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We report a study of the process�� ! X ! �c�
þ��, whereX stands for one of the resonances�c2ð1PÞ,

�cð2SÞ,Xð3872Þ,Xð3915Þ, or�c2ð2PÞ. The analysis is performedwith a data sample of 473:9 fb�1 collected

with the BABAR detector at the PEP-II asymmetric-energy electron-positron collider. We do not observe a

significant signal for any channel, and calculate 90% confidence-level upper limits on the products of

branching fractions and two-photon widths �X!��BðX ! �c�
þ��Þ: 15.7 eV for �c2ð1PÞ, 133 eV for

�cð2SÞ, 11.1 eV for Xð3872Þ (assuming it to be a spin-2 state), 16 eV for Xð3915Þ (assuming it to be a

spin-2 state), and 18 eV for �c2ð2PÞ. We also report upper limits on the ratios of branching fractions

Bð�cð2SÞ!�c�
þ��Þ=Bð�cð2SÞ!K0

SK
þ��Þ<10:0 and Bð�c2ð1PÞ ! �c�

þ��Þ=Bð�c2ð1PÞ !
K0

SK
þ��Þ< 32:9 at the 90% confidence level.

DOI: 10.1103/PhysRevD.86.092005 PACS numbers: 13.25.Gv, 14.40.Pq

Two-photon fusion events provide a useful production

mode to study charmonium states with quantum numbers

JPC ¼ 0�þ; 2�þ; 4�þ; . . . ; 3þþ; 5þþ; . . . [1,2]. Di-pion

transitions among these states have been searched for

only in the case of �cð2SÞ ! �c�
þ�� [3], in contrast to

the narrower vector states, where di-pion transitions have

been studied extensively. In particular, the transition am-

plitude for �cð2SÞ ! �c�
þ�� [4] is expected [5] to have
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the same approximately linear dependence on the squared

invariant mass of the di-pion system as the c ð2SÞ !
J=c�þ�� decay [6]. Phase-space integration of the

squared amplitude, evaluated for the peak masses M�c

and M�cð2SÞ [1] of the �c and �cð2SÞ, respectively, yields
�ð�cð2SÞ!�c�

þ��Þ=�ðc ð2SÞ!J=c�þ��Þ�2:9. This

leads to the branching fraction prediction Bð�cð2SÞ !
�c�

þ��Þ ¼ ð2:2þ1:6
�0:6Þ%, where the uncertainty is due to

the uncertainty on the width of the �cð2SÞ [1]. This decay
may be further suppressed due to the contribution of the

chromomagnetic interaction to the decay amplitude [7].
In recent years, experiments have reported evidence for

charmoniumlike states, such as the Xð3872Þ [8] and
Yð4260Þ [9,10], which do not fit well into the conventional
c �c picture. This has prompted much theoretical activity
and proposals for new models [11]. Several studies of these
states have been performed with the J=c�þ�� final state
[9,12], but no search using the�c�

þ�� final state has been
conducted. Such a search may shed light on the quantum
numbers or the internal dynamics of these states. In particu-
lar, it has been suggested [13] that if the Xð3872Þ is the 11D2

state �c2, then the branching fraction BðXð3872Þ !
�c�

þ��Þ could be significantly larger than BðXð3872Þ !
J=c�þ��Þ. The quantum numbers JPC ¼ 2�þ of the �c2

are consistent with the results of an angular analysis of
Xð3872Þ ! J=c�þ�� [14] and would allow production
of Xð3872Þ in two-photon fusion.

We present herein a study of the process �� ! X !
�c�

þ��, where X is one of the resonances �c2ð1PÞ,
�cð2SÞ, Xð3872Þ, Xð3915Þ, or �c2ð2PÞ, and the �c is
reconstructed in the final state K0

SK
þ�� [15].

The data sample was collected with the BABAR detector
at the PEP-II asymmetric-energy eþe� collider located at
the SLAC National Accelerator Laboratory. It consists of
429:1� 1:9 fb�1 collected at the energy of the �ð4SÞ
resonance, constituting the entire BABAR �ð4SÞ data set,
and 44:8� 0:2 fb�1 collected about 40 MeV below the
�ð4SÞ resonance. The BABAR detector is described in
detail in Ref. [16].

Samples of Monte Carlo (MC) simulated events are
analyzed with the same reconstruction and analysis proce-
dures as the data sample, following a GEANT4-based [17]
detector simulation [16]. Simulated background samples
include eþe� ! q �q continuum events ðq ¼ u; d; s; cÞ gen-
erated with JETSET [18], �ð4SÞ ! B �B decays generated
with EVTGEN [19] and JETSET, and eþe� ! �þ�� events
generated with KK [20]. In order to study initial-state-
radiation (ISR) background and the invariant-mass resolu-
tion, a sample of eþe� ! �c ð2SÞ events with c ð2SÞ !
J=c�þ�� and J=c ! K0

SK
þ�� is generated with

EVTGEN. The GAMGAM [21] generator is used to generate

signal event samples for each of the X states studied, with
the decay X ! �c�

þ�� simulated with an amplitude that
is uniform throughout the decay phase space, independent

of the final-state kinematic variables. The decay �c !
K0

SK
þ�� is generated with a uniform amplitude or with

equal and incoherent K�
0ð1430Þ�Kþ and �K�

0ð1430Þ0K0

contributions. The GAMGAM generator is also used to gen-
erate �� ! �c ! K0

SK
þ�� events.

The analysis is performed with two data samples. The
sample used to search for the process �� ! X !
�c�

þ�� is referred to as the ‘‘main sample.’’ Properties
of the �c and its decay into K0

SK
þ�� are studied with a

separate ‘‘control sample’’ of �� ! �c ! K0
SK

þ��
events. For the main (control) sample, we select events
that contain six (four) charged-particle tracks.
For both samples, charged kaon candidates are identified

using likelihood values calculated from measurements of
specific energy loss and information from a detector of
internally reflected Cherenkov radiation. All other tracks
are assumed to be pions. A K0

S candidate is reconstructed

by fitting a �þ�� pair to a common vertex, with invariant
mass in the range 0:491<mð�þ��Þ< 0:503 GeV=c2.
A kinematic fit is performed, constraining mð�þ��Þ to
the nominal K0

S mass [22]. An �c ! K0
SK

þ�� decay can-

didate is reconstructed by combining a K0
S candidate with a

Kþ and a �� and requiring the resulting invariant mass to
lie in the range 2:77<mðK0

SK
þ��Þ< 3:22 GeV=c2. In

the main sample, the decay X ! �c�
þ�� is reconstructed

by combining an �c candidate with the remaining two
tracks in the event. A kinematic fit is applied, requiring
the X-candidate decay vertex to be consistent with the
eþe� interaction region. The angle �K0

S
between the K0

S

momentum vector and the line connecting the �c and the
K0

S decay vertices is required to satisfy cos�K0
S
> 0:99.

In the control sample, we require the polar angle (the
angle with respect to the beam axis) ��c

of the�c candidate

to satisfy j cos��c
j> 0:99 and the transverse momentum of

the �c candidate to satisfy pT
�c

< 0:5 GeV=c, both in the

center-of-mass (c.m.) frame of the eþe� system. The extra
energy in the event, defined as the total energy in calo-
rimeter clusters not associated with the identified tracks, is
required to satisfy Eex < 0:5 GeV in the c.m. frame. The
mðK0

SK
þ��Þ distribution of the selected control-sample

events, shown in Fig. 1(a), exhibits clear �c and J=c
peaks, with the J=c produced in ISR events. In the main
sample, continuum background is strongly suppressed with
the requirements j cos�Xj> 0:85, pT

X < 1:5 GeV=c, and
Eex < 0:8 GeV, where cos�X and pT

X are the polar angle

and transverse momentum of the X candidate. In addition,
the total visible energy in the event, obtained from all
charged tracks and calorimeter clusters, is required to
satisfy Evis < 10 GeV in the laboratory frame.
In the main sample, we suppress QED background by

requiring R2< 0:7, where R2 is the ratio of the second and
zeroth Fox-Wolfram moments [23]. We suppress back-
ground due to ISR events with a requirement on the miss-
ing mass squared m2

miss � ðpeþe� � pXÞ2 > 10 GeV2=c4,
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where peþe� (pX) is the total 4-momentum of the beam
particles (X candidate).

Additional background suppression in the main sample
is obtained by using the Dalitz plot for the �c candidates.
The Dalitz plot is shown in Fig. 1(b) for control-sample
events in the �c peak region 2:94<mðK0

SK
þ��Þ<

3:02 GeV=c2, and in Figs. 1(c) and 1(d) for main-sample
events in the lower and upper mðK0

SK
þ��Þ sidebands

2:8<mðK0
SK

þ��Þ< 2:9 GeV=c2 and 3:05<
mðK0

SK
þ��Þ< 3:2 GeV=c2, respectively. These distribu-

tions indicate that true �c ! K0
SK

þ�� decays often pro-

ceed via intermediate K�
0ð1430Þ states, while background

events contain K�ð892Þ decays and random combinations.
Taking advantage of this difference to suppress non-�c

background in the main sample, we require jm2ðK0
S�

�Þ�
M2

K�
0
ð1430Þ� j<0:5GeV2=c4 or jm2ðKþ��Þ�M2

K�
0ð1430Þ0

j<
0:5GeV2=c4, and exclude events that satisfy jm2ðK0

S�
�Þ�

M2
K�ð892Þ� j<0:35GeV2=c4 or jm2ðKþ��Þ �M2

K�ð892Þ0 j<
0:2 GeV2=c4, where MR is the peak mass of resonance R
[22]. The Dalitz-plot region selected by these criteria is
enclosed within the solid lines in Figs. 1(b)–1(d). The

criteria are the result of maximizing "DP
�c

=
ffiffiffiffiffiffiffiffiffi
"DP
SB

q
, where

"DP
�c

¼ ð63:5� 3:2Þ% is the efficiency of the Dalitz-plot

requirements for �c decays, determined by fitting the
mðK0

SK
þ��Þ distribution of the control sample, and

"DP
SB ¼ ð30:74� 0:21Þ% is the corresponding efficiency

for main-sample events in the mðK0
SK

þ��Þ sidebands.

The �D0 ! Kþ�� band, evident in Fig. 1(c), becomes
insignificant following a neural-network requirement,
described below. Therefore, no explicit effort is made to
remove this source of background.
Further background suppression is achieved by combin-

ing six variables into a neural-network discriminator. Two
of the variables are Eex and p

T
X. Each of the remaining four

variables is a discrete output value of a kaon- or pion-
identification algorithm applied to one of the charged-
particle tracks that is not a daughter of the K0

S candidate.

The distributions of the neural-network input variables are
shown in Figs. 2(c) and 2(d). The neural network is trained
with signal MC and main-sample background events in the
Dalitz-plot sideband region m2ðKþ��Þ> 2:5 GeV2=c4,
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FIG. 1 (color online). (a) The mðK0
SK

þ��Þ distribution for the
control sample. The vertical lines indicate the �c peak mass
region. Also shown are the K0

SK
þ�� Dalitz plots for (b) control-

sample events in the �c peak mass region and for main-sample
events in the (c) lower and (d) upper �c mass sidebands. Solid
black lines indicate the regions defined by the Dalitz-plot
selection criteria. The dotted blue box in the upper left corner
of (c) and (d) indicates the Dalitz-plot-sideband background
region used for the neural-network training.
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FIG. 2 (color online). Signal (unhatched) and background
(hatched) distributions of the neural-network input variables
(a) Eex, (b) pT

X, and the (c) kaon and (d) pion identification
variables. (e) The distributions of the neural-network output
variable VNN. (f) The mðK0

SK
þ��Þ distribution of the data

with the step-1 fit function overlaid.
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m2ðK0
S�

�Þ< 1:5 GeV2=c4, indicated by the dashed boxes

in Figs. 1(c) and 1(d). This region is chosen since it
contains only ð3:40� 0:66Þ% of �c decays in the control
sample. We find only insignificant differences in the neural-
network signal-to-background separation when using dif-
ferent signal samples or the mirror Dalitz-plot region
m2ðKþ��Þ< 1:5 GeV2=c4, m2ðK0

S�
�Þ> 2:5 GeV2=c4

for the background. The distributions of the output variable
VNN are shown in Fig. 2(e) for signal and background
events. We find the optimal selection on this variable to
be VNN > 0:84. The signal efficiency of this selection is
72% for the �cð2SÞ, and varies by up to 4%, depending on
theXmass. The background efficiency is ð10:4� 0:2Þ% for
the neural-network training region and ð7:4� 0:2Þ% for the
mirror region.

We find 2863 main-sample events that satisfy all the
selection criteria, with only about 700 events expected
from non-�� background MC. We conclude that the
majority of the background is due to �� events, for which
we have no generic generator. More than one X candidate
is reconstructed in 3.8% of the events. In these cases, we
select the candidate for which m2ðK0

S�
�Þ or m2ðKþ��Þ is

closest to the K�
0ð1430Þ peak.

In addition to these samples, an ISR-produced sample of
c ð2SÞ ! J=c�þ�� events is used to evaluate a system-
atic uncertainty associated with the detector resolution.
This sample is selected in the same way as the main
sample, except that the neural-network and Dalitz-plot
selections are not applied, the K0

SK
þ�� invariant mass is

required to be between 3.0 and 3:2 GeV=c2, andm2
miss must

be less than 1 GeV2=c4.
We define four categories of events in the main sample:

signal corresponds to �� ! X ! �c�
þ�� events; com-

binatorial background (CB), which is by far the most
copious background, arises from random combinations of
final-state particles; events with a true �c ! K0

SK
þ��

decay and two pions not originating from an X resonance
decay are categorized as �c-peaking background (�cB);
X-peaking background (XB) corresponds to decays X !
K0

SK
þ���þ�� that do not proceed through an intermedi-

ate �c.
The extraction of the signal yield proceeds in two

steps. In step 1, we determine the values of the
mðK0

SK
þ��Þ-distribution parameters of the combinatorial

background from a one-dimensional fit to mðK0
SK

þ��Þ,
without any restrictions on mðK0

SK
þ���þ��Þ.

In step 2, we extract the signal yield for each X
resonance hypothesis from a two-dimensional fit to
the mðK0

SK
þ��Þ versus mðK0

SK
þ���þ��Þ distribution

for events in an mðK0
SK

þ���þ��Þ window around

the resonance peak. The fits use the unbinned, extended-
maximum-likelihood method and are performed with the
ROOFIT package [24].

From events in the mðK0
SK

þ��Þ sidebands, we observe
that all correlation between the mðK0

SK
þ���þ��Þ and

mðK0
SK

þ��Þ distributions for the combinatorial back-

ground is accounted for by the phase space
�ðmðK0

SK
þ��Þ, mðK0

SK
þ���þ��ÞÞ of the three-body

final state consisting of the �þ, ��, and the ðK0
SK

þ��Þ
system. This is used to construct the probability-density
function (PDF) [25] of the step-1 fit. This PDF is a function
of mðK0

SK
þ��Þ with mðK0

SK
þ���þ��Þ as a conditional

variable, and is given by

H ðm3jm5Þ ¼ N�c
H �c

ðm3Þ þ N
�c
H

�c
ðm3jm5Þ; (1)

where N�c
(N

�c
) is the number of events with (without) a

true �c ! K0
SK

þ�� decay. We have used the notation

m3 � mðK0
SK

þ��Þ and m5 � mðK0
SK

þ���þ��Þ for

brevity.
The PDF for non-�c events in Eq. (1) is

H
�c
ðm3jm5Þ ¼ P 2ðm3;a1; a2; m

0
3Þ�ðm3; m5Þ; (2)

where P 2ðm3; a1; a2; m
0
3Þ ¼ 1þ a1ðm3 �m0

3Þ þ a2ðm3 �
m0

3Þ2 is a second-order polynomial and m0
3 is a constant

offset set to 3:0 GeV=c2 in order to reduce correlations
between a1 and a2. Determination of the coefficients a1; a2
is the main purpose of the step-1 fit. The PDF for �c events
in Eq. (1) is

H �c
ðm3Þ ¼ W ðm3;M�c

;��c
; ~rm3

Þ; (3)

where W is a relativistic Breit-Wigner function
½ð ~m2

3�M2
�c
Þ2þM2

�c
�2
�c
��1 convolved with a detector-

resolution function Rðm3 � ~m3; ~rm3
Þ that depends on a

set of parameters ~rm3
and the difference between the mea-

sured m3 and the true invariant mass ~m3 of the K0
SK

þ��
system. The resolution function is the sum of two Crystal
Ball functions [26] with oppositely directed tails and com-
mon Gaussian-parameter values,

Rðx; ~rxÞ ¼ ðal þ arÞ exp½�ðx� �xÞ2=ð2�2Þ�
þ arTrðxÞ þ alTlðxÞ; (4)

where

TiðxÞ ¼
�
Ai½�=ðx0i � �xÞ�ni ; x > �xþ �i�

0; x � �xþ �i�
(5)

and we have defined x0i ¼ xþ �ðni=�i � �iÞ, and Ai ¼
ðni=�iÞni � expð��2

i =2Þ. In Eq. (4), the subscripts r and l
label the parameters of the right and left tails, respectively.
The values of the resolution-function parameters ~rm3

¼
ð �x; �; ni; �i; aiÞ are determined from fits to the signal MC
samples.
In addition to a1 and a2, the parameter determined in the

step-1 fit are the yields N�c
and N

�c
, and the massM�c

and

width ��c
of the �c peak. In order to obtain M�c

and ��c

from the data, the step-1 fit is performed simultaneously on
the main sample and the control sample. The PDF for the
control sample is
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H 0ðm3Þ ¼ N0
J=cW ðm3;MJ=c ;�Jc ; ~rm3

Þ
þ N0

�c
H �c

ðm3Þ þ N0
bgdP 2ðm3; a

0
1; a

0
2; m

0
3Þ:
(6)

Additional control-sample parameter values determined in
the fit are the peak J=c mass MJ=c , the background

parameters a01; a02, and the �c, J=c , and background event
yields N0

�c
, N0

Jc , and N0
bgd.

The mðK0
SK

þ��Þ distribution of the data and the step-1

PDF are shown in Fig. 2(f). The fitted parameter values are
a1¼1:24�0:19 ðGeV=c2Þ�1, a2¼0:2�1:4ðGeV=c2Þ�2,
N�c

¼ 50� 37, N0
�c

¼ 10350� 300, and N0
J=c ¼

1877� 90. The large relative uncertainties for a1 and a2
are the result of the near linearity of the mðK0

SK
þ��Þ

distribution and the correlation between the two parame-
ters, which is taken into account in the evaluation of
systematic uncertainties. The �c parameter values deter-
mined in the step-1 fit are ��c

¼ 31:7� 1:5 MeV=c2 and

M�c
¼ 2:98285� 0:00038 GeV=c2, where the uncertain-

ties are statistical only. These results are consistent with
previous measurements [22].

The PDF for the step-2 fit is a linear combination of the
PDFs of the four event types,

P ¼ NsigP sig þ NCBP CB þ N�cBP �cB þ NXBP XB: (7)

The signal PDF is a relativistic Breit-Wigner function
convolved with the resolution function, for both m3 and
m5:

P sigðm3; m5Þ ¼ H �c
ðm3ÞW ðm5;MX;�X; ~rm5

Þ; (8)

where MX and �X are the known mass and width of
the resonance of interest [1,22,27], and ~rm5

are the parame-

ters of the mðK0
SK

þ���þ��Þ resolution function

Rðm5 � ~m5; ~rm5
Þ, obtained from a fit to signal MC. The

combinatorial-background PDF is

P CBðm3; m5Þ ¼ H
�c
ðm3jm5ÞC2ðm5;b

CB
1 ; bCB2 Þ; (9)

where C2ðm5; b
CB
1 ; bCB2 Þ is a second-order Chebychev poly-

nomial with first- (second-)order coefficients bCB1 (bCB2 ).

The �c-peaking background PDF is

P�cBðm3; m5Þ ¼ H �c
ðm3ÞC1ðm5; b

�cB
1 Þ; (10)

where C1ðm5; b
�cB
1 Þ is a first-order Chebychev polynomial.

The X-peaking background PDF is

P XBðm3; m5Þ ¼ P 1ðm3; c
XB
1 ; m0

3ÞW ðm5;MX;�X; ~rm5
Þ;
(11)

where P 1ðm3; c
XB
1 ; m0

3Þ is a first-order polynomial. The

parameter values determined with the step-2 fit are the
four yields of Eq. (7) and the background shape parameters

bCB1 , bCB2 , b�cB
1 , and cXB1 .

The step-2 fit is performed four times in different
mðK0

SK
þ���þ��Þ windows, fitting for the (1) �c2ð1PÞ,

(2) �cð2SÞ, (3) Xð3872Þ and Xð3915Þ, or (4) Xð3872Þ and
�c2ð2PÞ resonances. A simultaneous fit to the three reso-
nances Xð3872Þ, Xð3915Þ, and �c2ð2PÞ is observed to be
unstable when tested with parametrized MC experiments,
due to the large number of fit parameters, small signal, and
large overlap of the Xð3915Þ and �c2ð2PÞ line shapes.
Therefore, we conduct fits (3) and (4) separately to test
for the existence of a signal for either set of line shape
parameters. The mðK0

SK
þ���þ��Þ and mðK0

SK
þ��Þ

distributions and fit functions are shown in Fig. 3. The
difference between the fit function of fit (3) and that of
fit (4) is almost indistinguishable within the thickness of
the curve in Fig. 3(f). The fitted signal yields are summa-
rized in Table I.
No significant signal or peaking background is observed

in any of the fits. However, a hint of X-peaking background
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FIG. 3 (color online). Distributions of (a),(c),(e) mðK0
SK

þ��Þ
and (b),(d),(f) mðK0

SK
þ���þ��Þ with the step-2 fit PDF over-

laid for the fit regions of the (a),(b) �c2ð1PÞ, (c),(d) �cð2SÞ, and
(e),(f) Xð3872Þ, Xð3915Þ and �c2ð2PÞ. The vertical dashed lines
in (f) indicate the peak mass positions of the Xð3872Þ, Xð3915Þ,
and �c2ð2PÞ [22].
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is visible in the �c2ð1PÞ and �cð2SÞ fits of Figs. 3(b) and
3(d), with event yields of 33� 14 and 47� 24, respec-
tively, where the uncertainties are statistical only. This
may be due to decays of �c2ð1PÞ and �cð2SÞ into
K0

SK
þ���þ�� [28], which are suppressed in this

analysis by the 2:77<mðK0
SK

þ��Þ< 3:22 GeV=c2

requirement. Fits (3) and (4) yield insignificant
X-peaking background, roughly canceling the negative
signal yields. The results shown in Table I for the
Xð3872Þ are obtained from fit (4). The Xð3872Þ yield
from fit (3) is 1.6 events lower than in fit (4). Since no
signal is observed for the Xð3915Þ or the �c2ð2PÞ, we
obtain a conservative upper limit on the yield of the
Xð3915Þ (�c2ð2PÞ) by fixing the �c2ð2PÞ (Xð3915Þ) yield
to zero.

We estimate systematic uncertainties on the signal yields
associated with the fit procedure by repeating the fits with
the variations described below and adding the different
uncertainties in quadrature. We account for uncertainties
in the X mass and width values by varying them within
their uncertainties [22]. This is the source of the largest
signal-yield systematic uncertainty, except for the �c2ð1PÞ.
The order of the polynomial in each PDF is varied to
account for uncertainties due to background modeling.
We vary the resolution-function Gaussian width [� in
Eq. (4)] by 2 MeV=c2 for themðK0

SK
þ��Þ PDF to account

for a difference between the J=c mass resolution in MC
and in the control sample, and by 0:9 MeV=c2 for the
mðK0

SK
þ���þ��Þ PDF due to a difference in the

c ð2SÞ mass resolution between MC and data. An addi-
tional uncertainty is evaluated by using the sum of three
Gaussians to define the resolution function. To address the
possibility that correlations between the m5 and m3 distri-
butions are not taken fully into account by the phase-space
factor �ðm3; m5Þ in Eq. (2), we replace the parameters ai
of Eq. (2) by aið1þ a00i m5Þ. The values of the parameters
a00i are found to be consistent with zero, and we conserva-
tively use their uncertainties to evaluate the systematic
uncertainty on the signal yield. The effect of not

accounting for phase-space correlations between m3 and
m5 in the signal and �c-peaking background PDFs is
determined to be small compared to other systematic
uncertainties, except for the �c2ð1PÞ, for which this uncer-
tainty is dominant and equals 2.4 events. Statistical uncer-
tainties from the step-1 fit are propagated to the step-2 fit,
accounting for correlations among the parameters.
We test the entire fit procedure using parametrized MC

experiments generated with the PDFs of Eqs. (1) and (7). A
bias of up to two events on the signal yield is found and used
as a correction that is accounted for in the values shown in
Table I. A systematic uncertainty on this correction is
evaluated by repeating this study after varying the gener-
ated signal yield by its statistical uncertainty in the data fit.
Since the dominant combinatorial background is distrib-

uted in phase space differently from signal and often con-
tains additional final-state particles, interference between
signal and background is expected to be relatively small. In
addition, the small signal yields make the evaluation of
such interference effects unreliable. Therefore, we do not
attempt to account for possible interference.
We evaluate systematic uncertainties on track and K0

S

reconstruction efficiencies, accounting for the momentum
and angular distribution of signal tracks, as well as on the
uncertainty of the Dalitz-plot requirement efficiency.
A 2% systematic uncertainty is assigned due to differences
between the distributions of the selection variables in
the control sample and in �� ! �c ! K0

SK
þ�� MC.

Differences between the data and MC distributions of the
particle-identification variables are studied using a high-
purity sample of D�þ ! �þD0, D0 ! K��þ events, and
found to have negligible impact on the efficiency.
The expected Dalitz-plot dependence of the X !

�c�
þ�� decay is unknown. However, we account for

uncertainties in this amplitude, which is uniform in our
simulated signal samples, by weighting events according to
ðm2ð��Þ � 4M2

�Þ2 [5], where m2ð��Þ is the squared di-
pion mass and M� is the �� mass. From the weighted
sample, we extract an efficiency correction of up to 4.6%

TABLE I. Results of the step-2 fits. For each resonance X, we show the peak mass and width used in the PDF (from Refs. [1,22,27]);
the mass range of the fit; the efficiency; the bias-corrected signal yield with statistical and systematic uncertainties; the product of the
�� ! X production cross section and X ! �c�

þ�� branching fraction, and the 90% C.L. upper limit (UL) on this product; the
product of the two-photon partial width ��� and the X ! �c�

þ�� branching fraction, and the 90% C.L. upper limit on this product.

For the Xð3872Þ and the Xð3915Þ we assume J ¼ 2.

�B (fb) ���B (eV)

Resonance MX (MeV=c2) �X (MeV) m5 range (GeV=c2) " (%) Nsig Central value UL Central value UL

�c2ð1PÞ 3556:20� 0:09 1:97� 0:11 3.500–3.612 3:60� 0:39 10:2þ7:7
�6:3 � 3:5 37þ28

�23 � 15 80 7:2þ5:5
�4:4 � 2:9 15.7

�cð2SÞ 3638:5� 1:7 13:4� 5:6 3.565–3.728 3:53� 0:35 17þ12�11 � 3 61þ44�41 � 16 123 65þ47�44 � 18 133

Xð3872Þ 3871:57� 0:25 3:0� 2:1 3.807–4.047 3:92� 0:38 �4:7þ7:9
�6:9 � 2:8�16þ26

�23 � 10 38 �4:5þ7:7
�6:7 � 2:9 11.1

Xð3915Þ 3915:0� 3:6 17:0� 10:4 3.807–4.047 3:79� 0:37 �13þ11
�11 � 7 �44þ38

�38 � 25 53 �13þ12
�12 � 8 16

�c2ð2PÞ 3927:2� 2:6 24� 6 3.807–4.047 3:75� 0:36 �15þ14
�13 � 4 �53þ49

�46 � 18 60 �16þ15
�14 � 6 18
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(incorporated into the values in Table I) and a systematic
uncertainty of the same magnitude.

Finally, we account for a 0.45% uncertainty on the
integrated luminosity, for the uncertainties on the K0

S, �c,

and �cð2SÞ branching fractions [22], and for MC-statistical
uncertainties.

The results are summarized in Table I. From the signal
yield Nsig of each resonance, the integrated luminosity L,

and the signal efficiency ", we compute the product �B ¼
Nsig=ðL"Þ of the eþe� ! Xeþe� production cross section

and the X ! �c�
þ�� branching fraction. We also evalu-

ate the results in terms of the product ���B, where ��� is

the two-photon width of the resonance, by utilizing the
GAMGAM generator to determine the cross section as a

function of ���. A 4% uncertainty is assigned to the

GAMGAM calculation [2]. Sincewe find no significant signal

for the X resonances, we calculate 90% confidence-level
(C.L.) Bayesian upper limits on these quantities, assuming
a Gaussian likelihood incorporating statistical and system-
atic uncertainties.

Using the efficiency-corrected yields for the �c2 and
�cð2SÞ from [1], we find the relative branching fractions

Bð�cð2SÞ ! �c�
þ��Þ

Bð�cð2SÞ ! K0
SK

þ��Þ ¼ 4:9þ3:5
�3:3 � 1:3� 0:8;

Bð�c2ð1PÞ ! �c�
þ��Þ

Bð�c2ð1PÞ ! K0
SK

þ��Þ ¼ 14:5þ10:9
�8:9 � 7:3� 2:5;

(12)

where the first uncertainty is statistical, the second is system-
atic, and the third is due to the uncertainty on Bð�c !
K0

SK
þ��Þ [22]. The 90%C.L. upper limits on the two ratios

in Eq. (12) are 10.0 and 32.9, respectively. Using
Bð�cð2SÞ!K0

SK
þ��Þ and Bð�c2ð1PÞ!K0

SK
þ��Þ from

Ref. [22], we obtain the 90% C.L. upper limitsBð�cð2SÞ!
�c�

þ��Þ<7:4% andBð�c2ð1PÞ ! �c�
þ��Þ< 2:2%.

In summary, we report a study of the process �� !
�c�

þ�� and provide, for the first time, upper limits on the
branching fractions of �c2ð1PÞ and �cð2SÞ decays to
�c�

þ�� relative to the branching fractions of the decays
into K0

SK
þ��. We also report upper limits on the products

�B and ���B for the �c2ð1PÞ, �cð2SÞ, Xð3872Þ, Xð3915Þ,
and �c2ð2PÞ resonances.
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