars within the same species and between exemplars 

from different species within 3 conditions: OLD/OLD, 
NEW/OLD, NEW/NEW. 

 
(b) Discrimination = (Same - Diff). 

Figure 5: Post-training discrimination. Error bars denote 
standard deviations. 
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However within the basic level the “same/different” 
discrimination measures of the training exemplars and novel 
exemplars of trained species were below the baseline. In 
addition, the discrimination of the novel exemplars of novel 
species was higher than training exemplars and novel 
exemplars of trained species. This results from the basic level 
network compressing the representations of classes. This 
makes sense, since the main function of the basic module is to 
ignore the differences among individuals and group similar 
stimuli together. However, subjects in Tanaka’s experiment 
not only learned to classify stimuli, but also experienced the 
stimuli through mere exposure. This suggests that we should 
have an additional module in our network modeling this 
phenomenon. 

Experiment 2 
Based on the previous experiment, we know that basic level 
training compressed the representation of basic stimuli. We 
added an autoencoder as a model of perceptual learning from 
mere exposure (Figure 6). Autoencoders try to reproduce their 
input on their output, thus learning the statistics of their 
environment in a passive way. The side effect of this is that 
the representations of items so trained will be separated in 
hidden unit space.  

 
Figure 6:  Multi-module neural network configuration. 

 
Similarity Calculation Now there are three hidden layers 
from each of the basic, subordinate, and auto-encoder 
modules. To decide which hidden layer is used as the internal 
representation of the network, we based our decision on two 
motivations. First, the brain functionally processes the basic 
level information and the subordinate level information 
separately. Second, while learning a classification task, 
subjects are also experienced stimuli through mere exposure. 
Therefore, it’s most likely that the brain accumulates 
information from the classification process and mere 
exposure to perform the “same/different” discrimination. 

In phase 1, the concatenation of the basic and autoencoder 
hidden layer is used as the internal representation of the 
neural network to assess the baseline discrimination. In phase 
2, we concatenate the hidden layers of the basic and 
autoencoder module and the hidden layers of the subordinate 
and autoencoder module to represent the internal 
representation of basic stimuli and subordinate stimuli 
respectively. 

 
 
Result and Discussion Our multi-module neural network 
model has demonstrated the same results as human subjects 
do. Even though we have achieved our goal to model 
Tanaka’s results with this multi-module network we would 
like to automate the process of choosing which combination 
of hidden layers to represent an input image. 

 
(a) “Same” and “Diff” are the average correlations between 
exemplars within the same species and between exemplars 

from different species within 3 conditions: OLD/OLD, 
NEW/OLD, NEW/NEW. 

 
(b) Discrimination = (Same - Diff). 

Figure 7: Post-training discrimination. Error bars denote 
standard deviations. 

Experiment 3 
To automate the process of selecting which combination of 
hidden layers to represent an input image, we exploit a 
mixture network model (Figure 8). These networks 
implement a soft competition between the networks to 
process the data. The competition is based upon the output of 
a gating network that mediates the learning and activation 
flow in the two networks. Thus we set up a competition 
between the basic and expert level classifiers. The complete 
model is composed of the mixture network and a standard 
feed-forward network. The mixture model that we used is a 
modified version of the one described by Dailey & Cottrell 
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(1999). The modification is that the output teaching signals of 
the gating network depend on the subordinate output 
activations. If any subordinate outputs are on, we turn on the 
teaching signal of the gating network that connects to the 
subordinate module. Hence, whenever subordinate 
classification is the goal, the system is forced to choose the 
expert network. We imagine that this is the role of the frontal 
lobe system. The mixture network learning rule is described 
in Appendix A. 

 
Figure 8:  Multi-module neural network configuration. 

 
Similarity Calculation In phase 1, similarly to experiment 2, 
the concatenation of the basic and autoencoder hidden layer is 
used as the internal representation of the neural network to 
assess the baseline discrimination. 

In phase 2, we use the hidden layers of the auto-encoder 
module with either the basic or subordinate module to 
represent input stimuli. To select between the hidden layers of 
the basic and subordinate module, we depend on the higher 
output activation of the gating network. The gating network 
has two output units which are pre-assigned to the basic and 
subordinate module. 

 
 
Result and Discussion This result (Figure 9) indicates that 
we have again successfully modeled Tanaka’s experiment. 
Moreover, we also have suggested a mechanism for the brain 
to choose between the levels of processing between the two 
networks.  
 

Conclusion 
Tanaka’s study has shown that classification task at 
subordinate level, not mere exposure, is the most important 
ingredient in becoming an expert. Subordinate level training 
produced greater advantages in species discrimination relative 
to basic level training. Furthermore, transfer occurs in a 
graded fashion, to novel exemplars of known categories and 
novel exemplars from novel, but similar, categories. 

 
(a) “Same” and “Diff” are the average correlations between 
exemplars within the same species and between exemplars 

from different species within 3 conditions: OLD/OLD, 
NEW/OLD, NEW/NEW. 

 

 
(b) Discrimination = (Same - Diff). 

Figure 9: Post-training discrimination. Error bars denote 
standard deviations. 

 
Our multi-module network has similar performance as 

human subjects. Furthermore, it also supported the concept 
that the brain functionally separates the processing of basic 
and subordinate level information. Indeed, in experiments not 
reported here, we could not model this behavior in a single 
network. However, our model contained no mechanism for 
simply learning good (invertible) representations of 
experienced stimuli. The network actually saw basic level 
stimuli as “all looking alike:” In order to prevent this, we 
added a process, implemented here as an autoencoder, to 
learn faithful perceptual representations of frequently 
encountered stimuli. The autoencoder helps spread out the 
representation of the basic stimuli as well as the subordinate 
stimuli, and it can be considered as a model for mere 
exposure. In our final multi-module networks, we found it 
necessary to further assume that the brain can choose the 
representations it will use to compare stimuli. This is a novel 
prediction, as far as we know, and one that could be verified 
via fMRI. 
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Appendix A: Mixed hidden layer network 
In the feed-forward phase, we first compute the input 
weighted sum of the hidden unit uij (i is the module number 
and j is the unit number in the hidden layer): 

∑=
k

kijkij xwnet  

Then we apply the sigmoid function to the weighted sum: 

)
3
2tanh(7159.1 ijij netz =  

We also compute the input weighted sum of the output unit in 
the gating network and then apply the softmax function to 
that weighted sum: 
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Afterward, we compute the activations of the output units: 
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The network is trained by online back-propagation of error 
with the generalized delta rule. First, we compute the update 
weights for the output layer: 
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Second, we compute the update weights for the hidden layer: 
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Let g1 and g2 wire to the basic module and subordinate 
module respectively. Finally, we compute the teaching 
signals for the output units of the gating network: 
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Then we compute the update weights for the gating network:  
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