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ABSTRACT
Conventional estimators of the anisotropic power spectrum and two-point correlation function
(2PCF) adopt the ‘Yamamoto approximation’, fixing the line-of-sight of a pair of galaxies to that
of just one of itsmembers.Whilst this is accurate only to first-order in the characteristic opening
angle \max, it allows for efficient implementation via Fast Fourier Transforms (FFTs). This work
presents practical algorithms for computing the power spectrum and 2PCF multipoles using
pairwise lines-of-sight, adopting either the galaxymidpoint or angle bisector definitions. Using
newly derived infinite series expansions for spherical harmonics and Legendre polynomials,
we construct estimators accurate to arbitrary order in \max, though note that the midpoint and
bisector formalisms themselves differ at fourth order. Each estimator can be straightforwardly
implemented using FFTs, requiring only modest additional computational cost relative to
the Yamamoto approximation. We demonstrate the algorithms by applying them to a set of
realistic mock galaxy catalogs, and find both procedures produce comparable results for the
2PCF, with a slight preference for the bisector power spectrum algorithm, albeit at the cost
of greater memory usage. Such estimators provide a useful method to reduce wide-angle
systematics for future surveys.

Key words: cosmology: large-scale structure of Universe, theory – methods: statistical, data
analysis

1 INTRODUCTION

We have now entered the epoch of ‘precision cosmology’. In the coming years, the volume of cosmological data available will increase at a
prodigious rate, thanks to the advent of large spectroscopic surveys such as DESI (DESI Collaboration et al. 2016), Euclid (Laureĳs et al.
2011) and SPHEREx (Doré et al. 2014). As the number of observed galaxies grows, so too does the precision on fundamental parameters such
as the growth rate, energy densities and Hubble parameter. Given that we will soon be able to measure summary statistics at the sub-percent
level, it is vital to understand also their systematics to this precision, else we risk biasing our inference or losing effective survey volume.

Whilst there is growing interest in more complicated statistics (e.g., Gil-Marín et al. 2017; Slepian et al. 2017; Chudaykin & Ivanov
2019; Philcox et al. 2020; Samushia et al. 2021), the information content of future surveys will be dominated by the two-point correlator,
masquerading either as the configuration-space two-point correlation function (2PCF), b (r), or the Fourier-space power spectrum, 𝑃(k) (e.g.,
Beutler et al. 2017; Alam et al. 2017; eBOSS Collaboration et al. 2020). In a statistically isotropic universe, both of these will depend only the
distance between galaxies, be it 𝑟 = |r| or the momentum-space equivalent 𝑘 = |k|. In our Universe this is not the case, since redshift-space
distortions (RSD) impart a preferred origin to the observer (Kaiser 1987), sourcing additional cosmological information (e.g., Lesgourgues
& Pastor 2006; Weinberg et al. 2013).

To fully encapsulate RSD, two-point statistics should depend on the position vectors to the two galaxies in question, rather than just
a single length. Taking into account the various rotational symmetries, such a configuration can be specified by three degrees of freedom;
options include the separation 𝑟 (or 𝑘) and the angles between the separation vector and the line-of-sight (LoS) to each galaxy (e.g., Pápai &
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2 Philcox & Slepian

Szapudi 2008; Yoo & Seljak 2015; Castorina & White 2018) or the separation, the mean distance to the galaxy pair, and a single angle (e.g.,
Reimberg et al. 2016; Beutler et al. 2019). Unless our interest lies in the largest-possible scales (for instance in 𝑓NL-analyses), it is usually
sufficient to parametrize the two-point correlators by just two variables; the inter-galaxy distance 𝑟 or 𝑘 , and the angle of the galaxy separation
vector to a joint LoS, `. In this case, the functions can be robustly expanded as a Legendre series in `, and theory and observations simply
compared. Of course, any such approximation necessarily induces wide-angle effects on the largest scales, which are the subject of extensive
discussion in the literature (e.g., Hamilton 1992; Hamilton & Culhane 1996; Hamilton 1998; Zaroubi & Hoffman 1996; Szalay et al. 1998;
Szapudi 2004; Datta et al. 2007; Pápai & Szapudi 2008; Shaw & Lewis 2008; Bonvin & Durrer 2011; Raccanelli et al. 2014; Yoo & Seljak
2015; Slepian & Eisenstein 2015; Reimberg et al. 2016; Castorina &White 2018; Beutler et al. 2019). In general, the error in these approaches
depends on the characteristic opening angle \max, defined either as the galaxy pair opening angle in the maximum radial bin (2PCF) or the
survey opening angle (power spectrum). The dichotomy arises since the power spectrum depends on an integral over all galaxy pairs, whilst
the 2PCF only requires pairs separated by the scale of interest.

If the two-parameter formalism is adopted (as has become commonplace), an important question must be asked: how should one choose
the joint LoS to the galaxy pair? The early literature adopted a single LoS for the whole survey (e.g., Kaiser 1987; Hamilton 1992), which,
whilst simple to implement, incurs significant errors if the survey is wide. A more accurate prescription is to fix the LoS to the direction vector
of a single galaxy, in the ‘Yamamoto approximation’ (Yamamoto et al. 2006). Whilst this gives an error at O(\2max) for characteristic size
\max, which becomes important for DESI volumes (Sugiyama et al. 2019), it is straightforward to implement using Fast Fourier Transforms
(FFTs), thus is the approach found in most recent analyses (e.g., Scoccimarro 2015; Bianchi et al. 2015; Hand et al. 2017; Beutler et al. 2017;
Hand et al. 2018). Beyond this approximation, there are two appealing LoS choices: the angle between the galaxy midpoint and separation
vector (cf. Yamamoto et al. 2006; Scoccimarro 2015; Samushia et al. 2015; Bianchi et al. 2015) and the angle bisector (cf. Szalay et al. 1998;
Matsubara 2000; Szapudi 2004; Yoo & Seljak 2015). Both are consistent to third order in the opening angle (demonstrated in Slepian &
Eisenstein 2015), but incur an error at fourth order, and, for \max < 10°, lose little information compared to the double LoS approach (Beutler
et al. 2012; Samushia et al. 2012; Yoo & Seljak 2015). However, their naïve implementation scales as O(𝑁2) for 𝑁 galaxies, rather than the
O(𝑁g log 𝑁g) dependence enjoyed by algorithms based on FFTs with 𝑁g grid cells.

In this work, we will demonstrate that the midpoint and bisector power spectrum and 2PCF estimators may be efficiently computed in
O(𝑁g log 𝑁g) time using FFTs. In both cases, it is necessary to perform a series expansion of the angular dependence in the galaxy pair
opening angle \ (with \ < \max); however, we give the explicit form of these corrections at arbitrary order. The different LoS definitions
require different mathematical treatments for greatest efficiency; for the bisector case, we implement the suggestion of Castorina & White
(2018) and extend it to arbitrary order, whilst for the midpoint approach, we provide novel formulae based on a newly-derived spherical
harmonic shift theorem (similar to that of Garcia & Slepian 2020 for the three-point function). This paper is an extension also of Slepian &
Eisenstein (2015), which gave the lowest-order corrections for the 2PCF, but did not consider the Fourier-space counterpart (which carries
somewhat more subtleties). In contrast, Samushia et al. (2015) considered the power-spectrum in the midpoint formalism, but only applied
to a simplified spherical cap geometry. Our work goes beyond the previous by giving a full catalog of arbitrary-order expressions for the
midpoint and bisector formalism in real- and Fourier-space. We further consider their application to realistic data using the MultiDark-patchy
mock catalogs (Kitaura et al. 2016), and make the analysis code publicly available.1

The remainder of this work is structured as follows. We begin in §2 by recapitulating the basic two-point correlator estimators. §3&§4
present our implementations of the power spectrum and 2PCF algorithms in the midpoint formalism, before the same is done in the bisector
formalism in §5&§6. §7 considers the application of the algorithms to data, before we conclude in §8. A list of useful mathematical identities
is given in Appendix A, with Appendices B-F giving mathematical derivations of results central to this work, in particular, a shift theorem
for spherical harmonics and Legendre polynomials. For the reader less interested in mathematical derivations, we recommend skipping §3.3
and the Appendices, and note that the key equations in this work are boxed.

2 ESTIMATORS FOR THE TWO-POINT CORRELATORS

We begin by stating the Fourier conventions used throughout this work. We define the Fourier and inverse Fourier transforms by

𝑋 (k) ≡ F [𝑋] (k) =
∫

𝑑x 𝑒−𝑖k·x𝑋 (x), 𝑋 (x) ≡ F −1 [𝑋] (x) =
∫

𝑑k
(2𝜋)3

𝑒𝑖k·x𝑋 (k), (2.1)

leading to the definition of the Dirac delta function, 𝛿D, as

(2𝜋)3𝛿D (k1 − k2) =
∫

𝑑x 𝑒𝑖 (k1−k2) ·x. (2.2)

The correlation function and power spectrum of the density field, 𝛿, are defined as

b (r) = 〈𝛿(x)𝛿(x + r)〉 , (2𝜋)3𝛿D (k + k′)𝑃(k) =
〈
𝛿(k)𝛿(k′)

〉
, (2.3)

1 github.com/oliverphilcox/BeyondYamamoto
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Beyond Yamamoto Correlators 3

Fixed Yamamoto Midpoint Bisector

Figure 1. Comparison of the various choices of lines-of-sight (LoS) for the galaxy pair. For each example, the observer is located at the based of the triangle,
with the galaxies at r1 and r2 with separation vector 𝚫 = r2 − r1. We define 𝜙 as the internal triangle angle with cos 𝜙 = r̂1 · r̂2. In the small-angle limit, we
have 𝜙 ≈ 2\ , where \ ≡ Δ/ |r1 + r2 |. The fixed LoS approximation (n̂ = const.) incurs an O(\0max) error, whilst the Yamamoto approximation (n̂ = r̂1) and
midpoint or bisector estimators (n̂ ∝ r1 + r2 or r̂1 + r̂2) incur O(\2max) and O(\4max) errors respectively, averaging over \ < \max.

with the power spectrum as the Fourier transform of the correlation function. Additionally, we use the shorthand∫
k
≡

∫
𝑑k

(2𝜋)3
,

∫
Ω𝑘

≡
∫

𝑑Ω𝑘

4𝜋
. (2.4)

2.1 Power Spectrum

The conventional estimator for the galaxy power spectrum multipoles, 𝑃ℓ (𝑘), is defined as a Fourier transform of two density fields 𝛿(r1)
and 𝛿(r2):

�̂�ℓ (𝑘) =
2ℓ + 1
𝑉

∫
Ω𝑘

∫
𝑑r1 𝑑r2 𝑒−𝑖k· (r2−r1)𝛿(r1)𝛿(r2)𝐿ℓ (k̂ · n̂) (2.5)

(e.g., Hand et al. 2017), where n̂ is the joint line-of-sight (LoS) to the pair of galaxies at (r1, r2), 𝐿ℓ is the Legendre polynomial of order ℓ, 𝑉
is the survey volume and hats denote unit vectors. Whilst we have not included 𝑘-space binning, this is a straightforward addition, requiring
an additional integral over |k|. In spectroscopic surveys, we do not have access to 𝛿 directly, only a set of galaxy and random particle positions
with associated density fields 𝑛𝑔 (r) and 𝑛𝑟 (r) respectively. In this context, we replace

𝛿(r) →
𝑤(r) [𝑛𝑔 (r) − 𝛼𝑟𝑛𝑟 (r)]

𝐼1/2
, 𝐼 ≡

∫
𝑑r𝑤2 (r)�̄�2 (r) (2.6)

(Yamamoto et al. 2006), where 𝑤(r) are some weights (accounting for systematics, optimality and completeness), �̄� is the mean galaxy density
and 𝛼𝑟 is the ratio of randoms to galaxies. (2.5) is strictly an estimator for the window-convolved power spectrum,2 and includes a shot-noise
term. Since the latter does not depend on the LoS, we will ignore it henceforth, and additionally denote the (windowed) density field simply
by 𝛿(r).

In the simplest (‘plane-parallel’) approximation, we take n̂ to be fixed across the survey, thus the estimator simplifies to the form familiar
from 𝑁-body estimators, involving the Fourier-space density field 𝛿(k):3

�̂�fix
ℓ
(𝑘) = 2ℓ + 1

𝑉

∫
Ω𝑘

𝐿ℓ (k̂ · n̂) |𝛿(k) |2 . (2.7)

(Kaiser 1987; Hamilton 1992; Feldman et al. 1994). This necessarily incurs an error at O(\max) where \max is the survey opening angle,4
and is valid only for the smallest surveys.

At the next order in approximation is the ‘Yamamoto formalism’ used by most current estimators; this approximates the LoS as the

2 One may remove the window function by judicious use of quadratic estimators (e.g., Philcox 2020).
3 In full, 𝛿 (k) should be multiplied by a compensation function 𝑀 (k) to account for the mass assignment scheme window function.
4 Note this depends on the survey opening angle not the pair opening angle, since the power spectrum is an integral over all galaxy pairs. Its importance
increases as the wavenumber becomes small. We note that this is a rough guide to the size of the error, rather than a formally-defined scaling.
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4 Philcox & Slepian

position vector of a single galaxy, i.e. n̂ = r̂1 or n̂ = r̂2, as shown in Fig. 1. In this case, one may expand 𝐿ℓ (k̂ · n̂) via the addition theorem
for Legendre polynomials (A5), and arrive at the estimator

�̂�Yama
ℓ

(𝑘) =
4𝜋
𝑉

∫
Ω𝑘

ℓ∑︁
𝑚=−ℓ

𝑌𝑚∗
ℓ

(k̂)
∫

𝑑r1 𝑒𝑖k·r1𝛿(r1)
∫

𝑑r2 𝑒−𝑖k·r2𝑌𝑚ℓ (r̂2)𝛿(r2) (2.8)

=
4𝜋
𝑉

∫
Ω𝑘

[
ℓ∑︁

𝑚=−ℓ
𝑌𝑚∗
ℓ

(k̂)F
[
𝑌𝑚
ℓ
𝛿
]
(k)

]
𝛿∗ (k)

(Yamamoto et al. 2006; Scoccimarro 2015; Bianchi et al. 2015; Hand et al. 2017, 2018). This incurs an error roughly scaling as O(\2max)
in the ℓ > 0 moments (noting that the O(\max) part vanishes upon r1 ↔ r2 symmetrization), and has been employed in almost all recent
analyses (e.g., Beutler et al. 2017; Gil-Marín et al. 2017; eBOSS Collaboration et al. 2020). The error incurred is not insignificant however;
the BAO scale (much below the characteristic survey size) has opening angle 𝑟𝑑/𝑑𝐴(𝑧eff) ∼ 0.1 for BOSS, where 𝑑𝐴(𝑧eff) is the angular
diameter distance to the mean survey redshift and 𝑟𝑑 is the sound horizon scale at decoupling. At low redshifts, this scale is at the percent
level; of importance for future surveys such as Euclid and DESI. Considering the whole survey, \max is significantly larger, which will affect
measurements particularly on large scales.

Beyond the Yamamoto approximation, there are multiple options for how to proceed. Clearly, setting the LoS to the direction of just
one galaxy not an optimal strategy on large scales, and a full treatment would include the positions of both galaxies, since their pairwise
velocity cannot be simply described by a single LoS. This results in a higher-dimensional data-vector however, thus is generally disfavored.
Two primary options exist for defining a single LoS correct to O(\2max), both of which are shown in Fig. 1; (a) using the position vector of the
midpoint of the two galaxies, n̂ ∝ (r1 + r2) (cf. Scoccimarro 2015; Samushia et al. 2015; Bianchi et al. 2015), or (b) using the bisector of the
galaxy-observer-galaxy triangle, n̂ ∝ (r̂1 + r̂2) (cf. Szalay et al. 1998; Matsubara 2000; Szapudi 2004; Yoo & Seljak 2015). These differ only
at higher-order,5 and we will consider both in this work. In full, these are given by

�̂�
midpoint
ℓ

(𝑘) =
2ℓ + 1
𝑉

∫
Ω𝑘

∫
𝑑r1 𝑑r2 𝑒−𝑖k· (r2−r1)𝛿(r1)𝛿(r2)𝐿ℓ (k̂ · �r1 + r2) (2.9)

�̂�bisector
ℓ

(𝑘) =
2ℓ + 1
𝑉

∫
Ω𝑘

∫
𝑑r1 𝑑r2 𝑒−𝑖k· (r2−r1)𝛿(r1)𝛿(r2)𝐿ℓ (k̂ · �r̂1 + r̂2).

Notably, neither straightforwardly factorizes into pieces depending only on r1 and r2, making its computation more involved than that of
the Yamamoto estimator. A naïve implementation would involve counting all pairs of galaxies individually; this results in an estimator with
O(𝑁2) complexity for 𝑁 galaxies; matching that of the original Yamamoto et al. (2006) estimator before the work of Bianchi et al. (2015).
For upcoming galaxy surveys, such estimators will be prohibitively slow, (though shown to be remarkably efficient on small scales in Philcox
& Eisenstein 2020 and Philcox 2021). As shown below, we can derive a separable, and hence efficient, estimator using convergent series
expansions.

2.2 Two-Point Correlation Function

Similar estimators may be derived for the multipoles of the two-point correlation function, bℓ (𝑟). Analogous to (2.5), the general form is
given by

b̂ℓ (𝑟) =
2ℓ + 1
𝑉

∫
𝑑r1 𝑑r2 𝛿(r1)𝛿(r2)𝐿ℓ (�̂� · n̂)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
, (2.10)

where n̂ is again the LoS and 𝚫 = r2 − r1 is the separation vector. Here, the square brackets pick out a particular value of the galaxy separation
Δ = 𝑟, and, if we substitute [

𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
→ 1

𝑣𝑎
Θ𝑎 (𝑟), (2.11)

where Θ𝑎 (𝑟) is some binning function with volume 𝑣𝑎 , (2.10) becomes the estimator for the 2PCF in a finite bin 𝑎. Just as for the power
spectrum, we cannot access the overdensity field 𝛿 directly, and must instead work with galaxies and random particle catalogs. Conventionally,
this leads to the 2PCF being computed via the Landy-Szalay estimator (Landy & Szalay 1993), using 𝐷𝐷, 𝐷𝑅 and 𝑅𝑅 counts, each of
which is estimated via (2.10). Since such complexities do not depend on our choice of n̂, we ignore them here, alongside the intricacies of
edge-correction.

Two types of correlation function algorithms abound in the literature. Firstly, they are often computed by exhaustive pair counting,
scaling as 𝑁2 (e.g., Sinha & Garrison 2020). Since we explicitly consider each pair of galaxies, any pairwise LoS can be simply included,
rendering moot the analysis of this work. However, direct pair-counting can be exceedingly slow for large-datasets, thus it is commonplace to

5 Specifically, due to the symmetry under r1 ↔ r2 permutations for even ℓ, any odd \ contribution must vanish, thus the difference between midpoint and
bisector formalisms starts at O(\4max) .
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compute the 2PCF via FFT-based approaches. In the plane-parallel approximation of fixed n̂, the estimator may be written

b̂fix
ℓ

(𝑟) =
2ℓ + 1
𝑉

∫
𝑑𝚫

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
𝐿ℓ (�̂� · n̂)

∫
𝑑r 𝛿(r)𝛿(r + 𝚫) (2.12)

=
2ℓ + 1
𝑉

∫
𝑑𝚫

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
𝐿ℓ (�̂� · n̂) F −1

[
|𝛿(k) |2

]
(𝚫),

where we switch variables to r = r1,𝚫 = r2 − r1 in the first line, and write the r integral as a convolution in the second. Following the inverse
Fourier transform, (2.12) is a weighted real-space summation, which is easy to compute. This again incurs an error at O(\0max), where \max
is now the characteristic opening of galaxy pairs separated by the maximum value of 𝑟 considered.

Similarly to (2.8), the 2PCFmay be estimated in the Yamamoto formalism by expanding the Legendre polynomial in spherical harmonics
and writing the result as a convolution integral:

b̂Yama
ℓ

(𝑟) =
4𝜋
𝑉

∫
𝑑𝚫

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

] ℓ∑︁
𝑚=−ℓ

𝑌𝑚∗
ℓ

(�̂�)
∫

𝑑r 𝛿(r)𝛿(r + 𝚫)𝑌𝑚
ℓ
(�r + 𝚫) (2.13)

=
4𝜋
𝑉

∫
𝑑𝚫

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

] ℓ∑︁
𝑚=−ℓ

𝑌𝑚∗
ℓ

(�̂�)F −1 [
𝛿∗ (k)F

[
𝑌𝑚
ℓ
𝛿
]
(k)

]
(𝚫),

(e.g., Slepian & Eisenstein 2016), which is computable in a similar manner to the plane-parallel estimator, now requiring 2(2ℓ + 1) FFTs for
a given ℓ. It again suffers an O(\2max) error.

The O(\4max) pairwise 2PCF estimates can be written in an analogous form to (2.10):

b̂
midpoint
ℓ

(𝑟) =
2ℓ + 1
𝑉

∫
𝑑r1 𝑑r2 𝛿(r1)𝛿(r2)𝐿ℓ (�̂� · �r1 + r2)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
(2.14)

b̂bisector
ℓ

(𝑟) =
2ℓ + 1
𝑉

∫
𝑑r1 𝑑r2 𝛿(r1)𝛿(r2)𝐿ℓ (�̂� · �r̂1 + r̂2)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
.

Unlike the Yamamoto estimator, neither of these can be straightforwardly recast as a convolution, and thus evaluated via FFTs. It is however
possible via series expansions, as will be discussed below.

3 MIDPOINT FORMALISM: POWER SPECTRUM

3.1 Series Expansion

To obtain an efficient power spectrum algorithm within the midpoint formalism, it is necessary to perform a series expansion on the angular
dependence, 𝑌𝑚

ℓ
( �r1 + r2), such that the estimator can be recast in a form conducive to FFT application. To motivate this, we start with the

definition (2.9) in terms of the new variables 𝚫 ≡ r2 − r1 and R = r1 + r2, using the addition theorem (A5) to write the Legendre polynomial
in terms of spherical harmonics:6

�̂�
pair
ℓ

(𝑘) = 4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∫

𝑑r1 𝑑𝚫 𝑒−𝑖k·𝚫𝛿(r1)𝛿(r1 + 𝚫)𝑌𝑚
ℓ
(R̂). (3.1)

If the spherical harmonic factor 𝑌𝑚
ℓ
(R̂) can be written in a form separable in 𝚫 and r1, the above expression can be evaluated as

a convolution, allowing for acceleration by way of Fourier transforms (analogous to the 2PCF manipulations in (2.12)& (2.13)). Such an
expansion is indeed possible, via the spherical harmonic shift theorem, which states

𝑌𝑚
ℓ
(�a + A) =

∞∑︁
𝛼=0

𝛼∑︁
𝐽1=0

ℓ+𝛼∑︁
𝐽2=max(0,ℓ−𝛼)

𝐽1∑︁
𝑀=−𝐽1

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

( 𝑎
𝐴

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(Â) (3.2)

(B7), for arbitrary vectors a,A with 𝑎 � 𝐴. This is proved in Appendix B and is a major new result of this work. Essentially, (3.2) is an
infinite expansion in terms of two spherical harmonics and the (small) ratio of |a| and |A|, giving an arbitrarily accurate approximation of
𝑌𝑚
ℓ
(�a + A) if truncated at sufficiently large 𝛼. This uses the numerical coefficients 𝜑𝛼,ℓ𝑚

𝐽1𝐽2𝑀
given in (B8), which may be pre-computed and

obey the relations

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

= 0 if 𝐽1 + 𝛼 or 𝐽2 + 𝛼 + ℓ is odd, (3.3)

𝜑
0,ℓ𝑚
𝐽1𝐽2𝑀

=
√
4𝜋𝛿K

𝐽10𝛿
K
𝐽2ℓ
𝛿K
𝑀0, 𝜑

𝛼,00
𝐽1𝐽2𝑀

=
√
4𝜋𝛿K

𝛼0𝛿
K
𝐽10𝛿

K
𝐽20𝛿

K
𝑀0 ,

(where 𝛿𝐾
𝑖 𝑗
is the Kronecker delta, equal to unity if 𝑖 = 𝑗 and zero else), as proved in Appendix B2.

6 Wenote that it is formally possible to first perform theΩ𝑘 integral analytically, which leads to the replacement
∫
Ω𝑘
𝑒−𝑖k·𝚫𝐿ℓ (k̂ ·R̂) → (−𝑖)ℓ 𝑗ℓ (𝑘Δ)𝐿ℓ (𝚫 ·R)

using (A11)& (A12). However, this is not exact when the finite nature of the 𝑘-space grid is considered, thus will not be adopted here.
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6 Philcox & Slepian

In our context, we may use (3.2) to expand 𝑌𝑚
ℓ
(R̂) using R = 2r1 + 𝚫 or R = 2r2 − 𝚫, recalling Δ � 𝑅, i.e. that 𝑟1 ≈ 𝑟2.7 Suppressing

summation limits for clarity, these lead to

𝑌𝑚
ℓ
(R̂) =

∑︁
𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

(
Δ

2𝑟1

)𝛼
𝑌𝑀𝐽1

(�̂�)𝑌𝑚−𝑀
𝐽2

(r̂1) =
∑︁

𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

(−1)𝐽1
(
Δ

2𝑟2

)𝛼
𝑌𝑀𝐽1

(�̂�)𝑌𝑚−𝑀
𝐽2

(r̂2), (3.4)

using 𝑌𝑀
𝐽1

(−�̂�) = (−1)𝐽1𝑌𝑀
𝐽1

(�̂�). The two may be combined to give the symmetrized form:

𝑌𝑚
ℓ
(R̂) = 1

2

∑︁
𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + (−1)𝐽1𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]
, (3.5)

where 𝜖𝑖 ≡ Δ/(2𝑟𝑖). Each term is fully separable in �̂� and r̂𝑖 , and the expansion is simply a power series in 𝜖𝑖 , which is closely related to the
pair opening angle \ ≡ Δ/𝑅.8 Indeed, including all terms up to 𝛼 = 𝐾 gives an approximation incurring an error only at O(\𝐾+1). At lowest
order (𝛼 = 0), we have 𝜑0,ℓ𝑚

𝐽1𝐽2𝑀
= 𝛿K

𝐽10
𝛿K
𝐽2ℓ
𝛿K
𝑀0 ×

√
4𝜋 (3.3), thus

𝑌𝑚
ℓ
(R̂) → 1

2

[
𝑌𝑚
ℓ
(r̂1) + (−1)ℓ𝑌𝑚

ℓ
(r̂2)

]
; (3.6)

this simply yields the Yamamoto estimator in symmetrized form.
As an example, we consider the expansion of 𝑌12 (R̂), including all terms up to 𝛼 = 2. From the above expressions, we obtain

2𝑌12 (R̂) =

{
𝑌12 (r̂1) (3.7)

+
√︂
4𝜋
105

𝜖1
[
3
√
7𝑌11 (�̂�)𝑌

0
1 (r̂1) + 2

√
3𝑌11 (�̂�)𝑌

0
3 (r̂1) + 3

√
7𝑌01 (�̂�)𝑌

1
1 (r̂1) − 4

√
2𝑌01 (�̂�)𝑌

1
3 (r̂) + 2

√
10𝑌−11 (�̂�)𝑌23 (r̂1)

]
+
√
4𝜋
105

𝜖21

[
21𝑌12 (�̂�)𝑌

0
0 (r̂1) − 6

√
5𝑌12 (�̂�)𝑌

0
2 (r̂1) − 32𝑌

1
2 (�̂�)𝑌

0
4 (r̂1) − 105𝑌

0
0 (�̂�)𝑌

1
2 (r̂1) − 6

√
5𝑌02 (�̂�)𝑌

1
2 (r̂1)

+6
√
30𝑌22 (�̂�)𝑌2,−1 (r̂1) + 6

√
30𝑌−12 (�̂�)𝑌22 (r̂1) + 8

√
5𝑌22 (�̂�)𝑌

−1
4 (r̂1) + 8

√
30𝑌02 (�̂�)𝑌

1
4 (r̂1) − 16

√
10𝑌−12 (�̂�)𝑌24 (r̂1)

+8
√
35𝑌−22 (�̂�)𝑌34 (r̂1)

]
+O(𝜖31 )

}
+ (r1 ↔ r2),

with zeroth-, first- and second-order pieces shown in red, orange and green. Whilst this is lengthy, it is nonetheless computationally tractable.

3.2 Implementation

The above series expansion may be used to write the pairwise power spectrum estimator as a series of convolutions. Inserting (3.5) into (3.1)
gives

�̂�
midpoint
ℓ

(𝑘) =
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁

𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∫
𝑑𝚫 𝑒−𝑖k·𝚫𝑌𝑀𝐽1 (�̂�)Δ

𝛼 (3.8)

× 1
2

[∫
𝑑r1 𝛿(r1)𝛿(r1 + 𝚫)

𝑌𝑚−𝑀
𝐽2

(r̂1)
(2𝑟1)𝛼

+ (−1)𝐽1
∫

𝑑r2 𝛿(r2 − 𝚫)𝛿(r2)
𝑌𝑚−𝑀
𝐽2

(r̂2)
(2𝑟2)𝛼

]
.

Relabelling 𝚫 → −𝚫, r2 → r1 and k → −k in the second term shows that the two are equivalent up to a factor (−1)ℓ . Here and henceforth
we will assume even ℓ, allowing us to absorb the symmetrization:9

�̂�
midpoint
ℓ

(𝑘) =
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁

𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

(−1)𝐽2
∫

𝑑𝚫 𝑒−𝑖k·𝚫𝑌𝑀𝐽1 (�̂�)Δ
𝛼

∫
𝑑r2 𝛿(r2)𝛿(r2 − 𝚫)

𝑌𝑚−𝑀
𝐽2

(r̂2)
(2𝑟2)𝛼

. (3.9)

Next, we note that the r2 integral can be written as a convolution:

𝑔𝛼
𝐽2 (𝑚−𝑀 ) (𝚫) ≡ (−1)𝐽2

∫
𝑑r2

[
𝛿(r2) (2𝑟2)−𝛼𝑌𝑚−𝑀

𝐽2
(r̂2)

]
𝛿(r2 − 𝚫) (3.10)

= (−1)𝐽2F −1
[
𝛿∗ (k)F

[
(2𝑟)−𝛼𝑌𝑚−𝑀

𝐽2
𝛿

]
(k)

]
(𝚫),

7 An alternative approach would be to find an expansion of 𝑌𝑚
ℓ

(R̂) that is separable in r1 and r2 rather than r𝑖 and 𝚫. In this case, the power spectrum could
be computed in the same manner as in the Yamamoto approximation, however, this is more difficult to obtain since 𝑟1/𝑟2 is order unity, so one cannot simply
apply (3.2). An approach similar to this will prove useful for the bisector formalism however (§5).
8 Note the distinction between \ , the opening angle for a particular pair, and \max, the characteristic opening angle, which is fixed for a particular analysis.
9 We replace (−1)𝐽1 with (−1)𝐽2 for later convenience; for even ℓ, these must have the same sign, due to the parity-rules on 𝜑𝛼,ℓ𝑚

𝐽1𝐽2𝑀
.
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Beyond Yamamoto Correlators 7

and the 𝚫 integral is then just a Fourier transform:

�̂�
midpoint
ℓ

(𝑘) = 4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁

𝛼𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

F
[
𝑌𝑀𝐽1

(�̂�)Δ𝛼𝑔𝛼
𝐽2 (𝑚−𝑀 ) (𝚫)

]
(k). (3.11)

Calculation of the spectra is thus reduced to computing a convolution for each {𝛼, 𝐽2, (𝑚 − 𝑀)} triplet, then performing a Fourier transform
for each (ℓ𝑚) pair. We note that the summation over {𝛼, 𝐽1, 𝐽2} can be moved inside the k-space Fourier transform; we separate it here for
clarity. For 𝛼 = 0, we require 𝐽1 = 0, 𝐽2 = ℓ, 𝑀 = 0 as before; this implies

𝑔0
ℓ𝑚

(𝚫) = (−1)ℓF −1 [
𝛿∗ (k)F

[
𝑌𝑚
ℓ
𝛿
]
(k)

]
(𝚫), (3.12)

and, since 𝑌𝑀
𝐽1

(�̂�) → (4𝜋)−1/2, the estimator is equal to that of Hand et al. (2017), as expected.
When implementing (3.11), we must be aware of a certain subtlety. Our formalism requires the Fourier transform of a function of 𝚫

weighted by Δ𝛼 where 𝛼 ≥ 0. If 𝑔𝛼
𝐽2 (𝑚−𝑀 ) (𝚫) decays slower than Δ

−𝛼, we will obtain an integrand that, in the limit of infinite survey
volume, is not square integrable, i.e. it diverges at large Δ. This is particularly clear when the mean survey distance, 𝑟 is large; in this case
Δ/(2𝑟𝑖) ≈ Δ/(2𝑟), which is a monotonically increasing function of Δ. Whilst the infinite volume limit is somewhat academic (since our
expansion parameter \max cannot be assumed small), for finite volumes, we note that the magnitude of Δ𝛼𝑔𝛼𝐽2 (𝑚−𝑀 ) increases towards the
survey edges for 𝛼 > 0. As such, it is important that we consider the full extent of the 𝚫-space function. For a survey of characteristic width 𝐿,
the convolved width is 2𝐿, thus this requires us to use a grid at least twice the survey width when painting particles. This restriction reduces
the efficiency of the algorithm, since we must double the number of grid cells per dimension to obtain the same Nyquist frequency.

The selection rules on {𝐽1, 𝐽2, 𝑀} allow us to quantify the method’s complexity. In general, if one wishes to compute all even power
spectrum multipoles up to ℓmax using even (odd) 𝛼 = 𝛼0, we must compute all 𝑔𝛼𝐽 ′𝑀 ′ functions with even (odd) 𝐽 ′ up to 𝐽 ′ = ℓmax +𝛼; a total
of [1 + (ℓmax + 𝛼0)/2]2, each of which requires two Fourier transforms. The Fourier transform over 𝚫 can then be performed just once per
(ℓ, 𝑚) pair (i.e. [1 + ℓmax/2]2 times). As a concrete example, computing the spectra up to ℓmax = 4 requires 21 𝑔𝛼𝐽 ′𝑀 ′ coefficients for 𝛼 = 1,
and 28 for 𝛼 = 2.

3.3 Parity-Even Form

Whilst the above estimator is mathematically valid, closer inspection reveals a curious property; it contains terms both odd and even in
the small angles 𝜖𝑖 . Since (for even ℓ) the power-spectrum definition is symmetric under permutation of r1 and r2, we would expect any
contributions of O(\𝐾 ) to vanish for odd 𝐾 (recalling \ ≡ Δ/𝑅). In fact, this is the case, and the above expansion can be recast in a manner
to make this manifest. Below, we consider a straightforward way to achieve this, based on iterated infinite sequences. An alternative method,
which is less obvious a priori, but simpler to implement, is described in Appendix D.

In order to demonstrate that the odd terms in \ vanish, we first consider the term[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + (−1)𝐽1𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]

(3.13)

appearing in (3.5). At lowest order in \, 𝜖1 ≈ 𝜖2 ≈ \ and r1 ≈ r2 ≈ r, giving[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + (−1)𝐽1𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]
= \𝛼𝑌𝑚−𝑀

𝐽2
(r̂)

[
1 + (−1)𝐽1

]
+ O(\𝛼+1). (3.14)

For even 𝐽1, the contribution is O(\𝛼), yet for odd 𝐽1, the term starts only at O(\𝛼+1). Since 𝐽1 + 𝛼 must be even for 𝜑𝛼,ℓ𝑚𝐽1𝐽2𝑀
to be non-zero,

we find that even 𝛼 terms in (3.5) (i.e. those with even powers of 𝜖𝑖) begin to contribute at O(\𝛼), whilst the leading-order piece of odd 𝛼
terms vanishes, and their contribution starts at O(\𝛼+1). This is not sufficient to demonstrate that there are no terms odd in \ however, since,
the term containing 𝜖3

𝑖
could include a non-cancelling 𝜖5

𝑖
contribution for example.

To obtain a manifestly parity-even expansion, we first split the 𝛼 summation of (3.5) into even and odd pieces, noting that the latter
contributions must start at O(\𝛼+1), viz. the above discussion:

𝑌𝑚
ℓ
(R̂) =

1
2

∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]

(3.15)

+1
2

∑︁
odd 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) − 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]
.

Next, we rewrite the odd-parity piece by expanding the r2 term around 𝚫 = 0, which allows us to explicitly cancel the lowest-order piece. To
do so, we require a generalized version of the spherical harmonic shift theorem, proved in appendix C:(

|a|
|A + a|

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(�a + A) =
∑︁

𝛽𝑆1𝑆2𝑇

Ω
𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

( 𝑎
𝐴

)𝛼+𝛽
𝑌𝑇
𝑆1
(â)𝑌𝑚−𝑇

𝑆2
(Â), (3.16)

where the Ω coefficients are given in (C3), and the 𝑆𝑖 summation is limited to the range [max(0, 𝐽𝑖 − 𝛽), 𝐽𝑖 + 𝛽]. Notably, Ω0,𝛼𝐽1𝐽2𝑚𝑀𝑆1𝑆2𝑇
=

𝛿K
𝑆1𝐽1

𝛿K
𝑆2𝐽2

𝛿K
𝑇 𝑀

from (C4). Applying this to 𝜖𝛼2 𝑌
𝑀
𝐽1

(�̂�)𝑌𝑚−𝑀
𝐽2

(r̂2) with a = 𝚫, A = r1 yields

𝜖𝛼2 𝑌
𝑀
𝐽1

(�̂�)𝑌𝑚−𝑀
𝐽2

(r̂2) = 𝜖𝛼1 𝑌
𝑀
𝐽1

(�̂�)𝑌𝑚−𝑀
𝐽2

(r̂1) +
∑︁
𝛽>0

∑︁
𝑆1𝑆2𝑇

2𝛽Ω𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

𝜖
𝛼+𝛽
1 𝑌𝑇

𝑆1
(�̂�)𝑌𝑚−𝑇

𝑆2
(r̂1), (3.17)
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8 Philcox & Slepian

separating out the 𝛽 = 0 term. This is now an expansion in Δ/𝑟𝑖 ≈ 2\, thus the radius of convergence is somewhat diminished compared to
the all-parity form. Inserting this in the parity-odd part of (3.15) and symmetrizing over r1 ↔ r2 gives

𝑌𝑚
ℓ
(R̂)

��
odd = −1

4

∑︁
odd 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∑︁
𝛽>0

∑︁
𝑆1𝑆2𝑇

2𝛽Ω𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

𝑌𝑇
𝑆1
(�̂�)

[
𝜖
𝛼+𝛽
1 𝑌𝑚−𝑇

𝑆2
(r̂1) − (−1)𝐽1+𝑆1𝜖𝛼+𝛽2 𝑌𝑚−𝑇

𝑆2
(r̂2)

]
. (3.18)

Importantly the 𝛽 = 0 part vanishes, thus the summand at order 𝛼 contains terms only starting at O(𝜖𝛼+1
𝑖

). We have therefore succeeded in
removing the asymmetric piece at lowest order. In practice, this means that we have removed all terms proportional to 𝜖1

𝑖
, reducing the total

of convolutions that need to be performed, since there is no longer a requirement to compute 𝛼 = 1.
The pudding is not yet proved however, since we have not removed terms with, for example, 𝜖3

𝑖
. This is possible via a similar prescription,

first noting that the lowest-order piece of the summand in (3.18) (i.e. that with r1 = r2) is non-zero only for odd 𝛽; a consequence of the parity
rules given in Appendix C, restricting 𝛽 + 𝐽1 + 𝑆1 to be even. For even 𝛽, we again have a cancellation between terms involving r1 and r2.
As before, we may expand the relevant r2 piece in terms of r1, and cancel the lowest-order contribution. This procedure of “split according
to parity, expand, symmetrize” may be iterated, and leads to the following form:

𝑌𝑚
ℓ
(R̂) =

1
2

∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]

(3.19)

−1
4

∑︁
odd 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∑︁
odd 𝛽

∑︁
𝑆1𝑆2𝑇

2𝛽Ω𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

𝑌𝑇
𝑆1
(�̂�)

[
𝜖
𝛼+𝛽
1 𝑌𝑚−𝑇

𝑆2
(r̂1) + 𝜖

𝛼+𝛽
2 𝑌𝑚−𝑇

𝑆2
(r̂2)

]
+1
8

∑︁
odd 𝛼

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∑︁
even 𝛽>0

∑︁
𝑆1𝑆2𝑇

2𝛽Ω𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

∑︁
odd 𝛾

∑︁
𝑄1𝑄2𝑅

2𝛾Ω𝛾, (𝛼+𝛽)𝑆1𝑆2𝑚𝑇
𝑄1𝑄2𝑅

𝑌𝑅
𝑄1

(�̂�)

×
[
𝜖
𝛼+𝛽+𝛾
1 𝑌𝑚−𝑅

𝑄2
(r̂1) + 𝜖

𝛼+𝛽+𝛾
2 𝑌𝑚−𝑅

𝑄2
(r̂2)

]
+ ... ,

which contains only even powers of 𝜖𝑖 . Whilst each successive line requires more work to evaluate, we note that the only terms up to the
second (third) line are required for an expansion correct to third (fifth) order in \. Furthermore, we may simplify the above by introducing
redefined coefficients Φ𝛼,ℓ𝑚

𝐽1𝐽2𝑀
, such that

𝑌𝑚
ℓ
(R̂) = 1

2

∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

Φ
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]
, (3.20)

for even 𝐽1, 𝐽2, 𝛼, using

Φ
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

= 𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

(3.21)

−1
2

∑︁
odd 𝛽<𝛼

∑︁
𝐽 ′1𝐽

′
2𝑀

′
2𝛼−𝛽𝜑𝛽,ℓ𝑚

𝐽 ′1𝐽
′
2𝑀

′Ω
(𝛼−𝛽) ,𝛽𝐽 ′1𝐽

′
2𝑚𝑀

′

𝐽1𝐽2𝑀

+1
4

∑︁
odd 𝛽<𝛼

∑︁
𝐽 ′1𝐽

′
2𝑀

′
𝜑
𝛽,ℓ𝑚

𝐽 ′1𝐽
′
2𝑀

′2𝛼−𝛽
∑︁

even 𝛾<𝛼−𝛽,𝛾>0

∑︁
𝐽 ′′1 𝐽

′′
2 𝑀

′′
Ω
𝛾,𝛽𝐽 ′1𝐽

′
2𝑚𝑀

′

𝐽 ′′1 𝐽
′′
2 𝑀

′′ Ω
(𝛼−𝛽−𝛾) , (𝛽+𝛾)𝐽 ′′1 𝐽

′′
2 𝑚𝑀

′′

𝐽1𝐽2𝑀
+ ... .

As an example, for ℓ = 2, 𝑚 = 1, the parity-even expansion truncating at 𝛼 = 2 gives

2𝑌12 (R̂) =

{
𝑌12 (r̂1) (3.22)

−
√
4𝜋
105

𝜖21

[
21𝑌12 (�̂�)𝑌

0
0 (r̂1) − 6

√
5𝑌12 (�̂�)𝑌

0
2 (r̂1) − 32𝑌

1
2 (�̂�)𝑌

0
4 (r̂1) − 105𝑌

0
0 (�̂�)𝑌

1
2 (r̂1) − 6

√
5𝑌02 (�̂�)𝑌

1
2 (r̂1)

+ 6
√
30𝑌22 (�̂�)𝑌2,−1 (r̂1) + 6

√
30𝑌−12 (�̂�)𝑌22 (r̂1) + 8

√
5𝑌22 (�̂�)𝑌

−1
4 (r̂1) + 8

√
30𝑌02 (�̂�)𝑌

1
4 (r̂1) − 16

√
10𝑌−12 (�̂�)𝑌24 (r̂1)

+ 8
√
35𝑌−22 (�̂�)𝑌34 (r̂1)

]
+ O(𝜖41 )

}
+ (r1 ↔ r2),

marking zeroth- (second-)order terms in red (green). At fixed maximum order in 𝜖𝑖 , this contains significantly fewer terms than (3.7), since
all odd powers vanish. We note that Φ2,ℓ𝑚

𝐽1𝐽2𝑀
= −𝜑2,ℓ𝑚

𝐽1𝐽2𝑀
here.10

Adopting this notation, the full parity-even power spectrum estimator is given by

�̂�
midpoint
ℓ

(𝑘) =
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

Φ
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∫
𝑑𝚫 𝑒−𝑖k·𝚫𝑌𝑀𝐽1 (�̂�)Δ

𝛼

∫
𝑑r1 𝛿(r1)𝛿(r1 + 𝚫)

𝑌𝑚−𝑀
𝐽2

(r̂1)
(2𝑟1)𝛼

10 This arises naturally in the alternate derivation given in Appendix D.
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Beyond Yamamoto Correlators 9

⇒ �̂�
midpoint
ℓ

(𝑘) = 4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

Φ
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

F
[
𝑌𝑀𝐽1

(�̂�)Δ𝛼𝑔𝛼
𝐽2 (𝑚−𝑀 ) (𝚫)

]
(k), (3.23)

analogous to (3.9), but now requiring only even 𝛼 (and thus even 𝐽1, 𝐽2), significantly reducing the necessary number of 𝑔𝛼𝐽 ′𝑀 ′ fields (3.10).
For ℓmax = 2, we require 28 (45) functions for 𝛼 = 2 (𝛼 = 4). It is important to note that the parity-even estimator will exhibit somewhat
slower convergence than the all-parity form, since we capture only a subset of the pieces containing odd 𝛼 (i.e. those that contribute to even
𝛼 < 𝛼max), and the expansion formally requires 2𝜖𝑖,max ≈ 2\max � 1, rather than 𝜖𝑖,max ≈ \max � 1. If the latter conditions are met, both
forms are fully convergent.

4 MIDPOINT FORMALISM: 2PCF

4.1 Series Expansion

Just as for the power spectrum, we may construct an efficient 2PCF estimator via series expansions coupled with FFTs. In this instance, the
angular dependence appears through 𝐿ℓ (�̂� · R̂); our goal therefore is to expand this in a form separable in 𝚫 and r1. To this end, we use the
Legendre polynomial shift theorem, which states

𝐿ℓ (â · �a + A) =
∞∑︁
𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

2𝐽 + 1
2ℓ + 1 𝑓

𝛼,ℓ
𝐽

( 𝑎
𝐴

)𝛼
𝐿𝐽 (â · Â) (4.1)

(cf. E4), for 𝑎 � 𝐴. This is proved in Appendix E1, and uses the coefficients 𝑓 𝛼,ℓ
𝐽
presented in (E11). In brief, the derivation proceeds by

noting that 𝐿ℓ (â · �a + A) can be written as a sum of spherical harmonics in â and �a + A using the addition theorem (A5), then expanding
𝑌𝑚
ℓ
(�a + A) using the spherical harmonic shift theorem of AppendixB, and simplifying the resulting coefficients. An alternative approach

would be to write the Legendre polynomial as a power series then perform a Taylor expansion; this gives the same results.
In our context, we set a = 𝚫, A = 2r1 or a = −𝚫, A = 2r2 in (4.1) to yield the symmetrized form

𝐿ℓ (�̂� · R̂) = 1
2

∞∑︁
𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

2𝐽 + 1
2ℓ + 1 𝑓

𝛼.ℓ
𝐽

[
𝜖𝛼1 𝐿𝐽 (`1) + (−1)ℓ+𝐽 𝜖𝛼2 𝐿𝐽 (`2)

]
, (4.2)

where `𝑖 = �̂� · r̂𝑖 and 𝜖𝑖 = Δ/(2𝑟𝑖). This is markedly simpler than the result for the spherical harmonic shift theorem, and can equivalently
be derived by an expansion of 𝐿ℓ (�̂� · R̂) in powers of �̂� · R̂, which is then expanded via the binomial theorem. Key properties of this
expansion are discussed in Appendix E1; here we note that the coefficients are non-zero only for even 𝛼 + ℓ + 𝐽 and 𝑓 0,ℓ

𝐽
= 𝛿K

𝐽ℓ
, such that

𝐿ℓ (�̂� · R̂) = 𝐿ℓ (`1) = 𝐿ℓ (−`2) at lowest order, i.e. the Yamamoto approximation.
As an example, we consider the expansion of the ℓ = 2 moment. At fourth order in 𝜖𝑖 (and hence the opening angle \):

2 𝐿2 (�̂� · R̂) = 𝐿2 (`1) +
6
5
𝜖1 [𝐿1 (`1) − 𝐿3 (`1)] +

1
35
𝜖21 [7𝐿0 (`1) − 55𝐿2 (`1) + 48𝐿4 (`1)] (4.3)

− 4
105

𝜖31 [9𝐿1 (`1) − 49𝐿3 (`1) + 40𝐿5 (`1)] +
1
385

𝜖41 [11𝐿0 (`1) + 165𝐿2 (`1) − 816𝐿4 (`1) + 640𝐿6 (`1)]

+ O
(
𝜖51

)
+ (r1 ↔ −r2),

where colors separate the different orders, as before. For even (odd) 𝛼, the expansion simply consists of Legendre polynomials of even (odd)
order up to ℓ + 𝛼, weighted by powers of 𝜖𝑖 .

4.2 Implementation

Inserting (4.2) into the 2PCF estimator (2.14) yields

b̂
midpoint
ℓ

(𝑟) = 1
𝑉

∑︁
𝛼𝐽

(2𝐽 + 1) 𝑓 𝛼,ℓ
𝐽

∫
𝑑r1 𝑑r2 𝛿(r1)𝛿(r2)

(
Δ

2𝑟2

)𝛼
𝐿𝐽 (−�̂� · r̂2)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
, (4.4)

suppressing summation indices for clarity and absorbing the r1 ↔ −r2 symmetrization (for even ℓ). Expanding the Legendre polynomial via
the addition theorem (A5), we may express the integrand in separable form:

b̂
midpoint
ℓ

(𝑟) = 4𝜋
𝑉

∑︁
𝛼𝐽

𝐽∑︁
𝑀=−𝐽

𝑓
𝛼,ℓ
𝐽

∫
𝑑𝚫𝑌𝑀∗

𝐽 (�̂�)Δ𝛼
[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

] ∫
𝑑r2 𝛿(r2)𝛿(r2 − 𝚫)

𝑌𝑀
𝐽

(−r̂2)
(2𝑟2)𝛼

. (4.5)

As for the power spectrum, the r2 integral is simply a convolution:

𝑔𝛼𝐽𝑀 (𝚫) = (−1)𝐽
∫

𝑑r2
[
𝛿(r2) (2𝑟2)−𝛼𝑌𝑀𝐽 (r̂2)

]
𝛿(r2 − 𝚫) (4.6)

= (−1)𝐽F −1
[
𝛿∗ (k)F

[
(2𝑟)−𝛼𝑌𝑀𝐽 𝛿

]
(k)

]
(𝚫),
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10 Philcox & Slepian

where the 𝑔𝛼
𝐽𝑀

(𝚫) functions are the same as those in (3.10). In this notation, the 2PCF estimator is given by

b̂
midpoint
ℓ

(𝑟) = 4𝜋
𝑉

∑︁
𝛼𝐽𝑀

𝑓
𝛼,ℓ
𝐽

∫
𝑑𝚫𝑌𝑀∗

𝐽 (�̂�)Δ𝛼𝑔𝛼𝐽𝑀 (𝚫)
[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
, (4.7)

which may be computed via a simple summation over real-space pixels, given some 𝑟 = |𝚫| binning scheme. This is analogous to the estimator
obtained within the Yamamoto scheme:

b̂Yama
ℓ

(𝑟) = 4𝜋
𝑉

𝑀=ℓ∑︁
𝑀=−ℓ

∫
𝑑𝚫𝑌𝑀∗

ℓ
(�̂�)𝑔0

ℓ𝑀
(𝚫)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
, (4.8)

and simply requires additional 2PCF multipoles to be computed, weighted by powers of Δ/(2𝑟2). Since algorithm this does not require a
Fourier transform in 𝚫 space, we do not need to use an increased boxsize, contrary to the power spectrum case (cf. §3.2). Instead, we require
only that the width of the box is at least the maximum galaxy dimension plus the maximum separation of interest, to avoid particle overlap
on periodic wrapping. To obtain a 2PCF estimate in multipoles up to ℓmax including O(\𝐾max) corrections, we need to compute the 𝑔𝛼𝐽𝑀
functions with 𝛼 ≤ 𝐾 , 𝐽 ≤ ℓmax + 𝛼, |𝑀 | ≤ 𝐽, each of which requires a forward and inverse Fourier transform. For ℓmax = 4 case requires 21
(28) 𝑔𝛼

𝐽𝑀
coefficients for 𝛼 = 1 (𝛼 = 2) just as for �̂�ℓ (𝑘), each of which is computed in O(𝑁g log 𝑁g) time for 𝑁g grid points.

4.3 Parity-Even Form

We may further simplify the estimator by writing it as a sum over only even 𝛼 (and thus even multipoles 𝐽). This is possible via recasting
(4.2) in a manifestly parity-even form:

𝐿ℓ (�̂� · R̂) = 1
2

∞∑︁
even 𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

𝐹𝛼.ℓ𝐽

[
𝜖𝛼1 𝐿𝐽 (`1) + (−1)ℓ+𝐽 𝜖𝛼2 𝐿𝐽 (`2)

]
(4.9)

(E14), where the corresponding coefficients, 𝐹𝛼,ℓ
𝐽
, are given in (E15). The corresponding estimator is thus

b̂
midpoint
ℓ

(𝑟) = 4𝜋
𝑉

∑︁
even 𝛼

∑︁
𝐽𝑀

𝐹
𝛼,ℓ
𝐽

∫
𝑑𝚫𝑌𝑀∗

𝐽 (�̂�)Δ𝛼𝑔𝛼𝐽𝑀 (𝚫)
[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

]
. (4.10)

The derivation of (4.9) is analogous to that of §3.3 and sketched in Appendix E2. As an example, the even-parity expansions of ℓ = 2 and
ℓ = 4 become

2 𝐿2 (�̂� · R̂) = 𝐿2 (`1) +
1
35
𝜖21 [−7𝐿0 (`1) + 55𝐿2 (`1) − 48𝐿4 (`1)] (4.11)

+ 1
77
𝜖41 [11𝐿0 (`1) + 165𝐿2 (`1) − 816𝐿4 (`1) + 640𝐿6 (`1)] + O

(
𝜖61

)
+ (r1 ↔ −r2)

2 𝐿4 (�̂� · R̂) = 𝐿4 (`1) −
10
77
𝜖21 [11𝐿2 (`1) − 39𝐿4 (`1) + 28𝐿6 (`1)]

− 5
9009

𝜖41 [143𝐿0 (`1) + 4420𝐿2 (`1) − 52083𝐿4 (`1) + 110240𝐿6 (`1) − 62720𝐿8 (`1)] + O
(
𝜖61

)
+ (r1 ↔ −r2),

correct to fifth-order in \. These results are consistent with the second-order calculation of Slepian & Eisenstein (2015, Eqs. 19&20), and
may be extended to arbitrarily high order in ℓ and 𝛼, with each order just requiring computation of more 𝑔𝛼

𝐽𝑀
(𝚫) functions.

5 BISECTOR FORMALISM: POWER SPECTRUM

We now consider the estimators for the power spectrum in the bisector formalism. The discussion in this section closely follows that of
Castorina & White (2018, Appendix E), but is extended to give closed-form estimators at arbitrary order in \max.

5.1 Series Expansion

To derive the midpoint power spectrum estimator (§3), we began by expanding the spherical harmonic𝑌𝑚
ℓ
(n̂) as a separable function in r̂1 and

�̂�. This was both tractable, since one can write n̂ ∝ (2r1 +𝚫), and favorable, since it led to an explicit expansion in powers of 𝜖 = Δ/(2𝑟) ≈ \.
When adopting the bisector LoS, we have n̂ ∝ r̂1 + r̂2, which does not facilitate as straightforward separation into 𝚫 and r1 pieces due to the
additional normalization by |r1 | and |r2 |. For this reason, we take a different approach, proposed by Castorina & White (2018), whereupon
we first expand instead in r1 and r2, then in the small angle \.

Whilst the explicit details of this can be found in Appendix F, for now we note that the derivation proceeds by writing the bisector vector
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d = 𝑡r1 + (1 − 𝑡)r2, where 𝑡 = 𝑟2/(𝑟1 + 𝑟2). Expanding the spherical harmonic 𝑌𝑚ℓ (d̂) in terms of 𝑡r1 and (1 − 𝑡)r2 via the solid harmonic
addition theorem (A10) gives the finite series

𝑌𝑚
ℓ
(d̂) =

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

( 𝑡𝑟1
𝑑

)ℓ
𝑌
`

_
(r̂1)𝑌

𝑚−`
ℓ−_ (r̂2), (5.1)

with 𝑑 = |d| and coupling coefficient 𝐴_`
ℓ𝑚
defined in (B1). Due to the (𝑡𝑟1/𝑑)−ℓ factor, this is not directly separable in r1, r2; however, we

can write
𝑡𝑟1
𝑑

= [2(1 + cos 𝜙)]−1/2 , (5.2)

and expand in the small parameter (1− cos 𝜙), where cos 𝜙 = r̂1 · r̂2. From the geometry of Fig. 1, it is clear that \ ≈ 𝜙/2 for Δ � 𝑟1, 𝑟2, thus
this expansion is effectively one in \2 (since 1 − cos 𝜙 ≈ 2\2). Omitting lengthy algebra, this leads to the series expansion for 𝑌𝑚

ℓ
(d̂):

𝑌𝑚
ℓ
(d̂) =

∞∑︁
𝛽=0

ℓ+𝛽∑︁
𝐽1=0

ℓ+𝛽∑︁
𝐽2=0

𝐽1∑︁
𝑀=−𝐽1

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(r̂1)𝑌𝑚−𝑀
𝐽2

(r̂2) (5.3)

(cf. F7), where the coupling coefficients 𝐵𝛽,ℓ𝑚
𝐽1𝐽2𝑀

are defined in (F8). These obey the properties

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
= 0 if ℓ + 𝐽1 + 𝐽2 is odd (5.4)

𝐵
0,ℓ𝑚
𝐽1𝐽2𝑀

= 2−ℓ 𝐴𝐽1𝑀
ℓ𝑚

𝛿K
𝐽2 (ℓ−𝐽1) , 𝐵

𝛽,00
𝐽1𝐽2𝑀

=
√
4𝜋𝛿K

𝐽10𝛿
K
𝐽20𝛿

K
𝑀0

(cf. Appendix F), with the latter indicating that 𝑌00 (d̂) = 1/
√
4𝜋, as expected.

Notably, (5.3) is an infinite expansion involving only separable functions of r̂1 and r̂2 (and no powers of |r𝑖 |), which will allow for an
efficient power spectrum estimator to be wrought. The approximation order is controlled by the value of 𝛽; fixing to 𝛽 ≤ 𝐾 expands the
internal angle up to (1 − cos 𝜙)𝐾 , which scales as (

√
2\)2𝐾 . Unlike in the midpoint formalism, the expansion is automatically symmetric in

𝜙 and hence \, thus there is no need for the parity-even manipulations of §3.3. In this case, the symmetries of 𝐵𝛽,ℓ𝑚
𝐽1𝐽2𝑀

require both odd and
even 𝐽1, 𝐽2 (albeit with the restriction 𝐽1 + 𝐽2 = even for even ℓ), unlike for the midpoint estimator.

As an example, we consider the expansion of 𝑌12 (d̂) at 𝛽 = 0 and 𝛽 = 1, i.e. the O(\0) and O(\2) contributions. This yields

𝑌12 (d̂)
���
𝛽=0

=

√
𝜋

6

[
3𝑌12 (r̂1)𝑌

0
0 (r̂2) +

√
15𝑌11 (r̂1)𝑌

0
1 (r̂2)

]
+ (r1 ↔ r2) (5.5)

𝑌12 (d̂)
���
𝛽=1

=

√
𝜋

420

[
35𝑌12 (r̂1)𝑌

0
0 (r̂2) + 5

√
42𝑌23 (r̂1)𝑌

−1
1 (r̂2) + 21

√
15𝑌11 (r̂1)𝑌

0
1 (r̂2) − 2

√
210𝑌13 (r̂1)𝑌

0
1 (r̂2)

+3
√
35𝑌03 (r̂1)𝑌

1
1 (r̂2) + 7

√
30𝑌22 (r̂1)𝑌

−1
2 (r̂2) − 7

√
5𝑌12 (r̂1)𝑌

0
2 (r̂2)

]
+ (r1 ↔ r2) .

Several points are of note. Firstly, in this formalism we have the same terms appearing at 𝛽 = 0 and 𝛽 = 1; for instance there is a𝑌12 (r̂1)𝑌
0
0 (r̂2)

term sourced both at 𝛽 = 0 and all higher orders. This differs from the midpoint expansion of §3 in which the O(\𝐾 ) part contains a factor
𝜖𝐾
𝑖
. Secondly, setting 𝛽 = 0 does not recover the Yamamoto formalism (which would have 2𝑌12 (d̂) = 𝑌

1
2 (r̂1) +𝑌

1
2 (r̂2)). This is clear from the

non-trivial 𝛽 = 0 coefficients in (5.4), and indicates that the scheme includes a resummation of higher-order terms, due to the non-perturbative
solid harmonic expansion carried out in (5.1). Importantly, this implies that the midpoint formalism with 𝛼 = 2 will not equal that for the
bisector method with 𝛽 = 1, even though both are O(\2max) (the order to which the two LoS definitions agree). The difference is due to
different higher-order terms (and exists also between the midpoint expansion and its even-parity equivalent).

Given the simple nature of (5.3) (containing only spherical harmonics in r̂1 and r̂2), it is interesting to consider whether the above
approach may be applied also to the midpoint estimator. In this case, we use R = r1 + r2, with (5.1) becoming

𝑌𝑚
ℓ
(R̂) =

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

( 𝑟1
𝑅

)ℓ (
𝑟1
𝑟2

)_−ℓ
𝑌
`

_
(r̂1)𝑌

𝑚−`
ℓ−_ (r̂2) (5.6)

=

[
1 + 𝑠2 + 2𝑠 cos 𝜙

]−ℓ/2 ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚
𝑠ℓ−_𝑌 `

_
(r̂1)𝑌

𝑚−`
ℓ−_ (r̂2),

where 𝑠 = 𝑟1/𝑟2, using the definition 𝑅2 = 𝑟21 + 𝑟
2
2 + 2𝑟1𝑟2 cos 𝜙. As before, this can be expanded around the point cos 𝜙 = 1, via[

1 + 𝑠2 + 2𝑠 cos 𝜙
]−ℓ/2

=

∞∑︁
𝛽=0

(
−ℓ/2
𝛽

)
(1 + 𝑠)−ℓ−2𝛽 (2𝑠)𝛽 (cos 𝜙 − 1)𝛽 , (5.7)

provided that (1 + 𝑠)2 > 4𝑠, i.e. 𝑠 > 0. The difficulty arises from the additional factor of 𝑠; we require a separable perturbative expansion
of (1 + 𝑠)−ℓ−2𝛽 yet 𝑠 is order unity. It is this complexity (not found in the bisector approach) that yields the (𝚫, r1) separation of §3.1 more
useful for the midpoint LoS definition.
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5.2 Implementation

By inserting the expansion of (5.3) into (3.1), we obtain an estimator for the power spectrum in the bisector formalism:

�̂�bisector
ℓ

(𝑘) =
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∫

𝑑r1 𝑑r2 𝑒−𝑖k· (r2−r1)𝛿(r1)𝛿(r2)
∑︁

𝑘𝐽1𝐽2𝑀

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(r̂1)𝑌𝑚−𝑀
𝐽2

(r̂2) (5.8)

=
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁

𝛽𝐽1𝐽2𝑀

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀

(∫
𝑑r1 𝑒𝑖k·r1𝛿(r1)𝑌𝑀𝐽1 (r̂1)

) (∫
𝑑r2 𝛿(r2)𝑌𝑚−𝑀

𝐽2
(r̂2)

)

⇒ �̂�bisector
ℓ

(𝑘) = 4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
Ω𝑘

𝑌𝑚∗
ℓ

(k̂)
∑︁

𝛽𝐽1𝐽2𝑀

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
F

[
𝑌𝑀𝐽1

𝛿

]
(−k)F

[
𝑌𝑚−𝑀
𝐽2

𝛿

]
(k).

In the last line, we have written the estimator in terms of the Fourier transforms of 𝑌𝑀
𝐽
𝛿, resulting in a simple-to-implement estimator. This

bears strong similarities to the Yamamoto approximation (but now involves two density-weighted spherical harmonics), and does not include
any factors of 𝜖𝑖 = Δ/(2𝑟𝑖). In comparison to the midpoint estimator, the lack of 𝜖𝑖 terms has the advantage that we do not need to use a wider
box-size relative to the standard estimators (cf. §3.2).

Practically, one estimates the power spectra by first computing F
[
𝑌𝑀
𝐽
𝛿
]
(k) for all (odd and even) 𝐽 up to ℓmax + 𝛽max, giving a total

of (1 + ℓmax + 𝛽max) (2 + ℓmax + 𝛽max)/2 terms, using the symmetry F
[
𝑌𝑀
𝐽
𝛿
]
(−k) = (−1)𝑀F

[
𝑌−𝑀
𝐽

𝛿
]∗ (k). For ℓmax = 4, this requires

15 (21) terms for 𝛽max = 0 (𝛽max = 1). For modest computational resources, it may be impractical to store all possible F
[
𝑌𝑀
𝐽
𝛿
]
grids, since

each requires substantial memory. If these are computed separately, we note that the total number of relevant 𝑌𝑚∗
ℓ
𝑌𝑀
𝐽1
𝑌𝑚−𝑀
𝐽2

combinations is
significant; 20 for 𝛽 = 0 and 68 for 𝛽 = 1 at ℓ = 2. We caution that this approach may thus be quite computationally intensive.

6 BISECTOR FORMALISM: 2PCF

We finally turn to the two-point correlation function in the bisector formalism. In this case, the angular dependence of the estimator (2.14) is
given by 𝐿ℓ (�̂� · d̂) where d is the bisector vector as before. For this, we do not require a specialized perturbative expansion, instead expanding
the Legendre polynomial via the addition theorem (A5) and utilizing the expansion of the previous section (5.3):

𝐿ℓ (�̂� · d̂) = 4𝜋
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

𝑌𝑚∗
ℓ

(�̂�)
∞∑︁
𝛽=0

ℓ+𝛽∑︁
𝐽1=0

ℓ+𝛽∑︁
𝐽2=0

𝐽1∑︁
𝑀=−𝐽1

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(r̂1)𝑌𝑚−𝑀
𝐽2

(r̂2). (6.1)

Since we expand 𝑌𝑚
ℓ
(d̂) in terms of r̂1 and r̂2, contracting with 𝑌𝑚ℓ (�̂�) does not simplify the coefficients (unlike that seen for the midpoint

case in §4.1). Whilst this form is appealing since it involves no new derivations or powers of Δ/(2𝑟𝑖), we note that, at least at leading order, it
is possible to obtain a series expansion of 𝐿ℓ (�̂� · d̂) in powers of 𝜖𝑖 and 𝐿ℓ (�̂� · r̂𝑖) as in the midpoint formalism. This can be done by writing
the Legendre polynomial as a power series then performing a Taylor expansion (as in Slepian & Eisenstein 2015).

To obtain an efficient 2PCF estimator, we insert (6.1) into (2.14), giving

b̂bisector
ℓ

(𝑟) =
4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
𝑑𝚫𝑌𝑚∗

ℓ
(�̂�)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

] ∑︁
𝛽𝐽1𝐽2𝑀

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀

∫
𝑑r1

[
𝑌𝑀𝐽1

(r̂1)𝛿(r1)
] [
𝑌𝑚−𝑀
𝐽2

(�r1 + 𝚫)𝛿(r1 + 𝚫)
]
, (6.2)

writing r2 = r1 + 𝚫. As in §2, the r1 integral is a convolution and can thus be computed via Fourier methods; specifically

ℎ𝑚𝐽1𝐽2𝑀
(𝚫) ≡

∫
𝑑r1

[
𝑌𝑀𝐽1

(r̂1)𝛿(r1)
] [
𝑌𝑚−𝑀
𝐽2

(�r1 + 𝚫)𝛿(r1 + 𝚫)
]

(6.3)

= F −1
[
F

[
𝑌𝑀𝐽1

𝛿

]
(−k)F

[
𝑌𝑚−𝑀
𝐽2

𝛿

]
(k)

]
(𝚫).

This gives the full form:

b̂bisector
ℓ

(𝑟) = 4𝜋
𝑉

ℓ∑︁
𝑚=−ℓ

∫
𝑑𝚫𝑌𝑚∗

ℓ
(�̂�)

[
𝛿D (𝑟 − Δ)
4𝜋𝑟2

] ∑︁
𝛽𝐽1𝐽2𝑀

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
ℎ𝑚𝐽1𝐽2𝑀

(𝚫). (6.4)

Whilst this does not require powers of 𝜖𝑖 (as in §4), it is quite computationally expensive to implement since we require separate convolutions
for each {𝐽1, 𝐽2, 𝑚, 𝑀} quartet; a total of 20 (68) for 𝛽 = 0 (𝛽 = 1) at ℓ = 2, as before. This may be contrasted from the midpoint case (4.7),
which requires estimation of the 𝑔𝛼

𝐽𝑀
functions, depending only on a single total angular momentum. However, note that the summation over

𝛽, 𝐽1, 𝐽2, 𝑀 can be performed before the inverse transform, leading to significant expedition.
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7 RESULTS

Having established the existence of efficient pairwise power spectrum and 2PCF estimators, we are now ready to implement them. Below,
we will consider their application on realistic survey, including a comparison between the two LoS schemes, before first discussing the
convergence of the aforementioned series expansions.

7.1 Convergence Tests

Three series expansions have been introduced in this work; one for each of 𝑌𝑚
ℓ
(R̂) and 𝐿ℓ (�̂� · R̂) (§3.1& §4.1), relevant to the midpoint

estimators, and one for 𝑌𝑚
ℓ
(d̂) (§5.1) for the bisector estimators. To test these, we consider a simple scenario where we fix R and vary 𝚫

such that we scan over the convergence parameter \ = Δ/𝑅. We compute the three angular statistics using the associated r1, r2 vectors as a
function of \, storing both the true value and the approximation at a given value of 𝛼 or 𝛽. For the midpoint estimators, we consider both the
standard expansions and those after the even-parity transformations of §3.3& §4.3.

The results are shown in Fig. 2 for ℓ = 2 and 4. Notably, the fractional error in the spherical harmonic or Legendre polynomial generally
decreases as we include more terms in the infinite series, indicating convergence for both the midpoint and bisector formalisms. As expected,
the fractional error becomes larger as \ increases (and thus the survey becomes wider), and, for \ = 0.2 (around twice that of the BOSS
BAO scale), the even-parity midpoint expansion is non-convergent. The bisector expansions are found to be highly convergent here, as a
consequence of their inherent partial resummations of higher-order terms (cf. §4.1). For the midpoint series, we find that the even parity
expansions (involving only spherical harmonics of even order) give somewhat larger fractional errors than their all parity equivalents; this is
unsurprising since (a) the even parity scheme has a stricter convergence criterion (2\ � 1 rather than \ � 1) and (b) each odd-parity term
contributes to an infinite number of even-parity terms; our formalism only captures their contributions to even terms up to the given 𝛼max,
and will thus incur a larger error. That being said, we find the even parity expansions (which are cheaper to compute) to converge fairly well
for \ . 0.1. As a point of comparison, the mock data-sets used in §7.2 have \ ∼ 0.1 at the BAO peak. Finally, we consider the 𝛼max = 0
intercept of midpoint plots. This is simply the Yamamoto approximation, and gives a useful indication of its intrinsic error. In particular, for
ℓ = 2 we find a fractional error of 0.5% (2.1%) for \ = 0.1 (\ = 0.2) or 1.8% (7.5%) for ℓ = 4; not an insignificant error!

7.2 Application to Mock Galaxy Surveys

To provide a practical demonstration of above algorithms, we apply them to a set of realistic mock galaxy catalogs. For this purpose, we use 24
MultiDark-patchy (hereafter ‘patchy’) simulations11 (Rodríguez-Torres et al. 2016; Kitaura et al. 2016), created for the analysis of the twelfth
data-release (DR12) (Alam et al. 2017) of the Baryon Oscillation Spectroscopic Survey (BOSS), part of SDSS-III (Eisenstein et al. 2011;
DESI Collaboration et al. 2016). The data is split according to the criteria discussed in (Beutler et al. 2017); here we specialize to the patch
with the largest number density (and volume); the north Galactic cap in the redshift range 0.2 < 𝑧 < 0.5. This has total volume 1.46ℎ−3Gpc3

and mean redshift 𝑧 = 0.38. The simulations are generated with the cosmology {Ω𝑚 = 0.307115,Ω𝑏 = 0.048, 𝜎8 = 0.8288, ℎ = 0.6777},
and each contains ∼ 4.8 × 105 simulated galaxies, alongside a random catalog 50× larger.

For each simulation, the mock galaxy positions are painted to a cuboidal grid using nbodykit (Hand et al. 2018), using FKP weights
(Feldman et al. 1994) and triangle-shaped-cell interpolation, with a fiducial valueΩ𝑚 = 0.31 used to convert redshifts and angles into comoving
coordinates. We use the same gridding parameters as in the final BOSS data release but double the box-size (as discussed in §3.2), giving a
Nyquist frequency 𝑘Nyq = 0.3ℎMpc−1. All further computations are carried out in Python, making use of the pyfftw library to implement
the algorithms of §3.2, §4.2, §5.2& §6. When binning spectra, we adopt the parameters {𝑘min = 0.01ℎMpc−1, 𝑘max = 0.25ℎMpc−1,Δ𝑘 =

0.01ℎMpc−1}, {𝑟min = 10ℎ−1Mpc, 𝑟max = 190ℎ−1Mpc,Δ𝑟 = 10ℎ−1Mpc} in Fourier- and configuration-space respectively. In both cases,
we use a maximum Legendre multipole of ℓmax = 4.12

7.2.1 Power Spectrum

Contributions to the power spectrum multipoles in the midpoint and bisector formalisms are shown in Fig. 3. The figure displays the
contributions as a function of their order in the (assumed small) parameter \max, with, for example, the 𝛽 = 1 bisector piece giving a
contribution which starts at O(\2max). For the midpoint, the same order is obtained by summing the 𝛼 = 1 and 𝛼 = 2 pieces, or just from
the 𝛼 = 2 piece in the even parity formalism of §3.3. As previously mentioned, the O(\0max) piece is equal to the Yamamoto spectrum in
the midpoint formalism, but includes higher-order corrections for the bisector LoS definition. Our first note is that, in all cases, the leading
order contribution is subdominant, indicating that the Yamamoto approximation is, in general, a fair approximation for BOSS. Relative to

11 Publicly available at data.sdss.org/sas/dr12/boss/lss.
12 Jupyter notebooks containing our analysis pipeline are publicly available at github.com/oliverphilcox/BeyondYamamoto. Our implementation takes ∼ 3
hours to analyze the 2PCF and 𝑃ℓ (𝑘) of a single BOSS-like simulation on 4 Intel Skylake processors using 𝛼max = 4, 𝛽max = 2, and ℓmax = 4. The analysis
requires ∼ 150GB of memory, though this can be significantly reduced at the expense of longer computation time.
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https://data.sdss.org/sas/dr12/boss/lss/
https://github.com/oliverphilcox/BeyondYamamoto


14 Philcox & Slepian

0 2 4 6
max

10 9

10 7

10 5

10 3

10 1

Fr
ac

tio
na

l E
rro

r

Expansion of Y1
2(R)

0 2 4 6
max

10 10

10 8

10 6

10 4

10 2

Expansion of L2( R)

0 1 2 3
max

10 13

10 11

10 9

10 7

10 5

10 3

Expansion of Y1
2(d)

Midpoint: All Parity
Midpoint: Even Parity
Bisector
 

= 0.20
= 0.10
= 0.05

0 2 4 6
max

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fr
ac

tio
na

l E
rro

r

Expansion of Y1
4(R)

0 2 4 6
max

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Expansion of L4( R)

0 1 2 3
max

10 13

10 11

10 9

10 7

10 5

10 3

Expansion of Y1
4(d)

Midpoint: All Parity
Midpoint: Even Parity
Bisector
 

= 0.20
= 0.10
= 0.05

Figure 2. Convergence plots for the series expansions used in this work. The left, center and right panels show the expansions of 𝑌𝑚
ℓ

(R̂) , 𝐿ℓ (�̂� · R̂) and
𝑌𝑚
ℓ

(d̂) respectively (§3.1, §4.1& §5.1), where R̂ is the direction vector of the galaxy midpoint, d̂ is the angle bisector and �̂� is the separation vector. Results
are shown for both ℓ = 2 (top) and ℓ = 4 (bottom), and, for the midpoint expansions, include both the full and even-parity results of §3.1& §3.3. In all cases, we
plot the fractional error, defined as |𝐴true − 𝐴approx |/ |𝐴true | for (possibly complex) statistic 𝐴. Whilst we pick a single value of 𝑚 for the spherical harmonic
plots, we have checked that this is representative of all𝑌𝑚

ℓ
functions for the stated ℓ. The horizontal axis shows the approximation order, with 𝛼 = 𝐾 (𝛽 = 𝐾 )

corresponding to \𝐾 (\2𝐾 ) corrections, where \ = Δ/𝑅; the galaxy pair opening angle (with \ ∼ 0.1 for the BOSS DR12 sample at the BAO scale). As the
expansion parameter \max becomes large, the convergence is reduced, and divergences occur. This is more prominent for the even-parity expansions, which
are formally valid only for small 2\ . For the bisector cases, the 𝛼 = 0 results give the Yamamoto approximation, whose error is significant at large \ .

the errorbars, any wide-angle corrections represent a few-percent correction at best for this survey.13 Whilst they seem somewhat smaller for
the bisector LoS, this is primarily due to the additional O(\2max) terms absorbed into the 𝛽 = 0 estimator. For a larger volume survey, the
statistical errors shrink, thus these wide-angle effects will grow in importance. Secondly, it is clear that, in the bisector formalism, the quartic
terms are of significantly reduced magnitude compared to those at quadratic order; this indicates that the underlying perturbative expansion
is well convergent, and matches that found in Fig. 2. For the all parity midpoint case, the convergence is more tenuous; though the results
appear convergent for the quadrupole, the case is less clear for the hexadecapole, and the even parity estimators show non-convergence in
both cases, with the 𝛼 = 4 term being larger than that with 𝛼 = 2. This may be rationalized by noting that convergence condition in §3.3 is
stricter than that of §4.1 (2\max � 1 compared with \max � 1), leading to the poorer behavior. Overall, the plot indicates that our series are
only marginally useful for a survey of BOSS width.

To better understand this, we consider a simple test; shifting the patchy mock data radially outwards by 2000ℎ−1Mpc, from its initial
position, centered at ∼ 1000ℎ−1Mpc.. This increases the mean galaxy distance by a factor ∼ 3, thus reducing \max by the same factor. This test
is of relevance for future surveys such as DESI and Euclid which generally focus on higher redshifts than BOSS. Resulting power spectrum
contributions are shown in Fig. 4, and match our expectations; we see a greater difference between the O(\2max) and O(\4max) contributions
than before, and significantly improved convergence for all estimators. Clearly then, our estimators will perform better in regimes where the
characteristic angle \max is smaller. Even in this example, the systematic errors are at the percent level (and again artificially smaller for the

13 The fractional error is roughly scale-invariant; the reason for this is not obvious, due to the inherent scale mixing for the power spectrum compared to the
2PCF. This observation is consistent with the conclusions of Castorina & White (2018) however.
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Figure 3. Contributions to the pairwise power spectra from the midpoint and bisector formalisms for a BOSS-like sample. The left (middle) panel shows the
all parity (even parity) midpoint estimator of §3.2 (§3.3), whilst the right gives the bisector approach of §5.2, based on Castorina &White (2018). We show the
absolute magnitudes of the relevant terms in the top panel, whilst the bottom gives the ratio to the standard deviation of the Yamamoto spectra. In all cases, we
plot the mean of 24 patchy mocks and display the quadrupole (full lines) and hexadecapole (dashed lines), noting that the monopole receives no wide-angle
corrections. The red, green and blue lines correspond to corrections of order \0max, \2max and \4max in the characteristic angle \max (i.e. \2max corresponds to
𝛼 = 1 plus 𝛼 = 2 in the all parity midpoint formalism, 𝛼 = 2 in the even parity midpoint approach, or 𝛽 = 1 for the bisector algorithm). For the midpoint
spectra, the \0max term is the Yamamoto approximation, whilst for the bisector it is the sum of this and higher-order corrections, as discussed in §5.1. In general
the corrections are a small fraction of the errorbars, and we find some convergence issues for the midpoint approximations, indicating that the convergence
criterion \max � 1 is not well-satisfied.

bisector formalism, due to the resummation of higher orders into the zeroth-order term), which may become important for future surveys with
far smaller statistical errors.

7.2.2 2PCF

Fig. 5 displays the analogous results for the 2PCF multipoles of the (unshifted) patchymocks. We reiterate that these do not include window-
function corrections for simplicity.14 The 2PCF presents a very different story to the power spectrum. We see a clear demarcation of the
expansion orders, with a high degree of convergence seen for the quadrupole and hexadecapole on all scales tested for both midpoint and
bisector estimates. At larger radii the fractional contribution of the higher-order terms increases, and, extrapolating by eye, one would expect
the expansions to break down around 300 − 400ℎ−1Mpc. These results clearly demonstrate that our expansions are performing as expected.
As for the power spectrum, the post-Yamamoto corrections are small; ∼ 1% of the error bars on all scales, with a slight reduction at high
radius (whereupon cosmic variance dominates).

The marked difference between the 2PCF and power spectrum begs the question: why does our power spectrum algorithm fare so
much worse? Given that we observe similar behavior in the midpoint and bisector formalisms (with a very different expansion scheme), it is
unlikely to stem from some algebraic fault. Our justification for this relies on the following observations: (1) the fractional contribution of the
higher-order terms to the 2PCF increases as a function of 𝑟, becoming unity on scales comparable with the survey width, and (2) the power
spectrum is an (Bessel function weighted) integral over the 2PCF. The scales on which the small-\ approximation is most tenuous thus have

14 The method of Slepian & Eisenstein (2016) gives a straightforward approach by which to include these.
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Figure 4. As Fig. 3 but for a BOSS-like galaxy sample shifted radially outwards by an additional 2000ℎ−1Mpc to reduce the \max parameter and enforce
greater convergence. In this instance, we use the mean of 5 patchy catalogs. As expected, the higher-order contributions are suppressed relative to Fig. 3, and
the expansion is significantly more convergent (in the sense that the O(\4max) term is subdominant to the O(\2max) piece).

an impact on all the 𝑘-modes of the power spectrum. This is clearly seen from the (more convergent) bisector formalism; whilst the ratio of
quartic to quadratic contribution strongly increases as a function of scale for the 2PCF, it is roughly constant for 𝑃ℓ (𝑘). As previously noted,
for a convergent series expansion, the power spectrum requires the survey opening angle be small, rather than just that of the maximum radial
scale considered. This being said, we conclude that the algorithms developed herein are of particular use for the 2PCF, and may be applied
also to the power spectrum, though the BOSS width lies in the limit of their convergence.

7.3 Comparison of Methods

Given that the bisector and midpoint are both valid LoS definitions at O(\2max) it is important to compare their utility in the context of
the algorithms presented in this work. Below we list several differences, both in terms of efficiency and accuracy of their associated power
spectrum and 2PCFs.

• Memory Requirements: A naïve implementation of the bisector formalism requires holding in memory all possible F
[
𝑌𝑀
𝐽
𝛿
]
(k) fields

up to a maximum multipole ℓmax + 𝛽max (such that we can take their outer product); a total of 21 for the O(\2max) correction with ℓmax = 4.
For a modest FFT grid of size 5123 in double precision, this requires 60GB of memory, which is infeasible on many computer architectures.
Whilst one could compute each function ‘on-the-fly’, this will be significantly slower. For the same order of approximation, we require 28
𝑔𝛼
𝐽𝑀
functions (using even multipoles up to ℓmax + 𝛼), but, since no outer product is required, only one needs to be held in memory at any

time. The most efficient CPU-wise implementation of the midpoint algorithm thus requires significantly less memory.
• Computation Time: An efficient metric with which to judge the runtime of the two approaches is the number of FFTs required at a

given order. Assuming ℓmax = 4 and quadratic corrections, the midpoint 𝑃ℓ (𝑘) algorithm requires 70 FFTs (two for each 𝑔𝛼𝐽𝑀 function, one
for 𝛿∗ (k) and an addition 13 for transforming into k-space), whilst the bisector approach needs just 28 (one per F

[
𝑌𝑀
𝐽
𝛿
]
(k) evaluation).

The bisector method is thus somewhat faster, though this holds only if high-memory computational resources are available. For the 2PCF, the
conclusion is similar, with the midpoint approach requiring 56 FFTs, and the bisector 29 (if memory is no concern).

• Convergence: As demonstrated in previous sections, the bisector 𝑃ℓ (𝑘) algorithms exhibit stronger convergence than those using the
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Figure 5.As Fig. 3 but for the two-point correlation function multipoles. In this case, the hierarchy of terms is much clearer, with higher-order effects becoming
important only at large 𝑟 . For BOSS volumes, the quadratic-order correction is ∼ 1% of the error bar for both the monopole and quadrupole, though this will
increase with the survey volume. We find good convergence of both the midpoint and bisector formalism on all scales tested. Note that we do not perform any
window-function correction on these 2PCF measurements.

midpoint LoS. This is particularly true for the even-parity approach, which breaks down on BOSS survey scales (also indicating that the
Yamamoto approximation works poorly there). For the 2PCF, all approaches converge well on scales of interest.

• Grid Size: As discussed in §3.2, the midpoint power spectrum algorithm requires the particles to be placed on an FFT grid at least
twice as wide as the survey itself to avoid errors. This requires a finer cell-size for the same Nyquist frequency, and thus slower (and more
expensive) computaiton. This is not a concern for the bisector formalism or the 2PCF algorithms.

• Zeroth-Order Contribution: The midpoint formalisms have the useful property that the zeroth-order (𝛼 = 0) contribution is equal to
the well-known Yamamoto approximation. In contrast, the 𝛽 = 0 bisector algorithms discussed herein have a more complicated form. This is
additionally slower to compute, involving four pairs of spherical harmonics for each 𝑌𝑚∗

ℓ
(k̂) function rather than one.

• Legendre Expansion: The midpoint 2PCF algorithm can be simply expressed in terms of Legendre multipoles (4.4) unlike the bisector
approach, which must use spherical harmonics.15 This is far simpler to interpret, and requires significantly fewer coupling coefficients.

Overall, it is clear that both approaches can be implemented in an efficient manner, and give sensible results if the characteristic size is
not too large. The optimal choice of LoS is left to the user, following the above considerations. In general, both approaches agree at O(\2max)
thus this choice is not of particular importance, particularly since any single LoS definition necessarily incurs an O(\4max) error.

8 SUMMARY AND OUTLOOK

This work has presented efficient and practical algorithms for computing the two-point correlators using pairwise lines-of-sight; an extension
to the usual single-particle Yamamoto approximation. Considering both the bisector and midpoint angle definitions, we have shown how
convergent series expansions may be used to write the 2PCF and power spectrum estimators in a form allowing for implementation via FFTs.
Any such correction is a function of the characteristic size, \max, which we have treated as a perturbation variable. Utilizing newly derived

15 An analogous expression for the bisector is possible (and discussed in Slepian & Eisenstein 2015), but requires a different series expansion.

MNRAS 000, 1–27 (2021)



18 Philcox & Slepian

spherical harmonic and Legendre polynomial shift theorems, we have computed the midpoint corrections at arbitrary order in \max, paying
close attention to the existence (and excision) of odd-parity terms. For the bisector LoS definition, the work of Castorina & White (2018) has
been extended, including higher-order corrections and an efficient 2PCF algorithm. To demonstrate our approach, the methodology has been
applied to a set of realistic galaxy catalogs, and shown to give good results for the 2PCF. For the power spectrum, the bisector approach is
similarly effective, though the midpoint algorithms suffer somewhat with convergence issues as the expansion variable becomes large. Such
series expansions perform best when the angular survey size is relatively small. In the opposing limit, convergence is difficult to achieve, yet
also the Yamamoto approximation itself is poor.

For BOSS, the size of the post-Yamamoto effects is small; ∼ 1% of the statistical error. For future surveys such as DESI, the errorbars
shrink, though the mean redshift also increases. Following Castorina &White (2018, Fig. 6), we forecast that the estimator-induced wide angle
effects discussed herein can be marginally important, especially on larger scales than considered herein. Since much information regarding
primordial non-Gaussianity is found at low-𝑘 , implementing estimators beyond the Yamamoto approximation should be seriously considered.
As shown above, there is freedom in how best to do this, since both the midpoint and bisector approaches fix the O(\2max) systematic, but
differ at O(\4max). Here, we find little preference for one over the other; for efficient computation they require somewhat different algorithms,
and the bisector approach fares a little better for the power spectrum, yet its memory consumption is significant.

Pairwise lines-of-sight are not the perfect solution however. To fully extract information from the large-scale modes, we ought to
parametrize the 2PCF by two lines-of-sight (e.g., Pápai & Szapudi 2008; Yoo & Seljak 2015), though this presents difficulties since the power
spectrum becomes ill-defined and the dimensionality increases. For surveys below ∼ 10°, the pairwise approximations are valid (Samushia
et al. 2015), yet we should bear in mind their sub-optimality for future surveys such as SPHEREx (Doré et al. 2014). Even with improved
estimators, it is necessary to model the wide-angle effects arising from other sources such as the galaxy selection function, and much work
has been done to achieve this goal. Indeed, it may prove more straightforward to forward-model also the post-Yamamoto effects, and use a
simpler estimator; given the results of this work, there is little justification for this on efficiency grounds. On a more philosophical note, it is
interesting to see how even on the largest scales, where the Universe is most linear, the two-point function is still highly non-trivial. Despite
being the most basic cosmological observable, the two-point function still has secrets up its sleeve.
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APPENDIX A: USEFUL MATHEMATICAL RELATIONS

We present a number of mathematical results used in this work. Firstly, we give the explicit form for 𝐿ℓ (`) as a finite polynomial in ` (with
|` | ≤ 1):

𝐿ℓ (`) =

bℓ/2c∑︁
𝑛=0

𝑐𝑛
ℓ
× `ℓ−2𝑛, 𝑐𝑛

ℓ
=

(−1)𝑛

2ℓ

(
ℓ

𝑛

) (
2ℓ − 2𝑛
ℓ

)
≡ (−1)𝑛 (2ℓ − 2𝑛)!
2ℓ𝑛!(ℓ − 𝑛)!(ℓ − 2𝑛)!

(A1)

(Abramowitz & Stegun 1964, Eq. 22.3.8), where the 2× 1 vectors are binomial coefficients and bℓ/2c indicates the largest integer ≤ ℓ/2. The
inverse relation also proves useful:

`𝑛 =
∑︁
ℓ=𝑛↓2

𝑐ℓ𝑛 × 𝐿ℓ (`), 𝑐ℓ𝑛 =
(2ℓ + 1)
2𝑛+1

√
𝜋 Γ(1 + 𝑛)

Γ ((𝑛 − ℓ)/2 + 1) Γ ((𝑛 + ℓ + 3)/2) ≡ (2ℓ + 1)𝑛!(ℓ + 𝑛 + 2)!!
(ℓ + 𝑛 + 2)!(𝑛 − ℓ)!! (A2)

(derived from Gradshteyn & Ryzhik 1994, Eq. 7.126.1 invoking Legendre polynomial orthogonality), where the summation is over all ℓ
downwards from 𝑛 in steps of two, and we use the double factorial 𝑛!! ≡ 𝑛(𝑛 − 2) (𝑛 − 4)... for positive integer 𝑛. Note that Legendre
polynomials of even (odd) order depend only on even (odd) powers of ` (and vice versa). To derive the simplified coefficients on the
right-hand-side we have assumed 𝑛 to be integral, and noted that the summation rules imply that ℓ, 𝑛 have the same sign. Inserting (A2) into
(A1) and using orthogonality gives the relation

𝐿ℓ (`) =
bℓ/2c∑︁
𝑛=0

∑︁
𝐿=(ℓ−2𝑛)↓2

𝑐𝑛
ℓ
𝑐𝐿
ℓ−2𝑛𝐿𝐿 (`) ⇒

bℓ/2c∑︁
𝑛=0

𝑐𝑛
ℓ
𝑐𝐿
ℓ−2𝑛 = 𝛿K

ℓ𝐿
, (A3)

where 𝛿K is the Kronecker delta.
Legendre polynomials have the generating function[

1 − 2𝑠𝑡 + 𝑡2
]−1/2

=

∞∑︁
𝑁=0

𝐿𝐿 (𝑠)𝑡𝑁 (A4)
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(Gradshteyn & Ryzhik 1994, Eq. 8.921), and may related to spherical harmonics via the addition theorem:

𝐿ℓ (x̂ · ŷ) = 4𝜋
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

𝑌𝑚
ℓ
(x̂)𝑌𝑚∗

ℓ
(ŷ) (A5)

(NIST DLMF, Eq. 14.30.9), where ∗ indicates a complex conjugate and 𝑌𝑚
ℓ
is the spherical harmonic of order (ℓ, 𝑚), which obeys the

symmetries 𝑌𝑚
ℓ
(−x̂) = (−1)ℓ𝑌𝑚

ℓ
(x̂), 𝑌𝑚∗

ℓ
(x̂) = (−1)𝑚𝑌−𝑚

ℓ
(x̂) and 𝑌00 = (4𝜋)−1/2. Furthermore, the spherical harmonics are orthonormal:∫

𝑑Ω𝑥𝑌
𝑚
ℓ
(x̂)𝑌𝑚

′∗
ℓ′ (x̂) = 𝛿K

ℓℓ′𝛿
K
𝑚𝑚′ (A6)

(NIST DLMF, Eq. 14.30.8). An important relation is the product-to-sum rule for spherical harmonics:

𝑌
𝑀1
𝐿1

(x̂)𝑌𝑀2
𝐿2

(x̂) =
𝐿1+𝐿2∑︁

𝐿3= |𝐿1−𝐿2 |

𝐿3∑︁
𝑀3=−𝐿3

G𝑀1𝑀2 (−𝑀3)
𝐿1𝐿2𝐿3

(−1)𝑀3𝑌𝑀3
𝐿3

(x̂), (A7)

where G is the Gaunt integral obeying several selection rules including 𝑀1 + 𝑀2 + 𝑀3 = 0. This can be derived from spherical harmonic
orthogonality (A6) and the definition of G as the integral over three spherical harmonics (NIST DLMF, Eq. 34.3.22). The Gaunt factor may
be written explicitly in terms of Wigner 3- 𝑗 symbols as

Gℓ1ℓ2ℓ3𝑚1𝑚2𝑚3 =

(
(2ℓ1 + 1) (2ℓ2 + 1) (2ℓ3 + 1)

4𝜋

)1/2 (
ℓ1 ℓ2 ℓ3
𝑚1 𝑚2 𝑚3

) (
ℓ1 ℓ2 ℓ3
0 0 0

)
, (A8)

(NIST DLMF, Eq. 34.3.22).
Closely related to spherical harmonics are the regular solid harmonics, defined by

𝑅𝑚
ℓ
(r) =

√︂
4𝜋
2ℓ + 1 𝑟

ℓ𝑌𝑚
ℓ
(r̂). (A9)

These obey an addition theorem:

𝑅𝑚
ℓ
(r + a) =

ℓ∑︁
_=0

_∑︁
`=−_

(
ℓ + 𝑚
_ + `

)1/2 (
ℓ − 𝑚
_ − `

)1/2
𝑅
`

_
(r)𝑅𝑚−`

ℓ−_ (a) (A10)

(Tough & Stone 1977), which is a finite series.
The Rayleigh plane wave expansion gives

𝑒𝑖x·y =

∞∑︁
ℓ=0

𝑖ℓ (2ℓ + 1) 𝑗ℓ (𝑥𝑦)𝐿ℓ (x̂ · ŷ) = 4𝜋
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑖ℓ 𝑗ℓ (𝑥𝑦)𝑌𝑚ℓ (x̂)𝑌𝑚∗
ℓ

(ŷ) (A11)

(Arfken et al. 2013, Eq. 16.63), where we have used (A5) to arrive at the second equality. Using this, we can prove the following identity:∫
𝑑Ω𝑥 𝑒

𝑖x·y𝐿ℓ (x · z) = 4𝜋
∑︁
ℓ′=0

ℓ′∑︁
𝑚′=−ℓ′

𝑖ℓ
′
𝑗ℓ′ (𝑥𝑦)

∫
𝑑Ω𝑥 𝑌

𝑚′
ℓ′ (x̂)𝑌𝑚

′∗
ℓ′ (ŷ) 4𝜋

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

𝑌𝑚
ℓ
(ẑ)𝑌𝑚∗

ℓ
(x̂) (A12)

= 4𝜋 𝑖ℓ 𝑗ℓ (𝑥𝑦)
4𝜋
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

𝑌𝑚∗
ℓ

(ŷ)𝑌𝑚∗
ℓ

(ẑ) ≡ 4𝜋 𝑖ℓ 𝑗ℓ (𝑥𝑦)𝐿ℓ (ŷ · ẑ),

using (A5)& (A11) in the first line, and (A6) to obtain the second.
An additional class of orthogonal polynomials are Gegenbauer (or ultra-spherical) polynomials, with the generating function[

1 − 2𝑠𝑡 + 𝑡2
]−𝛼

=

∞∑︁
𝑁=0

𝐶
(𝛼)
𝑁

(𝑠) 𝑡𝑁 (A13)

(Gradshteyn & Ryzhik 1994, Eq. 8.930), where 𝐶 (𝛼)
𝑁
is the Gegenbauer polynomial (for integer order 𝑁), and 𝛼 = 1/2 recovers the Legendre

polynomials. These have the explicit form

𝐶
(𝛼)
𝑁

(𝑠) =
b𝑁 /2c∑︁
𝑘=0

𝐶𝛼
𝑁 𝑘

× (2𝑠)𝑁−2𝑘 , 𝐶𝛼
𝑁 𝑘

= (−1)𝑘 Γ(𝛼 + 𝑁 − 𝑘)
Γ(𝛼)𝑘!(𝑁 − 2𝑘)! (A14)

(Abramowitz & Stegun 1964, Eq. 22.3.4), with the special case of 𝐶0
𝑁 𝑘

= 𝛿K
𝑁 0. Note that this is a sum of even (odd) powers of 𝑠 for even

(odd) 𝑁 , as for the Legendre polynomials.
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APPENDIX B: SPHERICAL HARMONIC SHIFT THEOREM

B1 Derivation

We present the derivation of a useful series expansion for spherical harmonics.16 First, we consider the function𝑌𝑚
ℓ
(�a + A) for 𝜖 ≡ 𝑎/𝐴 � 1.

Converting this into the solid harmonic 𝑅𝑚
ℓ
(a + A) then using the addition theorem (A10), we obtain

𝑌𝑚
ℓ
(�a + A) =

ℓ∑︁
_=0

_∑︁
`=−_

√︄
4𝜋(2ℓ + 1)

(2_ + 1) (2ℓ − 2_ + 1)

(
ℓ + 𝑚
_ + `

)1/2 (
ℓ − 𝑚
_ − `

)1/2
𝑎_𝐴ℓ−_

|a + A|ℓ
𝑌
`

_
(â)𝑌𝑚−`

ℓ−_ (Â) (B1)

≡
ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

𝜖_

|Â + 𝜖 â|ℓ
𝑌
`

_
(â)𝑌𝑚−`

ℓ−_ (Â),

defining the coefficients 𝐴_`
ℓ𝑚
in the second line. This is a finite expansion, allowing the composite spherical harmonic to be expressed in

terms of the harmonics of â and Â. However, due to the angular dependence of |Â+ 𝜖 â|ℓ , we require an infinite expansion to separate a and A
fully. To proceed, we recognize that the denominator is the generating function for a Gegenbauer series (A13) with 𝛼 = ℓ/2, 𝑡 = 𝜖 , 𝑠 = −â · Â:

1
|Â + 𝜖 â|ℓ

=
1(

1 + 2𝜖 â · Â + 𝜖2
)ℓ/2 =

∞∑︁
𝑁=0

𝐶
(ℓ/2)
𝑁

(−â · Â)𝜖𝑁 =

∞∑︁
𝑁=0

b𝑁 /2c∑︁
𝑘=0

𝐶
ℓ/2
𝑁 𝑘

× (−2â · Â)𝑁−2𝑘 𝜖𝑁 , (B2)

where the coefficients 𝐶ℓ/2
𝑁 𝑘
are defined in (A14). Inserting into (B1) gives:

𝑌𝑚
ℓ
(�a + A) =

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

∞∑︁
𝑁=0

b𝑁 /2c∑︁
𝑘=0

𝐶
ℓ/2
𝑁 𝑘

(−2)𝑁−2𝑘 × 𝜖_+𝑁𝑌 `
_
(â)𝑌𝑚−`

ℓ−_ (Â) (â · Â)𝑁−2𝑘 . (B3)

To simplify this further, we express (â · Â)𝑁−2𝑘 in spherical harmonics, using (A2):

(â · Â)𝑁−2𝑘 =
∑︁

𝐿′=(𝑁−2𝑘)↓2
𝑐𝐿

′
𝑁−2𝑘𝐿𝐿′ (â · Â) =

∑︁
𝐿′=(𝑁−2𝑘)↓2

4𝜋
2𝐿′ + 1

𝐿′∑︁
𝑀 ′=−𝐿′

𝑐𝐿
′
𝑁−2𝑘𝑌

𝑀 ′
𝐿′ (â)𝑌𝑀

′∗
𝐿′ (Â), (B4)

expanding the Legendre polynomial into spherical harmonics via the addition theorem (A5). Finally, we can combine the two spherical
harmonics in â and Â using the product-to-sum relation (A7):

𝑌
`

_
(â)𝑌𝑀

′
𝐿′ (â) =

_+𝐿′∑︁
𝐽1= |_−𝐿′ |

𝐽1∑︁
𝑀1=−𝐽1

G`𝑀
′ (−𝑀1)

_𝐿′𝐽1
(−1)𝑀1𝑌𝑀1

𝐽1
(â) (B5)

𝑌
𝑚−`
ℓ−_ (Â)𝑌𝑀

′∗
𝐿′ (Â) =

ℓ−_+𝐿′∑︁
𝐽2= |ℓ−_−𝐿′ |

𝐽2∑︁
𝑀2=−𝐽2

G (𝑚−`) (−𝑀 ′) (−𝑀2)
(ℓ−_)𝐿′𝐽2 (−1)𝑀

′+𝑀2𝑌𝑀2
𝐽2

(Â).

Combining results, we obtain the shift theorem for spherical harmonics:

𝑌𝑚
ℓ
(�a + A) =

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

∞∑︁
𝑁=0

b𝑁 /2c∑︁
𝑘=0

𝐶
ℓ/2
𝑁 𝑘

(−2)𝑁−2𝑘
∑︁

𝐿′=(𝑁−2𝑘)↓2
𝑐𝐿

′
𝑁−2𝑘

4𝜋
2𝐿′ + 1 (B6)

×
_+𝐿′∑︁

𝐽1= |_−𝐿′ |

𝐽1∑︁
𝑀=−𝐽1

G` (𝑀−`) (−𝑀 )
_𝐿′𝐽1

ℓ−_+𝐿′∑︁
𝐽2= |ℓ−_−𝐿′ |

G (𝑚−`) (`−𝑀 ) (𝑀−𝑚)
(ℓ−_)𝐿′𝐽2 (−1)𝑚+𝑀−`

× 𝜖_+𝑁𝑌𝑀𝐽1 (â)𝑌
𝑚−𝑀
𝐽2

(Â),

where we have noted that the Gaunt integrals imply 𝑀1 = ` + 𝑀 ′, 𝑀2 = 𝑚 − ` − 𝑀 ′ = 𝑚 − 𝑀1 and relabelled 𝑀 ′ → 𝑀 . Defining the
coefficients 𝜑𝛼,ℓ𝑚

𝐽1𝐽2𝑀
where 𝛼 = _ + 𝑁 , this can be written more succinctly as

𝑌𝑚
ℓ
(�a + A) =

∞∑︁
𝛼=0

𝛼∑︁
𝐽1=0

ℓ+𝛼∑︁
𝐽2=max(0,ℓ−𝛼)

𝐽1∑︁
𝑀=−𝐽1

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

( 𝑎
𝐴

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(Â), (B7)

where the summation limits will be elaborated upon in the next section. Truncating (B7) at 𝛼 = 𝐾 incurs an error of O(𝜖𝐾+1), thus, for 𝜖 < 1
this is a valid perturbative expansion.

16 This is equivalent to that introduced in Garcia & Slepian (2020) for the three-point correlation function except with one position vector set to zero, affording
significant simplification.
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B2 Coefficient Properties

From (B6), the shift coefficients 𝜑 are given by

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

=

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

∞∑︁
𝑁=0

𝛿K
𝛼(_+𝑁 )

b𝑁 /2c∑︁
𝑘=0

𝐶
ℓ/2
𝑁 𝑘

(−2)𝑁−2𝑘
∑︁

𝐿′=(𝑁−2𝑘)↓2
𝑐𝐿

′
𝑁−2𝑘

4𝜋
2𝐿′ + 1

× G` (𝑀−`) (−𝑀 )
_𝐿′𝐽1

G (𝑚−`) (`−𝑀 ) (𝑀−𝑚)
(ℓ−_)𝐿′𝐽2 (−1)𝑚+𝑀−` ,

(B8)

where the Kronecker delta in the first line enforces that _ + 𝑁 = 𝛼. Including the various coefficient definitions gives the explicit form

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

=
√︁
4𝜋(2ℓ + 1) (2𝐽1 + 1) (2𝐽2 + 1)

min(𝛼,ℓ)∑︁
_=0

_∑︁
`=−_

(
ℓ + 𝑚
_ + `

)1/2 (
ℓ − 𝑚
_ − `

)1/2 b𝛼−_/2c∑︁
𝑘=0

∑︁
𝐿′=(𝛼−_−2𝑘)↓2

(B9)

× (−1)𝑘+𝛼+_+𝑚+𝑀+`
(2𝐿′ + 1)

√
𝜋 Γ

(
ℓ
2 + 𝛼 − _ − 𝑘

)
2Γ (ℓ/2) Γ ((𝛼 − _ − 2𝑘 − 𝐿′)/2 + 1) Γ ((𝛼 − _ − 2𝑘 + 𝐿′ + 3)/2) 𝑘!

×
(
_ 𝐿′ 𝐽1
` 𝑀 − ` −𝑀

) (
ℓ − _ 𝐿′ 𝐽2
𝑚 − ` ` − 𝑀 𝑀 − 𝑚

) (
_ 𝐿′ 𝐽1
0 0 0

) (
ℓ − _ 𝐿′ 𝐽2
0 0 0

)
.

We consider two special cases. For 𝛼 = 0, we require _ = 𝑁 = 0, and thus, by the summation limits, ` = 𝑘 = 𝐿′ = 0. This gives

𝜑
0,ℓ𝑚
𝐽1𝐽2𝑀

= (4𝜋)3/2G0𝑀 (−𝑀 )
00𝐽1

G𝑚(−𝑀 )𝑀
ℓ0𝐽2

(−1)𝑚+𝑀 , (B10)

using 𝐴00
ℓ𝑚

=
√
4𝜋, 𝑐00 = 1 and 𝐶ℓ/200 = 1 (A2). The Gaunt integrals obey 3- 𝑗 symmetries, such that G𝑀1𝑀2𝑀3

𝐿1𝐿2𝐿3
is zero unless |𝐿1 − 𝐿2 | <

𝐿3 < 𝐿1 + 𝐿2, implying 𝐽1 = 0 (and thus 𝑀 = 0), 𝐽2 = ℓ. In full, we obtain

𝜑
0,ℓ𝑚
𝐽1𝐽2𝑀

= 𝛿K
𝐽10𝛿

K
𝐽2ℓ
𝛿K
𝑀0 ×

√
4𝜋. (B11)

This gives 𝑌𝑚
ℓ
(�a + A)

���
𝛼=0

= 𝑌𝑚
ℓ
(Â), as expected.

Secondly, we consider ℓ = 𝑚 = 0. The summation limits enforce _ = ` = 0, and, since 𝐶0
𝑁 𝑘

= 𝛿K
𝑁 0 (A14), 𝑁 = 𝑘 = 𝐿′ = 0 (and thus

𝛼 = _ + 𝑁 = 0), giving

𝜑
𝛼,00
𝐽1𝐽2𝑀

= (4𝜋)3/2G0𝑀 (−𝑀 )
00𝐽1

G0(−𝑀 )𝑀
00𝐽2

(−1)𝑀 . (B12)

In this case, the triangle conditions imply 𝐽1 = 𝐽2 = 0, thus 𝑀 = 0, and

𝜑
𝛼,00
𝐽1𝐽2𝑀

= 𝛿K
𝐽10𝛿

K
𝐽20𝛿

K
𝑀0𝛿

K
𝛼0 ×

√
4𝜋, (B13)

giving 𝑌00 (�a + A) = (4𝜋)−1/2, as expected.
It is useful to consider properties relating to parity. Firstly, consider the parity transformation a → −a, A → −A:

𝑌𝑚
ℓ
(�a + A) → (−1)ℓ𝑌𝑚

ℓ
(�a + A) (B14)

𝑌𝑀𝐽1
(â)𝑌𝑚−𝑀

𝐽2
(Â) → (−1)𝐽1+𝐽2𝑌𝑀𝐽1 (â)𝑌

𝑚−𝑀
𝐽2

(Â).

By orthogonality of the spherical harmonics, this implies 𝜑𝛼,ℓ𝑚
𝐽1𝐽2𝑀

= (−1)ℓ+𝐽1+𝐽2𝜑𝛼,ℓ𝑚
𝐽1𝐽2𝑀

, and hence that the coefficients are vanishing if

ℓ + 𝐽1 + 𝐽2 is odd. Furthermore, the Gaunt coefficients G𝑀1𝑀2𝑀3𝐿1𝐿2𝐿3
contain 3- 𝑗 symbols with all 𝑀𝑖 fixed to zero; these vanish if 𝐿1 + 𝐿2 + 𝐿3

is odd, implying that _ + 𝐿′ + 𝐽1 and ℓ − _ + 𝐿′ + 𝐽2 must be even (B8). Finally, the summation on 𝐿′ indicates that 𝐿′ and 𝑁 must have the
same sign, hence ℓ + 𝑁 + 𝐽1 is even, thus so is 𝛼 + 𝐽1. Our conclusion is that 𝜑𝛼,ℓ𝑚𝐽1𝐽2𝑀

must be vanishing unless both 𝛼 + 𝐽1 and ℓ + 𝛼 + 𝐽2 are
even. This result proves useful when forming the even parity expansion in §3.3.

Finally, we discuss the summation limits in (B7). From the 𝐿′ summation, 0 ≤ 𝐿′ ≤ 𝑁 (since 0 ≤ 2𝑘 ≤ 𝑁), and from the Gaunt
integrals, |_ − 𝐿′ | ≤ 𝐽1 ≤ _ + 𝐿′, |ℓ − _ − 𝐿′ | ≤ 𝐽2 ≤ ℓ − _ + 𝐿′. Combining the two implies that 0 ≤ 𝐽1 ≤ 𝛼, max(0, ℓ − 𝛼) ≤ 𝐽2 ≤ ℓ + 𝛼,
|𝑀 | ≤ 𝐽1, noting that the moduli enforce 𝐽1, 𝐽2 to be positive. For the 𝛼 = 1 piece, we therefore need consider only 𝐽1 = 1 (as 𝛼 + 𝐽1 is even)
and 𝐽2 = ℓ ± 1, or, for 𝛼 = 2, 𝐽1 ∈ {0, 2}, 𝐽2 ∈ {ℓ, ℓ ± 2}.

APPENDIX C: GENERALIZED SPHERICAL HARMONIC SHIFT THEOREM

Below, we prove a useful generalization of the spherical harmonic shift theorem discussed in Appendix B. To begin, consider the expression(
|a|

|A + a|

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(�a + A) = 1[
1 + 2𝜖 â · Â + 𝜖2

]𝛼/2𝑌𝑀𝐽1 (â)𝑌𝑚−𝑀
𝐽2

(�a + A), (C1)

for some â, Â with 𝜖 = 𝑎/𝐴 � 1. The spherical harmonic in a + A can be expanded identically to Appendix B1; with the prefactor (which
is again a generator for Gegenbauer polynomials), we obtain the same expression except that 𝐶ℓ/2

𝑁 𝑘
is replaced with 𝐶 (ℓ+𝛼)/2

𝑁 𝑘
in (B2) and the
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succeeding. In full, we obtain(
|a|

|A + a|

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(�a + A) =
∑︁

𝛽𝐽 ′1𝐽
′
2𝑀

′
𝜔
𝛽,𝐽2 (𝑚−𝑀 )𝛼
𝐽 ′1𝐽

′
2𝑀

′ 𝜖𝛼+𝛽𝑌𝑀𝐽1 (â)𝑌
𝑀 ′

𝐽 ′1
(â)𝑌𝑚−𝑀−𝑀 ′

𝐽 ′2
(Â), (C2)

where 𝜔𝛽,ℓ𝑚𝛼
𝐽1𝐽2𝑀

is equal to 𝜑𝛽,ℓ𝑚
𝐽1𝐽2𝑀

(B8), except that 𝐶ℓ/2
𝑁 𝑘

→ 𝐶
(ℓ+𝛼)/2
𝑁 𝑘

, implying that 𝜔𝛽,ℓ𝑚0
𝐽1𝐽2𝑀

= 𝜑
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
. Next, we can combine the two

spherical harmonics in a using the product-to-sum relation (A7) to yield(
|a|

|A + a|

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(�a + A) =
∑︁

𝛽𝑆1𝑆2𝑇

(∑︁
𝐽 ′
𝜔
𝛽,𝐽2 (𝑚−𝑀 )𝛼
𝐽 ′𝑆2 (𝑇 −𝑀 ) G𝑀 (𝑇 −𝑀 ) (−𝑇 )

𝐽1𝐽 ′𝑆1
(−1)𝑇

)
𝜖𝛼+𝛽𝑌𝑇

𝑆1
(â)𝑌𝑚−𝑇

𝑆2
(Â)

⇒
(

|a|
|A + a|

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚−𝑀
𝐽2

(�a + A) ≡
∑︁

𝛽𝑆1𝑆2𝑇

Ω
𝛽,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

𝜖𝛼+𝛽𝑌𝑇
𝑆1
(â)𝑌𝑚−𝑇

𝑆2
(Â), (C3)

liberally relabeling variables and defining the new coefficient set Ω. The expression is now in the form of a power series combined with two
spherical harmonics, just as in (B7).

By analogous arguments to before, the 𝜔𝛽,𝐽2 (𝑚−𝑀 )𝛼
𝐽 ′𝑆2 (𝑇 −𝑀 ) coefficient requires 0 ≤ 𝐽 ′ ≤ 𝛽 and max(0, 𝐽2 − 𝛽) ≤ 𝑆2 ≤ 𝐽2 + 𝛽. Coupled with

the triangle conditions on the additional Gaunt integral, we obtainmax(0, 𝐽1 − 𝛽) ≤ 𝑆1 ≤ 𝐽1 + 𝛽,max(0, 𝐽2 − 𝛽) ≤ 𝑆2 ≤ 𝐽2 + 𝛽, and |𝑇 | < 𝑆1.
Furthermore, we require 𝛽 + 𝐽 ′ and 𝐽2 + 𝛽 + 𝑆2 to be even, and, from the Gaunt factor, the same applies for 𝛽 + 𝐽1 + 𝑆1. The case 𝛽 = 0 will
also be of use. As in (B11), 𝜔0,𝐽2 (𝑚−𝑀 )𝛼

𝐽 ′𝑆2 (𝑇 −𝑀 ) =
√
4𝜋𝛿K

𝐽 ′0𝛿
K
𝑆2𝐽2

𝛿K
𝑇 𝑀
, thus Ω0,𝛼𝐽1𝐽2𝑚𝑀

𝑆1𝑆2𝑇
=
√
4𝜋𝛿K

𝑆2𝐽2
𝛿K
𝑇 𝑀

G𝑀0(−𝑀 )
𝐽10𝑆1

(−1)𝑀 . The Gaunt integral
requires 𝑆1 = 𝐽1, thus we obtain

Ω
0,𝛼𝐽1𝐽2𝑚𝑀
𝑆1𝑆2𝑇

= 𝛿K
𝑆1𝐽1

𝛿K
𝑆2𝐽2

𝛿K𝑇 𝑀 . (C4)

APPENDIX D: ALTERNATIVE DERIVATION FOR THE PARITY EVEN EXPANSION

We briefly present an alternative derivation of the parity-even expansion for spherical harmonics, which, whilst less conceptual, results in an
easier-to-implement formalism. To begin, consider the function

𝑧
𝛼,𝑚
ℓ

≡ 1
2

[
𝜖𝛼1 𝑌

𝑚
ℓ
(r̂1) + (−1)ℓ𝜖𝛼2 𝑌

𝑚
ℓ
(r̂2)

]
. (D1)

Writing r1 = R − 𝚫, r2 = R + 𝚫, each term may be expanded using a part of the generalized shift theorem of Appendix C:

𝑧
𝛼,𝑚

ℓ
≡ 1

2

[(
Δ

|R − 𝚫|

)𝛼
𝑌𝑚
ℓ
(�R − 𝚫) + (−1)ℓ

(
Δ

|R + 𝚫|

)𝛼
𝑌𝑚
ℓ
( �R + 𝚫)

]
(D2)

=
∑︁

𝛽𝐽1𝐽2𝑀

𝜔
𝛽,ℓ𝑚𝛼

𝐽1𝐽2𝑀
\𝛼+𝛽𝑌𝑀𝐽1 (�̂�)𝑌

𝑚−𝑀
𝐽2

(R̂)
[
1 + (−1)ℓ+𝐽1

2

]
.

using (C2) and recalling \ ≡ Δ/𝑅. As before, 𝜔𝛽,ℓ𝑚𝛼
𝐽1𝐽2𝑀

is non-zero unless 𝐽1 + 𝛽 is even, thus the sum extends only over even 𝛽 (assuming
even ℓ). Extracting the 𝛽 = 0 piece gives

𝑧
𝛼,𝑚

ℓ
≡ \𝛼𝑌𝑚

ℓ
(R̂) +

∑︁
even 𝛽>0

∑︁
𝐽1𝐽2𝑀

𝜔
𝛽,ℓ𝑚𝛼

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(�̂�) × \𝛼+𝛽𝑌𝑚−𝑀
𝐽2

(R̂). (D3)

Assuming small \, this may be inverted order-by-order to find \𝛼𝑌𝑚
ℓ
in terms of 𝑧𝛼,𝑚

ℓ
(which is in the form required for the convolutional

power spectrum estimators). This gives

\𝛼𝑌𝑚
ℓ
(R̂) = 𝑧

𝛼,𝑚

ℓ
−

∑︁
even 𝛽>0

∑︁
𝐽1𝐽2𝑀

𝜔
𝛽,ℓ𝑚𝛼

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(�̂�) × \𝛼+𝛽𝑌𝑚−𝑀
𝐽2

(R̂) (D4)

= 𝑧
𝛼,𝑚

ℓ
−

∑︁
even 𝛽>0

∑︁
𝐽1𝐽2𝑀

𝜔
𝛽,ℓ𝑚𝛼

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(�̂�) × 𝑧 (𝛼+𝛽) , (𝑚−𝑀 )
𝐽2

+
∑︁

even 𝛽>0

∑︁
𝐽1𝐽2𝑀

∑︁
even 𝛾>0

∑︁
𝑆1𝑆2𝑇

𝜔
𝛽,ℓ𝑚𝛼

𝐽1𝐽2𝑀
𝜔
𝛾,𝐽2 (𝑚𝑀 ) (𝛼+𝛽)
𝑆1𝑆2𝑇

𝑌𝑀𝐽1
(�̂�)𝑌𝑇

𝑆1
(�̂�) × 𝑧 (𝛼+𝛽+𝛾) , (𝑚−𝑀−𝑇 )

𝑆2
+ ...

where the first, second and third terms start at zeroth-, second- and fourth-order in \ respectively. Setting 𝛼 = 0, we obtain a concise form for
the parity-even expansion correct to fourth order:

2𝑌𝑚
ℓ
(R̂) =

[
𝑌𝑚
ℓ
(r̂1) + 𝑌𝑚ℓ (r̂2)

]
(D5)

−
∑︁

even 𝛼>0

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]

+
∑︁

even 𝛼>0

∑︁
𝐽1𝐽2𝑀

𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

∑︁
even 𝛽>0

∑︁
𝑆1𝑆2𝑇

Ω
𝛽,𝐽1𝐽2𝑚𝑀𝛼

𝑆1𝑆2𝑇
𝑌𝑇
𝑆1
(�̂�)

[
𝜖
𝛼+𝛽
1 𝑌𝑚−𝑀−𝑇

𝑆2
(r̂1) + 𝜖

𝛼+𝛽
2 𝑌𝑚−𝑀−𝑇

𝑆2
(r̂2)

]
+ ...
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assuming even ℓ, recalling that 𝜔0,ℓ𝑚𝛼
𝐽1𝐽2𝑀

= 𝜑
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

and contracting the spherical harmonics via (A7). We have additionally inserted the
definition of Ω from (C3). As before, this can be written as a simple summation over even 𝛼:

2𝑌𝑚
ℓ
(R̂) =

∑︁
even 𝛼

∑︁
𝐽1𝐽2𝑀

Φ
𝛼,ℓ𝑚
𝐽1𝐽2𝑀

𝑌𝑀𝐽1
(�̂�)

[
𝜖𝛼1 𝑌

𝑚−𝑀
𝐽2

(r̂1) + 𝜖𝛼2 𝑌
𝑚−𝑀
𝐽2

(r̂2)
]
, (D6)

with

Φ
0,ℓ𝑚
𝐽1𝐽2𝑀

=
√
4𝜋𝛿K

𝐽10𝛿
K
𝐽2ℓ
𝛿K
𝑀0 (D7)

Φ
2,ℓ𝑚
𝐽1𝐽2𝑀

= −𝜑2,ℓ𝑚
𝐽1𝐽2𝑀

Φ
4,ℓ𝑚
𝐽1𝐽2𝑀

= −𝜑4,ℓ𝑚
𝐽1𝐽2𝑀

+
∑︁

𝐽 ′1𝐽
′
2𝑀

′
𝜑
2,ℓ𝑚
𝐽 ′1𝐽

′
2𝑀

′Ω
2,2𝐽 ′1𝐽

′
2𝑚𝑀

′

𝐽1𝐽2𝑀
.

These are equivalent to theΦ coefficients of §3.3, through derived in a different manner. This is straightforward to extend to higher order, and
somewhat faster to compute than the former procedure, since summations are only over even 𝛼.

APPENDIX E: LEGENDRE POLYNOMIAL SHIFT THEOREM

E1 Derivation

A similar relation to that of Appendix B may be derived for the Legendre polynomial 𝐿ℓ (â · �a + A). This can be derived in one of two ways;
either by expanding in powers of â · �a + A directly, or via the previously proved spherical harmonic shift theorem. For consistency with the
above, we adopt the latter approach, though we note that the two yield consistent results.

To perform such an expansion, we first rewrite the Legendre polynomial in terms of spherical harmonics using the addition theorem
(A5) and apply (B7), yielding

𝐿ℓ (â · �a + A) =
4𝜋
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

(−1)𝑚𝑌𝑚
ℓ
(â)𝑌𝑚

ℓ
(�a + A) (E1)

=
4𝜋
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

∑︁
𝛼𝐽1𝐽2𝑀

(−1)𝑚𝜑𝛼,ℓ𝑚
𝐽1𝐽2𝑀

( 𝑎
𝐴

)𝛼
𝑌𝑀𝐽1

(â)𝑌𝑚
ℓ
(â)𝑌𝑚−𝑀

𝐽2
(Â),

additionally using 𝑌𝑚∗
ℓ

= (−1)𝑚𝑌−𝑚
ℓ
. The two spherical harmonics in â may be contracted using the product-to-sum relation (A7), giving

𝐿ℓ (â · �a + A) =
4𝜋
2ℓ + 1

∑︁
𝛼𝐽 𝐽2𝑀 ′


∑︁
𝑚𝐽1

(−1)𝑚𝜑𝛼,ℓ𝑚
𝐽1𝐽2 (𝑚−𝑀 ′)G

(−𝑚) (𝑚−𝑀 ′)𝑀 ′

ℓ𝐽1𝐽


( 𝑎
𝐴

)𝛼
𝑌𝑀

′∗
𝐽 (â)𝑌𝑀

′
𝐽2

(Â) (E2)

≡ 4𝜋
2ℓ + 1

∑︁
𝛼𝐽 𝐽2𝑀 ′

𝑓
𝛼,ℓ
𝐽 𝐽2𝑀 ′

( 𝑎
𝐴

)𝛼
𝑌𝑀

′∗
𝐽 (â)𝑌𝑀

′
𝐽2

(Â),

where we have relabelled 𝑀 ′ = 𝑚 −𝑀 , and defined the new coefficient 𝑓 𝛼,ℓ
𝐽 𝐽2𝑀 ′ . Whilst this may seem complicated, one can in fact show that

𝑓
𝛼,ℓ
𝐽 𝐽2
is independent of 𝑀 ′ and non-zero only for 𝐽 = 𝐽2. Defining reduced coefficients 𝑓

𝛼,ℓ
𝐽
via

𝑓
𝛼,ℓ
𝐽 𝐽2𝑀 ′ ≡ 𝛿K𝐽 𝐽2 × 𝑓

𝛼,ℓ
𝐽

, (E3)

and using (A5), this leads to

𝐿ℓ (â · �a + A) =
∞∑︁
𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

2𝐽 + 1
2ℓ + 1 𝑓

𝛼,ℓ
𝐽

( 𝑎
𝐴

)𝛼
𝐿𝐽 (â · Â); (E4)

a far more tractable expansion. Whilst the (2𝐽 + 1)/(2ℓ + 1) factor could be absorbed into 𝑓 𝛼,ℓ
𝐽
, we retain it here for later convenience.
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To see this, we first write out 𝑓 𝛼,ℓ
𝐽 𝐽2𝑀 ′ explicitly:

𝑓
𝛼,ℓ
𝐽 𝐽2𝑀 ′ =

∑︁
𝑚𝐽1_`𝑁 𝑘𝐿′

𝐴
_`

ℓ𝑚
𝛿K
𝛼(_+𝑁 )𝐶

ℓ/2
𝑁 𝑘

(−2)𝑁−2𝑘𝑐𝐿
′
𝑁−2𝑘

4𝜋
2𝐿′ + 1 (E5)

×G` (𝑚−𝑀 ′−`) (𝑀 ′−𝑚)
_𝐿′𝐽1

G (𝑚−`) (`−𝑚+𝑀 ′) (−𝑀 ′)
(ℓ−_)𝐿′𝐽2 G (−𝑚) (𝑚−𝑀 ′)𝑀 ′

ℓ𝐽1𝐽
(−1)𝑚−𝑀 ′−`

=
∑︁

_𝑁 𝑘𝐿′
(2ℓ + 1)3/2

√︁
(2𝐽 ′ + 1) (2𝐽2 + 1)

(
2ℓ
2_

)1/2
(−1)ℓ𝛿K

𝛼(_+𝑁 )𝐶
ℓ/2
𝑁 𝑘

(−2)𝑁−2𝑘𝑐𝐿
′
𝑁−2𝑘

×
∑︁
𝐽1

(2𝐽1 + 1)
(
_ 𝐿′ 𝐽1
0 0 0

) (
ℓ − _ 𝐿′ 𝐽2
0 0 0

) (
ℓ 𝐽1 𝐽

0 0 0

)
×

[∑︁
𝑚`

(−1)𝑀
′−`

(
_ 𝐿′ 𝐽1
` 𝑚 − 𝑀 ′ − ` 𝑀 ′ − 𝑚

) (
ℓ − _ 𝐿′ 𝐽2
𝑚 − ` ` − 𝑚 + 𝑀 ′ −𝑀 ′

) (
ℓ 𝐽1 𝐽

−𝑚 𝑚 − 𝑀 ′ 𝑀 ′

) (
_ ℓ ℓ − _
` −𝑚 𝑚 − `

)]
,

where, in the second line, we have written the Gaunt integrals in terms of Wigner 3- 𝑗 symbols (A8), and noted that

𝐴
_`

ℓ𝑚
= (−1)ℓ−𝑚

√︄
4𝜋(2ℓ + 1)2

(2_ + 1) (2ℓ − 2_ + 1)

(
2ℓ
2_

)1/2 (
_ ℓ ℓ − _
` −𝑚 𝑚 − `

)
. (E6)

To simplify, we first employ a summation identity for four 3- 𝑗 symbols, given in Lohmann (2008, Eq. A.24):∑︁
𝑚1𝑚2𝑚4𝑚5𝑚6

(−1) 𝑗4+ 𝑗5+ 𝑗6+𝑚4+𝑚5+𝑚6
(
𝑗4 𝑗5 𝑗3
𝑚4 −𝑚5 𝑚3

) (
𝑗5 𝑗6 𝑗1
𝑚5 −𝑚6 𝑚1

) (
𝑗6 𝑗4 𝑗2
𝑚6 −𝑚4 𝑚2

) (
𝑗1 𝑗2 𝑗 ′3
𝑚1 𝑚2 𝑚′

3

)
= 𝛿K

𝑗3 𝑗
′
3
𝛿K
𝑚3𝑚

′
3

1
2 𝑗3 + 1

{
𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}
, (E7)

where the quantity in curly parentheses is aWigner 6- 𝑗 symbol (seeNISTDLMF, §34.4). Notably, theRHSof the above equation is independent
of 𝑚3 and enforces 𝑗3 = 𝑗 ′3. Applying this to the final line of (E5), denoted by [...], with { 𝑗1, 𝑗2, 𝑗3, 𝑗

′
3, 𝑗4, 𝑗5, 𝑗6} = {ℓ, 𝐽1, 𝐽2, 𝐽, 𝐿′, ℓ − _, _}

with some massaging via the 3- 𝑗 symmetries gives[
...

]
= (−1)𝐽1+_+ℓ𝛿K𝐽2𝐽

1
2𝐽 + 1

{
ℓ 𝐽1 𝐽2
𝐿′ ℓ − _ _

}
, (E8)

enforcing 𝐽2 = 𝐽 and with no dependence on 𝑀 ′, as previously mentioned. We may further perform the 𝐽1 summation analytically, using the
6- 𝑗 summation relation:∑︁

𝑗6

(−1) 𝑗1+ 𝑗2− 𝑗3+ 𝑗4+ 𝑗5+ 𝑗6−𝑚1−𝑚4 (2 𝑗6 + 1)
{
𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

} (
𝑗5 𝑗1 𝑗6
𝑚5 𝑚1 −𝑚6

) (
𝑗2 𝑗4 𝑗6
𝑚2 𝑚4 𝑚6

)
(E9)

(Lohmann 2008, Eq. A.26b), which, following application of 6- 𝑗 symmetries, can be used to show∑︁
𝐽1

(2𝐽1 + 1) (−1)𝐽1
(
ℓ 𝐿′ 𝐽1
0 0 0

) (
ℓ − _ 𝐿′ 𝐽

0 0 0

) (
ℓ 𝐽1 𝐽

0 0 0

) {
ℓ 𝐽1 𝐽

𝐿′ ℓ − _ _

}
(E10)

= (−1)𝐿
′+𝐽

(
ℓ − _ 𝐿′ 𝐽

0 0 0

) (
ℓ _ ℓ − _
0 0 0

) (
𝐿′ 𝐽 ℓ − _
0 0 0

)
.

Inserting into (E5) gives the final form for the reduced coefficients 𝑓 𝛼,ℓ
𝐽
:

𝑓
𝛼,ℓ
𝐽

= (−1)ℓ (2ℓ + 1)3/2
min(𝛼,ℓ)∑︁
_=0

(
2ℓ
2_

)1/2 (
ℓ _ ℓ − _
0 0 0

) b (𝛼−_)/2c∑︁
𝑘=0

𝐶
ℓ/2
(𝛼−_)𝑘 (−2)

𝛼−_−2𝑘

×
∑︁

𝐿′=(𝛼−_−2𝑘)↓2
𝑐𝐿

′
𝛼−_−2𝑘

(
ℓ − _ 𝐿′ 𝐽

0 0 0

)2
.

(E11)

As before, this satisfies 𝑓 0,ℓ
𝐽

= 𝛿K
ℓ𝐽
, and 𝑓 𝛼,0

𝐽
= 𝛿K

𝛼0𝛿
K
𝐽0, which, when inserted into (E4) gives 𝐿ℓ (â · �a + A) = 𝐿ℓ (â · Â) at leading order

and 𝐿0 (â · �a + A) = 1. Furthermore, we have the parity-rule 𝛼 + ℓ + 𝐽 = even for non-zero 𝑓 𝛼,ℓ
𝐽
coefficients. We also note a curious property;

the sum of 𝑓 𝛼,ℓ
𝐽
over all 𝐽 is equal to zero unless 𝛼 = 0, as demonstrated in (4.3)& (4.11). To prove this, we set A = 𝑘a in (E4) and recall

𝐿ℓ (1) = 1, giving

1 =
∑︁
𝛼

∑︁
𝐽

𝑓
𝛼,ℓ
𝐽

(
1
𝑘

)𝛼
= 1 +

∑︁
𝛼>0

𝑘−𝛼
∑︁
𝐽

𝑓
𝛼,ℓ
𝐽

(E12)

For this to be true for arbitrary 𝑘 > 1, we require
∑
𝐽 𝑓

𝛼,ℓ
𝐽

= 0 for 𝛼 > 0.
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E2 Parity-Even Form

For the 2PCF estimators considered in §3.3, we use the Legendre polynomial shift theorem (E4) in the following symmetrized form:

𝐿ℓ (�̂� · �r1 + r2) =
∞∑︁
𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

2𝐽 + 1
2ℓ + 1 𝑓

𝛼,ℓ
𝐽

[
𝜖𝛼1 𝐿𝐽 (�̂� · r̂1) + (−1)ℓ+𝐽 𝜖𝛼2 𝐿𝐽 (�̂� · r̂2)

]
, (E13)

for 𝜖𝑖 ≡ Δ/(2𝑟𝑖). Just as for the spherical harmonic expansion (§3.3), these may be recast in a manifestly parity-even form, i.e. one only
involving even 𝐽 and 𝛼 (assuming even ℓ). The derivation of this is analogous to the above, and leads to

𝐿ℓ (�̂� · �r1 + r2) =
∞∑︁

even 𝛼=0

ℓ+𝛼∑︁
𝐽=max(ℓ−𝛼,0)

2𝐽 + 1
2ℓ + 1 𝐹

𝛼,ℓ
𝐽

( 𝑎
𝐴

)𝛼
𝐿𝐽 (â · Â), (E14)

for 2𝜖𝑖 � 1, where the parity-even coefficients are defined recursively via

𝐹
𝛼,ℓ
𝐽

= 𝑓
𝛼,ℓ
𝐽

− 1
2

∑︁
odd 𝛽<𝛼

2𝛼−𝛽
∑︁
𝑆

𝑓
𝛽,ℓ

𝑆
ℎ
(𝛼−𝛽) ,𝛽𝑆
𝐽

+ 1
4

∑︁
odd 𝛽<𝛼

2𝛼−𝛽
∑︁
𝑆

𝑓
𝛽,ℓ

𝑆

∑︁
even 𝛾>0,𝛾<𝛼−𝛽

∑︁
𝑇

ℎ
𝛾,𝛽𝑆

𝑇
ℎ
(𝛼−𝛽−𝛾) , (𝛽+𝛾)𝑇
𝐽

+ ... (E15)

using the method of §3.3, or equivalently

𝐹
0,ℓ
𝐽

= 𝛿K
ℓ𝐽

(E16)

𝐹
2,ℓ
𝐽

= − 𝑓 2,ℓ
𝐽

𝐹
4,ℓ
𝐽

= − 𝑓 4,ℓ
𝐽

+
∑︁
𝑆

𝑓
2,ℓ
𝑆

ℎ
2,2𝑆
𝐽

et cetera, using that of Appendix D. Here, the ℎ𝛽,𝛼ℓ
𝐽

functions are identical to 𝑓 𝛼,ℓ
𝐽
(E11), but with ℓ/2→ (ℓ + 𝛼)/2 in the 𝐶ℓ/2

𝑁 𝑘
coefficient.

APPENDIX F: BISECTOR SERIES EXPANSION

To derive the series expansion of §5.1, we start from the bisector vector definition d = 𝑡r1 + (1 − 𝑡)r2 where 𝑡 = 𝑟2/(𝑟1 + 𝑟2), and perform
the solid-harmonic expansion (A10):

𝑌𝑚
ℓ
(d̂) =

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

( 𝑡𝑟1
𝑑

)ℓ
𝑌
`

_
(r̂1)𝑌

𝑚−`
ℓ−_ (r̂2), (F1)

using 𝑡𝑟1 = (1 − 𝑡)𝑟2, and defining 𝐴
_`

ℓ𝑚
as in (B1). Whilst this is not immediately separable in r1, r2 due to the 𝑑 = |d| denominator, we

follow Castorina & White (2018) and note that

𝑑2 =
𝑟21𝑟
2
2

(𝑟1 + 𝑟2)2
|r̂1 + r̂2 |2 = 2𝑟21 𝑡

2 (1 + cos 𝜙) , (F2)

where cos 𝜙 = r̂1 · r̂2. Combining with the above:

𝑌𝑚
ℓ
(d̂) = [2(1 + cos 𝜙)]−ℓ/2

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚
𝑌
`

_
(r̂1)𝑌

𝑚−`
ℓ−_ (r̂2). (F3)

The former work proceeded to expand the prefactor to second order in cos 𝜙 around cos 𝜙 = 1; here, we note that

[2(1 + cos 𝜙)]−ℓ/2 = 2−ℓ
[
1 + cos 𝜙 − 1

2

]−ℓ/2
= 2−ℓ

∞∑︁
𝛽=0

(
−ℓ/2
𝛽

)
2−𝛽 (cos 𝜙 − 1)𝛽 , (F4)

via Newton’s generalized binomial theorem around cos 𝜙 = 1 (where the 2× 1 vector is a generalized binomial coefficient with
(𝑎
𝑏

)
= (𝑎)𝑏/𝑏!

for falling-factorial Pochhammer symbol (𝑎)𝑏 , defined in NIST DLMF, §5.2). Using the standard binomial theorem, this gives

[2(1 + cos 𝜙)]−ℓ/2 = 2−ℓ
∞∑︁
𝛽=0

(
−ℓ/2
𝛽

)
2−𝛽

𝛽∑︁
𝑛=0

(
𝛽

𝑛

)
(−1)𝛽−𝑛 cos𝑛 𝜙. (F5)

Finally, we may convert cos𝑛 𝜙 into a sum over Legendre polynomials via (A2) and thus spherical harmonics using (A5). This yields

[2(1 + cos 𝜙)]−ℓ/2 = 2−ℓ
∞∑︁
𝛽=0

(
−ℓ/2
𝛽

)
2−𝛽

𝛽∑︁
𝑛=0

(
𝛽

𝑛

)
(−1)𝛽−𝑛

∑︁
𝐿=𝑛↓2

𝑐𝐿𝑛
4𝜋
2𝐿 + 1

𝐿∑︁
𝑀=−𝐿

𝑌𝑀𝐿 (r̂1)𝑌𝑀∗
𝐿 (r̂2). (F6)
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Combining the spherical harmonics with those in (F1) via (A7) gives the final form for the expansion:

𝑌𝑚
ℓ
(d̂) = 2−ℓ

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

∞∑︁
𝛽=0

(
−ℓ/2
𝛽

)
2−𝛽

𝛽∑︁
𝑛=0

(
𝛽

𝑛

)
(−1)𝛽−𝑛

∑︁
𝐿=𝑛↓2

𝑐𝐿𝑛
4𝜋
2𝐿 + 1

𝐿∑︁
𝑀=−𝐿

(F7)

_+𝐿∑︁
𝐽1= |_−𝐿 |

(−1)𝑀−𝑚G`𝑀 (−`−𝑀 )
_𝐿𝐽1

𝐽2=ℓ−_+𝐿∑︁
𝐽2= |ℓ−_−𝐿 |

G (𝑚−`) (−𝑀 ) (𝑀+`−𝑚)
(ℓ−_)𝐿𝐽2 𝑌

`+𝑀
𝐽1

(r̂1)𝑌
𝑚−`−𝑀
𝐽2

(r̂2)

⇒ 𝑌𝑚
ℓ
(d̂) ≡

∞∑︁
𝛽=0

ℓ+𝛽∑︁
𝐽1=0

ℓ+𝛽∑︁
𝐽2=0

𝐽1∑︁
𝑀=−𝐽1

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
𝑌𝑀𝐽1

(r̂1)𝑌𝑚−𝑀
𝐽2

(r̂2),

defining the coefficients

𝐵
𝛽,ℓ𝑚

𝐽1𝐽2𝑀
= 2−ℓ

ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚

(
−ℓ/2
𝛽

)
2−𝛽

𝛽∑︁
𝑛=0

(
𝛽

𝑛

)
(−1)𝛽−𝑛

∑︁
𝐿=𝑛↓2

𝑐𝐿𝑛
4𝜋
2𝐿 + 1 (−1)

𝑀−`−𝑚G` (𝑀−`) (−𝑀 )
_𝐿𝐽1

G (𝑚−`) (`−𝑀 ) (𝑀−𝑚)
(ℓ−_)𝐿𝐽2 . (F8)

The summation limits on 𝐽1, 𝐽2 come from the consideration of the Gaunt integral triangle conditions, and the constraints 𝐿 ≤ 𝑛 ≤ 𝛽, as in
Appendix B2. Furthermore, the Gaunt integrals require even _ + 𝐿 + 𝐽1 and ℓ − _ + 𝐿 + 𝐽2, thus ℓ + 𝐽1 + 𝐽2 is even, but we do not require 𝐽1
and 𝐽2 themselves to be even.

For the special case of 𝛽 = 0, we obtain

𝐵
0,ℓ𝑚
𝐽1𝐽2𝑀

= 2−ℓ
ℓ∑︁
_=0

_∑︁
`=−_

𝐴
_`

ℓ𝑚
(4𝜋) (−1)𝑀−`−𝑚G` (𝑀−`) (−𝑀 )

_0𝐽1
G (𝑚−`) (`−𝑀 ) (𝑀−𝑚)
(ℓ−_)0𝐽2 (F9)

= 𝛿K
𝐽2 (ℓ−𝐽1) × 2

−ℓ 𝐴𝐽1𝑀
ℓ𝑚

.

using
(−ℓ/2
0

)
= 1, 𝑐00 = 1 and the explicit forms of the Gaunt integral, assuming 𝐽1, 𝐽2 ≤ ℓ and |𝑀 | ≤ 𝐽1. Notably, 𝑌𝑚ℓ (d̂) still involves a

summation over 𝐽1, 𝐽2, 𝑀 at zeroth-order in 𝛽. Considering ℓ = 𝑚 = 0, the coefficient becomes

𝐵
𝛽,00
𝐽1𝐽2𝑀

= 𝐴00002
−𝛽

𝛽∑︁
𝑛=0

(
𝛽

𝑛

)
(−1)𝛽−𝑛

∑︁
𝐿=𝑛↓2

𝑐𝐿𝑛
4𝜋
2𝐿 + 1 (−1)

𝑀G0𝑀 (−𝑀 )
0𝐿𝐽1

G0(−𝑀 )𝑀
0𝐿𝐽2

(F10)

= 𝛿K
𝐽10𝛿

K
𝐽20𝛿

K
𝑀0 ×

√
4𝜋

using 𝐴0000 =
√
4𝜋 and

(0
𝛽

)
= 𝛿K

𝛽0. As expected, this recovers 𝑌
0
0 (d̂) = 1/

√
4𝜋.
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