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Protein structural families and the contribution of compactness.
David Paul Yee
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Abstract

Proteins are fundamental to life as we know it. They are the microscopic machines

which catalyze essential chemical reactions. They act as critical structural supports in

our cells. They are the end product of the “central dogma” of molecular biology;

nucleic acids code for proteins. The problem of predicting the structure of a protein from

its amino acid sequence is known as the protein folding problem. Thousands of

biophysical characterizations and theoretical studies have been published in an attempt to

understand how the amino acid sequence of a polypeptide chain carries the information

necessary for a protein to fold into its precise 3 dimensional structure. In the nearly four

decades that have passed since the first crystal structure of a protein was solved, hundreds

of high resolution protein crystal structures have been determined. Yet the protein

folding problem remains unsolved.

The work in this thesis represents an attempt to understand a small part of the

protein folding puzzle. I first describe the development of a measure of protein structural

dissimilarity. The dissimilarity measure is used to search databases for the presence of

specific substructures and structural motifs. It is then used to compare, pairwise, a large

dataset of diverse protein structures. Clustering methods are utilized to automatically

partition proteins into unique structural classes. An analogy to points randomly

distributed in an d-dimensional Euclidean space is used to ask if protein families are

tightly-knit or loosely-knit entities.



Next, I analyze ensembles of random, compact poly-alanine conformations to

explore the relationship between compactness and secondary structures in protein. The

work shows that there is an entropy which stabilizes ordered structures in compact

ensembles of polymers. I conclude by describing a method to map protein structures

onto a cubic lattice. Distance and bond projection correlation functions are used to

characterize the differences between real proteins and simplified models of proteins.
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Chapter 1

Introduction



If nucleic acids represent the genetic code, then proteins surely represent life's

machinery. In introductory biology courses, one is taught that the information which

codes for life is present in deoxyribonucleic acid (DNA). Genes, specific sequences of

DNA, are transcribed into special ribonucleic acids known as messenger ribonucleic

acids (or mRNA). mRNA is in turn translated by a complicated protein/nucleic acid

complex into proteins. The massive effort to sequence the human genome is driven by

our desire to identify the genes that code for the tiny molecular machines of which we are

comprised.

Proteins are polymers of amino acids which, by virtue of specific sequences of

amino acids, can fold into highly defined three-dimensional shapes. These structures are

so precise that proteins can recognize and modify molecules with incredible precision

and specificity.

There are 20 different naturally occurring amino acids. All amino acids consist of

an amino group, a carboxyl group, a hydrogen atom, and a side chain bonded to a central

carbon which is designated as the o-carbon. The side chains differ widely in their

chemical composition. They can be polar or non-polar. They can be large and bulky or

small. A series of amino acids linked together via peptide bonds forms a polypeptide. If

the polypeptide consists of an amino acid sequence with certain properties, it can fold

into a protein.

The experiments of Christian Anfinsen in the early 1970’s on ribonuclease

demonstrated that the information required to fold a polypeptide into a protein is

contained in the amino acid sequence itself [1]. By denaturing ribonuclease with urea

and fl-mercaptoethanol, ribonuclease was unfolded and activity was destroyed. Anfinsen

observed that upon dilution of the denaturants, activity was restored. Since denatured

proteins consist of fully unfolded polypeptides, the observation that activity could be



restored upon dilution of denaturant provided strong evidence that proteins fold to their

thermodynamically most stable form. The question of how a particular sequence of

amino acids codes for a protein's structure is known as the protein folding problem.

The first crystal structure of a protein, myoglobin, was published in 1960 [2]. After

nearly four decades, there are several hundred high resolution crystal structures in the

Brookhaven Protein Data Bank (PDB) [3] [4]. Despite the wealth of structural data,

thousands of biophysical characterizations, and thousands of theoretical studies, the

protein folding problem remains unsolved.

The work in this thesis represents an attempt to understand a small part of the

protein folding puzzle. In the next section, I describe the development of a measure of

protein structural dissimilarity. In the second part of this thesis, I analyze ensembles of

random poly-alanine conformations to gain an understanding of the relationship between

compactness and secondary structures in protein. I conclude by describing work mapping

protein structures onto a cubic lattice and discuss ways of characterizing the difference

between real proteins and simplified models of proteins.

For further reading, introductory biochemistry texts by Stryer [5] and Zubay [6] are

very good. Introductions to protein structure can be found in books by Schulz and

Shirmer [7], Brandon and Tooze [8], and Lesk [9].



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

C. B. Anfinsen, “Principles that Govern the Folding of Protein Chains,” Science,

181(4096):1973.

J. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D.C.

Phillips, and V. C. Shore, “Structure of Myoglobin,” Nature, 185:422-427, 1960.

E. E. Abola, F. C. Bernstein, S. H. Bryant, T. F. Koetzle, and J. Weng, in:

Crystallographic Databases - Information Content, Software Systems, Scientific

Applications, F. H. Allen, G.Bergerhoff, and R. Seivers, ed., p. 107 - 132, Data

Commission of the Int’l Union of Crystallography, Bonn/Cambridge/Chester, 1987.

F. C. Bernstein, T. F. Koetzle, G. Williams, E. Meyer, M. Brice, J. Rodgers, O.

Kennard, T. Shimanouchi, and M. Tasumi, “The Protein Data Bank: A Computer

based Archival File for Macromolecular Structures,” Journal of Molecular Biology,

112:535-542, 1977.

L. Stryer, Biochemistry, Freeman, San Francisco, CA, 1983.

G. L. Zubay, Biochemistry, Addison-Wesley, Reading, MA, 1981.

G. E. Schulz and R. H. Schirmer, Principles of Protein Structure, Springer-Verlag,

New York, 1979.

C. Branden and J. Tooze, Introduction to Protein Structure, Garland, New York,

1991.

A. M. Lesk, Protein Architecture, (Practical Approach Series), IRL Press, Oxford

New York Tokyo, 1991.



- 5 -

Chapter 2

Structural Relatedness

&

Protein Families



Preface

A most remarkable treatise is Jane Richardson's work entitled “The Anatomy And

Taxonomy Of Protein Structure” [1]. Published in 1981, Richardson reviews the basic

elements of protein structure: helices, sheets, turns, etc. More impressively, she

classified all known protein structures into broad classes of antiparallel o domains,

parallel off domains, antiparallel f domains, and small domains containing either bound

metal or disulphides. To support her classification, she provided beautifully drawn

ribbon diagrams which highlighted the similarities between the proteins. These

diagrams, which have become the de facto standard way of displaying a protein structure,

allow one to clearly see the packing arrangement of the secondary structures within each

protein. Richardson's contribution was invaluable because it allowed one to speak of

protein families and, therefore, consider the protein folding problem in terms of how and

why proteins adopt specific topologies. Although earlier work introduced the concept of

protein families [2], Richardson’s work allowed the researcher to visualize them.

This chapter describes the development of a general measure of protein

dissimilarity. The measure, named CONGENEAL (for CONformational GENEALogy),

was tested by searching a dataset of protein structures for the presence of related proteins

and specific substructures. CONGENEAL was then used to compare pairwise a dataset

of 158 protein structures. The pairwise dissimilarity data was used in conjunction with

several clustering algorithms to automatically partition proteins into unique structural

classes. This work represents a simple attempt to automatically partition proteins into

families. An analogy to points randomly distributed in an d-dimensional Euclidean space

was used to determine if protein families are tightly-knit or loosely-knit entities.
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Abstract

Protein structures come in families. Are families “closely-knit” or “loosely-knit”

entities? We describe a measure of relatedness among polymer conformations. Based on

weighted distance maps, this measure differs from existing measures mainly in two

respects: (i) it is computationally fast, and (ii) it can compare any two proteins, regardless

of their relative chain lengths or degree of similarity. It does not require finding relative

alignments. The measure is used to determine the dissimilarities between all 12,403

possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank

(PDB). Combined with minimal spanning trees and hierarchical clustering methods, this

measure is used to define structural families. It is also useful for rapidly searching a

dataset of protein structures for specific substructural motifs. By using an analogy to

distributions of Euclidean distances, we find that protein families are not tightly-knit

entities.

Keywords

protein family, structural comparison, relatedness, substructure searches
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Introduction

Pioneering work over the past 20 years has shown that proteins fall into families of

related structures [1-4]. How many families are there? Are the families “tightly-knit” or

“loosely-knit”? That is, do two proteins within a family have much greater structural

similarity than two proteins from different families? If so, they are tightly-knit. What

can we learn about the forces of protein folding and evolution from observing how

proteins cluster into families?

In order to address these questions, it is necessary to have a suitable measure of the

structural similarity between proteins, since a “family” relationship can only be defined

in terms of some degree of similarity. Several measures of structural similarity have been

developed [5-8]. There is no underlying fundamental principle dictating that one

similarity measure is better than others. Ultimately, the concept of “similarity” is based

upon some criterion arbitrarily chosen for a particular purpose [9]. For example, a

common measure of structural similarity is the root-mean-square deviation of atomic

positions after superposition (RMS). RMS is a useful distance metric for comparing

structures that are nearly identical; for example, when refining or comparing structures

obtained from x-ray crystallography or NMR experiments. However, RMS is of limited

value as a general measure of similarity since it is a “maximum likelihood estimator” of

the standard deviation between two structures only if the individual errors are Gaussian

distributed with zero mean [10]. The Gaussian distribution assumption can be reframed

as an assumption that the differences between two compared structures arise from

fluctuations which obey a square-law potential. A square-law potential is only a good

approximation for small conformational deviations. If two structures are not in the same

energy well, or if errors are large, RMS will lose its underlying justification. In addition,

the use of an RMS distance criterion to compare two protein structures requires making

assignments in which atom i of protein 1 “is equivalent to” atom j of protein 2. When
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comparing proteins with little sequence identity or unequal chain lengths, this requires

making arbitrary decisions.

Some similarity measures require making structural alignments of one protein with

the other [6,7]. When there is a biological or evolutionary basis for making these

alignments, such methods have the advantage of allowing a high degree of structural

discrimination among highly similar proteins. For proteins that are not highly similar,

however, making alignments requires making certain arbitrary choices about the possible

locations of insertions and deletions and the choices of gap penalties. These decisions can

be computationally intensive.

Rackovsky has developed a similarity measure that compares distributions of

conformations of chain segments up to 4 residues in length [8]. Whereas it captures

structural information of residues close together in sequence, our interest here is to

capture information about contacting residues at all separations along the chain.

Our purpose here is better served by yet a different measure of structural

relatedness. The following questions motivate the need for a different measure. What is

the shape of protein conformational space? What is a useful “reaction coordinate”

along which a protein folds to its native state? In models of proteins, such as those

involving chains on lattices, how similar is a model conformation to the true native

conformation? To address these questions, we need a similarity measure for which the

two most important criteria are: (i) that it must be able to compare any two

conformations, no matter how different, and (ii) that it must entail making the fewest

possible arbitrary decisions. Furthermore, the measure must avoid comparing structures

based on microscopic details such as hydrogen bond angles, since these are not

appropriate for some low-resolution models. Many such problems do not involve

insertions, deletions, or gaps, and therefore do not require that a similarity measure have
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sophisticated alignment machinery.

If an algorithm that measured structural relatedness were computationally efficient

enough, it could also be put to other uses. For example, since the number of known

protein structures is N & 100-1000, (depending on whether we choose all known

structures, or whether they are selected in some way to avoid repeats of nearly identical

molecules), the number of pairwise comparisons involved is (Nx(N-1))/2 & 10% – 106.

If we could compute all these pairwise “distances”, we could measure the

interrelatedness among proteins to learn how they cluster into families. Different

similarity measures make different trade-offs between speed, number of arbitrary

decisions, and discrimination. By choosing a measure that is as simple, fast to compute,

and non-arbitrary as possible, we trade off the degree of discrimination among highly

similar proteins obtained by other measures, but the latter is less important for our

purposes.

The outline of this paper is as follows. We first introduce the algorithm for

measuring dissimilarity. (It measures “dissimilarity” because it is 0 for identical

structures, and increases as the structural similarity between two proteins diverges.) We

call it CONGENEAL (CONformational GENEALogy) because it compares

conformations and can generate family trees describing their relatedness. Much of this

paper is devoted to showing that CONGENEAL is a reasonable measure of relatedness.

For example, in one test we show that it is a useful tool for searching databases of protein

structures to locate specified substructures within proteins. We then apply this measure

to the pairwise comparison of 158 diverse protein structures and use clustering

algorithms to identify families. Finally, we compare the dissimilarity distribution of

protein structures to simulations of points distributed in n-dimensional Euclidean spaces

to explore the tightness with which proteins cluster into families.
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Figure 2.1: Weighted distance maps of crambin with p = 2 on the left and

p = 6 on the right. The height of the peaks corresponds to the magnitude of the

weight, w.

CONGENEAL: A Dissimilarity Measure

The CONGENEAL dissimilarity measure compares the weighted distance maps of

two polymer conformations (see figure 2.1). The weighted distance map of a protein

chain conformation that has N residues is an N × N matrix in which each matrix element

(i,j) is a weight, w, equal to the distance, di.j, between the o-carbons of residues i and j,
raised to a power-p (p > 0):

wij = diff (2.1)

Two residues which are adjacent in space are assigned a large weight, while two residues

which are far apart in space have a small weight. Since the matrix is symmetric, it is

only necessary to compute the upper (or lower) triangle of the matrix. The difference

between the weighted distance map and the contact map, first introduced by Liljas and
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Rossmann [11], is that, in the former, the weights are assigned from a continuous range

of values whereas, in the latter, only weights of 0 or 1 are used to indicate whether or not

a pair of residues are adjacent.

The distance dependence in equation 2.1 resembles that of intermolecular forces.

For the purpose of dissimilarity measures, however, there are no underlying principles

that direct us to choose a particular value of p. We have investigated p = 1, 2, 4, and 6.

When p = 6, only the closest neighbors contribute to the weighted distance map. When

p = 2, pairs of residues separated in space by greater distances also contribute. We

compare different values of p below, but the qualitative results are found to be sensibly

independent of p. We mainly use p = 2.

We now describe how the dissimilarity score is obtained from the weighted distance

maps for two conformations. Given two proteins, R and S, let rij be the distance between

residues i and j in protein R and let sj be the distance between residues i and j in protein

S. First, consider a simple case. When R and S have the same chain length, N, and have

a direct residue-to-residue alignment, the dissimilarity between the two proteins is given

by:

N N . . . . .
X. X | rf —s■ |

i-1 j-i-H2
d(R,S) = N N N N (2.2)1

- -

2. X. X. rf--> X. s?i-1 j-i-H2 i =l j-i-º-2

If two proteins have identical weighted distance maps, then d(R,S) = 0.

Now, in order to compare proteins with different chain lengths and unknown

alignments, we define a score based upon sliding one map across another, similar to a

correlation function. That is, if two proteins, R and S, have chain lengths M and N

respectively where Ms N, then we calculate a series of dissimilarities as follows:
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* * , --, -,-pX; X | riff - sº jºt
i-1 jºi-H2

d'(R,S, t) = 1 ; *: M M (23)#|X. X.,7+? ... ºr
i-1 j-i-H2 i-1 j-i-42

where the range of “offsets”, t, of one weighted distance map relative to the other varies

from —M/2 to N – M/2 for a total of N different alignments. The dissimilarity between

the proteins R and S is then obtained by finding the offset for which the similarity is

greatest:

d (R,S) -news º (2.4)

This procedure alone, however, is not sufficient to specify a score, since the sliding

of distance maps means that some (i,j) pairs of one conformation will sometimes go

unpaired with (i,j) pairs in the other. For example, if t = -5, then the residue pair (1,3)R

of protein R will be compared to a non-existent pair (–4,-2)s of protein S. Therefore,

there are two additional steps in the scoring method. First, the weighted distance maps

are made periodic (i.e., “wrapped around”) so that residue pairs are defined for all

offsets. In this way, the number of compared residue pairs is the same for all alignments.

Second, since a “wrapped-around” weighted distance map may imply some structural

features which are not present in the actual conformation (e.g., a helix can move from the

N-terminus end of a conformation to the C-terminus end), a randomization procedure is

used to ensure that the dissimilarity score and alignment do not contain artifacts from

using periodic weighted distance maps. The randomization procedure is as follows: For

any comparison of residue pairs, (i,j)r, (i,j)s, involving a wrapped-around residue pair,

a difference weight is not added directly to the dissimilarity score. Instead, these weights

are collected in separate bins based on contact order (the contact order for residue pair
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(i,j) is defined as |j-i |, i.e., the separation of the residues along the chain). The binned

distance weights from one conformation are then randomly matched with the binned

distance weights from the other conformation and then added to the dissimilarity score.

In practice, the offset which gives rise to the best alignment of two proteins contain few

references to non-existent (i.e., wrapped-around) residue pairs and several different

methods that we tried for treating them gave similar results.

When comparing a larger protein with a smaller one, CONGENEAL finds the part

of the large protein that is most similar to the weighted distance map of the smaller

protein. This feature makes CONGENEAL useful for rapidly finding specific

substructures within different proteins in a structural database. To search a database for a

specific substructure, CONGENEAL is used to generate scores between the substructure

and each protein in the database: a small score for some alignment with a given protein
locates that motif within the protein.

Table 2.1

Key to 158 protein set
code # residues protein name
451c 82 cytochrome c 551
155C 134 cytochrome c 550
256b 106 cytochrome b562
1aat 288 aspartate aminotranferase
1abp 306 L-arabinose binding protein
2abx 74 O-bungarotoxin
2act 218 actinidin
1ack 107 actinoxanthin

6adh_a 374 alcohol dehydrogenase
3adk 194 adenylate kinase
2ait 74 tendamistat
1alc 122 O-lactalbumin

2alp 198 O-lytic protease
4ape 330 endothiapepsin
7api 339 O.1-antitrypsin
3app 323 penicillopepsin
2apr 325 rhizopuspepsin



- 18 -

2atc_c
2atc_r
2aza_a
3b5c
1bds
3blm

1bp2
3c2c
2ca2
8cat_a
1.cbp
1cc5
1ccr

2ccy_a
2cdv
2ci2
3cln
1.cms
2cna

5cpa
2cpp
5cpv
1crn

1cro_o
2cro
1cse
1ctf
1ctx

5cyt
2cyp
3dfr
5ebx
1ecd
1efrn
2enl
2est
1etu
2fb4_h
2fb4_l
1fc.1
4fd1

305
152
129

85
43

257
123
112
256
498

86
83

111
127
107

65
143
323
237
307
405
108
46
66
65

274
68
71

103
293
162

62
136
130
436
240
141
229
216
206
106

aspartate transcarbamylase (regulatory subunit)
aspartate transcarbamylase (catalytic subunit)
azurin (A. denitrificans)
cytochrome b5
sea anemone antiviral protein
fl-lactamase
phospholipase A2
cytochrome cº
carbonic anhydrase
beef liver catalase

cucumber basic protein
cytochrome c 5
rice cytochrome c
cytochrome c
cytochrome c 3
barley chymotrypsin inhibitor
calmodulin

chymosin B
concanavalin A

carboxypeptidase A
cytochrome P450 CAM
carp parvalbumin
crambin
A cro
434 cro

subtilisin carlsberg
C-terminal domain of ribosomal protein L7/L12
o-cobratoxin

tuna cytochrome c
cytochrome c peroxidase
dihydrofolate reductase
erabutoxin A

erythrocruorin
elongation factor TU
enolase

porcine elastase
elongation factor TU
Fab KOL (heavy chain)
Fab KOL (light chain)
Fc fragment of immunoglobulin
ferredoxin
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3frn

3gap_c
3gap_o
2gbp
1gcr
1gd1_o
2gls_a
1gp1_a
3grs
1hho_a
1hip
1hkg
2hla_h
2hla_m
2hmg_1
2hmg_2
1hmq_a
1hoe

3hvp
2i1b
3icb
4ins_a
1kga
2lbp
3ldh
2lh4
2liv
1lrd

1lyz
11z1
31zm
1mbd
4mdh

2mev_vp1
2mev_vp2
2mev_vp3
4mlt

1mon_a
1nxb
2Ovo

2pab

138
208
205
309
174
334
468
184
461
141

85
457
270

99
328
175
113
74

153
75
21

173
346
329
153
344

87
129
130
164
153
334
268
249
231

26

flavodoxin

catabolite gene activator protein (closed form)
catabolite gene activator protein (open form)
galactose-binding protein
Y-crystallin
glyceraldehyde-3-phosphate dehydrogenase
glutamine synthetase
glutathione peroxidase
glutathione reductase
human hemoglobin
high potential iron protein
hexokinase

human class 1 histocompatibility complex (heavy)
human class 1 histocompatibility complex (5-2-microglubulin)
influenza hemeagglutinin (HA1)
influenza hemeagglutinin (HA2)
hemerythin
o-amylase inhibitor
HIV protease
interleukin-13
intestinal calcium-binding protein
2Zn insulin

2-keto-3-deoxy-6-phosphogluconate aldolase
leucine-binding protein
dogfish lactate dehydrogenase
lupin leghemoglobin
leucine/isoleucine/valine-binding protein
A-repressor
hen egg white lysozyme
human lysozyme
T4 lysozyme
sperm whale myoglobin
malate dehydrogenase
mengo virus VP1
mengo virus VP2
mengo virus VP3

62
56

114

mellitin

monellin (A chain)
neurotoxin B

ovomucoid, third domain
prealbumin
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9pap
2paz
1pcy
4pep
1pfk_c
1pfk_o
3pgk
3pgm
1phh
1phy
2pka
2plv_vp1
2plv_vp2
2plv_vp3
1pp2_r
1ppt
1pro_c
1pro_l
1pro_m
1pro_h
2prk
1pte
5pti
4ptp

212
123

99
326
320
320
416
230
394
126
232
283
268
235
122

36
332
273
323
258
279
348

58
223
280

papain
pseudoazurin
plastocyanin
pepsin
phosphofructokinase (closed form)
phosphofructokinase (open form)
phosphoglycerate kinase
phosphoglycerate mutase
p-hydroxybenzoate hydroxylase
photoreactive yellow protein
kallikrein A

polio virus VP1
polio virus VP2
polio virus VP3
snake venom phospholipase
avian pancreatic polypeptide
photosynthetic reaction center R. viridis C subunit
photosynthetic reaction center R. viridis L subunit
photosynthetic reaction center R. viridis M subunit
photosynthetic reaction center R. viridis H subunit
proteinase K
carboxypeptidase/transpeptidase
bovine pancreatic trypsin inhibitor
trypsin
pyrophosphatase
434 repressor (N-terminal domain)
ribonuclease B

immunoglobulin Vic domain
rhodanese

immunoglobulin V3 domain
rhinovirus VP1

1ró9

1rbb_a
1rei
1rhd
2rhe

4rhv_vp1
4rhv_vp2
4rhv_vp3
3rn 3
1rns
2rnt

3rp2
7rsa

5rub_a
5rxn

4sbv_a

63
124
107
293
114
273
255
236
124

72
104
224
124
260

54
199

rhinovirus VP2
rhinovirus VP3
ribonuclease A
ribonuclease S

ribonuclease T1
rat mast cell protease
ribonuclease A
rubisco
rubredoxin
southern bean mosaic virus
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2sga 181 S. griseus proteinase A
3sgb 185 S. griseus proteinase B
1sn3 65 scorpion neurotoxin
2sns 141 staphylococcal nuclease
2sod_o 151 superoxide dismutase (orange subunit)
1srx 108 thioredoxin

2ssi 107 streptomyces subtilisin inhibitor
2stv 184 satellite tobacco necrosis virus

2taa 478 taka-amylase
2tbv 286 tomato bushy stunt virus
1tec 279 thermitase
1thi 207 thaumatin I

1tim 247 chicken triosephosphate isomerase
2tmv 154 tobacco mosaic virus

4tnc 160 troponin C
1tnf 152 tumour necrosis factor

1ubq 76 ubiquitin
1utg 70 uteroglobin
9wga 171 wheat germ agglutinin
1 wrp 102 trp repressor
4xia 393 xylose isomerase
2yhx 457 hexokinase

Validation of the Dissimilarity Measure

How can one validate a dissimilarity measure? For any two proteins, different

measures can predict different degrees of relatedness. As noted before, there is no

fundamentally correct measure of relatedness. Therefore, the validation of a dissimilarity

measure ultimately depends on whether it seems sensible in light of other knowledge. In

the section below, we characterize CONGENEAL in the following ways:

Pairwise tests. (a) Finding sequence alignments: When two different proteins contain

the same substructure, a dissimilarity measure should find the sequence alignment for

which the structures most closely superimpose. (b) Using a probe protein structure to
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Figure 2.2: Plots of dissimilarity score versus alignment. For figures A-C,

p = 2. For figures D-F, p = 6. Figures A & D show the comparison of sperm

whale myoglobin with human hemoglobin. B & E show the comparison of

two unrelated proteins: sperm whale myoglobin and superoxide dismutase. C

& F show the comparison of two weakly similar proteins: T4 (bacteriophage)

lysozyme and hen egg white lysozyme.

search the database: A dissimilarity measure should find related proteins or

substructures in a search of a structural database.
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Cluster Analysis. We compare 158 proteins pairwise and apply clustering algorithms to

ask whether the dissimilarity measure finds sensible family relationships among them.

We use two types of clustering methods: minimal spanning trees and hierarchical trees

based on agglomerative clustering.

All protein coordinates were obtained from the Brookhaven Protein Data Bank

(PDB) [12, 13]. The set of 158 protein structures was derived from Appendix 3 in

“Protein Architecture” by Arthur Lesk [14]. Table 2.1 lists the proteins and their PDB

filenames.

Pairwise tests: (a) Finding Sequence Alignments.

To first choose a few examples, it is reasonable to believe that sperm whale

myoglobin (1mbd) and the A chain of human hemoglobin (1hho_a) are closely related

proteins; that sperm whale myoglobin and the orange subunit of superoxide dismutase

(2sod) are unrelated; and that the lysozymes from T4 bacteriophage (31zm) and from hen

egg white (11yz) are only distantly related. Figure 2.2 shows the dissimilarity score as a

function of alignment for these three comparisons using CONGENEAL with either p = 2

or p = 6. The point at which the score dips to a minimum, (i) indicates the degree of

similarity between the two proteins, and (ii) gives the offset (i.e., shift) of one sequence

starting position relative to the other sequence for which the structures bear closest

resemblance.

For the three pairwise protein comparisons mentioned above, CONGENEAL finds

the expected relationships. Sperm whale myoglobin is found to be similar to the A chain

of human hemoglobin with an offset of -6 residues. On the other hand, figure 2.2B

indicates that there is no similarity between sperm whale myoglobin and the orange

subunit of superoxide dismutase. The dissimilarity measure finds hen egg white
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lysozyme and T4 bacteriophage lysozyme to have only a small degree of similarity. In

this case, the best score is obtained at an offset of -26 residues, in agreement with the

observations of Remington and Matthews [5] and Rossmann and Argos [15], who noted

that when residues 1-80 of the phage lysozyme are aligned with residues 27 - 106 of the

hen egg white lysozyme, there is overlap of the active sites.

(b) Using a probe to search the database.

When a probe protein or substructure is scanned through a protein databank, a

dissimilarity measure should properly rank order them by their similarity to the probe.

Below we show three examples -- the helix-turn-helix DNA binding motif, the EF hand

calcium binding motif, and the globin fold -- for which the dissimilarity score identifies

closely related protein conformations.
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Figure 2.3: Dissimilarity score versus alignment of the 434 cro DNA binding

substructure with the complete structure of 434 cro.
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Table 2.2
Proteins with Helix-Turn-Helix motif

Protein Name PDB filename CONGENEAL RMS

434 Cro 2cro 0.000 0.000

434 repressor (N-terminal domain) 1ró9 0.052 0.380
A cro 1cro_o 0.068 0.585
A repressor 1lrd 0.099 0.830
enolase 2enl 0.110 1.634

catabolite gene activator protein (open form) 3gap_o 0.120 1.135
catabolite gene activator protein (closed form) 3gap_c 0.126 1.068
cytochrome P450 CAM 2cpp 0.135 1.742
C-terminal domain of ribosomal protein L7/L12 1ctf 0.170 1.938
xylose isomerase 4xia 0.177 2.047
cytochrome c peroxidase 2cyp 0.178 2.053
photosynthetic reaction center R. viridis M subunit 1pre_m 0.178 2.963
photosynthetic reaction center R. viridis L subunit 1pre_l 0.189 2.835
trp repressor 1 wrp 0.197 1.729
beef liver catalase 8cat_a 0.203 2.652
erythrocruorin 1ecd 0.205 2.978
proteinase K 2prk 0.205 2.543
glutamine synthetase 2gls_a 0.207 3.694
hemerythin 1hmq_a 0.209 4.206
sperm whale myoglobin 1mbd 0.210 4.531

(1) DNA Binding Motif: A number of proteins are known to have similar helix

turn-helix substructures that bind DNA. A Cro, A repressor, 434 cro, 434 repressor, trp

repressor, and catabolite gene activator protein (CAP) all have sequence similarity in a

region of 22 amino acids, corresponding to the helix-turn-helix structural motif [16].

How widely distributed is the helix-turn-helix motif throughout the protein database?
We use CONGENEAL to search the dataset for the helix-turn-helix conformation. In our

search, the helix-turn-helix substructure is defined as the 23-residue stretch from 434 Cro

starting with methionine 15 and ending with glycine 37. As a simple test, figure 2.3

shows the result of aligning the 434 Cro helix-turn-helix substructure with the full 434

Cro protein. The deepest minimum in figure 2.3 correctly identifies the proper alignment
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with itself, and the score of 0 indicates that it is an exact match. The other three minima

correspond to the three other turns between helices found in Cro.
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figure 2.4: Histogram showing the distribution of dissimilarity scores when the

434 cro DNA binding substructure is compared with a dataset of 158 proteins.

The 434 Cro helix-turn-helix DNA binding substructure was then scanned across

the dataset of 158 proteins. The distribution of dissimilarity scores is shown in figure

2.4. Several proteins are found to have helix-turn-helix substructures similar to that of

434 Cro. Table 2.2 lists the twenty proteins with the greatest similarities to the target

substructure. All seven proteins known to have the DNA binding helix-turn-helix

substructure are in this group. In all seven cases, the predicted alignment of the

substructure with the protein is identical to the alignment produced by sequence

analysis [16]. The protein with the most similar substructure (other than 434 Cro) is 434

repressor. This is consistent with the observation of Mondragon et al. that the amino

terminal domain of 434 repressor is remarkably similar to 434 Cro [17] and that the
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substructures are virtually identical. The DNA binding protein that is least similar to 434

Crois E. coli trp repressor. The latter differs from the other DNA binding proteins in

two respects: (i) the end of the first helix is more open, and (ii) the orientation of the

second helix in the helix-turn-helix substructure is constrained by the binding of L

tryptophan [18].

figure 2.5: Structural alignment of 434 Cro DNA binding motif to top 8

matches identified by CONGENEAL and trp repressor which scored 14th. 434

Cro DNA binding substructure is shown in green. DNA binding proteins are

shown in red. Non-DNA binding proteins are shown in blue. trp repressor, the

DNA binding protein least similar to the target 434 Cro substructure, is shown

in cyan.
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The seven DNA binding proteins rank 1,2,3,4,6,7, and 14 in similarity to the

probe helix-turn-helix structural motif. Some non-DNA binding proteins also score well

for the presence of the helix-turn-helix substructure (see table 2.2). In many cases, the

best match of the substructure to a protein occurs when the helix-turn-helix substructure

is aligned with the last half of a long helix, a turn, and the first few residues of the

following helix. Two of the proteins identified here as having a substructure similar to

that of the probe substructure have been previously noted by Richardson and

Richardson [19]. They found that cytochrome c peroxidase and ribosomal L7/L12 protein

contain conformations similar to the DNA-binding helix pairs in gene activator and

repressor proteins. In the present analysis, the non-DNA binding protein which has a

substructure most similar to the probe DNA binding substructure is yeast enolase.

Enolase has two domains consisting of (i) a 3 stranded f meander and 4 o- helices and

(ii) an 8-fold f + or barrel [20]. The helix-turn-helix substructure of 434 Cro aligns with

enolase near the end of the N-terminal domain. Figure 2.5 shows the top eight

alignments found by CONGENEAL for substructures from DNA binding proteins or

non-DNA binding proteins with the DNA binding substructure of 434 Cro (see also

kinemage 1).

(2) Calcium Binding: the EF Hand: Another well characterized substructural

motif is the EF hand calcium binding conformation, first described by Kretsinger and

Nockolds [21] from carp muscle calcium-binding parvalbumin (5cpv). The EF hand is

also found in several other proteins that bind calcium, including calmodulin (3cln),

troponin C (4tnc), and intestinal calcium binding protein (3icb). Although

CONGENEAL finds relatively few substructures identical to EF hands, many proteins

contain substructures that are fairly similar.
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Figure 2.6: Dissimilarity score versus alignment of the carp parvalbumin EF

hand substructure with the complete structure of carp parvalbumin.

We define the EF hand substructure in carp parvalbumin as the 29 residues from

asparagine 79 to lysine 107. The E helix is 12 residues (79-90); the loop is 8 residues

(91-98); and the F helix is 8 residues long (99 - 107). Figure 2.6 shows the result of

aligning this substructure with the complete structure of carp parvalbumin. There are 5

minima, corresponding to the joining regions between the 6 helices of parvalbumin

(labeled A - F): AB, BC, CD, DE, EF. Strong matches are found at two positions,

corresponding to C- loop-D and E-loop-F. Both of these substructures are in the EF hand

conformation. While Kretsinger and Nockolds suggested that A-loop-B is related to the

EF hand, our results do not find significant structural similarity between A-loop-B and

the EF hand substructure. In fact, the A and B helices are oriented nearly parallel to one

another whereas the helices in an EF hand are nearly perpendicular.

We then use the EF hand substructure as a probe to search the dataset of 158

proteins. Figure 2.7 shows the distribution of dissimilarities. The four best scoring
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Figure 2.7: Histogram showing the distribution of dissimilarity scores when

the EF hand substructure is compared with a dataset of 158 proteins.

proteins are all calcium binding proteins (see table 2.3). The EF hand in troponin C was

found to be the most similar to the parvalbumin structure; the dissimilarity scores as a

function of alignment are shown in figure 2.8. Minima identify the four EF hand

substructures in troponin C. The two minima on the right in figure 2.8 indicate two

substructures which are the most similar to the parvalbumin substructure and correspond

to the EF hands nearest the C-terminal end of the protein. The two minima on the left

identify two N-terminal EF hands which are less similar to the parvalbumin EF hand.

Interestingly, the N-terminal EF hands do not bind calcium [22].

The method correctly identifies bovine intestinal calcium binding protein as being

similar to the EF hand. On the other hand, given that carp parvalbumin and bovine

intestinal calcium binding protein are related, the RMS deviation of Ca positions

between their EF hands seems to be surprisingly large. The large RMS deviation arises

º
£
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Figure 2.8: Dissimilarity score versus alignment of the EF hand substructure

with troponin C. The 4 minima correspond to the 4 EF hand substructures in

troponin C.

because the residues at both ends of the substructure have different conformations in the

two proteins. The next most similar substructure to the EF hand is in T4 lysozyme (see

kinemage 2); this similarity was first noted by Tufty and Kretsinger [23].

(3) Searching protein structures for functional subunits: The ability to perform

fast searches for substructures within proteins allows for searching a database of protein

structures for specific functional subunits. We show an example of using CONGENEAL

to find possible calcium binding proteins in the dataset. In the EF hand substructure, the

calcium is bound to residues within the loop region. Therefore, we search the dataset for

the presence of the E helix, the F helix, and the loop. E and F are o-helices, so all

proteins with o-helices score well for the presence of the E and F helix substructures

(data not shown). Figure 2.9 shows the distribution of dissimilarities with the calcium

binding loop. While most proteins are predicted to have at least one short loop
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Table 2.3
Proteins with EF hand

Protein Name PDB code CONGENEAL RMS

carp parvalbumin 5cpv 0.002 0.000
troponin C 4tnc 0.054 0.644
calmodulin 3cln 0.064 0.987

intestinal calcium-binding protein 3icb 0.135 2.868
T4 lysozyme 31zm 0.227 2.994
sperm whale myoglobin 1mbd 0.251 5.199
human hemoglobin 1hho_a 0.253 5.143
Subtilisin carlsberg 1cse 0.255 4.107
cytochrome P450 CAM 2cpp 0.261 6.142
erythrocruorin 1ecd 0.264 4,991
lupin leghemoglobin 21h4 0.265 4.612
hemerythin 1hmq_a 0.266 5.050
enolase 2enl 0.269 4.524
thermitase 1tec 0.270 4.159

cytochrome c peroxidase 2cyp 0.275 4.565
trp repressor 1 wrp 0.277 4.272
cytochrome b562 256b 0.277 4.474
proteinase K 2prk 0.280 5.069
leucine-binding protein 2lbp 0.282 3.518
malate dehydrogenase 4mdh 0.282 5.295

conformation similar to the calcium binding loop, five proteins are clearly distinct as

being more similar than the other proteins. They include the four calcium binding

proteins identified above. Hence, the weighted distance map for this loop region is a

good identifier of the calcium binding motif. In addition, galactose-binding protein

scores well for the presence of a calcium binding loop. Consistent with this finding,

galactose-binding protein was reported to have a calcium binding site [24] which

resembles the EF hand without the helices. T4 Lysozyme, which scored fifth for the

presence of an EF hand scores 69th for the presence of the calcium binding loop. While

T4 lysozyme has two helices similar in orientation to the EF hand helices in

parvalbumin, the intervening loop is clearly not in the calcium binding conformation.
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Figure 2.9: Histogram showing the distribution of dissimilarity scores when

the calcium binding loop from carp parvalbumin is compared with a dataset of

158 proteins.

(4) Globins: Figure 2.10 shows the dissimilarities of sperm whale myoglobin

(1mbd) to the set of 158 protein structures. The four most similar structures are all

globins: sperm whale myoglobin (1mbd), erythrocruorin (1ecd), human hemoglobin

(1hho_a), and leghemoglobin (21h4). The next most similar proteins are all dominated by

O-helices. They include uteroglobin (1utg), trp repressor (1 wrp), calcium binding protein

(3icb), and cytochrome b562 (256b). The proteins least similar to myoglobin are all fl

sheet proteins: they include immunoglobulin fragments (2fb4_h, 2fb4_l, 1■ c1), tumour

necrosis factor (1tnf), monellin (1mon_a), and Cu,Zn superoxide dismutase (2sod). The

dissimilarity distribution from CONGENEAL resembles an earlier comparison made by

Bowie et al. [25] of sperm whale myoglobin versus a protein dataset based on their 3D

profiling method. Their method shows the degree to which the sequences of other

globins are compatible with the structure of sperm whale myoglobin. Our method shows

the degree to which the structures of other globins are similar to the structure of sperm
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Figure 2.10: Histogram showing the distribution of dissimilarity scores when

sperm whale myoglobin is compared with a dataset of 158 proteins.

whale myoglobin. At least for sperm whale myoglobin, the distributions from 3D

profiling and CONGENEAL bear considerable resemblance.

Most closely related proteins

As another test, we compare the 158 proteins pairwise ((Nx(N-1))/2 = 12,403

tests), and ask which pairs are the most closely related. Of course, since this is not a

“selected” set of unrelated conformations, some of these proteins are quite similar;

these highly similar pairs are controls that we study here. Table 2.4 lists the 20 most

similar protein pairs. Not surprisingly, several of these pairs represent the same protein

in two different conformations. For example, six of the closest structural similarities are

pairs of ribonucleases. The dataset contains four ribonuclease structures: two

independently determined structures of ribonuclease A (3rn3, 7rsa), ribonuclease B

(1rbb_a), and ribonuclease S (1rns). Each pair of structures involves only a small
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structural variation. For example, ribonucleases A and B have identical amino acid

sequences, but differ by a polysaccharide moiety which is attached to asparagine 34 of

ribonuclease B.

Ribonuclease B is about as similar to ribonuclease A as the two ribonuclease A's

are to each other. This result is consistent with the conclusion of Williams et al. [26] that

the conformation of ribonuclease B is not significantly different than that of ribonuclease

A. The small variability occurs mostly in the f-sheet regions.

CONGENEAL also finds the correct alignment of ribonuclease S with the other

ribonucleases (i.e., at an offset of 21 residues). All the ribonuclease structures are quite

similar to each other, but ribonuclease S is the least similar among them. The deviations

of ribonuclease S relative to the other ribonuclease structures are attributable to the

contacts formed by residues 21 - 23 with the rest of the protein. Since ribonuclease S is

formed by cleavage of ribonuclease A between alanine 20 and serine 21, the

conformations of residues 21 - 23 presumably readjust in response to the cleavage of the

peptide bond between residues 20 and 21.

CONGENEAL finds other highly similar pairs. It finds rice cytochrome c to be very

similar to tuna cytochrome c. The rice structure has 8 additional residues at the N

terminus and there are 43 substitutions in the other 103 residues. Despite these sequence

differences, the structures are found to be nearly identical [27]. Other sets of proteins

that are found to be highly similar by CONGENEAL include DNA binding proteins (434

cro, 434 repressor, A-repressor), neurotoxins (erabutoxin A, neurotoxin B),

immunoglobulins (Fab KOL, immunoglobulin V3 domain), and viral VP3 domains

(rhinovirus VP3, polio virus VP3).

CONGENEAL has limitations. First, it does not treat insertions, deletions, or gaps.

An example of this limitation is in the comparison of o■■ barrels such as triose phosphate
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isomerase (TIM). It has been suggested that all the known o■■ barrels may have

diverged from a common ancestor [28]. If so, and if the process of evolutionary

divergence involves changing loop lengths while retaining secondary structural domains,

then evolutionary “distance” requires a similarity measure that carries only weak

penalties for changing lengths of loops between domains. While some similarity

methods do this [6], CONGENEAL does not, and would therefore not be useful as a

measure of evolutionary divergence by this mechanism. Hence, again we caution that

different similarity measures will find different degrees of relatedness among proteins,

and will find different family clusters, but there is no unique right way to do this. And

we note that the approach taken in CONGENEAL, while it is disadvantageous for

measuring evolutionary divergence by this mechanism, is advantageous for other

purposes, since it is based on making no assumptions about mechanisms of how one

conformation is caused to differ from another. Such a need arises in the comparison of

conformations of a given sequence, in which case there are no gaps, insertions, or

deletions, or in the comparison of very different conformations that may not be related by

a known evolutionary mechanism, in which case we believe it may be often preferable to

measure similarity with an algorithm having a minimum number of degrees of freedom.

Second, when comparing sets of proteins with different alignments and chain

lengths, the dissimilarity measure is not a true distance metric. That is, as with many

other similarity measures, the triangle inequality:

d(a,b) + d (b,c) > d (a,c) (2.5)

can be violated. For example, in the pairwise comparison of a sheet (S), a helix (H), and

a protein consisting of both a sheet and a helix (P):
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Table 2.4

Most Closely Related Proteins in Dataset
Pair Number Protein Name PDB COde SCOTC

ribonuclease A 7rsa
1 ribonuclease A 3rnº 0.014

2 phosphofructokinase (open form) lpfk_o 0.035
phosphofructokinase (closed form) lpfk_c

-

rice cytochrome c 1ccr
3 tuna cytochrome c 5cyt 0.052

ribonuclease A 3rn 3
4 ribonuclease B 1rbb_a 0.056

ribonuclease A 7rsa
5 ribonuclease B 1rbb_a 0.057

434 cro 2cro

6 434 repressor (N-terminal domain) 1169 0.072
erabutoxin A 5ebX

7 neurotoxin B 1nxb 0.076

8 fab KOL (light chain) 2fb4_l 0.079
immunoglobulin V3 domain 2rhe

-

ribonuclease A 3rn 3
9 ribonuclease S 1rns 0.103

ribonuclease A 7rsa
10 ribonuclease S 1rns 0.103

hexokinase 2yhx
11 hexokinase 1hkg 0.114

ribonuclease B 1rbb_a
12 ribonuclease S 1rns 0.116

CAP (closed form) 3gap_c
13 CAP (open form) 3gap_o 0.125

tendamistat 2ait

14 o-amylase inhibitor 1hoe 0.136

leucine-binding protein 2lbp
15 leu/ile/val-binding protein 2liv 0.140

human lysozyme 11z1
16 hen egg white lysozyme 11yz 0.222

17 rhinovirus VP3 4rhv_vp3 0.231
polio virus VP3 2plv_vp3
A-repressor 11rd

18 434 repressor (N-terminal domain) 1169 0.237
A-repressor 11rd

19 434 cro 2cro 0.289

elongation factor TU letu
20 elongation factor TU 1efrn 0.277
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d(S,P) = 0 and d(P, H) = 0, (2.6)

but

d(S, H) > 0

Third, as with other contact-map based approaches, CONGENEAL does not

distinguish structures by their chiralities. A molecule is indistinguishable from its mirror

image. For comparing molecules with consistent chiralities, such as two real proteins,

this is not a limitation. For comparing a lattice model and a real protein, however, chiral

errors will not be detected. In a most general way, CONGENEAL only attempts to

characterize distances pertinent to non-local interactions. In this sense, right-handed and

left-handed helices are similar. When it is important to distinguish them, CONGENEAL

is not appropriate.

Protein clustering into families

CONGENEAL is a measure that computes the structural similarity between any two

compact polymer conformations. We have shown a few tests indicating where it is

sensibly consistent with other knowledge. We now use this measure to study how it

divides proteins into families. We define a family as a set of structures that collectively

share a high degree of similarity to one another. The concept of family carries the

implication that there are relatively sharp boundaries between families. Given a measure

of similarity, there are several different methods for identifying clustering. As with

similarity measures, there are no right or wrong clustering methods. In order to

determine whether the families obtained are sensitive to the choice of clustering method,

we study the clustering of protein structures by two different methods: a minimal

spanning tree and a hierarchical method. Different similarity measures and clustering

methods can lead to different, but equally valid, divisions of proteins into families.
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Clustering by minimal spanning trees

First, we construct a minimal spanning tree, which is a graph that provides one way

to describe relatedness among proteins. Consider a graph in which each one of the N

protein structures is represented by a node. Every possible pair of nodes is connected by

an edge. Each edge is weighted by the dissimilarity score relating the two proteins.

Hence, there are (Nx(N-1))/2 edges. A spanning tree is a subgraph in which there are

only N-1 edges connecting the N vertices (proteins). A minimal spanning tree is a

spanning tree in which the sum of the weights of the edges is as small as possible. Thus

the only connectivity is among the most similar proteins. We construct a minimal

spanning tree using Kruskal's algorithm [29], as follows. First, the pairwise scores are

sorted from most similar to least similar. The tree is then constructed edge by edge. The

first edge is defined as the protein pair with the lowest score (highest similarity). The

second edge is chosen to be the next lowest score that does not lead to a cycle in the

graph. If a cycle were formed, then there would be more than one path between two

vertices, and at least N edges for N vertices, thus violating the criterion of a spanning

tree. The process continues until there are N-1 edges.

Figure 2.11 shows the minimal spanning tree for the set of 158 protein structures

based on the CONGENEAL dissimilarity measure. A tree is unique provided that no two

edges have the same weight. Note that no meaning should be attributed to the edge

lengths shown in the figure, because they are not drawn in proportion to their respective

dissimilarity weights. An edge connecting two proteins implies structural similarity

between the two proteins.

By this clustering method, proteins are found to collect around hubs which may be

thought of as consensus family structures or structural paradigms. For example, monellin

(1mon_a), uteroglobin (1utg), crambin (1crn), and A repressor (11rd) are all hubs. Many
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enced by the codes listed in table 2.1. An edge connecting two proteins im

plies structural similarity between them. Edge lengths are not proportional to

the dissimilarity between proteins. As a guide, the general location of some

major family relationships are indicated in bold.

other proteins are connected to each hub. Each hub represents some characteristic

topological feature (i.e., some specific protein fold). For example, the A chain of

monellin forms three strands of an antiparallel fl-sheet. Any protein in the dataset which

has three strands in a similar conformation will score well when compared to monellin,

and may be connected to the monellin hub. Similarly, uteroglobin, a progesterone
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binding protein consisting of 4 o'-helices, is a hub for structures with similar helical and

turn features. Crambin has both fl-sheet and o-helix and serves as a hub for proteins with

similar secondary structural features.

Proteins are found to cluster into families, often around hubs. For example, the

globins cluster together. Lysozymes from hen egg white and humans cluster with O

lactalbumin. Other protein clusters include (i) viral VP3 domains, (ii) cytochrome c

structures, (iii) immunoglobulin domains, (iv) aspartic proteases, (v) trypsin-like serine

proteases and (vi) subtilisin-like serine proteases. Interestingly, T4 bacteriophage

lysozyme is separated by 4 nodes from the other lysozymes. In this case, despite the

structural similarity of the active sites, the remainder of the structure of T4 phage

lysozyme is different from that of the other lysozymes.

Hierarchical clustering

In order to learn whether the family partitions found by CONGENEAL depend on

the clustering method, we now consider a different clustering algorithm for collecting

proteins into families. Here we use hierarchical clustering, which successively groups

proteins into increasingly larger sets. At first, there are N proteins in N groups. Step 1 is

to combine the two most similar proteins to form the first group; there are now (N–2)

single-protein groups and one 2-protein group. This is recorded as the first decision.

Step 2 is to combine the two groups that now have the greatest similarity. To determine

group similarities, all pairwise dissimilarities between groups are calculated; this

generates (MX(M-1))/2 average dissimilarities for M groups. The group dissimilarity is

the average of the dissimilarities between the members of one group with respect to the

members of another group. The merging process is repeated until all groups are

combined into a single group. The merging process is a sequence of decisions that can

be represented as a tree; see figure 2.12. Nodes at a given level in this tree represent a
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given degree of dissimilarity.

As with the spanning tree, the hierarchical method finds that immunoglobulins,

serine proteases, ribonucleases, globins, aspartic proteases, and viral VP domains form

families. Hence the general division into these families appears to be relatively

independent of the clustering method, although the details differ.

One interesting consequence of the hierarchical clustering is evident from figure

2.12. It leads to a partitioning of families in which sheet-structures are concentrated at

the top of figure 2.12 and helix-structures are concentrated at the bottom. According to

this partitioning, sheet structures are less related to one another than helical structures.

Helical structures are more related to one another because of the regular pattern of close

contacts formed by residues in the helical conformation.

Are proteins tightly clustered?

Are protein families tight or loose forms of organization? “Tight” organization

means that any two proteins within a family are much more similar than any two proteins

from different families. There would be a sharp boundary between protein families.

“Loose” organization means that two proteins within a family may be only slightly

more similar than two proteins taken from different families. The boundaries between

protein families would not be sharp and might even overlap.

We assess tightness of protein families by studying the shape of the histogram of

pairwise dissimilarities (figure 2.13). Qualitatively, if proteins are tightly clustered, the

histogram in figure 2.13 would have 2 peaks: one representing the high similarities

within families and the other representing the low similarities between families. The

distribution of dissimilarities for the 158 protein dataset structures, however, shows

mainly a single broad peak which indicates a wide range of relatedness among proteins.
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Figure 2.13: Histogram showing distribution of 12,403 pairwise comparisons

of the 158 protein dataset.

There is only a very small peak indicating high similarities and tight families. The mean

dissimilarity is 0.737, indicating that two arbitrary proteins are relatively unrelated. By

this qualitative criterion, protein structural families are only loose entities.

A second way to assess the tightness of clustering draws on the analogy between (i)

N proteins as points separated by their pairwise dissimilarities and (ii) a set of N points

distributed in a d-dimensional space separated by their Euclidean distances. To pursue

this analogy, we generated points in Euclidean spaces with varying degrees of clustering

in several different dimensionalities, d. The distribution of distances between the points

is compared to the distributions of pairwise protein dissimilarities shown in figure 2.13.

We created varying degrees of clustering as follows. First, we assume there are f

families of points in a d-dimensional space. We randomly generate fpoints which

represent the family centers. Within each family, we then generate N/f points which are

Gaussian-distributed around each family center. That is, the probability distribution for a
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point x within a family is given by:

–– —d(x,c)”
p(x) = W2ttok w 202 k2 | (2.7)

where c is a family center, d(x,c) is the distance between x and c, k is the average

distance between any two family centers, and O is the parameter that controls the degree

of clustering. When O equals 1, the standard deviation of points around a family center is

equal to the average distance between the family centers. As O decreases, the tightness

of the clustering increases. As an example, figure 2.14 shows scatter plots of points

distributed in 2 dimensions around 15 “families” with three different values of O.

After randomly generating points as described above, we calculate all the pairwise

distances between the points within each set. Figure 2.15 shows histograms for N = 200,

d = 7, f = 25, and varying O. When O is small (tight clustering) the histograms have two

peaks, as expected. The leftmost peak is due to intrafamily distances and the rightmost

peak is due to interfamily distances.

One method to compare the shapes of two distribution functions is the Quantile

Quantile (Q-Q) plot [30]. A Q-Q curve plots the sorted values of one distribution against

the sorted values of a second distribution. If two distributions have the same shape, and

differ only by a multiplicative factor that scales the width, or if they differ by a constant

factor that shifts the mean values, then a Q-Q plot gives a straight line. Figure 2.16A

shows a Q-Q plot of the histogram of figure 2.13 versus a non-clustered distribution of

points in Euclidean space. The deviation at both extremes of the plot indicate that

protein structures are more broadly distributed than would be predicted by the completely

nonclustered distribution. Hence, a non-clustered uniform distribution of points is not a

good model for the distribution protein dissimilarities.
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Figure 2.14: Scatter plots of points randomly distributed around family

centers. Family centers are represented by large diamonds. Points associated

with a family center are represented as small squares. In A-C, the number of

family centers is 15 and the total number of points is 200.

On the other hand, Figure 2.16C shows that proteins are also not well represented as

being very tightly clustered (os 0.05). When the distributions are tightly clustered, the

Euclidean distribution underestimates the number of similar protein pairs in the range of
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Figure 2.16: Q-Q plots comparing protein dataset pairwise dissimilarity distri

bution with distributions of random point pairwise distances. For the random

point distributions, f = 25 and d = 7.

dissimilarites between 0.40 and 0.60, and overestimates them for distances less than 0.40.

The closest correspondence between the Euclidean distances and protein similarities is

obtained for values around o = 0.10. This is the case for which the Q-Q plot is most

linear; see figure 2.16B. While this value of o implies that family members are
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considerably closer together than are interfamily centers, protein families are not

sufficiently tightly knit to avoid considerable overlap between families and individuals

cannot be unambiguously assigned to families. This degree of clustering is indicated

schematically in figure 2.14B for a 2-dimensional Euclidean space. By systematically

varying the clustering parameter, o, and the dimensionality, d, we found the optimal

dimensionality to be about d = 7. It is not clear to us if this dimensionality in the

Euclidean space analogy has any physical meaning since our dissimilarity measure is not

a true metric. This comparison should be viewed simply as an analogy.

Our results are consistent with those of Rackovsky [8]. His similarity measure,

which is based on local conformational preferences, also orders proteins from helices to

sheets and finds families to be only loosely-knit entities.

Conclusions

We have described a simple quantity for characterizing the structural similarity between

any two compact polymer or protein conformations. Based on differences between

weighted distance maps, it requires no alignments or gap penalties and makes few

assumptions or arbitrary decisions about polymer structure. It is computationally fast.

The only parameter is the exponent p in the distance-dependence of the weights. The

results are not very sensitive to this parameter.

The method can compare any two conformations, no matter how similar or

different, and does not require identical chain lengths. It is intended for the purpose of

comparing diverse polymer conformations. Several tests show that the relatedness

among proteins reported by this measure are sensibly consistent with existing knowledge.

This method can be used to rapidly search through a database of protein structures to find

specified substructures, and to seek given functional components in other proteins. For
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example, it searches the protein dataset in minutes to find possible calcium-binding

motifs similar to the EF hand.

Such a similarity measure can be used to test algorithms of protein folding, for

which generated conformations may be distant from the native structure. Hence, the

CONGENEAL measure can serve as a sort of “reaction coordinate” for nativeness. For

such problems, gaps are unimportant.

We combine this measure with two different clustering methods to identify protein

families. We then ask how tightly clustered are families by drawing an analogy with

points distributed in Euclidean space. The analogy indicates that protein families are

only loosely-knit entities, and that individual proteins may often not be unambiguously

assignable to a unique family.
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Supplementary Material Available with Reprints

This work would not have been possible without the enormous amount of effort

required to experimentally determine the protein structures used in this analysis.

References for all the structures obtained from the PDB are included as appendix A of

this thesis.
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Preface

The construction of a simple model of a complex system serves several purposes.

First, it allows us to test our understanding of the most important features of a system.

Second, by modeling a subset of forces, the complexity of the system is reduced. Hence,

computation is more tractable and the relationship between the governing forces may be

easier to understand and interpret. Third, it allows one to formulate hypotheses about the

behavior of complex systems based on general principles. By describing a complex

system in simple terms, one can gain insights into a system which may otherwise be

obscured by its complexity. Finally, a simple model can provide a framework for

building more complex models.

Ken Dill and his co-workers have utilized a simple model of protein structure for

several years. In its simplest form, chains are represented as linear strings of monomers

(i.e., amino acids). Excluded volume is modeled by never allowing two monomers to

occupy the same lattice site. Bond angles are limited to 90 and 180 degrees. In some

complicated studies, sequence effects are studied by defining two monomer types:

hydrophobic and polar. Although it is simple, the model was designed to capture the

dominant forces of protein folding (for a review, see [1]). Two of these forces are the

hydrophobic effect and conformational entropy.

Protein folding is opposed by a large decrease in conformational entropy. Put

simply, there are many more denatured (unfolded) polypeptide chain configurations than

there are native state (folded) configurations. The lattice model captures certain physics

involved in this process. By counting the total number of possible open and compact

configurations, one can explicitly calculate the loss of conformational entropy upon
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molecular collapse for the lattice model. Likewise, by classifying the 20 amino acids

into 2 types - hydrophobic and hydrophilic - the lattice model can be used to explore the

effect of varying sequence on protein folding.

In 1989, Hue Sun Chan and Ken Dill used the lattice model to study the

conformational properties of compact polymers [2]. By restricting themselves to short

chain lengths for which they could exhaustively enumerate all the possible ways of

configuring a chain on the lattice, they were able to analyze the complete conformational

space of the chain. One of the first applications of the model was to look at loop

formation in polymers. Previous treatments of this problem were based on the random

flight theory of Jacobson and Stockmayer (see Cantor & Schimmel [3] for an

introduction).

Using the lattice model, the entropic free energy change of loop formation was

calculated by counting the number of conformations with a specified contact, (i,j). The

entropic cost of forming a loop is given by taking the logarithm of the ratio of the

number of conformations which contain the contact, (i,j) and the total number of

conformations possible. That is:

AGentropic –
-Tintº■ h (3.1)

where Q (i,j) is the total number of conformations in which monomers i and j come

together to form a contact and Qo the the total number of possible conformations. For the

formation of a single contact, it was determined that the small loops were favored over

large loops [4]. This is because a small loop minimally reduces the number of possible

conformations. Hence, the entropic cost of forming a small loop is less than the cost of

forming of a large loop.
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They then turned to the issue of multiple contacts and asked “given an association

of two chain monomers, (i,j), what is the next most probable contact, (i , j “y” In order

to address this question, a contact (i,j) was presumed to exist. Next, the total number of

conformations which contained both (i,j) and (i', j) was determined for all possible

combinations of i' and j'. As in equation 3.1, the entropic free energy can be expressed
8S.

; ; ; ;0

AGentropic -
-Thººl (3.2)O

where Q (i,j i’, j ') is the total number of conformations which contain both (i,j) and
(i,j). A convenient way to display the result of this calculation is by using a
topological free energy surface.

A topological free energy surface is the upper (or lower) triangle of an NXN matrix

in which each matrix element corresponds to a different pair of residues. The value of

each matrix element is the entropic free energy calculated using equation 3.2. Figure 3.1

shows the topological free energy surface for a 12 residue In the figure, residues 5 and 8

are presumed to form a contact, (i,j). The figure shows that contacts between some

residue pairs are impossible given the formation of a contact between (5,8). (4,7) is an

example of a prohibited contact. The darkest regions on the free energy surface represent

the most favorable contacts, whereas the lightest regions are the most disfavored

contacts. Given the contact (5,8), it is apparent from the figure that the most favored

contacts are (3,6), (7,10), and (4,9).

Chan and Dill realized that the most favorable contacts formed patterns which were

similar to the patterns of contacts observed for secondary structures (i.e., helices and

sheets) in proteins. They defined helix and sheet structures on the lattice and derived the

patterns of contacts consistent with the formation of lattice secondary structure (figure
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figure 3.1: Topological entropic free energy surface for 12 residue chains

configured on a 3 dimensional cubic lattice. Figure reproduced from [5].

3.2). Having defined secondary structures on the lattice, Chan and Dill found that the

amount of secondary structure increases dramatically as a function of compactness.

Furthermore, the distribution of helices and sheets resembled the distribution obtained

from analysis of structures in the PDB. The lattice work provided the basis for the

hypothesis that a non-specific force, such as compactness, could provide a driving force

for the formation of secondary structure. This hypothesis was unexpected and novel

given the traditional view that the driving force for secondary structure formation in

proteins comes from hydrogen bond interactions and intrinsic propensities of the

polypeptide chain.
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figure 3.2: Patterns of contacts defining secondary structures in lattice models.

Reproduced from [4]

The lattice-based result that secondary structure formation in proteins could be

driven by compactness turned out to be quite controversial. Many studies subsequently

appeared which attempted to determine how the result extrapolated to off-lattice model

systems. The next section contains a summary of these works, and describes work which

examines the hypothesis that compactness drives secondary structure in an off-lattice

system.
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Summary

A few years ago, lattice model studies indicated that compactness could induce

polymer chains to develop protein-like secondary structures. Subsequent off-lattice

studies have found the amounts of induced structure to be relatively small. Here we use

distance geometry to generate random conformations of compact poly-alanine chains of

various chain lengths. The poly-alanine chains are subjected only to compactness and

excluded volume constraints; no other energies or conformational propensities are

included in the chain generation procedure. We find that compactness leads to

considerable stabilization of secondary structure, but the absolute amount of secondary

structure depends strongly on the criteria used to define helices and sheets. By loose

criteria, much secondary structure arises from compactness, but by strict criteria, little

does. The stabilization free energy of secondary structure provided by compactness,

however, appears to be independent of criteria. Since real helices and sheets in proteins

can be identified by strict criteria, we introduced small energy perturbations to compact

poly-alanine chains using the AMBER force field. Small refinements produced good o

helices. For f-sheets, however, larger refinements are necessary. Compactness appears

to impart stability, but not much structural specificity, to secondary structures in proteins.

Compactness acts more like diffusion as a force, a result of ensemble statistics, than like

pair interactions such as hydrogen bonding.



1. Introduction

Nearly 50% of the residues in globular proteins are in either o-helix or 5-sheet

[1,2]. What are the forces that stabilize secondary structures in globular proteins?

Helices and sheets can be identified on the basis of their hydrogen bonding patterns [2],

so it is reasonable to expect that hydrogen bonds play some role. But since the short

helices that are predominant in globular proteins are not very stable when isolated in

solution, other aspects of the surrounding protein must help stabilize them [3].

Furthermore, recent results on the refolding of cytochrome c suggest that the protein

population refolds at the same rate as molecular collapse [4]. This result precludes the

formation of substantial amounts of stable secondary structure prior to collapse. A few

years ago, it was proposed that compactness in single polymer chains could contribute

substantially to the formation of regular internal structure in proteins [5-7]. Based on

exhaustive simulations of short chains on 2-dimensional square lattices and systematic

conformational searches on 3-dimensional cubic lattices, it was found that the amount of

secondary structure increases sharply with the compactness of a polymer chain. Those

studies found roughly the same chain length distributions of helices and sheets in

compact lattice chain conformations as in the protein structures in the Protein Data Bank

(PDB) [8].

Subsequently other studies of lattice models [9] and off-lattice models [10–13]

have explored in greater detail the role of compactness in inducing secondary structure.

They are summarized briefly below.

Gregoret and Cohen [10] generated native-like random chains using an off-lattice

rotational isomeric model of proteins. Chains were modelled as linear strings of residues.

Each residue excluded a spherical volume. Random chain conformations were
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constructed using a backtrace Monte Carlo procedure in which virtual bond and torsion

angles were selected from the distribution observed in real protein structures. Chains

were restricted to lie within ellipsoids defined by a formula derived from real proteins.

Gregoret and Cohen observed an increase in secondary structure with increasing

compactness, but only found significant amounts of secondary structure, by their criteria,

when the chains are 30% more compact than real proteins.

Hao et al. [11] also used a Monte Carlo backtrace procedure to generate random

chains. They too used a simplified representation of proteins where side chains are

represented as spheres. The chains have random amino acid sequences. Compact chain

conformations were generated with torsion angles selected either randomly or weighted

to reflect local interactions imposed by the peptide bond. Hao et al. compared a bond

vector correlation function for real proteins with the random chains and concluded that

the observed bond vector correlations in real proteins can be reproduced best when (1)

the chains are constrained to be compact and (2) intra-residue interactions are included.

Kolinski and Skolnick [9] used a high-resolution lattice model of poly-alanine and

poly-valine chains. Local and nonlocal alanine-alanine and valine-valine interactions

were derived from angular correlations of sidegroup vectors in proteins taken from the

PDB. Hydrogen bonding was included in the form of two terms: (1) an attractive

hydrogen bond term and (2) a cooperative interaction for adjacent hydrogen bonds.

Conformational space was explored by a Monte Carlo dynamics algorithm. The poly

alanine chains readily formed helical structures at low temperatures and exhibited a

cooperative helix-coil transition. Similar results were obtained when (1) local bond

correlations and hydrogen bonding terms were used, (2) when a nonlocal hydrophobic

term was added, and (3) when the hydrophobic and hydrogen bonding terms were used

without local bond correlations. In no case did the poly-alanine chains collapse into

compact states.
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The poly-valine chains, however, collapsed into compact, fl-sheet-like

conformations when using bond correlation, hydrogen bonding, and hydrophobic

interactions. When only the hydrogen bonding and hydrophobic terms were used in the

absence of local bond correlations, they collapsed to compact states consisting of about

25% helix and no fl-sheet. When only the hydrophobic interaction was used, the chains

collapsed into compact states, but no appreciable secondary structure was found. They

concluded that collapse alone was not sufficient to produce secondary structure.

Socci et al. [12] developed a simplified model in which each residue was

represented by a single point. Random conformations were generated by minimizing a

potential which included a covalent term for chain connectivity, an r * term for excluded

volume, and a radius of gyration term to drive compactness. Two constants in the

potential which control (1) the balance between covalent and non-covalent forces and (2)

strength of excluded volume were derived by examining real proteins. They looked for

repeating structure by defining a function which measured correlations between dihedral

angles between different points along the protein chain. They could not detect any well

defined repeating patterns that resembled secondary structure if the chains were only

constrained to adopt compact conformations.

Hunt et al. [13] extended the earlier work of Gregoret and Cohen [10]. They used

an all-atom, off-lattice model of protein structure. Conformational space was searched

using a Monte Carlo simulated annealing method in which the Ö/\!/ angles of a randomly

selected residue were reassigned from a distribution of b/w angles derived from the

PDB. Simplified energy functions were used which included (1) a radius of gyration

term to induce compactness in the chain, (2) an energy term for hydrogen bond effects,

or (3) a combination of (1) and (2). Hunt et al. observe an increase in secondary structure

when only the compactness term is used. When a combination of the compactness and

hydrogen bond terms are used, they are able to generate highly compact conformations
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with amounts of secondary structure comparable to real proteins.

Why is there a need for yet another study? While these studies have contributed

considerable insight into the role of packing in secondary structure formation, they have

also raised new questions. Although they represent proteins more accurately than the

original lattice model, they, too, are simplified models. In order to avoid simplified side

chain and lattice models, we study here an all-heavy-atom model of poly-alanine, of

chain lengths 50, 100, and 150, in a continuum representation. Chirality is taken into

account, whereas it is not in some of the earlier studies. The use of backtrace Monte

Carlo and constraining ellipsoids can introduce conformational bias, so here we use

distance geometry to constrain the conformations. Our statistics indicate that the

conformations generated by distance geometry are relatively unbiased. In lattice models,

compactness and secondary structure can be defined with little ambiguity, but in off

lattice models it is not so simple. What conformations should be called helices and

sheets? Does the amount of secondary structure observed depend on the criteria used to

define it? Here we explore these issues.

2. Methods

Generating unbiased compact poly-alanine conformations

Poly-L-alanine conformations were generated using the DG-II distance geometry

program [14], with sequential tetrangle inequality bound smoothing, randomized

metrization using a uniform distribution, and embedding in four-dimensions followed by

10,000 steps of dynamical simulated annealing refinement in which the superfluous

dimension was eliminated. The resulting convergence rate averaged about 80%, and the

annealing was simply repeated (using different initial velocities) on nonconvergent

conformations until they converged. In addition to the constraints needed to obtain the
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proper covalent geometry and chirality, a uniform upper bound was imposed on all the

nonbonded distances, thereby effectively packing the polypeptide chain into a sphere

whose radius is half of that upper bound. Previous extensive studies of the randomized

metrization method on unconstrained poly-L-alanine chains [15] have demonstrated that

it yields coordinates that can readily be refined to polypeptide chains whose statistical

properties are in accord with the statistical mechanics of chain molecules. It is therefore

reasonable to expect that the compact, self-avoiding polypeptide chains generated in this

paper, for which few theoretical predictions can be made, are likewise satisfactorily

unbiased.

Determining compactness

Determining compactness is simple for lattice models, but is more difficult for more

realistic models. For example, Gregoret and Cohen [10] calculated the radius, R, of a

hypothetical ideal spherical protein based on average properties of amino acids and

proteins using the expression:

1/3

3 × N × m x1010, (3.3)R = |x|==#–E–4It x pp. x 10° x NA

where N is the number of residues, m is the average molecular weight of an amino acid

(110g/mol), pp is the average density of globular proteins (1.4 g/mol), NA is

Avogadro's number, and 10°ml/m" and 10"A ■ m are unit conversion factors.

Compactness was then varied by scaling the chain volume using the equation:

4Tabc

3,
V = e x (3.4)

where a, b, and c are the principal axes of the ellipsoid and abo = R 3. Gregoret and

Cohen suppose the condition e = 1 represents real native proteins, and e < 1 represents

higher densities.

gº=
r.

*
assº

:
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However using their ideal values in equation 3.3, the volume occupied by a single

amino acid is 1304A*. But in their chain generation procedure, a residue is allowed to be

placed as close as 425A from any other non-bonded residue. This implies that the

volume excluded by one chain segment is at most only 4T/3 × (4.25/ 2) = 40.2A*.
Hence, excluded volume is considerably underestimated, by 1304–40.2 = 90.2A 3 per

amino acid. Whereas they estimate a native-like radius of gyration for their 64-mers of

11.0A, if we use their excluded volume of 40.2A 3 per residue, then the radius that

contains all the residues of the maximally compact state would be

(3.5)
1/3_|3(40.24°)(64)|"*- 4T(0.74) = 9.4A,

which is equivalent to a radius of gyration of R6 = W375R = 7.3A [16]. The factor of

0.74 in the denominator of equation (3.5) approximates the maximal packing density for

the model system: it is both the theoretical maximum packing density of close-packed

spheres of the same size and the packing density observed in crystals of small organic

molecules [17]. Note that if 1304A* is used in equation (3.5) instead of 40.2A* for the
volume excluded per amino acid, we obtain RG = 10.8A & 11.0A. While their studies

show less than 20% secondary structure with constraining radii of 11.0 A, their studies

with radii of gyration of 7.3A show more than 35% secondary structure.

In our study, chains were constrained to be enclosed by spheres of specific radii by

the distance geometry procedure. Specifying a large radius yields relatively open chains,

while specifying a small radius gives compact chains. We generated several sets of

random chains varying in both chain length and compactness. Table 3.1 lists the chain

lengths, the constraining radii, and the average radius of gyration for each set of poly

alanine conformations. Figure 3.3 shows an example of a near maximally compact poly

alanine 100mer.
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Table 3.1

Poly-Alanine Chains
# Residues Constraining Radius <RG >" # Conformations

10.0 7.96 100

50 11.0 8.62 100
12.5 9.60 100
15.0 11.14 100

12.5 10.11 100
14.0 11.12 100

100 16.5 12.72 50
20.0 14.96 50

15.0 11.92 25
17.0 13.26 25

150 20.0 15.25 25
25.0 18.39 25

": Ro is based on Co atom positions.

By two different criteria, the most compact sets of these chains are nearly

maximally compact. First, we use the criterion of Chothia [18], by which the mean

volume of alanine, when buried in the protein core, is 91.5A °. The minimal radius of a

maximally compact chain is given by:

#ºr = N × 91.5A* (3.6)

where R is the radius in Angstroms and N is the chain length. Solving equation (3.6) for

N = 50, 100, and 150 gives maximally compact radii of 10.3, 13, and 14.8-A

respectively. The most compact sets of 50, 100, and 150mers have constraining radii of

10, 12.5, and 15 A, so by this criterion, the chains are nearly maximally compact.

Second, we use the criterion of Maiorov and Crippen [19] who derived an

expression for the minimal radius of gyration for polypeptide chains:

l
3Rmin = -1.26 + 2.79 x N (3.7)
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Figure 3.3: Conformation of near maximally compact poly-alanine 100mer

generated by the distance geometry method.

According to equation (3.7), the radius of gyration of a maximally compact 50, 100, and

150-mer should be 9.0, 11.7, and 13.6A*. Thus, by this second criterion too, the poly

alanine chains are nearly maximally compact.

Defining helices and sheets

There is no single correct way to determine secondary structure. There are several

published methods for identifying secondary structures in proteins [1,2,20]. While they

are largely consistent with one another, and differ mainly at the ends of helices and

sheets, their differences, nevertheless, can be considerable [21]. In the present study, we

use three very different methods for assigning secondary structures. We use Define [20],

based on inter-residue distances, DSSP [2] based on hydrogen bonding patterns, and a

topological contact (TC) method [6,7] based on patterns of inter-residue contacts. We

are able to use DSSP effectively only in cases when we include hydrogen bonding

2

:
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interactions in the AMBER refinements, since it is not applicable to models without

defined hydrogen bonds. The methods are described below.

Define

Define [20] identifies secondary structure by comparing the inter-residue distance

map of a chain segment with the inter-residue distance maps of an ideal O-helix and

extended strand. If the difference distance map between the chain segment and the ideal

helix or strand is below some threshold, then the residues in the segment are identified as

participating in secondary structure. Error thresholds and mismatch limits were set to

their default values. Since this procedure does not match strands to locate or identify

sheets, Define is used only to identify helices and strands.

DSSP

DSSP [2] is the most stringent definition we used. It is based primarily on hydrogen

bonding patterns. Helices, for example, are defined in terms of repeats of hydrogen

bonds between residues separated by 3, 4, or 5 residues. Sheets are identified by locating

hydrogen bonds between residues which are not close in sequence.

Topological Contact (TC)

One definition of secondary structure that does not depend on geometries or bond

angles, but depends only on the topology of neighboring contacts was given by Chan and

Dill [6,7] It was implemented and applied to model and real protein structures by

Gregoret and Cohen [10], who showed that it correctly identifies helices and sheets in

proteins. By identifying secondary structures on the basis of specific contacts, the TC

method is similar to the definition of secondary structure used by Levitt and Greer [1].
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In this method, a helix is identified by patterns of specific contacts between

residues. A contact between two residues is defined when the distance between the Co.

atom positions is less than some cutoff value. In this work, we primarily use a cutoff of

5.5-A. A helix is defined if either of the following conditions hold:

(1) [ (i, i + 3), (i + 2, i + 5) ) and

(2) [.(i, i + 3), (i, i +5), (i+ 1, i + 6), (i+2, i + 7), (i+ 4, i + 7)].

Since (2) is mainly used to identify helices on lattices, definition (1) was the main

identifier of helices in the poly-alanine chains. Antiparallel sheets are defined by

contacts between residues [(i,j + 2), (i+ 1, j+1), (i+2, j).]. Parallel sheets are defined

by contacts between residues [(i,j), (i+ 1, j+1), (i+2, j+ 2)]. All residues involved in

a putative sheet must be in an extended conformation specified by certain lower bounds

on the interior virtual bond angles.

Energy minimization

In some of the studies below, the constrained conformations were further refined

using energy minimization. The AMBER [22,23] potential as implemented in the

Insight[I 2.2.0/Discover 2.9 molecular modeling package from Biosym Technologies

was used in all energy minimizations. 1-4 non-bonded interactions were scaled by 0.5.

Structural comparison and clustering

To determine whether energy minimizations substantially perturbed the

conformations, we used CONGENEAL [24], a computer algorithm that calculates the

structural dissimilarity between conformations. CONGENEAL represents chains in

terms of their weighted distance maps. The weighted distance map of a protein chain that

has N residues is an N × N matrix in which each matrix element (i,j) is a weight, w,

equal to the distance, di.j, between the o-carbons of residues i and j, raised to a power,

–2 (i.e., wi.j = d.%). The essential feature of the weighting function is that residues
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which are close together in space are given more weight than residues which are distant

in space.

Comparisons are performed by superimposing two weighted distance maps and

summing the absolute differences between corresponding distance weights. The

dissimilarity is defined as the sum of the absolute differences between corresponding

inter-residue distance weights normalized by the average of the summed distance weights

for each of the two distance maps. So for two chain conformations R and S, the

dissimilarity between the chains is given by:

- –2XX | rift – s;
#|Ezrfºsi (3.8)

d(R,S) =

For P structures, all P (P - 1)/2 possible pairs of structures are first compared, then

clustered using a hierarchical clustering method. Clustering is performed by iteratively

grouping P structures into larger and larger groups. The similarity between groups is

defined to be the average of the similarities between the members of one group compared

to the members of another group. At the beginning of the clustering process, the two

most similar structures are merged into a single group. Then the next most similar pair

of structures or groups of structures are merged. This process continues until all

structures are finally merged into a single group at the top of the tree. The final tree-like

structure shows the inter-relatedness of the structures within the set.

3. RESULTS

Our first question was whether the distance geometry method for generating

compact conformations led to local biases in the bond angles. We found that it did not.

While the studies of Gregoret and Cohen [10] and Hunt et al. [13] focus mainly on
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chains with intrinsic peptide bond angles, taken from the distribution observed in the

PDB, our interest here was to explore a slightly different question of whether polymers

without local bond biases could be induced to have secondary structures. Intrinsic

peptide bond propensities must surely help in the formation of secondary structures, but

we are also interested to know whether other types of polymers might be induced to form

secondary structures. Gregoret and Cohen [10] constructed conformations by adding Ca

positions to a growing chain. The position of each new Co atom was selected by picking

virtual bond angles (o) and virtual torsion angles (t) which reproduced the O/t

distribution derived from a database of real protein structures. If, after a given number of

attempts, a new Co position could not be assigned, the previously placed Co. atom was

reassigned. Figure 3.4A shows the distribution of O / tangles reproduced by the chain

generation method of Gregoret and Cohen. Their bond conformations are concentrated

in specific regions of O / T space. In contrast, figure 3.4B shows that the or /t

distributions obtained from our constrained poly-alanine chains are uniform, reflecting

the absence of local interactions in the chain generation procedure.

Because our poly-alanine chains are based on an all-heavy-atom representation, our

(b/w plots are consistent with b/w (Ramachandran) plots of hard sphere models, and

include chirality, in contrast to earlier lattice [6, 7] and off-lattice [10] models, for which

the chain representations are too simple to include chirality.

(p/\!/ dihedral angle distributions

In proteins, b/w angles are clustered into two primary regions: an or region and a 5

region. These areas are associated with o-helix and 5-sheet respectively. In addition, the

OL region is somewhat populated in real proteins. Figure 3.5A shows a b/w map derived

from proteins in the PDB. The O.R and 5 regions are prominent on the left hand side of

the figure. The less populated cluster on the upper right hand side of the figure represents

-

º
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Figure 3.4: Distributions of virtual bond angle O. versus virtual torsion angle t.

(A) Distribution derived from real protein structures. Reproduced from [10].

(B) Distribution derived from random, compact 100mer poly-alanine confor

mations.

the ol region of the map.

Since the observed distribution of dihedral angles in real proteins is generally

consistent with simple steric avoidance [25], it is not unexpected that the dihedral angle

distributions of the poly-alanine chains generated in this work are similar to the dihedral

angle distribution observed in real proteins. For example, there is a tilted oval near the

center of the Ö/\!/ plot (i.e., (b,\g) & (0, 0)) which is not populated (see figure 3.5B). This

region represents steric clashes between the oxygen atom of residue i with either (1) the

carbonyl carbon of atom i + 1 or (2) with the amide hydrogen of residue i + 1. The blank

region centered at p = 0 and extending from \p = -180 to +180 is due to contacts between

the oxygen atoms of residues i and i + 1. There is a forbidden region for all y centered
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Figure 3.5: (A) Distribution of b/w angles derived from crystal structures in to

the Brookhaven Protein Data Bank. (B) b/w distribution of 100 random, near

maximally compact 100mer poly-alanine chains. The Ö/u■ distributions of all

other sets of poly-alanine chains (both compact and open) are nearly identical.

at 4 & 120 which is due to interactions of the peptide backbone with side chain atoms.

Comparison of figures 3.5A and 3.5B shows that most poly-alanine (b/w angles fall

loosely within the É, OR, and OL regions of the Ö/\!/ map.

There are also differences, however, between the b/w distribution of the poly

alanine chains and the distribution from real proteins. First, the distribution of 4 and u■

angles is more diffuse and spread out than in real proteins. Second, whereas proteins

have a small ol region corresponding to a left handed helix, these poly-alanines have a

long continuous strip of populated dihedral angles defined by (b,\!!) &

(60–80, -180 – 180). Some of the clustering on the right hand side of the b/w map is

due to the nature of the error functions used in the distance geometry procedure. This is
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because the basin of attraction leading into the allowed region is large relative to the size

of that region [15]. Nonetheless, the detailed distribution of dihedral angles observed in

real proteins cannot be explained completely on the basis of excluded volume effects.

Therefore, although the b/w angle combinations observed in the poly-alanine chains do

not involve steric violations, some of the Ö/\!/ angle combinations are not energetically

favorable conformations. This result is consistent with molecular dynamics simulations

of model alanyl dipeptides which show that, in solution, the regions on the left hand side

of the (b/w map (in particular, the OR and f regions) are strongly favored relative to

regions on the right hand side of the map [26].

We found that the dihedral angle distributions in poly-alanine are independent of

chain length and compactness. Thus chain compactness appears not to influence local

conformational preferences at the level of single pairs of dihedral angles.

Secondary structure in poly-alanine chains

How much secondary structure is there in the confined poly-alanine chains? We

used three different criteria to identify helices and sheets. According to DSSP, the

maximally compact chains do not contain regular secondary structures in the form of o

helices or 5-sheets. This result is not unexpected since DSSP relies on the identification

of hydrogen bonds to locate secondary structure. Since no energetics were used to

generate these poly-alanine chain conformations, there are few residue-to-residue

orientations which can be identified as being hydrogen bonded. Applying Define to the

maximally compact chains shows that the chains have significant strand content. About

14% of residues in all the poly-alanine chains (compact and non-compact) are in

extended strand conformations. By the TC criterion, the compact chains have significant

anti-parallel sheet content. Both Define and TC methods agree that there is very little o

helix content. Figure 3.6 summarizes the absolute amount of secondary structure in
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Secondary structure in compact poly-alanine chains
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Figure 3.6: The absolute amount of secondary structure in compact poly

alanine 100mers. Define identifies the amount of extended strand and helix.

TC identifies sheet and helix. The result of using both a 5.5A and 6.5A cutoff

with the TC definition of secondary structure is shown.

poly-alanine 50, 100, and 150mers determined by a variety of criteria.

By all criteria, the amount of secondary structure increases with chain compactness.

Since there is no a priori correct distance to use as a cutoff for defining a contact for the

TC criterion, we systematically varied: (1) the cutoff distances defining a contact and (2)

the bond angle constraint required for defining an extended strand conformation.

Reducing the cutoff distance defines helices more stringently. Consistent with the earlier

lattice studies [6,7], figures 3.7 and 3.8 show that the amount of helix and sheet defined

by these various criteria increases with compactness. The figures also show the effect of

altering the stringency of the secondary structure definitions. By varying the cutoff

parameter from 5.5 to 6.5-A, and the bond angle of strands from 100 to 120 degrees, the
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Figure 3.7: Amount of helix as a function of compactness as determined by

the TC definition. Cutoffs defining a contact were varied from 5.5 - 6.5-A.

The bond angle required for residues to be assigned to a sheet conformation

was varied from 100 degrees to 120 degrees. (A) Poly-alanine 50mers (B)
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amount of observed secondary structure can vary over a large range: from about 1% to

20% for helix and from 3% to 50% for sheet. For all criteria, the helix and sheet content

increases with compactness.

While the amount of structure is strongly dependent on the defining criterion, the

amount of stabilization free energy is not. Figure 3.9 shows that there is a free energy

stabilizing secondary structures that comes from compactness. The loss in free energy,

—AGcompactness, is the logarithm of the ratio of the fraction of secondary structure residues
in the compact state to that of the open state.

(fraction in 2°structure)compact
-AGcompactness/ kT = ln (3.9)(fraction in 2°structure)open

Figure 3.9 shows the amount of secondary structure as a function of compactness plotted

on a logarithmic scale. The y-axis corresponds to free energy lost in units of kT.

Surprisingly, despite the wide range in the absolute numbers of residues in secondary

structure by different criteria, the change in free energy with compactness appears to be

largely independent of the criteria used.

More informative than the total amount of secondary structure is its distribution.

Figures 3.10A-I show the distributions of compact (blue) and open (pink) conformations

as a function of the number of residues in secondary structure. Each panel represents a

different set of criteria used with the TC definition of secondary structure. From the

upper left to the lower right represents decreasing stringency of criterion. In all cases, it

is clear that the absolute amount of secondary structure is higher in the compact

conformations than in the open conformations. In addition, for poly-alanine chains in

compact ensembles, there are more conformations with large numbers of residues in

secondary structure than with small numbers. The reverse is true for ensembles of open

chain conformations. Almost no open chains have large amounts of secondary structure.

■
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Figure 3.10 (next page): Histograms showing the number of poly-alanine

100mer conformations as a function the number of residues in secondary struc

ture. The blue bars correspond to compact poly-alanine chains (25A sphere).

The pink bars correspond to open poly-alanine chains (40A sphere). Each

panel represents a different criteria set used with the TC definition of secon

dary structure. The criteria used are as follows: (A) contact cutoff = 5.5A,

bond angle cutoff = 120 degrees, (B) contact cutoff = 5.5A, bond angle cutoff

= 110 degrees, (C) contact cutoff = 5.5A, bond angle cutoff = 100 degrees, (D)

contact cutoff = 6.0A, bond angle cutoff = 120 degrees, (E) contact cutoff =

6.0A, bond angle cutoff = 110 degrees, (F) contact cutoff = 6.0A, bond angle

cutoff = 100 degrees, (G) contact cutoff = 6.5A, bond angle cutoff = 120 de

grees, (H) contact cutoff = 6.5A, bond angle cutoff = 110 degrees, (I) contact

cutoff = 6.5A, bond angle cutoff = 100 degrees.

From these data, we can estimate the free energy of stabilization of secondary

structures by compactness. We define a structural unit as 6 residues since this is the

minimal requirement of the TC criterion for defining a helix or sheet. The calculation is

performed by dividing the fraction of compact conformations with N to N+5 residues in

secondary structure by the fraction of open conformations with N to N+5 residues in

secondary structure. The logarithm of this ratio yields an enhancement factor in units of

kT. Note that when there are no conformations with N to N+5 residues in secondary

structure, an enhancement factor is undefinable. Hence our statistics are limited since the

sets of compact poly-alanine chains represent only a small sampling of all possible

compact states. Nonetheless, the enhancement factors for poly-alanine 50mers as a

function of the number of secondary structural units are shown in figure 3.11: each

additional 6-mer structural unit of secondary structure is stabilized (favored) by

compactness by about 2 kT. This estimate is largely independent of the identifying
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Energy minimization

So far we have described all-heavy-atom poly-alanine chains that are only under the

influence of the compactness constraint imposed by a constraining radius. The only

constraints are that (1) no two atoms may occupy the same space (i.e., excluded volume)

and (2) the entire chain conformation must be configured within the bounds imposed by a

constraining radius. No other biases or energies have been included. The results

described above show that strict criteria do not identify very much structure in these

compact poly-alanine chains. The helices and sheets in these constrained poly-alanines

do not look very protein-like. That is, compactness is not a force that specifically drives

the formation of O-helices and fl-sheets, but rather it stabilizes broad classes of

conformations that include helices and sheets as subsets. Compactness acts to favor

certain topological repeats, such as (i, i-º-3) contacts, but a considerable range of bond

angles and geometries are consistent with this. The stabilization of secondary structures

afforded by compactness can be viewed in the way that diffusion can be viewed as a

driving force. It is not a specific pair interaction; it is a global property of an ensemble.

This driving force is not structurally specific, like hydrogen bonds or other pair

interactions are. We and others [13,27] believe that both types of interaction -- the

stabilization afforded by compactness, and the structural specificity afforded by hydrogen

bonding and local propensities -- are required to lock in structures as specific as the o

helices and f-sheets observed in real proteins. Compactness appears to give stability, but

not conformational specificity, to secondary structures in globular proteins.

Our results show that compactness increases the amount of ordered structure in

compact polymers, but how far are the conformations from energy minima of more

realistic secondary structures? The distribution of b/w angles in the compact poly

alanine chains deviate substantially from the distribution of dihedral angles observed in

real proteins. The degree to which a chain can move is severely limited since the
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excluded volume effect is very strong for the compact chains. We now ask whether a

small perturbation of random compact poly-alanine conformations by the AMBER force

field is sufficient to induce the poly-alanine structures to look more like proteins.

The poly-alanine chains that were generated by distance geometry were

subsequently energy minimized using the AMBER potential. In addition to using the

unmodified AMBER potential, the force field was modified in several ways to see how

specific restraints would alter the b/w map of the minimized poly-alanine chains. We

tested four types of energy minimization: (1) the unmodified AMBER potential, (2)

increasing the strength of the hydrogen bond, (3) adding a torsion angle force toward (b/w

minima observed in alanine dipeptide simulations, and (4) adding constraints to favor the

formation of o-helix-like hydrogen bonds. The results of these minimizations are

presented below.

(1) Figures 3.12 & B show the b/w maps for sets of 10 compact poly-alanine

chains before and after 10,000 cycles of conjugate gradient minimization using the

unmodified AMBER potential. The minimization procedure makes the b/w distribution

more protein-like in several ways. The Ö/\!/ angles in the or region becomes slightly

more concentrated. The strip of torsion angles between () & 60–80 becomes less

continuous. In general, the overall distribution of torsion angles is less diffuse and more

focused into distinct minima.

Nevertheless differences remain between the energy minimized b/w distribution

shown in figure 3.12B and the real protein distribution. Since any energy minimization

strategy seeks the nearest energy minimum, the refinement found only the closest b/w

combinations which would lower the overall energy of the system. For example, the map

shows an increased concentration of (p,\g) angles near (–70,60) and (65,-60) which

correspond to the formation of hydrogen bonds between Oi-1 - HN;41. These regions

2
f a.

à
3
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have been identified as energy minima in alanine dipeptide model studies in vacuum and

in solution [28-30). In addition, the concentration of dihedral angles in the OL region

(@,\!, K. 55,45) is increased.

(2) We increased the strength of the hydrogen bond by factors of 1.50, 2.00 and

3.00. In each case, the (b/w distributions are more diffuse (for example, see figure

3.12C). There is a significant increase in the population of the fl-sheet region of the b/w

map. Some (b/w angles, however, populate regions of the map which are not sampled by

real proteins and several of the distances between adjacent Co. atoms become closer than

the 3.8 A expected for trans-peptide bonds. Hence, increasing the strength of the

hydrogen bond beyond its physical value can result in rather severe distortion of the

standard peptide bond geometry.

(3) Next, we introduced a torsion angle forcing potential. Molecular dynamics

simulations of alanine dipeptides have mapped out () and u■ angles which correspond to

local energy minima [26]. They indicate that two primary free energy minima exist at

(q, \g) & (-110, 120) and (- 120, -40) which correspond to the fl region and of region

respectively. Note that the “helix” () minimum is offset by 50 degrees (to -120) from

the ideal value for an O-helix. In the present work, we added forcing potentials in the

form of an extra harmonic energy term to shift the dihedral angles () and u■ to these

values. The magnitude of the forcing potential ranges from 1.0 to 5.0 kcal/ rad” for the B

region and from 0.4 to 2.0 kcal/rad * for the or region.

Figure 12D shows an example of energy minimizing poly-alanine chains subject to

the torsion angle forcing term. There was a noticeable shift of torsion angles toward the

or region of the b/w map. Even though the force constants favoring the 5 region were

larger than for the or region, there was little enhancement of b/w angles in the extended

f region.

2
r º

* º

à
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A) Original
(A) Orig (D) torsions - 3: 2.5, a 1.0

Figure 3.12: ©/\!/ distributions of 10 near maximally compact poly-alanine

100mers. Results for 50mers and 150mers were essentially identical. (A) un

minimized chains, (B) minimization, (C) minimization with hydrogen bond

strength increased by a factor of 2.0, (D) minimization in which torsion angle

forcing terms were added to shift (b/u■ ) angles to (-110, 120) and to (-120, -40)

with force constants set to 2.5 and 1.0 kcal/rad.* respectively, (E) minimiza

tion in which a helix hydrogen bond term was added to force the formation of i

to i+4 hydrogen bonds with kh (see text) set to 0.33 kcal/A 2.
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Figure 3.13: Histogram showing absolute amounts of secondary structure in

poly-alanine 150mers after various minimization strategies. (A) Secondary

structure determined by Define. (B) Secondary structure determined by DSSP.

(C) Secondary structure determined by TC with 5.5A cutoff. ori: original con

formation, min: AMBER minimization, hb1.5: hydrogen bond strength scaled

by 1.5, hb2.0: hydrogen bonds scaled by 2.0, he■ ).1: helix term with force con

stant, kh, set to 0.1 kcal/mol A*, he()3: kh = 0.33, he■ ).5: kh = 0.5, hel; kh =
1.0, tor1: torsion angles terms for f and o regions set to 1.0 and 0.4 kcal/

rad 2. tor2.5: torsion terms with force constants equal to 2.5 and 1.0, tors: tor

sion terms with force constants equal to 5.0 and 2.0.
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(4) Finally, a term was added to force conformations toward the formation of

hydrogen bonds between Oi and HN;44. The extra energy term was a flat bottomed,

skewed biharmonic function as implemented within Discover version 2.9 by Biosym

Technologies. The form of the term is given by:

Elmax + ■ max (FL.max - r r < rºma,
kL (r- rt)* TL.max < r <rl

Econstrain(r) =10 rl 3 r <ru (3.10)
ku (r-ru)” TU “ r <ru.mar

EU.max + finax (r-ru.max) ru.max < r

Here, the value of r was 1.7 A. kl was fixed at 5.0 kcal/mol A ° to prevent the atoms

from getting too close to one another. ru was taken to be 2.5 A. Values of ku ranged

from 0.10 to 2 kcal/mol A*. rlmax and ru,max were selected such that:

finax = 10.0 kcal mol"A" =2ki (rl- rLimax)=2ku (rU.max - ru). (3.11)

Elma, and EU may were given by:

Elma, =ki ("lma, -■ t) and Euma, -ku (runa, -ru). (3.12)

Figure 12E shows that there is an increase in the population of dihedral angles in the or

and ol regions even for very small force constants. The results indicate that both the or

and ol regions of the Ö/\!/ map are consistent with the formation of helical hydrogen

bonds. The observation of more (b/w angles in the ol region of the poly-alanine chains

relative to real proteins is due to the fact that the starting (unminimized) poly-alanine

conformations have ()/\!/ angles which populate sterically allowable, but energetically

unfavorable, regions on the right hand side of the b/w map. When subjected to the force

field, the b/w angles on the right hand side of the map move toward the closest minimum
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(i.e., OL).

Secondary structure in energy minimized poly-alanine chains

Figure 3.13 shows how introducing the energy perturbations affects the amount of

secondary structure in the confined poly-alanine chains. Minimization alone using the

unmodified AMBER potential slightly enhances the amount of secondary structure in the

poly-alanine chains. According to Define, the strand content is lower in the minimized

structures. Strengthening local hydrogen bonds reduces the chain extension. On the

other hand, according to both DSSP and TC, energy minimization increases the sheet

content. The TC criterion also detected an increase in helix content. Increasing the

strength of the hydrogen bond slightly increases the helix content according to both

DSSP and TC. The TC criterion also detects a large increase in sheet content. Part of the

increased sheet content was due to severe distortions as the poly-alanines become very

compact from the strong hydrogen bonds.

By all secondary structure criteria, the amount of O-helix increases after adding

either the torsion angle term or the o-helical hydrogen bond force, even when the force

constants are small (e.g. 0.1 kcal/mol A 2). As discussed above, when the helical

hydrogen bond force is added, many (p/\!/ angles populate the OL region of the p/\!/ map.

This means that left handed helices can form and may be identified as o-helix by

secondary structure detection methods which are not sensitive to handedness such as

Define and TC. DSSP, however, is sensitive to handedness and parallels the results

obtained from Define and TC. Thus sterically constrained compact poly-alanine

conformations require only small perturbations to reach o-helices. (We show below that

these perturbations are small.)

It is much more difficult, however, to force the formation of 5-sheets. Simple

energy minimization may not introduce sufficient perturbation to induce sheets. Sheets
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require coordination of different strands to come together, whereas helices appear to

require only local readjustments that occur readily with small energetic perturbations.

Structural similarity of energy minimized chains

Here we show that energy minimization does not cause large perturbations of the

poly-alanine chain conformations. We compared pairwise all conformers of five poly

alanine chains which were energy minimized using the strategies above. For each chain,

there are 11 conformational variations: the original plus the result of 10 different energy

minimization runs. Structural similarity was evaluated using CONGENEAL [24]. The

pairwise comparison data was then used to construct a relatedness tree using hierarchical

clustering. Figure 3.14 shows that after minimization, each poly-alanine chain falls

within its own “family” of structures. Even when the forcing potentials are very large,

the perturbed structures still cluster with their original poly-alanine parent. This

indicates that after energy minimization, each poly-alanine chain retains enough of its

original chain fold to be classified within its proper family. Also by molecular graphics

we observed that the placements of turns in these structures are relatively unchanged.

Even with a large helical force, for example, the chains never straighten out into a long

helix.

When open chains were energy minimized using the strategies described above, the

resulting conformations were only distantly related to the original starting conformation.

That is, energy perturbations on open, relatively unconstrained chains led to large

changes in the overall fold of the original structure.

Comparison with other studies

Despite the differences in methodology and model, this study is in general

agreement with the studies of Gregoret and Cohen, Hao et al., Socci et al., and Hunt et

al., in several main conclusions. First, it shows that packing is not structurally specific:
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there is considerable conformational diversity. By strict criteria, only a small fraction of

the stabilized secondary structures are recognizable o- helices and fl-sheets.

Compactness cannot account for why O-helices are more prevalent than 310 helices, but

it can account for why helices in general are more stable in compact conformations than

in open conformations. Second, we find that only small energetic perturbations from the

confined poly-alanines are required to give good O-helical conformations, although larger

perturbations appear to be required to get good fl-sheets.

Third, consistent with the earlier lattice studies of Chan and Dill [5-7], most of

these studies show that compactness enhances secondary structure, and hence it provides

a driving force. However, Kolinski and Skolnick [9] appear to disagree with this view.

They say: “Thus... the secondary structure seen in the folded state is predominantly the

result of short range interactions, or conformational propensities, which are more or less

in accord with packing requirements in the dense globular state”. They make two

arguments. First, they note that the distribution of distances between residues i and i+3

in poly-valines look very similar for both compact and random coil ensembles when only

the hydrophobic interaction is used. In addition, their distributions also resembled the

distribution at low temperatures when only local (i.e., |i-j|< 7) interactions were

included. Observing no differences in these distributions, they concluded that secondary

structure does not come from compactness.

Second, their poly-valine chains collapsed into compact fl- sheet-like globular states

when local conformational preferences, hydrogen bonds, and nonlocal interactions were

included. When local conformational preferences were left out, the poly-valine chains

collapsed into compact states which were highly helical. When only the nonlocal

interaction is used, the poly-valine chains adopted compact, “disordered”

conformations. Since they used a strict criterion of secondary structure based on

hydrogen bonding patterns, it is not surprising that they did not see any (hydrogen-bond
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based) secondary structure when only non-local interactions were used. This is

consistent with our present results. That Kolinski and Skolnick could generate more

secondary structures in compact states using more complex potentials does not prove that

compactness is not important. In our view, compactness in their study already

effectively eliminates the large number of non-compact conformations. The compact

conformations which remain have a larger proportion of residues which can participate in

secondary structure. In order to test the hypothesis that compactness induces secondary

structure within the context of in their model, Kolinski and Skolnick might have asked

how much local and hydrogen bond driving forces are necessary to get native-like

secondary structures in the presence and absence of compactness. We believe

compactness will reduce the driving force necessary to achieve native-like structures.

Finally, we disagree with a recent suggestion by Karplus and Shakhnovich that the

hypothesis of compactness enhancement of secondary structure [6,7] contradicts Flory's

Theorem [31]. Flory's Theorem postulates that the spatial distribution of monomers of

an individual polymer chain in a dense multiple-chain polymer melt would resemble that

of a random flight [32,33]. The theorem does not address the conformations of single

compact chains. In addition, the Flory theorem addresses only distributions of monomer

pairs, and not the multiple monomer correlations in secondary structures. Hence the

current results are not inconsistent with the Flory theorem.

4. Conclusions

We have modelled proteins as all-heavy-atom poly-alanine chains of lengths 50,

100, and 150 monomers. They have been configured randomly, subject only to: (1)

confinement to different radii of gyration by distance geometry and (2) steric constraints.

No local propensities, energies, or other biases have been explicitly included.
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Figure 3.14: Tree showing interrelatedness of energy minimized poly-alanine

150mers. Each poly-alanine chain clusters with its “parent” structure even

when forcing potentials are large.
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We find that compactness enhances secondary structure by several different criteria

of identifying helices and sheets. The total amount of secondary structure observed

depends strongly on the criteria used and can vary over a range from nearly zero to 50%

for the same chain conformation. Our results agree with other studies that have used

strict criteria in that the secondary structures induced from compactness alone are neither

protein-like nor as narrow a class of structures as O-helices and f-sheets [9-13]. Our

analysis shows, however, that despite wide variation in the absolute number of residues

in secondary structure, the stabilization free energy of secondary structures provided by

compactness is essentially independent of the criterion used. Calculation of the

stabilization free energy realized from compactness is estimated to be on the order of 2

kT per secondary structural unit.

Several energy minimization strategies using the AMBER potential are used to

determine how far the maximally compact poly-alanine chains are from realistic energy

minima. We find that small energetic perturbations to nearby local minima increased the

number of dihedral angles in regions of b/w space which are commonly observed in real

proteins and nudged helices to become o-helices.

Compactness appears to be a structurally nonspecific entropic force that lowers the

overall conformational free energy for a large class of helix-like and strand-like

structures, among which are the O-helices and f-strands that are specific to peptide

backbones. We believe that other polymers could also be driven by compactness to

adopt helical and sheet structures. But the microscopic geometric details would be

dictated by their preferred backbone conformations. Many crystal structures of synthetic

polymers indeed adopt helical or planar zig-zag conformations [34]. The stabilization

that results from compactness is due to the vast reduction in the number of conformations

of the chain that are accessible in compact states, due to excluded volume. This reduction

is a process in which a large fraction of the remaining conformations contain helix-like
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and strand-like elements which are capable of filling space more densely than non

repeating conformations can.
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Introduction hy

The work described in this chapter revolves around the first project I started under

the direction of Professor Ken Dill. I will use this chapter as an opportunity to reflect

upon problems of the past, and to tie together some insights and thoughts I have which

were not incorporated into the previous chapters of this thesis.

The aim of the project was to develop a method to find the optimal lattice

representation of a real polymer chain such as a protein because we were interested in

determining how well a lattice model could represent a real protein structure. Is there, for

example, a reasonable mapping of conformations in protein structure space onto

conformations in cubic lattice space? To address this question, it was necessary to gain

an understanding of how one could determine the “best” description of a real protein

structure using a lower resolution lattice model representation.

The principal advantage of a lattice based model is the ability to rapidly perform

exhaustive and systematic explorations of conformational space. By constraining

monomer positions to lattice sites, the total number of possible chain configurations in a

lattice model is dramatically reduced over a freely rotating chain. Despite the

simplification, one assumes that the lattice model retains similar physical properties to

real chains. By characterizing the ensemble properties of a lattice model, one can gain

insights into the behavior of more complex systems. The notion that compactness

stabilizes secondary structures in compact polymers, as described in chapter 3, was

originally derived from lattice models [1].

Many groups have used lattice models to explore questions of protein structure and

stability [1-11]. An issue that arises is the question of how well a lattice model represents



- 106 -

the structure of a real protein. What properties of real proteins can one expect a lattice

model to capture? What properties should one not expect a lattice model to capture?

Given a lattice-based protein structure prediction algorithm, how similar should the

lattice model be to the structure of the real protein? The answer to that question depends

upon what one defines as similar.

In this chapter, I will first describe work involving the development of a procedure

for building cubic lattice representations of real protein structures. I will then discuss the

problem of comparing models of proteins to real proteins, and conclude by introducing

some methods for characterizing ensembles of conformations using bond vector

correlations.

Error and Similarity

The first issue one must consider when thinking about the problem of mapping real

protein structures onto lattices involves defining similarity. It is clear that a measure of

similarity by which different configurations can be distinguished as being better or worse

than a target structure is required. With respect to the mapping project, two general

criteria are based upon geometric and topological considerations.

A geometric criterion is perhaps the most intuitive. Similarity is defined by

evaluating how close the spatial path of a lattice chain matches the path of the real chain.

The root-mean-square deviation between residues in a model relative to the O-carbon

positions in a protein is a convenient geometric measure of similarity. Covell and

Jernigan [11], for example, mapped real protein structures onto lattices using a least

squares procedure. They explored three types of cubic lattices: a simple cubic lattice, a

body-centered cubic lattice, and a face-centered cubic lattice.
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While a simple cubic lattice has only two bond angles (90° and 180°) and four

torsion angles (0°, 90°, 180°, 270°), the face-centered cubic lattice provides four

additional bond angles and sixteen additional torsion angles. The additional bond and

torsion angles provided by the face-centered cubic lattice match the preferences of real

protein rather well. By using a lattice model with a high degree of conformational

flexibility, Covell and Jernigan were able to generate lattice mappings of real proteins

with root-mean-square deviations of about 1.0-A.

The ability of a face-centered cubic lattice to represent real protein structures with

very small geometric deviations comes at some price. While the distance between

adjacent o-carbon positions in real proteins is essentially constant at 3.8-Å, the face

centered cubic lattice model allows the distance between two connected residues to adopt

values of 2.68, 3.8, and 4.65-Å. Therefore, the distance between two sequential residues

in the lattice model can vary by up to 40% of its ideal length. The face-centered cubic

lattice model also has a higher coordination number than a simple cubic lattice model; a

high coordination number means that a lattice site may have many close neighbors.

While this feature allows one to construct an accurate geometric representation of a

protein, the size of conformational space for high coordination number models is too

large to explore exhaustively. Finally, while a chain configured on a lattice may

accurately reproduce the path of a real protein chain, the physical constraints on the

lattice chain may differ considerably from the constraints on a real chain. For example, it

is generally accepted that real proteins are close to maximally compact [12]. A lattice

model which reproduces the exact chain geometry of a real protein, however, is almost

certainly not maximally compact.

While it is possible to construct lattice models of proteins with a high degree of

geometric accuracy, one sacrifices the accuracy of the model with respect to important

physical properties such as compactness and bond lengths. An essential consideration,
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therefore, is whether a simple model captures the properties one is most interested in

modeling.

When considering how to map real proteins onto a simple cubic lattice, I opted to

use a topological criterion of similarity. This choice seemed obvious because of the

characteristics of the model. Since the chain was to be configured on a simple cubic

lattice, the bond lengths between residues adjacent in sequence were constrained to be

constant. Since real proteins are maximally compact, the lattice representation should

also be highly compact. The dominant driving force for protein folding was assumed to

be the hydrophobic interaction. Therefore, the model should reproduce as many native

hydrophobic-hydrophobic interactions as possible. Since these interactions are relatively

short ranged, the mapping problem becomes one of finding a lattice representation which

reproduces as many of the spatially close intra-residue interactions present in the native

protein as possible. An example of a similarity measure based on a topological criterion

is CONGENEAL, described earlier in this dissertation.

Representation

Both real protein structures and lattice models of proteins are represented as

weighted distance maps. The weighted distance map representation of structure was

discussed in detail in chapter 2. Briefly, a weighted distance map is one triangle of an

N × N matrix in which each matrix element, wi■ , represents a weight proportional to the
importance of the interaction between residues i and j. In analogy to the distance

dependence of non-bonded interactions in proteins (e.g., van der Waals, dipole-dipole,

etc), wii is defined to be the distance between the o-carbon positions of residues i and j
raised to the inverse sixth power. That is,

wij = dº (4.1)
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The topological representation is based on the assumption that residues which are close

together in space are more important than residues which are widely separated in space.

By this criterion, the best lattice model representation of a real protein is the one which

minimizes the difference between the weighted distance map of the lattice model when

compared to the weighted distance map of the real protein.

Model Generation

The simplest way to produce a lattice model of a real protein of length N might be

to generate all possible N residue lattice-based conformations and find the one that best

matches the real protein. Since the number of configurations grows exponentially with

chain length, however, it is not possible to exhaustively compute all configurations for

chain lengths approaching that of real proteins. Therefore, to address the problem of

generating lattice mappings of real proteins, I developed a method to selectively and

systematically explore conformational space. The method can produce a set of very good

representations of the target protein, although the representations are not guaranteed to be

globally optimal. The method involves the use of a “build-up” procedure in which the

real protein is divided into short segments. Lattice representations of each chain segment

are first sorted, then the best pieces are assembled together. The processes of selection

and assembly are iterated until the entire protein is constructed. I first discuss a

sequential build-up procedure, then describe an improved algorithm which is much more

flexible and produces better lattice models.

Sequential Build-up Procedure

The first step of the sequential build-up strategy is to divide the protein into short 6

residue segments. Each real protein segment is then compared to an exhaustive set of 6

residue lattice configurations. On a three dimensional cubic lattice, there are exactly 92
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unique 6 residue conformations. Lattice representations are grown sequentially from the

C-terminus to the N-terminus. At the beginning of the process, the best lattice

representations of residues 1 - 6 are combined with the best scoring representations of

residues 7-12. Of the several thousand possible ways of constructing a 12 residue

segment, only the 100-200 best chain configurations are saved. Each of the best models

are then combined with the best lattice representations of residues 13 - 18, and the best

18 residue segments are saved and further grown into longer chains. The process is

iterated until a complete lattice representation of the target protein is constructed.

Although it was possible to construct reasonable lattice models of real proteins, the

sequential build-up strategy was limited. For proteins longer than about 60 residues, the

C-terminal end of the lattice model would invariably represent the real protein better than

the N-terminal end.

Non-sequential Build-up Procedure

Since there was no a priori reason to construct a lattice model sequentially, the next

version of the build-up procedure was designed to treat a pool of lattice model fragments

without requiring the fragments to be combined in any particular order. The program

works in four stages: piece generation, pairwise combination, linker addition, and chain

extension.

In the first stage, the protein is divided into segments. Minimally, the program can

start by dividing the protein into short sequential segments as in the sequential build-up

procedure described above. The segments, however, can be of arbitrary length and are

not required to consist of sequential residues. For example, a segment could be based on

an anti-parallel sheet consisting of multiple strands but lacking the residues between the

strands. For most applications, the program first identifies helices and strands using an

implementation of the secondary structure identification algorithm of Richards and
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Kundrot [13]. Since most secondary structures are relatively short, it is possible to

determine a small set of very good lattice representations for each segment. These

segments provide the basis for constructing the complete protein.

In the second stage, all the segments are compared pairwise. If there are any

overlapping residues between two segments, the program will attempt to merge them by

determining all the possible rotations and translations which place the overlapping

residues in mutually consistent positions and do not contain any excluded volume

violations. If there are no overlapping residues between two segments, the program will

determine if the segments contain residues which are known to be adjacent. For

example, the program will combine a segment containing residues 1 - 6 with a segment

containing residues 7 - 12 by finding all orientations in which residues 6 and 7 are

adjacent. It is possible to add arbitrary constraints which allow segments with non

sequential residues to be combined. For example, if there is a disulphide bond between

two residues in a protein and one wanted the lattice model to contain a contact between

the 2 cysteine residues, one would add the two residues to the list of adjacent residues.

After any two segments have been combined, the program will look for unplaced

residues whose positions are fully determined. For example, if residues 5 and 7 are

assigned positions, there are only two possible positions for residue 6 on a simple cubic

lattice. If one of the two positions is already occupied by another residue, then residue 6

will be assigned the remaining lattice site. If both positions are occupied, the segment is

discarded as inconsistent.

When no more segments can be combined by pairwise combination and all fully

determined positions are filled in, the segments are extended by a few residues and the

best extended segments are saved. Chain extension is performed by adding linkers to

each of the best segments where the linkers are the 92 unique lattice 6-mers. For reasons
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of computational efficiency, only a small set of the best segments are saved.

Finally, the segments are grown at the ends by adding unassigned residues at both

the C-terminal and N-terminal ends of each segment. This step is called chain extension

and is necessary to fill in any residues which have not yet been placed by the earlier

procedures. If a segment contains assigned positions for each residue in a protein, it is

complete and written to a file. The remaining set of segments are iterated through the

process again until all segments are either complete or shown to be inconsistent and

discarded.

Results

The first test of the build-up procedure was to reconstruct a hypothetical two

dimensional protein on a square lattice. The two dimensional protein was based on a

map of the United States as shown in figure 4.1. The lattice model was constructed by

building up a set of models from the west to the east. Using 8 residue segments, a series

of complete models was generated in 6 assembly steps. Figure 1 also shows an example

of a lattice representation of the United States. Despite being based on topological

interactions, the geometry of the model clearly resembles the geometry of the United

States. Note that the density of the lattice model is much lower in the west than in the

east due to the larger relative size of the western states. The packing density of the

“‘real” United States is much higher than that of the lattice model due to the constant

size of a lattice site. This will be a problem when mapping real proteins to a regular

lattice since amino acids, like the states, have size variations while the lattice sites do not.

The build-up procedure was used to construct lattice representations of three

proteins: crambin (CRN), bovine pancreatic trypsin inhibitor (BPTI), and intestinal

calcium binding protein (ICB). As discussed above, the best results were obtained using
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figure 4.1: (above) hypothetical 2 dimensional protein based on map of the

United States. (below) Lattice model of protein using sequential build-up pro

cedure.

the second version of the program which was not limited to constructing a lattice

representation in a sequential order. In all cases, segments corresponding to secondary

structural elements were constructed first. These segments were then combined and
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figure 4.2: Weighted distance map of crambin in upper triangle. Weighted

distance map of a lattice representation of crambin in lower triangle.

grown to build a representation of the complete protein. Figures 4.2 - 4.3 show weighted

distance maps of the three proteins.

It is apparent from the figures that the build-up procedure is somewhat successful in

reproducing the intra-residues interactions present in the real protein. The general

features are clearly present. Subtle differences in residue-to-residue separations,

however, are not captured since the lattice model has less freedom to vary the distance

between residues.

The geometries of the lattice representations are similarly reasonable. Figure 4.5

shows a lattice model of crambin adjacent to a cº-carbon trace of real crambin. The
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figure 4.3: Weighted distance map of bovine pancreatic trypsin inhibitor

(BPTI) in upper triangle. Weighted distance map of a lattice representation of

BPTI in lower triangle.

root-mean-square (RMS) deviation of the best crambin model relative to real crambin is

about 3.5-A. Covell and Jernigan [11] could generate simple cubic lattice models of
crambin with RMS deviations as low as 2.7-A. The difference in RMS deviations

between Covell and Jernigan and the present work reflects the use of the topological

criterion.
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figure 4.4: Weighted distance map of intestinal calcium binding protein (ICB)

in upper triangle. Weighted distance map of a lattice representation of ICB in

lower triangle.

Discussion

Computational Limitations

While there are positive results for mapping small (under 100 amino acids) proteins

onto a cubic lattice using the build-up procedure, generating models for larger proteins

was problematic. The primary limitation was computation time. The size of

conformational space increases exponentially with increasing chain length.

Consequently, the computer time necessary to model large proteins becomes prohibitive.

In addition to run time, generating models of large proteins is limited with respect to
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figure 4.5: Stereoview of a lattice representation of crambin adjacent to an o

carbon trace of crambin.

memory and disk space. Large proteins, for example, require the program to manipulate

more segments than small proteins. Segments size also becomes much larger for large

proteins. In addition, it is necessary to store more intermediate conformations to disk

since more rounds of pairwise combination are required to generate a complete lattice

model.

These limitations will become less important as computers get faster and the cost of

memory and disk space goes down. Nonetheless, the number of possible conformations

increases exponentially with chain length, so intelligent strategies must be employed to

effectively explore a reasonable amount of conformational space. One strategy I used

with some success was to examine the patterns of contacts in each segment for

inconsistencies. Figure 3.1 shows that on a cubic lattice, some contacts are prohibited in

context of certain patterns of contacts. By building a library of prohibited contact

patterns, one can screen a set of lattice segments for the presence of inconsistent contacts.

If a segment contains contacts which are known to be inconsistent, then it can be
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discarded.

Compactness of Lattice Representations

Many folding studies using lattice models attempt to maximize close interactions

between hydrophobic residues due to the dominant role the hydrophobic effect has on

protein folding [14]. Since real proteins are nearly maximally compact [12], it is

reasonable to expect a model of protein structure to be maximally compact. The decision

to use a topological criterion for the construction of lattice representations of real

proteins was based on the assumption that by reproducing as many closely contacting

residues as possible, the resulting models would be compact. On one level, this

assumption proved to be correct. Models built by optimizing topological similarity

contain more nearest neighbor contacts than models built by geometric criteria.

The lattice models which reproduce the topology of real proteins, however, are not

maximally compact. It is possible to determine the number of nearest neighbor contacts

in a maximally compact cubic lattice chain [15]. The best lattice models of real proteins

obtained by the build-up program contained about 75% of the maximal number of

nearest neighbor contacts. There are several reasons why the lattice representations are

not more compact. First, maximally compact lattice chains minimize surface area by

adopting regular shapes (i.e., cubes). Real proteins, on the other hand, describe much

more complex surfaces. Second, cubic lattice chains can pack more efficiently than real

protein chains. Lattice chains can achieve a packing density of 1.0. Real proteins,

however, pack no closer than close packed spheres with a packing density of about 0.76.

Lattice Chain Physics

Real proteins have restricted bond and torsion angles which are easily seen by

examining the distribution of Ö/\!/ angles occupied by real proteins. By restricting a chain

to lattice sites, the chains have severely restricted bond angles and torsion angles. In

.
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effect, the lattice model imposes an infinitely strong potential in which there are only a

few allowed bond and torsion angles. Polypeptide and lattice chains are similar in the

sense that the conformational freedom of a chain is restricted by effective potentials. In

the case of real proteins, these potentials originate from steric interactions and local

energy minima. For lattice chains, the potentials originate from the requirement that the

chain configure itself on lattice sites. Differences in the potentials between real and

lattice chains make the problem of mapping real proteins onto lattices a difficult one. For

example, a major difference between lattice chains and real polypeptide chains is

chirality. Polypeptides consist of L-amino acids which are chiral. The chiral nature of

proteins manifests itself in many ways. (p/\!/ plots derived from real proteins are

preferentially occupied on one side. O-helices are right-handed. 5-sheets frequently

have a left-handed twist. Lattice chains, on the other hand are achiral. There is no

preference to form a right-handed over a left-handed helix, for example. Figure 4.5

shows that the lattice representation of an o-helix in crambin does not take the form of a

right handed helix. The lattice chain simply places residues in a way that best mimics the

pattern of contacting residues. Since the lattice chain is achiral, there is no constraint

requiring it to adopt a handed conformation.

Protein Spectra

A useful way to distinguish the physical properties of ensembles of polymers is by

examining correlations between residues in the chain. Many studies have used

correlation functions to study conformational properties of polymers (for example,

[16, 17]). Here, I will show plots of interresidue distance correlations and bond

projection correlations for real proteins, maximally compact random poly-alanine chains,

and compact chains configured on a simple cubic lattice. I call these plots protein

spectra, and view them as an informative way to visualize certain properties of polymer

.
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figure 4.6: (A) Histogram of distances between non-adjacent o-carbon atoms

in set of protein structures derived from the PDB. (B) Distance correlation

function of non-adjacent o-carbon atoms derived from proteins used in (A).

A distribution of separation distances between non-adjacent o-carbon residues in

proteins is shown in figure 4.6A. The histogram shows a peak at about 54-Å which

indicates the closest distance two non-adjacent residues come to one another. There is a

minimum in the distribution at around 7.5-A indicating that relatively few pairs of

residues are separated by this distance. Other features of this distribution are obscured

because of the increasing number of residue pairs separated by relatively large distances.

One way to clarify this distribution is to plot a inter-residue distance correlation function,

goo.(r). This function is given by

N(r)
4tr?Ar’gaa(r) = (4.2)
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where N (r) is the number of residues which are a separated by a distance between r to

r + Ar. Figure 4.6B shows the distance correlation function for the same real protein set

used to generate figure 4.6A. This distance correlation plot normalizes the distribution to

take into account the increasingly larger volume in which residues can exist at increasing

distances. The normalization factor of 4trºAr sharpens the peaks and yields a

characteristic spectra.

Much more detailed spectra can be obtained if one generates distance correlation

functions for residues which are separated by a specific number of residues, m, along the

chain. Figure 4.7 shows a series of distance correlation functions generated for residues

separated by m residues where m is varied from 2 to 21. When m equals 1, the the

distance correlation function monitors the variation of distances between adjacent

residues in a chain. There is essentially no variation and the separation distance is equal

to 3.8-Å. Many of the other distance correlation functions contain very sharp peaks.
When m is equal to 2 or 3, the correlation functions show that there is little allowed

variation. Most residues separated by 2 or 3 residues along the chain are limited to a

very small range of separation distances. Note that distinct peaks are evident for

correlation functions up to m = 16. Figure 4.8 shows the distance correlation functions

for an ideal O-helix. Comparison of figures 4.7 and 4.8 suggests that these peaks

represent residues involved in o-helices.
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One can use specific patterns of correlations to search conformations for the

presence of o-helices. If a conformation consists of associated residues which

correspond to the o-helix peaks for m = 2,3, ' ' ', n, then one has identified a helix of

length n. Stringency of the definition can be altered by varying the range of values

defining a helix peak for each of the correlation plots. A helix detector based on these

ideas has the advantage that the stringency of the criterion can be determined by

constructing plots such a the one shown in figure 4.7 so that the range of values defining

a helix is based on the variation observed in real protein structures.

When m is equal to 3 and 4, there are also broader peaks at larger separation

distances. These peaks correspond to residues involved in strands. As m gets larger, two

trends are apparent. First, the distributions at larger distances become broader. This

indicates that there is a lot of variability in the distance between two residues which are

widely separated in sequence. Second, a peak at about 54-A becomes apparent. This

peak corresponds to near neighbor spatial interactions between residues which are

separated in sequence but close in space and represent the interactions which give rise to

the large peak in figure 4.6B.

Figure 4.9 shows the distance correlation functions for maximally compact poly

alanine chains as described in chapter 3. The general shape of the distributions for

m > 11 is very similar to the distribution obtained for real proteins. There are also peaks

at about 54-A for large m. In contrast to the real protein correlation functions, however,

there is an obvious absence of sharp peaks. This indicates that the poly-alanine chains do

not have residue-to-residue correlations which are as specific as those in real proteins.

As discussed in chapter 3, these specific interactions are due to primarily to hydrogen

bond interactions which give secondary structures their exquisite specificity. Figure 4.10

shows the distance correlation functions for compact simple cubic lattice models. Many

differences between the lattice model and real proteins are obvious. The lattice model
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has much less variation with respect to inter-residue separations; just a few distances are

occupied in each plot. The nearest neighbor interactions for odd m are at 3.8-A as
opposed to 54-Å in real proteins. For even m, residues can not be configured to exist on
adjacent lattice sites so the closest distance is N2 × 3.8 & 5.4 Å. In spite of these
differences, the lattice model correlation functions approximate the distributions defined

by real proteins for large m.

It is also possible to define bond projection correlation functions. They are defined

as the dot product of two bond vectors separated by m residues in sequence. That is

projection (m) = b - biºm = (4.3)

(xi+1 − xi)(xi+m:1 − xi+m) + (yi-I - yi)(yiºm:1 - yitm) + (zi+1 - zi)(zi+m:1 - zi+m).

Figures 4.11, 4.12, and 4.13 show the projection correlation functions for real

proteins, compact poly-alanine chains, and cubic lattice chains respectively. These

figures mirror the observations made in the distance correlation functions. Sharp peaks in

the real protein correlations are due to the presence of well defined secondary structures.

The poly-alanine chains show much more variability and at high m the projection

correlations for real proteins and random poly-alanine chains look very similar. Cubic

lattice chains, in contrast, clearly show that there are only three ways bonds can be

oriented relative to one another.
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Conclusions

The problem of finding a lattice representation is is difficult one. One must decide

which property of a polypeptide chain is of the greatest relevance to the questions being

asked. For some purposes, this may be geometric equivalence, as in the the work of

Covell and Jernigan. For other purposes, a topological criterion may be more appropriate.

Using a build-up procedure, it is possible to generate lattice models which

reproduce the topological interactions present in real proteins. The build-up procedure

attempts to build a lattice model which maximizes the number of closely interacting

residues in a real protein. The decision to use a topological criterion is due to the nature

of the lattice model. The lattice model is based on the assumption that the native state of

a protein is maximally compact and the dominant driving force for protein folding comes

from the hydrophobic interaction. Ideally, the best lattice representation will be

maximally compact. Despite the use of topological criterion, however, lattice

representations of real proteins are not maximally compact. This is because real proteins

describe complex volumes which do not minimize surface area whereas a maximally

compact cubic lattice chain has minimal surface area. Consequently, a lattice-based

protein folding simulation, based on the sequence of a real protein, may find

configurations which are more compact and of lower energy than the conformation

generated by the build-up procedure.

The observation that a lattice representation of a real protein is not the lowest

energy lattice configuration suggests that there may not exist a one-to-one mapping

between real protein structures and simple models of protein structures. One must be

aware of the differences in physical constraints between model systems and real

polypeptides. There are, for example, large differences between the rotational degrees of

freedom allowed polypeptide chains relative to lattice chains. These differences are
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apparent by examining distance and projection correlation functions of ensembles of real

and lattice chains.

The distance and projection correlation functions, which I refer to as protein

spectra, are very useful way to characterize the properties of ensembles of polymers.

Using them, it is possible to highlight the similarities and differences between lattice

chains, poly-alanine chains, and real proteins. With respect to real chains, it is possible

to identify helices by virtue of the sharply defined peaks in both the distance and

projection correlation functions.
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