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Learning Overhypotheses

Charles Kemp, Amy Perfors & Joshua B. Tenenbaum
{ckemp, perfors, jbt}@mit.edu

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Abstract

Inductive learning is impossible without overhypothe-
ses, or constraints on the hypotheses considered by the
learner. Some of these overhypotheses must be innate,
but we suggest that hierarchical Bayesian models help
explain how the rest can be acquired. The hierarchi-
cal approach also addresses a common question about
Bayesian models of cognition: where do the priors come
from? To illustrate our claims, we consider two specific
kinds of overhypotheses — overhypotheses about fea-
ture variability (e.g. the shape bias in word learning) and
overhypotheses about the grouping of categories into on-
tological kinds like objects and substances.

Compared to machine-learning algorithms, humans
are remarkable for doing so much with so little. A sin-
gle labelled example is enough for children to learn the
meanings of some words, and children develop grammat-
ical constructions that are rarely found in the sentences
they hear [2]. These inductive leaps appear even more
impressive when we consider the many interpretations of
the data that are logically possible but apparently never
entertained by human learners [5].

Several authors have proposed that the apparent ease
of human learning depends on constraints that guide in-
duction. This view has been applied to many cognitive
problems: the M-constraint and the shape bias help ex-
plain concept acquisition, universal grammar guides the
acquisition of linguistic knowledge [2], and the develop-
ment of folk biology is guided by the idea that living
kinds can be organized hierarchically. Constraints like
these may be called framework theories or schemata, but
we will borrow a term of Goodman’s and refer to them
as overhypotheses.1

Some overhypotheses must be innate, but others are
probably learned. For at least two reasons the acquisi-
tion of overhypotheses has received less attention than
it deserves. First, the authors who have argued most
convincingly for the importance of overhypotheses often
suggest that these overhypotheses are innate [2]. Sec-
ond, the study of overhypothesis acquisition raises some
formidable methodological challenges. Designing adult
experiments to address the problem is difficult, since

1Other authors distinguish between theories, schemata,
scripts, and overhypotheses. There are important differences
between these varieties of abstract knowledge, but it is useful
to have a single term (for us, overhypothesis) that includes
them all.

adults bring a lifetime of learning experience to any ex-
periment and have already distilled overhypotheses that
help them deal with most novel tasks. Infant experi-
ments are challenging for different reasons, but worth
pursuing because they can address the acquisition of
some of the most fundamental overhypotheses. For in-
stance, Smith and colleagues have explored the develop-
ment of the shape bias [9, 3], and Piaget and colleagues
have explored how abstract kinds of knowledge (such as
the concrete operations) can be acquired and used to
support many different learning tasks.

This paper argues that hierarchical Bayesian mod-
elling [4] is a formal approach that should help to ex-
plain the acquisition of overhypotheses in many differ-
ent domains. Hierarchical Bayesian models (HBMs) in-
clude representations at many levels of abstraction, and
show how knowledge can be acquired at levels that are
quite remote from the data given by experience. To illus-
trate our general claim, we describe one of the simplest
possible HBMs and use it to suggest how overhypothe-
ses about feature-variability are acquired and used to
support categorization. One such overhypothesis is the
shape bias, the expectation that shape is a feature that is
homogeneous within object categories. We also present
an extension of the basic model that groups categories
into ontological kinds (e.g. objects and substances) and
discovers the features and the patterns of feature vari-
ability that are characteristic of each kind.

The problem of overhypothesis acquisition is closely
related to a problem raised by Bayesian models of cog-
nition. These models usually rely on a prior distribu-
tion chosen by the modeller, and a natural response is
to wonder where the prior comes from. HBMs address
this question: in the framework we adopt, learning an
overhypothesis amounts to learning a prior distribution.
The two models we consider provide concrete examples
of how priors can be learned from data.

Overhypotheses and HBMs

Goodman introduces the idea of overhypotheses using
bags of colored marbles [5]. Suppose that S is a stack
containing many bags of marbles. We empty several bags
and discover that some bags contain black marbles, oth-
ers contain white marbles, but that each bag is uniform
in color. We now choose a new bag — bag n — and
draw a single black marble from the bag. This observa-
tion may lead us to endorse the following hypothesis:
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Figure 1: (a) A hierarchical Bayesian model. Each setting of (α,β) is an overhypothesis: β is the expected color
distribution for a category, and α represents the variability in color within each category. (b) A model with separate
overhypotheses for two ontological kinds meant to correspond loosely to objects and substances. α1 represents
knowledge about feature variability within the first ontological kind (object categories are homogeneous in shape but
not in material), and β1 captures the characteristic features of the first kind (objects tend to be solid).

H: All marbles in bag n are black.

If asked to justify the hypothesis, we might invoke the
following overhypothesis:

O: All bags in S are uniform in color.

Goodman gives a precise definition of ‘overhypothesis’
but we use the term more generally to refer to any form
of abstract knowledge that sets up a hypothesis space
at a less abstract level. By this criterion, O is an over-
hypothesis since it sets up a space of hypotheses about
bag n: it could be uniformly black, uniformly white,
uniformly green, and so on. To give a very different
example, Universal Grammar is an overhypothesis that
sets up a space of hypotheses (i.e. a space of possible
grammars) for language learning.

Hierarchical Bayesian models [4] capture this notion of
overhypothesis by allowing hypothesis spaces at several
levels of abstraction. We give an informal introduction
to this modelling approach, leaving all technical details
for the next section. Suppose that we are given a body
of data, and we wish to account for a certain cognitive
ability. In Goodman’s case, the data are observations
of several bags (yi indicates the observations for bag i)
and we are interested in the ability to predict the color
of next marble to be drawn from bag n. The first step
is to identify a kind of knowledge (level 1 knowledge)
that explains the data and that supports the ability of
interest. In Goodman’s case, level 1 knowledge is knowl-
edge about the color distribution of bags (θi indicates
the color distribution for the ith bag).

We then ask how the level 1 knowledge can be ac-
quired, and the answer will make reference to a more
abstract body of knowledge (level 2 knowledge). For the
marbles scenario, level 2 knowledge is knowledge about
the distribution of the θ variables. As described in the
next section, this knowledge can be represented using
two parameters, α and β (Figure 1a). Roughly speak-
ing, α captures the extent to which individual bags are
uniform in colour, and β captures the average color dis-
tribution across the entire stack of bags. If we now go
on to ask how the level 2 knowledge might be acquired,
the answer will rely on a body of knowledge at an even

higher level, level 3. In Figure 1a, this knowledge is rep-
resented by λ, which captures prior knowledge about the
values of α and β. The parameter λ and the pair (α,β)
are both overhypotheses, since each sets up a hypothesis
space at the next level down. We will assume that the
level 3 knowledge is specified in advance, and show how
an overhypothesis can be learned at level 2.

Within cognitive science, linguists have provided the
most familiar example of this style of model build-
ing. Language comprehension can be explained using
structural descriptions of sentences (level 1 knowledge).
Structural descriptions, in turn, can be explained with
reference to a grammar (level 2 knowledge), and the ac-
quisition of this grammar can be explained with refer-
ence to Universal Grammar (level 3 knowledge). There
are few settings where cognitive modellers have gone be-
yond three levels, but there is no principled reason to
stop at level 3. Ideally, we should continue adding levels
until the knowledge at the highest level is simple enough
or general enough that it can be plausibly assumed to
be innate.

As the grammar-learning example suggests, it has long
been known that hierarchical models are capable in prin-
ciple of explaining the acquisition of overhypotheses.
The value of hierarchical Bayesian models in particu-
lar is that they explain how overhypotheses can be ac-
quired by rational statistical inference. Given observa-
tions at the lowest level of a HBM, statistical inference
can be used to compute posterior distributions over en-
tities at the higher levels. In the model of Figure 1a,
for instance, acquiring an overhypothesis is a matter of
acquiring knowledge at level 2. The posterior distribu-
tion p(α,β|y) represents a normative belief about level
2 knowledge — the belief, given the data y, that most
bags are close to uniform in color.

We have argued that HBMs go beyond previous hierar-
chical models proposed by cognitive scientists, but they
also represent an advance over the standard Bayesian
models used in cognitive science. A standard Bayesian
model has two levels of knowledge: the elements in its
hypothesis space represent level 1 knowledge, and the
prior (generally fixed) represents knowledge at level 2.
A common objection to Bayesian modelling is that pri-
ors can be chosen to approximate almost any pattern
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Figure 2: The 2-dimensional Dirichlet distribution serves
as a prior on θ, the color distribution of a bag of marbles.
Let θ2 be the proportion of black marbles within the bag.
Shown here are distributions on θ2 when the parameters
of the Dirichlet distribution (α and β) are systematically
varied. When α is small, most bags are near-uniform in
color (θ2 is close to 0 or close to 1). When α is large, θ2

is expected to be close to β2.

of data, and that the success of a Bayesian model de-
pends critically on the modeller’s ability to choose the
right prior. HBMs disarm this objection by showing that
knowledge at level 2 need not be specified in advance, but
can be learned from raw data. Of course, the prior at
the highest level must still be specified in advance, but
the ultimate goal is to design models where this prior is
simple enough to be unobjectionable.

Computational Theory

We now describe one formal instantiation of the model
in Figure 1a. There may be other ways to formalize over-
hypotheses about feature variability, but ours is perhaps
the simplest account of how these overhypotheses can
be acquired and used to guide learning at lower levels.
Suppose we are working with a set of k colors. Initially
we set k = 2 and use white and black as the colors. Let
θi indicate the true color distribution for the ith bag in
the stack: if 60% of the marbles in bag 7 are black, then
θ7 = [0.4, 0.6]. Let yi indicate a set of observations of
the marbles in bag i. If we have drawn 5 marbles from
bag 7 and all but one are black, then y7 = [1, 4].

We assume that yi is drawn from a multinomial distri-
bution with parameter θi: in other words, the marbles
responsible for the observations in yi are drawn inde-
pendently at random from the ith bag, and the color of
each depends on the color distribution θi of that bag.
The vectors θi are drawn from a Dirichlet distribution
parameterized by a scalar α and a vector β. Here β
represents the expected distribution of colors across the
stack and α captures the notion of feature variability
(Figure 2). The larger the value of α, the more likely
that the color distribution for any given bag will be close
to the vector β. When α is small, however, each individ-
ual bag is likely to be near-uniform in color, and β will
determine the relative proportions of ‘mostly black’ and
‘mostly white’ bags.

Each possible setting of (α,β) is an overhypothesis. In
order to discover values for these variables, we need prior
distributions on β and α. We use a uniform distribution

(Dirichlet(1)) on β and an exponential distribution with
mean λ on α (Figure 3a). For all simulations in this
paper we set λ = 1.

This model is known to statisticians as a Dirichlet-
multinomial model [4]. Using statistical notation, it can
be written as:

α ∼ Exponential(1)

β ∼ Dirichlet(1)

θi ∼ Dirichlet(α,β)

yi |ni ∼ Multinomial(θi)

where ni is the number of observations for bag i. As
written, the model assumes we are working with a sin-
gle dimension — for Goodman, marble color. Perhaps,
however, some marbles are made from metal and others
are made from glass. We deal with multiple dimensions
by assuming that each dimension is independently gen-
erated according to the model, and introducing separate
values of α and β for each dimension. When working
with multiple features, we often use α to refer to the col-
lection of α values along all dimensions, and β for the
set of all β vectors.

To fit the model to data we assume that counts y
are observed for one or more bags, and use a Markov
chain Monte Carlo (MCMC) scheme to draw a sample
from p(α,β|y), the posterior distribution on (α,β). Fig-
ures 3b and 3c show posterior distributions on α and
β for two sets of counts. Predictions about θnew, the
color distribution of a new, sparsely observed bag can
be computed by calculating the mean prediction made
by all pairs (α,β) in the MCMC sample. Note that each
possible setting of (α,β) specifies a prior distribution on
θnew. By showing how knowledge about (α,β) can be
acquired, we therefore show how prior distributions can
be acquired.

Modelling behavioral data

Since Goodman, psychologists have confirmed that
adults [8] and children [7] have overhypotheses about
feature variability, and use them to make inductive leaps
given very sparse data. Nisbett et al. [8] asked subjects
to imagine they were exploring an island in the South-
eastern Pacific. As part of the task, subjects were told
that they had encountered a single member of the Bar-
ratos tribe, and that the tribesman was brown and obese.
Based on this single example, subjects concluded that
most Barratos were brown, but gave a much lower es-
timate of the proportion of obese Barratos (Figure 3d).
When asked to justify their responses, subjects often said
that tribespeople were “homogeneous with respect to
color” but “heterogeneous with respect to body weight.”

To apply our model to this task, we replace bags of
marbles with tribes. Suppose we have observed 20 mem-
bers from each of 20 tribes. Half the tribes are brown
and the other half are white, but all of the individuals in
a given tribe share the same skin color. Given these data,
the model learns a posterior distribution on α indicating
that α is probably small, which means that skin color
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Figure 3: (a-c) Distributions on log(α) and β given three
patterns of data: (a) before any data have been observed;
(b) after observing 10 all-white bags and 10 all-black
bags; (c) after observing 20 mixed bags inspired by the
obesity condition of the Barratos task. The final row
shows beliefs about the color distribution (θnew) of a new
bag from which a single black marble has been drawn.
After 20 bags that are either all white or all black (b),
the model realizes that most bags are near-uniform in
color (α is small), and that about half of these bags are
black (β2 is around 0.5). These posterior distributions
allow the model to predict that nearly all the marbles
in the new, sparsely observed bag will be black (θ new

2
is

close to 1). (d) Generalizations about a new tribe after
seeing 1, 3, or 20 obese, brown-skinned individuals from
that tribe. Human generalizations are replotted from
Nisbett et al. [8].

tends to be homogeneous within tribes (Figure 3b). We
can also make predictions about a sparsely observed new
tribe: having observed a single, brown-skinned member
of a new tribe, the posterior distribution on θnew indi-
cates that most members of the tribe are likely to be
brown (Figures 3b and 3d).

Suppose now that obesity is a feature that varies
within tribes: a quarter of the 20 tribes observed have
an obesity rate of 10%, and the remaining quarters have
rates of 20%, 30%, and 40%. Obesity is represented in
our model as a second binary feature, and the posterior
distributions on α and β (Figure 3c) indicate that obe-
sity varies within tribes (α is high), and that the base
rate of obesity is around 30% (β2 is around 0.3). Again,
we can use these posterior distributions to make predic-
tions about a new tribe, and our model now requires
many observations before it concludes that most mem-
bers of the new tribe are obese (Figure 3b).
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Figure 4: (a) Data based on Smith et al. [9]. Each col-
umn represents an object, and there are 10 possible col-
ors, textures, and shapes, and 2 possible sizes. First and
second-order generalization were tested using exemplars
T1 and T2. (b) Generalizations for the data in (a). Three
possible matches were provided for each exemplar. The
plot shows probabilities (normalized) that each match
belongs to the same category as the exemplar. The
model makes exact predictions about these probabilities:
we computed 30 MCMC estimates of these predictions,
and the error bars represent the standard error of the
mean.

Novel feature values

Our model of the Barratos task does not address an im-
portant kind of reasoning that overhypotheses support:
reasoning about new feature values. At least two over-
hypotheses might be induced from the data in Figure 1a:
the first states that all bags are uniform in color, and the
second states that every bag is entirely white or entirely
black. These two overhypotheses have very different con-
sequences: for example, only the first can handle a case
where a single green marble is drawn from a new bag.

Many real-world problems involve inferences about
novel features. Children know, for example, that ani-
mals of the same species tend to make the same sound.
Observing one horse neigh is enough to conclude that
most horses neigh, even though a child may never have
heard an animal neigh before. Similarly, children show a
“shape bias:” they know that shape tends to be homoge-
neous within object categories. Given a single exemplar
of a novel object category, children extend the category
label to similarly shaped objects ahead of objects that
share the same texture or color as the exemplar.

The model in Figure 1a deals naturally with infer-
ences like these. We illustrate using stimuli inspired by
the work of Smith et al. [9]. In their second experiment,
Smith et al. [9] trained 17-month olds on four novel cat-
egories with two exemplars each. Category labels were
provided during training. Within each category, the two
exemplars had the same shape but differed in size, tex-
ture and color (Figure 4a). After training, the authors
tested first-order generalization by presenting T1, an ex-
emplar from one of the training categories, and asking
children to choose another exemplar from the same cat-
egory as T1. Three possible matches were provided, each
of which matched T1 in exactly one feature (shape, color
or size). Children preferred the shape match, showing
that they were sensitive to feature distributions within a
known category. Smith et al. [9] also tested second-order
generalization by presenting children with T2, an exem-
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bag (c) Data set with 2 samples per bag

plar from a novel category. Again, children preferred the
shape match, revealing knowledge that shape in general
is a reliable indicator of category membership. Note that
this result depends critically on the training summarized
by Figure 4a: children of this age do not normally reveal
a shape bias on tests of second-order generalization.

We supplied our model with counts yi computed from
the feature vectors in Figure 4a. The key modelling step
is to allow for more values along each dimension than
appear in the training set. We allowed for 10 shapes, 10
colors, 10 textures and 2 sizes. For example, the count
vector y1 says that the observed exemplars of category 1
include 2 objects with shape value 1 and no objects with
shape value 10. This policy allows the model to han-
dle shapes, colors and textures it has never seen during
training, but assumes, of course, that the model is able
to recognize a novel shape as a kind of shape, a novel
color as a kind of color, and so on.

Figure 4b shows the patterns of generalization pre-
dicted by the model. Smith et al. [9] report that shape
matches are chosen 88% of the time given exemplar T1,
and 70% of the time given exemplar T2. The model
reproduces this general pattern: shape matches are pre-
ferred in both cases, and are preferred more strongly
when the exemplar belongs to a familiar category.

Smith et al. [9] also measured real-world generaliza-
tion by tracking vocabulary growth over an eight week
period. They showed that experience with the eight ex-
emplars in Figure 4a led to a significant increase in the
number of object names used by children. Our model
helps to explain this striking result. Even though the
training set includes only four categories, the results in
Figure 4b show that it contains enough statistical infor-
mation to establish or reinforce the shape bias. Similarly,
our model explains why providing only two exemplars
per category is sufficient. In fact, if the total number of
exemplars is fixed, our model predicts that the best way
to teach the shape bias is to provide just two exemplars
per category. We illustrate by returning to the marbles
scenario.

Each point in Figure 5 represents a simulation where
64 observations of marbles are evenly distributed over
some number of bags. The marbles drawn from any
given bag are uniform in color — black for half of the
bags and white for the others. When 32 observations

are provided for each of two bags, the model has strong
evidence about the color distribution of each bag: one
is mostly black and the other is mostly white. The case
where two observations are provided for each of 32 bags
represents the other extreme. Now the evidence about
the composition of any single bag is weak, but taken to-
gether, these observations provide strong support for the
idea that α is low and most bags are homogeneous.

The U-shaped curve in Figure 5 is a novel prediction
of our model that could be tested in developmental ex-
periments. More generally, the curve illustrates how a
learner might become relatively certain about an overhy-
pothesis (e.g. the value of α) even though she is uncertain
about the individual entities described by the overhy-
pothesis (e.g. the θ values for categories when only two
exemplars per category are observed). This insight ap-
pears relevant to many learning problems: to give just
one additional example, a hierarchical model of grammar
induction may be able to explain how a learner becomes
confident about some aspect of a grammar even though
most of the individual sentences that support this con-
clusion are poorly understood.

Discovering ontological kinds

The model in Figure 1a is a simple HBM that acquires
something like the shape bias, but to match the capaci-
ties of a child it is necessary to apply the shape bias se-
lectively — to object categories, for example, but not to
substance categories. Selective application of the shape
bias appears to demand knowledge that categories are
grouped into ontological kinds and that there are dif-
ferent patterns of feature variability within each kind.
Before the age of three, for instance, children appear to
know that shape tends to be homogeneous within ob-
ject categories but heterogeneous within substance cat-
egories, that color tends to be homogeneous within sub-
stance categories but heterogeneous within object cate-
gories, and that both shape and texture tend to be ho-
mogeneous within animate categories.

Figure 1b shows how we can give our model the ability
to discover ontological kinds. The model assumes that
categories may be grouped into ontological kinds, and
that each kind is associated with a different α and β.
The model, however, is not told which categories belong
to the same kind, and is not even told how many differ-
ent kinds it should look for. Instead, we give it a prior
distribution on the partition of categories into kinds. In-
tuitively, this prior should assign some probability to all
possible category partitions, but favor the simpler par-
titions — those that use a small number of kinds. We
satisfy both criteria using a prior generated by a Chinese
Restaurant Process [1].

The new model can be written as:

z |ncat ∼ CRP(γ)

αk ∼ Exponential(λ)

βk ∼ Dirichlet(1)

θi ∼ Dirichlet(αziβzi)

yi |ni ∼ Multinomial(θi)
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where ncat is the number of categories, γ is the concen-
tration parameter for the CRP, zi is the kind label for
category i and there is a separate αk and βk for each
ontological kind k.

Jones and Smith [6] have shown that training young
children on a handful of suitably structured categories
can promote the acquisition of ontological knowledge.
We gave our model a data set of comparable size (Fig-
ure 6a). During training, the model saw two exemplars
from each of four categories: two object categories and
two substance categories. Exemplars of each object cat-
egory were solid, matched in shape, and differed in mate-
rial and size. Exemplars of each substance category were
non-solid, matched in material, and differed in shape and
size. Second-order generalization was tested using exem-
plars from novel categories — one test exemplar (S) was
solid and the other (N) was not. Figure 6b shows that
the model chooses a shape match for the solid exemplar
and a material match for the non-solid exemplar.

Figure 6c confirms that the model correctly groups
the stimuli into two ontological kinds: object categories
and substance categories. This discovery is based on the
characteristic features of ontological kinds (β) as well
as patterns of feature variability within each kind (α).
If the object categories are grouped into kind k, αk in-
dicates that shape is homogeneous within categories of
that kind, and βk indicates that categories of that kind
tend to be solid. The β parameter, then, is responsi-
ble for the inference that the test exemplar S should be
grouped with the two object categories, since all three
categories contain solid objects.

Discussion
We presented hierarchical Bayesian models that help
explain the acquisition of the shape bias, and of over-
hypotheses about feature variability within ontological
kinds. We know of no previous attempts to provide ratio-
nal computational theories of the acquisition of the shape
bias, or of other overhypotheses about feature variabil-
ity. Colunga and Smith [3] present a connectionist model
that acquires knowledge of this sort, but our approach
is different in emphasis and explanatory effect. We pro-
vided a computational theory but have not attempted to
specify the psychological mechanisms by which it might
be implemented, and Colunga and Smith [3] describe
a process model but do not provide a rational compu-
tational theory. A second difference is that our prob-

abilistic approach extends naturally to contexts where
structured representations are required: computational
linguists, for example, work with probabilistic grammars
that generate parse trees. It is less clear how a connec-
tionist approach might deal with representations more
complex than lists of features.

Although we have argued that overhypotheses can be
acquired by HBMs, we do not claim that overhypotheses
can be generated out of thin air. Any HBM will assume
that the process by which each level is generated from
the level above is known, and that the prior at the top-
most level is provided. Any account of induction must
rely on some initial knowledge: the real question for a
learning framework is whether it allows us to build mod-
els that require no initial assumptions beyond those we
are willing to make. Whether the hierarchical Bayesian
approach will meet this challenge is not yet clear, but it
deserves to be put to the test.
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