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Abstract. We calculate higher order derivatives of Dirichlet’s Energy at a branched minimal
surface in the direction of Forced Jacobi Fields discovered by the author and R. Böhme. We
show that, under certain conditions these derivatives can be made negative, while all lower
order derivatives vanish. This is the first time that derivatives of order greater than three have
been calculated.

1. Introduction and intrinsic derivatives

In 1932 Jesse Douglas [7] and in 1942 Richard Courant [6] both thought they had
produced minimizers for energy (area) which possessed interior branch points. The
example of Douglas was shown by Radó to be incorrect [13]. Only in 1970 did
Courant’s example come into question, when Osserman claimed to have proved
that all absolute minimizers of E had to be immersed on the interior of the unit disc
[12]. However, Osserman had overlooked the need in his proof (a local cutting and
pasting argument) to distinguish between true and false branch points (the latter
are those whose image locally is still an embedded surface).

In 1973 Alt [1,2] and Gulliver [8] independently proved that absolute minima
of energy (area) had no interior branch points. In Gulliver and Lesley [9] extend
this result to show the absence of boundary branch points for minima in the case
when the boundary curve is real analytic. In [17] Wienholtz pointed out that the
discontinuous reparametrization used by Gulliver in [8] did not exist. However,
Gulliver and Lesley correct this in [9].

In Gulliver et al. [10], proved that all minimal surfaces bounded by rectifiable
Jordan curves in R

3 do not have any false interior branch points, even if they are
not minima of energy (or area). This filled the hole in Osserman’s 1969 argument.
In 1980 Beeson [4] gave another argument for the absence of true interior branch
points The original Osserman result on the absence of true interior branch points
was extended to area minimizing surfaces in 3-manifolds by Micallef and White
[11]. In Alt and Tomi [3], gave conditions where one could prove the absence of
interior and boundary branch points to minimal surfaces with free boundaries.
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In 1998 Wienholtz [17] presented conditions which ruled out boundary branch
points for minimal surfaces spanning sufficiently smooth contours in R

3. In 2001,
Stefan Hildebrandt pointed out to the author that all of the current proofs were too
long and too technical for presentation in a text on the subject and challenged him
to come up with a direct, clear analytic proof that involved no cutting or pasting.
This paper is an answer to that challenge. In a future paper, we extend Wienholtz’s
results on the non-existence of boundary branch points.

In Böhme and the author [5] showed that for the generic contour �, all minimal
surfaces spanning � were either immersed up to the boundary, or had only simple
(order 1) interior branch points. In [14] the author proved a normal form theorem
for Dirichlet’s energy in the neighborhood of a generic branched minimal surface
in R

3 and further proved that the winding number about such surfaces was ±2p,
where p is the number of branch points.

As a trivial consequence of this normal form result, it is evident that the generic
branch minimal surface in R

3 cannot be a relative minimum. The strategy of the
author’s proof was to calculate the third (intrinsic) derivative of Dirichlet’s energy.
All higher order derivatives are non-intrinsic, and thus can be quite complicated.

In this paper we compute a formula for all higher order derivatives of Dirich-
let’s energy in the direction of Forced Jacobi Fields discovered by the author and
R. Böhme. We show that, under certain conditions, one can be made negative while
all lower order derivatives vanish.

The author wishes to thank Stefan Hildebrandt for carefully checking this entire
approach to branch points.

1.1. Notations and conventions

Let � be a C∞ contour in R
3 which is the image of a differentiable immersion

of the unit circle S1 into R
3. Let D be the closed unit disc in R

2. A disc minimal
surface X spanning � is a map X : D → R

3 such that

(i) �X = 0 (each component of X is harmonic)
(ii) Xu · Xv = 0 (the coordinates in R

2 being labelled by u · v)
(iii) ‖Xu‖2 = ‖Xv‖2

(iv) X : S1 → �

X is said to be classical disc minimal surface if� is the image of a differentiable
embedding and X : S1 → � is a homeomorphism. Conditions (ii) and (iii) imply
that the surface is conformally parameterized and (i)–(iii) are the Euler equations
of Dirichlet’s energy,

E(X) := 1

2

∫

D

∇ X · ∇ Xdu dv.

A point z0 ∈ Do is called an interior branch point if both Xu(z0) = Xv(z0) = 0.
In this case z0 is a zero of the homomorphic function F(z) = 1

2 (Xu − i Xv). Then
F(z) = (z − z0)

λG(z), G(z0) �= 0. The integer λ is called the order of the branch
point z0.
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For the purposes of future calculations, we shall consider X as a map from S1

into R
3, and by X̂ or H X the harmonic extension of X to the unit disc. Thus, in

this notation, the minimal surface is actually X̂ .
Denote by X̂z := ∂

∂z X̂ the complex derivative of the harmonic map X̂ , ∂
∂z :=

1
2

(
∂
∂u − i ∂

∂v

)
.

The Forced Jacobi Fields associated to a minimal surface X are the harmonic
extensions ĥ of maps h : S1 → R

3, h(p) ∈ Tx(p)�, the tangent space to � at X (p)
with

h = ReK , K (z) := i z F(z)µ(z) on S1

F(z) = 1

2
(X̂u − i Xv), Re := real part,

where µ(z) is a meromorphic function on D, real on S1 = ∂D with poles at the
zeros of F of orders not exceeding the orders of the associated zeros. Thus F(z)µ(z)
can be considered a global holomorphic map of Do into C

3. Thus

ĥ = Re{i z F(z)µ(z)}.
The space J (X) of all such h is called the space of Forced Jacobi Fields. Their
importance arises from the fact that

Theorem 1.1. The space J (X) ⊂ Ker D2 E(X̂), the kernel of the second variation
of Dirichlet’s energy at a minimal surface X̂ .

We prove this in formula (2.11). These fields were discovered independently by
Böhme and Tromba. Their existence arises from the action of the conformal group
and the presence of branch points.

We shall be taking higher order derivatives in the direction of such h ∈ J (X).

2. The first five intrinsic derivatives of Dirichlet’s energy in the direction
of forced Jacobi fields

Recall that

E(X̂) = 1

2

∫

D

∇ X̂ · ∇ X̂ .

Clearly the first derivative [5,14] of E in the direction ĥ is given by

DE(X̂)ĥ =
∫

D

∇ X̂ · ∇ĥ

which after integration by parts yields

DE(X̂)ĥ =
∫

S1

X̂r · h dθ, (2.1)
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r, θ denoting partial derivatives w.r.t. the polar coordinates r and θ . Here h(1, θ) ∈
TX (1,θ)� is a tangent vector to the manifold [5] of all harmonic surfaces spanning
� at X . Thus on S1, h = φXθ , φ defined uniquely away from the zeros of Xθ ,
φ a real valued function C∞ away from the zeros. In what follows we shall often
identify h with φ.

With this in mind (2.1) can be written as a complex line integral

DE(X̂)ĥ = 2Re
∫

z X̂z · X̂zφ dz (2.2)

where Xz · Xz :=
3∑

j=1

(
X j

z

)2
.

To prove formula (2.2) note that on S1 z X̂z = 1
2

(
∂
∂r − i ∂

∂θ

)
, dz = i zdθ .

From (2.1)

DE(X̂)ĥ =
∫

S1

X̂r · Xθφ dθ.

Now,

2 Re
∫

z X̂z · X̂zφ dz = 2 Re
∫
(z X̂z) · (z X̂z)φ

dz

z

= 2 Re
∫

i(z X̂z) · (z X̂z)φ
dz

i z
= −2 I m

∫
(z X̂z) · (z X̂z)φ dθ

= −1

2
I m

∫ {(
∂

∂r
− i

∂

∂θ

)
X̂

}
·
{(

∂

∂r
− i

∂

∂θ

)
X̂

}
φ dθ

=
∫

X̂r · Xθφ dθ

which proves (2.2).
Formula (2.2) will be our starting point for calculating all higher order deriva-

tives of Dirichlet’s energy E .
In order to carry out these computations in the most efficient manner, we will

need to develop a few techniques. We will consider variations of a minimal sur-
face X : S1 → R

3 as functions of a real variable t ∈ (−δ, δ). Thus we have
X (t) : S1 → � a smooth 1-parameter family of maps. Thus, through harmonic
extension X̂(t) : D → R

3 is a 1-parameter family of harmonic surfaces spanning
�. We define X (t) by

X (t)
(

eiθ
)

:= X
(

eiγ (t,θ)
)

(2.3)

where γ : (−δ, δ) × [0, 2π) → R a C∞ function in t and θ , which is 2π “shift”
periodic in θ for all t , (γ (t, θ + 2π) = γ (t, θ)+ 2π ) and also with

γ (0, θ) = θ. (2.4)

Given a minimal surface X , let

DX (p) : Tp S1 → R3
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be the derivative of X at a point p ∈ S1. Then from (2.3) it follows that

∂

∂t
X (t)

(
eiθ

)
= DX

(
eiγ (t,θ)

) [
ieiγ (t,θ)

] ∂γ

∂t

=
{

DX
(

eiγ (t,θ)
) [

ieiγ (t,θ) ∂γ

∂θ

] (
∂γ

∂θ

)−1
}
∂γ

∂t

= Xθφ (2.5)

where

φ(t, θ) :=
(
∂γ

∂θ

)−1
∂γ

∂t
. (2.6)

Assume there is an interval (−δ, δ) so that for t ∈ (−δ, δ)
∂γ

∂θ
> 0.

Thus ĥ := H{Xθφ} is, through a variation of the boundary values of X , and admis-
sible variation of the harmonic surface X (t). Thus to re-iterate and summarize: We
have defined a 1-parameter variation of a minimal surface X (t) with

∂

∂t
E(

(
X̂(t)

)
= 2 Re

∫

z

z X̂(t)z · X̂(t)zφ dz

= 2 Re
∫

z (H X (t))z · (H X (t))z φ dz (2.7)

where, from (2.4) X (0) = X .

Lemma 2.1. By choosing the derivatives of ∂γ
∂t at t = 0, we may arbitrarily select

the derivatives of ∂φ
∂t at t = 0.

Proof. The proof follows easily from induction by differentiating (2.7) and using
the fact that ∂γ

∂θ
= 1 at t = 0. �	

Let us return, for the moment, to formula (2.5). Now

X (t)θ = 2 Re
{

i z X̂(t)z
}
.

From this and the fact that φ is real valued we see that

∂

∂t
X (t) = 2 Re

(
i z X̂(t)zφ

)
(2.8)

which is the fundamental formula permitting us to calculate all higher order deriv-
atives of Dirichlet’s energy. We begin with the second and third derivatives.

We first need a variation of formula (2.8). Since ∂
∂t and harmonic extension H

(or ∧) commute

∂

∂t
X̂(t) = H

[
2 Re

(
i z X̂(t)zφ

)]
(2.9)
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and
{
∂

∂t
X̂(t)

}
z
= ∂

∂t
X̂(t)z =

{
H

[
2 Re(i z X̂(t)zφ)

]}
z
. (2.10)

Now a straight forward differentiation of (2.7) yields

∂2 E

∂t2 = 4 Re
∫

z

{
∂ X̂

∂t
(t)

}

z

· X̂(t)zφ dz

+ 2 Re
∫

z X̂(t)z · X̂(t)z
∂φ

∂t
dz. (2.11)

At t = 0, since X = X (0) is a minimal surface the second integral vanishes. If
φ represents a Forced Jacobi Field (FJF) direction X̂zφ is holomorphic and the
first integral is the complex line integral of a holomorphic function and vanishes
by Cauchy’s integral theorem. Thus, as it must, the second variation of Dirichlet’s
energy at t = 0 vanishes in all FJF directions.

We now compute the third derivative of Dirichlet’s energy in FJF directions.
Using (2.7) and (2.11)

∂3 E

∂t3 = 4Re
∫

z

{
∂ X̂

∂t

}

z

·
{
∂ X̂

∂t

}

z

φ dz

+4Re
∫

z

{
∂2 X̂

∂t2

}

z

· X̂(t)zφ dz + 8 Re
∫

z

{
∂ X̂

∂t

}

z

· X̂(t)z
∂φ

∂t
dz

+2Re
∫

z X̂(t)z · X̂(t)z
∂2φ

∂t2 dz. (2.12)

At t = 0 and if X̂zφ is holomorphic the second integral vanishes by Cauchy’s
integral theorem. By (2.10) at t = 0

{
∂ X̂

∂t

}

z

=
{

H
∂X

∂t

}
z
=

{
H [2 Re iz X̂zφ]

}
z
.

But again since X̂zφ is holomorphic at t = 0 this equals

1

2

{
2i z X̂zφ

}
z
=

{
i z X̂zφ

}
z
=

{
∂ X̂

∂t

}

z

. (2.13)

Since X is minimal

{
X̂z

}
·
{
∂ X̂

∂t

}

z

= X̂z ·
{

i z X̂zφ
}

z
≡ 0

and thus the third term in (2.12) vanishes. The last term vanishes since X̂z · X̂z ≡ 0.
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Thus, the third derivative, at t = 0 reduces to:

∂3 E

∂t

∣∣∣
t=0

= 4 Re
∫

z

{
∂ X̂

∂t

}

z

·
{
∂ X̂

∂t

}

z

φ dz. (2.14)

Substituting (2.13) we obtain

∂3 E

∂t3

∣∣∣
t=0

= 4 Re
∫

z
{

i z X̂zφ
}

z
·
{

i z X̂zφ
}

z
φ dz

= −4 Re
∫

z3 X̂zz · X̂zzφ
3 dz (2.15)

which is the formula obtained for the third “intrinsic” derivative in [14] and [16].
This derivation is, however, much simpler and more direct, and will serve as the
foundation of future calculations.

2.1. The fourth and fifth derivatives of Dirichlet’s energy

We now seek a way of choosing the derivatives of φ in such a way as to make all
higher order derivatives as simple as possible.

From formula (2.12) we calculate

∂4 E

∂t4 = 12 Re
∫

z

{
∂2 X̂

∂t2

}

z

·
{
∂ X̂

∂t

}

z

φ dz

+4Re
∫

z

{
∂3 X̂

∂t3

}

z

· X̂(t)zφ dz + 12 Re
∫

z

{
∂ X̂

∂t

}

z

·
{
∂ X̂

∂t

}

z

∂φ

∂t
dz

+12 Re
∫

z

{
∂2 X̂

∂t2

}

z

· X̂(t)z
∂φ

∂t
dz+12 Re

∫
z

{
∂ X̂

∂t

}

z

· X̂(t)z
∂2φ

∂t2 dz

+2 Re
∫

z X̂z · X̂z
∂3φ

∂t3 dz. (2.16)

Applying the same reasoning as with the third derivative, we see that, at t = 0 the
fourth derivative is given by

∂4 E

∂t4

∣∣∣
t=0

= 12 Re
∫ {

∂2 X̂

∂t2

}

z

·
{

z

(
∂ X̂

∂t

)

z

φ + z X̂z
∂φ

∂t

}
dz

+12 Re
∫

z

{
∂ X̂

∂t

}

z

·
{
∂ X̂

∂t

}

z

∂φ

∂t
dz. (2.17)
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A straight forward calculation, using the same reasoning shows that at t = 0

∂5 E

∂t5
= 16 Re

∫ (
∂3 X̂

∂t3

)

z

·
(

z

(
∂ X̂

∂t

)

z

φ + z X̂z
∂φ

∂t

)
dz

+12 Re
∫

z

(
∂2 X̂

∂t2

)

z

·
(

z

(
∂2 X̂

∂t2

)

z

φ+4z

(
∂ X̂

∂t

)

z

∂φ

∂t
+2z X̂z

∂2φ

∂t2

)
dz

+24 Re
∫

z

(
∂ X̂

∂t

)

z

·
(
∂ X̂

∂t

)

z

∂2φ

∂t2 dz. (2.18)

Now consider (2.17) and (2.18). We shall show that, under certain conditions,
the derivatives of φ, ∂φ

∂t can be chosen at t = 0 so that the formulas for the fourth
and fifth derivatives greatly simplify, namely

∂4 E

∂t4

∣∣∣
t=0

= 12 Re
∫

z

{
∂ X̂

∂t

}

z

·
{
∂ X̂

∂t

}

z

∂φ

∂t
dz (2.19)

which by (2.13) and as in (2.15)

= −12 Re
∫

z3 X̂zz · X̂zzφ
2 ∂φ

∂t
dz

and

∂5 E

∂t5
= 12 Re

∫ (
∂2 X̂

∂t2

)
·
(

z

(
∂2 X̂

∂t2

)

z

φ + 4z

(
∂ X̂

∂t

)

z

∂φ

∂t

)
dz. (2.20)

How do we choose ∂φ
∂t at t = 0? Choose ∂φ

∂t so that

z

(
∂ X̂

∂t

)

z

φ + z X̂z
∂φ

∂t
(2.21)

is holomorphic. Then formulas (2.19) and (2.20) for the fourth and fifth derivatives
hold. In this case(

∂2 X̂

∂t2

)
=

{
4H

[
Re iz

{
Re H

(
i z X̂zφ

)}
z
φ + 2

{
Re iz X̂z

∂φ

∂t

}]}
z

=
{

i z
[
i z X̂zφ

]
z
φ + i z X̂z

∂φ

∂t

}
z
. (2.22)

By the way choosing ∂φ
∂t so that (2.21) is holomorphic, implies, as an easy exercise

shows, that (
∂2 X

∂t2

)
z
· Xz = −z2 X̂zzz · X̂zφ

2 = z2 X̂zz · X̂zzφ
2

= −
{

i z X̂zφ
}

·
{

i z X̂zφ
}

z

= −
(
∂ X̂

∂t

)

z

·
(
∂ X̂

∂t

)

z

.
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which is needed to deduce formula (2.20) for the fifth derivative. How do we
proceed in general?

2.2. The strategy

The strategy to find the first non-vanishing derivative which can be made negative
is to

I. Decide the candidate L for which, at t = 0,

∂µE

∂tµ
= 0, µ < L

and

∂L E

∂t L
< 0.

II. Select ∂
βφ

∂tβ
at t = 0, so that, in forming derivatives of lower order than L ,

poles are removed and these derivatives vanish!
III. With respect to a special linear coordinate system in R

3 we may write

X̂z = (A1zn + A2zn+1 + . . . , Rm zm + . . .)

where Ai ∈ C
2, Rm ∈ C, m �= 0, A1 �= 0. n is called the “order” of the branch

point and m the “index”. We show that, at t = 0

∂L E

∂t L
= Re

∫
cL K (R2

m/z)dz,

c an arbitrary non zero complex number, K ∈ C.
IV. Prove K �= 0.

The need to remove poles can be made clear from (2.22), and formula (2.17)
for the fourth derivative. In (2.17) we have the term

12 Re
∫

z

{
∂2 X̂

∂t2

}

z

·
{

z

(
∂ X̂

∂t

)

z

φ + z X̂z
∂φ

∂t

}
dz

Considering (2.22), this integral is of the form

Re
∫

{2H [Rei f (z)]}z f (z)dz (2.23)

where above

if(z) := i z
[
i z X̂zφ

]
z
φ + i z X̂z

∂φ

∂t
.

Assume f (z) had poles, say

f (z) = � ak/z
k = ak/z

k
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using the Einstein summation convention. Then an easy calculation shows[
H

{
2Re[iak/z

k]
}]

z
= −ikak zk−1.

Therefore in this case, (2.23) becomes

Re
∫

−ikak zk−1al z
ldz

and by Cauchy’s theorem this equals

Re
∫

ikakalδkl z
k−1zl dz = 2πk|ak |2 > 0.

Thus, not removing the poles (which gives a zero result) would give us some-
thing strictly positive, defeating the “ultimate” goal of showing that the pres-
ence of branch points implies that the minimal surface cannot be a relative
minima for either energy or area.

For the sake of completeness, we work out the Wienholtz result for the third
derivative as it applies to minimal surfaces in R

3. We therefore assume that

2m − 2 < 3n.

From (2.15), at t = 0

∂3 E

∂t3 = −4Re
∫

z3 X̂zz · X̂zzφ
3dz

z3 X̂zz · X̂zz = (m − n)2 R2
m z2m+1.

Note that, since m > n, (m − n)2 > 0. Choose

φ0 := c/zn+1 + czn+1

φ1 := c/zk + czk

c ∈ C, where

k = (2m + 2)− 2(n + 1) = (2m − 2)− 2(n − 1) < n + 2.

Thus k ≤ n + 1.
If k = n + 1, set φ := φ0. If k < n + 1, set φ = εφ0 + φ1, ε > 0. If k = n + 1,

3(n + 1) = 2m + 2, and at t = 0

∂3 E

∂t3 = −4Re
∫

c3(m − n)2(R2
m/z)dz

which is negative, after an appropriate choice of c.
If k < n + 1, 3(n + 1) > (2m + 2)

φ3 = ε3c3/z3n+3 + 3ε2c3/z2n+2+k + . . .

where . . . denotes pole terms of lower order. Then, again, by Cauchy’s integral
theorem, at t = 0

∂3 E

∂t3 = −12Re ε2
∫

c3(m − n)2(R2
m/z)dz + o(ε2) < 0

after an appropriate choice of (a − ib) and for ε > 0 sufficiently small.
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3. The main theorem

Let X : D → R
3 be a minimal surface with an interior branch point, which without

loss of generality we may assume is at the origin. The invariance of Dirichlet’s
energy under the action of the conformal group permits us to do this. Write

X̂z = (A1zn + A2zn+1 + . . . , Rm zm + Rm+1zm+1 + . . .) (3.1)

where Ai ∈ C
2, R j ∈ C, Rm �= 0, A1 �= 0 and where we assume 2m − 2 ≥ 3n. In

the case 2m−2 < 3n, as we have seen the third derivative can be made negative and
if 2m − 2 ≥ 3n the third derivative vanishes in all Forced Jacobi Field directions
[17]. Again, n is called the order of the branch point and m its index. The question
is then how many derivatives can be made zero in these directions, what is the first
non-vanishing derivative, and can we make it “negative”?

We note here that the methodology of calculating the higher order derivatives
does not actually involve the boundary contour �, but only a change of parametri-
zation of our minimal surface on S1.

Definition 3.1. We say that the origin is an exceptional branch point if (m + 1) =
k(n + 1) where k is an integer.

We now state the central result of our paper:

Theorem 3.1. Let X be a non-planar minimal surface with an interior branch point
of order n and index m. If n is odd and m is even, then the (m + 1)-st derivative of
Dirichlet’s energy can be made negative while all lower order derivatives vanish.

We shall prove this theorem assuming n ≥ 3. The case n = 1 being proved in
[15]

Remark 1. Such a branch point cannot be an exceptional branch point.

We proceed with some preliminaries:
The minimal surface equation

X̂z · X̂z ≡ 0

implies certain relations on the coefficients {A j }. In particular

A1 · A1 = 0 and A1 · A j = 0 , 1 ≤ j ≤ 2m − 2n (3.2)

where A · B = α1β1 + α2β2 if A = (α1, α2), B = (β1, β2). It is easily to see that
A1 · A j = 0 implies that

{
A j = v j A, v j ∈ C, 1 ≤ j ≤ 2m − 2n
A1 · Asm−2n+1 = −R2

m/2
(3.3)

Using (3.2) we see that

X̂zz · X̂zz = (m − n)2 R2
m z2m−2 + . . .
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We now discuss a method for calculating the Lth derivative of Dirichlet’s energy
in the presence of an interior branch point of order n and index m, where L is odd
and begin by reminding our readers of Leibniz’s formula on differentiation for the
product of two differentiable functions f and g of a real variable t , namely

∂n( f g)

∂tn
=

n∑
r=0

n!
(n − r)!

∂n−r f

∂tn−r

∂r g

∂tr
. (3.4)

In view of (3.4)

∂

∂tn

{
X̂z · X̂z

}
φ =

n∑
β=0

n!
(n − β)!β!

∂n−β

∂tn−β
(

X̂z · X̂z

) ∂βφ
∂tβ

=
n−β∑
α=0

n∑
β=0

n!(n − β)!
(n − β)!β!(n − β − α)!

×
(
∂n−β−α X̂

∂tn−β−α

)

z

·
(
∂α X̂

∂tα

)

z

∂βφ

∂tβ
.

Set n := L − 1, M = L − (α + β + 1) = n − (α + β) and order the sum of
decreasing M we obtain for L odd:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L E

∂t L
=

4Re
∫

z

(
∂L−1 X̂

∂t L−1

)

z

· X̂zφ dz +

4
(L − 1)!
(L − 2)! Re

∫ (
∂L−2 X̂

∂t L−2

)

z

·
(

z

(
∂ X̂

∂t

)

z

φ + z X̂z
∂φ

∂t

)

z

dz

+ 4
L−3∑

M> L−1
2

(L − 1)!
M !(L − M − 1)! Re

∫ (
∂M X̂

∂t M

)

z

·
(

L−M−1∑
α=0

(L−M−1)!
α!(L−M−1−α)! z

(
∂α X̂
∂tα

)
z

∂βφ

∂tβ

)
dz +

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1
2∑

M=2

2(L − 1)!
M !M ! Re

∫ (
∂M X̂

∂t M

)

z

·
(

M∑
α=0

M !
α!β! ψ(M, α)

(
∂α X̂
∂tα

)
z

∂βφ

∂tβ

)
dz

+ 2(L − 1)!
(L − 3)! Re

∫
z

(
∂ X̂

∂t

)

z

·
(
∂ X̂

∂t

)

z

∂L−3φ

∂t L−3 dz +

(3.6)

⎧⎪⎨
⎪⎩

4(L−1)!
(L−2)! Re

∫
z
(
∂ X̂
∂t

)
z
· X̂z

∂L−2φ

∂t L−2 dz

+ 2 Re
∫

z X̂z · X̂z
∂L−1φ

∂t L−1 dz
(3.7)
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where α + β + M = L − 1 and ψ(M, α) =
{

1 if α = M
2 if α �= M

. Note that at t = 0 the

two terms of (3.7) vanish. We may assume that L ≥ 5 and that n ≥ 3, m even, n
odd.

Since L > 4, 2m − 2 ≥ 3n > 9 implying that m > 6. Again, let z X̂z =(
A1zn+1 + . . . A2m−2n+1z2m−n+1 + . . . , Rm zm+1 + . . .

)
. Choose

φ := (a − ib)/z2 + (a + ib)z2

as our initial condition. Then, at t = 0,
(
∂ X̂

∂t

)

z

= (i z X̂zφ)z

= (a − ib)
(

i(n − 1)A1zn−2 + in A2zn−1 + . . .

i(2m − n − 1)A2m−2n+1z2m−n−2 + . . . , i(m − 1)Rm zm−2
)

(3.8)

and

z

(
∂ X̂

∂t

)

z

φ = (a − ib)2
(

i(n − 1)A1zn−3 + in A2zn−2 + . . .

i(2m − n − 1)A2m−2n+1z2m−n−3 + . . . , i(m − 1)Rm zm−3 + . . .
)
.

If n ≥ 3, there are “no” poles in this expression. This gives us the freedom to choose
∂φ
∂t at t = 0 by setting

∂φ

∂t
:= (a − ib)2(c + id)/z4 + (a + ib)2(c − id)z4. (3.9)

Since n ≥ 3, at t = 0

z X̂z
∂φ

∂t
is holomorphic,

and at t = 0 (cf. (2.22))
(
∂2 X̂

∂t2

)

z

= i

{
z

(
∂ X̂

∂t

)

z

φ + zXz
∂φ

∂t

}

z

= −(a − ib)2
(
(n − 1)(n − 3)A1zn−4 + . . .

(2m − n − 1)(2m − n − 3)A2m−2n+1z2m−n−4 + . . . ,

(m − 1)(m − 3)Rm zm−4 + . . .
)

+i(c + id)(a − ib)2
(
(n − 3)A1zn−4 + . . . (2m − n − 3)

A2m−2n+1z2m−n−4 + . . . , (m − 3)Rm zm−4 + . . .
)
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= (a − ib)2
(

[−(n − 1)(n − 3)+ i(n − 3)(c + id)] A1zn−4 + . . .

[−(2m − n − 1)(2m − n − 3)+ i(2m − n − 3)(c + id)]

A2m−2n+1z2m−n−4 + . . . ,

[−(m − 1)(m − 3)+ i(m − 3)(c + id)] Rm zm−3 + . . .
)
.

(3.10)

Now, if ∂
2φ

∂t2 is chosen according to the pole removal methodology

(
∂3 X̂

∂t3

)

z

= i

{(
∂2 X̂

∂t2

)

z

φ + 2

(
∂ X̂

∂t

)

z

∂φ

∂t
+ z X̂z

∂2φ

∂t2

}

z

. (3.11)

Let us examine this a little more closely. At t = 0,

z

(
∂ X̂

∂t

)

z

∂φ

∂t
= (a − ib)

(
2i(n − 1)A1zn + . . . , 2i(m − 1)Rm zm + . . .

) ∂φ
∂t

where ∂2φ

∂t2 necessarily has a pole of order 6 if n = 3; there is no pole in the third
complex component (m ≥ 6) but there might be one in the first complex compo-
nents.

If n −5 < 0, we then remove the pole by an appropriate choice of ∂
2φ

∂t2 at t = 0,
namely,

∂2φ

∂t2 := −2i(n − 1)(a − ib)3(c + id)/z6 + 2i(n − 1)(a + ib)3(c − id)z6.

(3.12)

If n −5 ≥ 0, n +1 ≥ 6 and z X̂z
∂2φ

∂t2 with ∂2φ

∂t2 defined by (3.12) is holomorphic and
(3.11) remains valid. The next lemmas show that we can continue in this manner.

Assume that L = m + 1 is odd.

Lemma 3.1. If 1 ≤ β ≤ L−3
2 or equivalently α ≥ L−1

2 ,
(
∂αX
∂tα

)
z

can be defined

inductively by the pole removal technique
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
∂ X̂

∂t

)

z

=
{

i z X̂zφ
}

z(
∂γ X̂

∂tγ

)

z

=
⎧⎨
⎩i

γ−1∑
α=0

(α − 1)!
α!(γ − α − 1)! z

(
∂α X̂

∂tα

)

z

∂βφ

∂tβ

⎫⎬
⎭

z
γ = 1, . . . , (L − 1)/2.

(3.13)

Proof. During the process, there will be sufficiently many A j ’s, so long as the
power associated to A2m−2n+1 does not become negative (no pole associated to

A2m−2n+1). Since at each αth stage in defining
(
∂α X̂
∂tα

)
z

the powers are reduced
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by 2α, we must check that the terms z
(
∂α X̂
∂tα

)
z

∂βφ

∂tβ
have no poles associated to

A2m−2n+1. Looking only at z
(
∂α X̂
∂tα

)
φ, α ≤ ( L−3

2

)
we must have

2m − n − 2α − 1 = 2m − n + 1 − 2(α + 1) ≥ 0

or

2m − n + 1 − 2

(
L − 1

2

)
≥ 0.

But

2m − n + 1 − 2

(
L − 1

2

)
= (m − n)+ 1 > 0.

We must also check that during this process no pole is introduced into the third
complex component. Again, we look at

z

(
∂α X̂

∂tα

)

z

φ,

α ≤ ( L−3
2

)
. Then the order of the zero of the Rm term is

m − 2α − 1 = (m + 1)− 2(α + 1) = (m + 1)− (L − 1) = 1,

so there is no pole.

Lemma 3.2. In removing all poles we may choose

∂βφ

∂tβ
:= k(a − ib)β+1(c + id)/z2(β+1) + . . . (3.14)

i.e. In the highest order pole ∂βφ

∂tβ
can be chosen to be linear in c + id.

Proof. It is here that we assume n odd. We use induction on β. Assume true for
β ≤ α.

Case a. n ≥ 2α. Then the first complex components of
(
∂α X̂
∂tα

)
z

have a zero of

order n − 2α > 0 (n �= 2α). Then ∂αφ
∂tα must be chosen so that

α∑
γ=0

α!
γ !(α − γ )! z

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ
, γ + β = α

is holomorphic. Also for γ ≤ α, the first complex component of
(
∂γ X̂
∂tγ

)
z

has a zero

of order n − 2γ > 0.
Thus if β ≤ α

z

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ
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has a “zero” of order n − 2γ − 2β − 1 = n − 2α − 1 ≥ 0; i.e. there is no pole.
Then n + 1 ≥ 2α + 2 and we may choose ∂αφ

∂tα according to (3.14), since z X̂z
∂αφ
∂tα

will also be holomorphic and
(
∂α+1 X̂
∂tα+1

)
z

may again be defined by (3.13).

Case b. Now suppose that α is the first integer such that n − 2α < 0. Then

α∑
γ=0

α!
γ !(α − γ )! z

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ

= z

(
∂α X̂

∂tα

)

z

φ +
α−1∑
γ=1

α!
γ !(α − γ )! z

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ
+ z X̂z

∂αφ

∂tα
.

(3.15)

Each z
(
∂γ X̂
∂tγ

)
z

∂βφ

∂tβ
has a pole of order −(1 + n − 2γ − 2β− 2) = 2α+ 1 − n ≥ 2

but z
(
∂α X̂
∂tα

)
z
φ has a pole of order at most 1. Therefore, in order to kill this pole,

∂αφ
∂tα must have a pole of order at most n +2. In order to kill all other poles in (3.15),
∂αφ
∂tα must have a pole of order k so that k − (n + 1) ≥ 2α+ 1 − n, or k ≥ 2(α+ 1),
as expected.

But n − 2α ≤ −1 so n + 2 ≤ 2α + 1 < 2(α + 1) and the order of the pole of
∂αφ
∂tα needed to kill the pole of order 1 term (which need not be linear in c + id) is
strictly less than the order of the pole need to kill the poles in all other terms.

We now continue in this manner. For α + 2,

α+1∑
γ=c

(α + 1)!
γ !β!

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ
= z

(
∂α+1 X̂

∂tα+1

)

z

φ + (α + 1)z

(
∂α X̂

∂tα

)

z

∂φ

∂t

+
α−1∑
γ=1

(α + 1)!
γ !β! z

(
∂γ X̂

∂tγ

)

z

∂βφ

∂tβ
+ zXz

∂α+1φ

∂tα+1 .

The first term on the right has a pole of order at most 1 and the second term a pole

of order at most 3. To kill the pole of order three ∂α+1φ

∂tα+1 must have a pole of order
k so that k − (n + 1) = 3 or k = n + 4. But n + 4 ≤ 2α + 3 < 2(α + 2) which is

needed to kill poles other than in the first two terms. This choice of ∂
α+1φ

∂tα+1 can then
be made according to (3.14).

Now consider the Lth derivative (L = m + 1) given by formulas (3.5) through
(3.7). Then, by Cauchy’s integral theorem, the first terms (3.5) being boundary
integrals of holomorphic functions vanish. We are left with the terms

2m!(m
2

)! (m
2

)! Re
∫

z

(
∂m/2 X̂

∂tm/2

)

z

·
(
∂m/2 X̂

∂tm/2

)

z

φ dz (3.16)

4m!(m
2

)! (m
2

)!
M−1∑
α=0

Re
∫

z

(
∂m/2 X̂

∂tm/2

)

z

·
(
∂α X̂

∂tα

)

z

∂βφ

∂tβ
dz (3.17)
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where β ≥ 1, plus the remaining terms

S−3
2∑

M=2

2m!
M !M ! Re

∫
z

(
∂M X̂

∂t M

)

z

·
(

M∑
α=0

M !
α!β! ψ(M, α)z

(
∂α X̂

∂tα

)
∂βφ

∂tβ

)
dz.

With the exception of (3.16) we claim that each other integrand is a polynomial in

the variable (c + id) of degree m −2 (each
(
∂α X̂
∂tα

)
z

is a polynomial of degree α−1

in c + id) with no constant term.

Lemma 3.3. Term (3.16) takes the form

2m!(m
2

)! (m
2

)! Re
∫
(κR2

m/z)(a − ib)m+1dz + Re
∫
(νR2

m)/z(a − ib)m+1dz

κ = (i)m(m − 1)2(m − 3)2 . . . 32 · 1 and ν is a polynomial in (c + id) with no
constant term.

Proof. We will use induction but first we need another

Lemma 3.4. The contributions of the first complex components to the integral of
the product

2m!(m
2

)! (m
2

)! Re
∫

z

(
∂m/2 X̂

∂tm/2

)

z

·
(
∂m/2 X̂

∂tm/2

)

z

φ dz (3.18)

is zero.

Proof. The terms with the lowest powers of z in the product are of the form

const · A j · A2m−2n+1z2m−n−2(m/2)−1+1 = const zm−n, m − n > 0.

Now to continue with Lemma 3.3.

We know from Lemma 3.4 that the first two complex components play no role
in (3.18) and from earlier discussions (3.18) takes the form

Re
∫
(µR2

m/z)(a − ib)m+1dz.

Now the third complex component of
(
∂ X̂
∂t

)
z

is

(a − ib)i(m − 1)Rm zm−2 + . . . .

Assume that the third complex component of
(
∂α X̂
∂tα

)
z

is of the form (a − ib)α{
iα(m − 1)(m − 3) . . . (m − 2α + 1)Rm zm−2α + . . .

}
plus a polynomial in (c +

id) with no constant term denoted simply by P . Then if α + 1 ≤ m/2, by (3.13)
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(
∂α+1 X̂

∂tα

)

z

= i

{
z

(
∂α X̂

∂tα

)

z

φ + P (̇a − ib)α+1

}

z

= (a − ib)α+1i
{

iα(m − 1)(m − 3) . . . (m − 2α + 1)Rm zm−2α−1

+ P · (a − ib)α+1
}

z

= (a − ib)α+1iα+1(m − 1)(m − 3) . . . (m − 2(α + 1)+ 1) Rm zm−2(α+1)

+ Pz(a − ib)α+1.

Setting α + 1 = m/2 completes the proof of the lemma 3.3.
We can now complete the proof of theorem 3.1.
All other terms in the (m + 1)th derivative are of the form

∫
(νR2

m/z)
(a − ib)m+1dz, ν a polynomial in (c + id) with no constant term.

Summarizing, the (m + 1)th derivative of Dirichlet’s integral takes the form

2m!(m
2

)! (m
2

)! Re
∫
(κR2

m/z)(a − ib)m+1dz +
∫
(νR2

m/z)(a − ib)m+1dz

where ν is a polynomial in (c + id) with no constant term. Now set (c + id) = 0.
Then the Lth derivative is given by the explicit formula

∂L E

∂t L
= 2m!(m

2

)! (m
2

)! Re
∫
(κR2

m/z)(a − ib)m+1dz

κ = (i)m(m − 1)2(m − 3)2 . . . 32 · 1

which is non-zero if a − ib �= 0 or in fact negative for appropriate choice of a − ib.
For L < m + 1, 2L < 2m + 2 implying that all lower order derivatives with

order L initial conditions φ := (a − ib)/z2 + (a + ib)z2 vanish.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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