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Hierarchical Perspective Volume Rendering
Using Triangle Fans

Greg Schussman and Nelson Max

Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science, University of California
Davis, CA 95616-8562, USA
{schussma, max}@cs.ucdavis.edu

Abstract. We present a method of accelerated perspective volume ren-
dering using cell projection, triangle fans, and a data hierarchy. The
hierarchy allows mixed resolution rendering, greatly increasing speed.
We utilize triangle fans for additional speed and texture mapped opacity
for accuracy.

1 Introduction

Traditionally, volume rendering of regular cubical grids has used 3D texture map-
ping and compositing [1, 2] or ray tracing [4, 8] approaches, which take advantage
of the regular distribution of the data. Polyhedron projection approaches [6,9,
11,12] have been used mainly for irregular meshes. These methods divide the
projection of a cell by the projections of its edges into polygons which can be
scan converted and composited using inexpensive and efficient polygon render-
ing hardware. They are particularly efficient at rendering large cells, where the
polygon creation and set up costs are amortized over many pixels. Laur and
Hanrahan [3] developed hierarchical Oct-tree approximations to cubical gridded
data, which use large cells where appropriate. Their hexagon splatting approach
was only an approximation, but can be made more precise using the techniques
of [6,10-12].

The polyhedron projection approach requires a global back-to-front visibility
sort, which in general is difficult and time consuming [7, 10]. However, for regular
cubical or oct-tree grids, the sort is trivial [3,5].

In this paper, we optimize the polyhedron projection with the use of triangle
fans. Wittenbrink [13] has applied triangle fans to the Shirley-Tuchman tetrahe-
dron projection scheme [9], and gotten very good performance. For orthogonal
projection of a cubical grid, Wilhelms and Van Gelder [11] have used a line
sweep algorithm to construct the polygons. This is slower than the case-based
approach of Shirley and Tuchman, but in the orthogonal case, all cube projec-
tions are congruent, so the polygons need to be constructed only once per frame.
For perspective projection of arbitrary polyhedra, Max [7, 10, 12] has used incre-
mental edge addition to construct the polygons, but this general construction is
also slow. Here we use a case based approach to efficiently construct the polygons



in the 10 topologically different perspective projections of a cube, and construct
optimal triangle fans for each.

2 Overview

We render using alpha-blending in back-to-front order. Each cube is classified
using simple dot products with its face normals. Then a lookup table provides
a mapping of standard-case, hard-coded, optimal triangle fans onto the current
cube.

A speedup to volume rendering is to build a multi-resolution hierarchy of the
data, and render at a mixed resolution where only a specified amount of error
is acceptable. By merging eight smaller cubes into a larger one, the number of
triangles and CPU calculations needed to render the corresponding region of the
volume is reduced by a factor of eight and the number of OpenGL fragments is
halved. Linear interpolation across triangles of computed opacity vertex values is
a reasonable approximation when the cubes are small [9]. However, this approx-
imation becomes poor when the cube size grows. We utilize texture mapping to
effectively compute the exponential per pixel needed for obtaining the correct
opacity, while still reaping the benefits of hardware accelerated rendering [7, 10,
12].

This paper is organized as follows. Section 3 discusses cell classification. Our
optimal standard-case triangle fans are presented in Section 4. The remapping
of triangle fan vertices from standard cases is covered in Section 5. In Section 6
we discuss the mixed resolution data hierarchy. A description of our texture map
appears in Section 7. Finally, Section 8 presents images and timing results.

3 Cell Classification

Under perspective projection, there are 10 topologically distinct cases. These
are shown in Figure 1, which is arranged so that each case appears as a small
rotation of the cases near it; rolling a row downward produces the next row down,
and rolling a column to the left produces the next column to the left. There is
no case directly below case 10 because rotating case 10 until the bottom face is
not visible would produce a view that is topologically equivalent to case 11. This
is also why there are no other cases shown in the lower left region of the figure.

The labels in the figure are based on the results of dot products described
later in this section. The first digit is the number of faces with positive dot
products and the second digit is the number of faces with dot products exactly
equal to zero. In some cases an additional letter is used for further classification.

The following describes the computation of information used for selecting
and indexing into lookup tables. For each face of a cube, the dot product of the
face normal with the viewing vector is computed and saved as a pair, along with
the associated face number. We denote this pair (d, f). The face normal is a unit
vector oriented out of the cube. The viewing vector has unit length and points
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Fig. 1. These are the 10 topologically distinct perspective projections of a cube. The
cases can be grouped by class, which is given by the first digit of the case label.

toward the eye from the face center. Our face numbering convention is shown in
Figure 2a.

Conceptually, the six (d, f) pairs are sorted in descending order. That is,
do > dy > ... > ds. In practice, we are only interested in the first three pairs, so
it is not necessary to store and sort all six pairs. We denote the corresponding
faces by using the same subscripts. For example, fj is the face corresponding to
the most positive dot product.

Figure 3 shows how the values for dy, d;, and d; relate to the 10 different
cases of Figure 1. The table in Figure 3 is presented to facilitate discussion.
Classification is not done by evaluating the entries in the table. Instead, the d
values are used to select a lookup table, and the f values are used to index into
that table.
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Fig. 2. The numbering conventions are shown for (a) faces and (b) vertices. Both cubes
have the same orientation.

Dot Products |Case|Class|
do >0 >d12d210 1
do >0 =dy > ds|ll
do >0 =dy = d2|12
do >di >0 > ds|20a
do =diy >0 > ds|20b
do > di1 >0 = ds|2la
do=di >0 =ds|21b
do > di1 > d2 > 0 [30a
do =d1 > d2 >0 |30b
do =di =ds >0 |30c

W W WNDNNNE -

Fig. 3. The 10 distinct cases can be identified by the dot product results.

When two or more of {dy,d1, d2} are exactly equal to one another, or exactly
equal to zero, we call the associated case degenerate. Graphically, this corre-
sponds to a vertex projecting exactly onto an edge or onto another vertex. Of all
possible projected orientations, the degenerate ones are quite rare. The reason
for calling these cases degenerate is that triangle fans for non-degenerate cases
can still be used even though a few of the triangles will project to have zero area.
For example, cases 11 and 12 are degenerate versions of case 10.

There is no need to compute optimal triangle fans for degenerate cases. The
degenerate cases do not cause slowdown in practice; because they occur so rarely,
optimizing them produces no noticeable speedup.

We combine cases 10, 11, and 12 to be class 1, cases 20a, 20b, 21a, 21b to
be class 2, and cases 30a, 30b, and 30c to be class 3. The class is given by the
number of d > 0. Optimal triangle fans are constructed for each class.



4 Optimal Triangle Fans

Optimal triangle fans are constructed as templates for default orientations of
the non-degenerate projection cases. The information computed in Section 3 is
used to consult lookup tables for mapping the indices of the actual projected
cube vertices to the standard template. In this way, the templated triangle fans
conform to the projected cube.

Our notion of “optimal” should be clarified. We assume implementation in
OpenGL, which does not support the swaptmesh() call of IrisGL. A commonly
suggested workaround is to repeat a vertex. However this forces two zero-area
triangles and also requires re-issuing the vertex of the swapped edge. So simply
repeating a vertex in OpenGL is not equivalent to issuing the swaptmesh() com-
mand. We compared performance of the vertex repeating method versus simply
starting a new triangle fan, and found no significant difference. For clarity, we
describe our solution in terms of pairs of triangle fans. Because none of the non-
degenerate cases can be covered with a single triangle fan or single triangle strip
(without resorting to repeating vertices for edge flipping), our two-fan solution
is optimal.

The triangle fans for class 1 are shown in Figure 4, and those for class 2
are shown in Figure 5. We describe a triangle fan by the indices of the vertex
points. Our vertex numbering convention is shown in Figure 2b. Class 1 is han-
dled by two triangle fans: fan(2,3,7,6,4,0,3), and fan(1,3,0,4,5,7,3). In this
notation, the vertices correspond to the order expected by OpenGL; the first
vertex is the center of the triangle fan, and then the remaining vertices lie on
the perimeter of the fan. Class 2 is handled by a triangle fan and a triangle strip:
fan(1,7,3,B,A,4,5,7), and strip(7,3,6, B,2, A,0,4). The vertices A and B are
intersections of projected edges.

Fig.4. Class 1 has two triangle fans: fan(2,3,7,6,4,0,3) shown in grey and
fan(1,3,0,4,5,7,3) shown in white.



Fig.5. Class 2 consists of fan(1,7,3,B,A,4,5;7) shown in grey, and
strip(7,3,6,B,2,A,0,4) shown in white. A and B are not original cube vertices;
instead, they are edge intersections which must be computed.

The vertices that lie on the outer edge of the projected cube all have thickness
zero. For the other vertices or intersections of projected edges, the thickness must
be computed. Thickness and density are used as texture coordinates, as discussed
in Section 7.

Class 3 can appear in two ways, each a mirror image of the other. Both
versions 3a and 3b require their own pair of triangle fans, which are illustrated
in Figure 6. The class 3a solution consists of fan(A, 6, 2, 0, 4, 5, 1, B, 6) and
fan(B, 1,5, 7,3, 2, 6). Class 3b uses fan(A, 6, B, 1,0,4, 5,7, 6) and fan(B,
6,7, 3, 2,0, 1). In both versions, vertex 6 is nearest to the eye. However, point
A is at the intersection of F46 and FEp; in class 3a, and at the intersection of
E46 and Ei5 in class 3b. Here E;; means the edge corresponding to the line
segment joining vertex ¢ and vertex j. The edges whose intersection yields point
B are also different for class 3a and class 3b. Classes 1 and 2 do not have this
problem because for them a reflection is topologically equivalent to a rotation in
the projected plane.

5 Mapping from Standard Orientation

In Section 4, optimal triangle fans were computed for standard cube orientations.
In this section, we describe how to remap the standard vertices onto the specific
cube being rendered. This mapping makes use of the d and f values computed in
Section 3. Counting the number of strictly positive d provides the cube’s class.
For each of the three classes, lookup tables are used.

For class 1, fo is used to index into the lookup table shown in Figure 7. For
example, say face 3 is oriented directly toward the eye, so fo would have been 3.



Fig. 6. Class 3a (a) and class 3b (b) are mirror images of each other and require
separate triangulations. Class 3a consists of fan(A,6,2,0,4,5,1, B,6) shown in grey,
and fan(B,1,5,7,3,2,6) shown in white. Class 3b consists of fan(A4,6,B,1,0,4,5,7,6)
and fan(B,6,7,3,2,0,1).

Then, according to row fy = 3 of the table, the vertices of the first triangle fan
of class 1 get remapped from the standard fan(2,3,7,6,4,0,3) to the specific
fan(0,1,3,2,6,4,1).

The table shown in Figure 8 is used for Class 2. Because Class 2 has two
faces oriented toward the eye, both fy and fi are used to index into this table.
Vertex remapping proceeds as in the previous example.

It should be noted that in an actual implementation, there would be unused
rows in the table. These unused rows are not shown in the figure. There are two
reasons for unused rows. First, no face is ever repeated in the f values, so the
fo =0, fi = 0 row is not shown in the table. Second, faces on opposite sides of a
cube can never be both oriented toward the eye at the same time, which is why
the fo =0, f1 =1 row is not shown in the table.

Figure 8 can also be used for class 3, which has 3 faces oriented toward the
eye. A separate table could handle both class 3a and 3b together, but this table

[fo[[Vo[Va [Va]Va[Va[V5 [ Ve [V7]
OB PB7]0A2]6
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S O N
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Fig. 7. Case 10 vertex remapping lookup table



would be 6 x 6 x 6 x 8, which is 1728 entries, most of which would never be used.
Instead, we use a smaller table that is 6 x 6 x 6 (216 entries) to look up whether
the current cube is class 3a or class 3b. For class 3a the consecutive digits of
fo, f1, f2 will be one of {024, 052, 043, 035, 142, 153, 134, 125, 240, 214, 205,
251, 350, 315, 341, 304, 413, 430, 421, 402, 503, 512, 520, 531}, and all other
possible combinations of fy, f1, f2 will belong to class 3b.

We can re-use the table for class 2 as follows. If this is class 3a, index into
the table using fo, f1, and use that row to remap the vertices of the triangle fans
from Figure 6a. Otherwise swap the order of the indices, indexing into the table
with f1, fo, and use that row to remap the vertices of the triangle fans from
Figure 6b.

[fo[ Vo [VA[Va]Vs[Va[ V5] Ve[ V7]
025 [7 1341602
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Fig. 8. Vertex remapping lookup table for classes 2 and 3a. For class 3b, fo and fi are
swapped.



6 Mixed Resolution Data Hierarchy

Our data hierarchy is like that of an oct-tree, which is constructed from the
bottom up. We call the nodes of the tree cubes. Each cube has the following
information: 4, j, k cell indices, a level number (0 is the finest level) a scalar
value, an error, and pointers for 8 children. Minimum and maximum extent in
x, y, and z can be calculated from the cell indices and the level. The order of
these pointers is the same as the ordering of vertices in Figure 2b.

Given an initial dataset with [ X w X h voxels, a cube is created for each voxel.
The initial high resolution cubes are the leaves of the tree. Because scalar value
of the voxel is represented exactly in these leaves, the error is exactly zero.

The cubes for the next level in the tree are created by merging (up to) 8 of
the initial cubes. So, in the 8 cube case, the parent cube C; ; . in a coarser level is
the result of merging CQi,Qj,Qk, 02i+1,2j,21c, C2i,2j+1,2k, 02i+1,2j+1,2k7 C2i,2j,2k+1a
02i+1,2j,2k+17 Cgi,gj+172k+1, and Cgi+1,2j+172k+1 from the next finer level. The
parent cube’s value is the average of the values of the children. The parent’s error
is the maximum of the absolute values of all differences between the parent’s
value and the value of all leaves descended from the parent.

Once all cubes from one level of the tree have been merged to produce a
smaller, coarser level, the process is repeated recursively, using the coarse level
as the fine level input for the next iteration.

Selecting cells for rendering is a recursive procedure based on an error toler-
ance. The tree is traversed from the root in depth-first order, until the error of
a cell is acceptable, at which point it is selected for rendering. Rendering uses a
recursive back-to-front traversal of the oct-tree.

7 Texture Map

Section 3 discussed the correct order of vertices for triangle fans. In Figures 5
and 6, the vertices A and B were simply called the intersection of the projected
edges of the cube. In three space, the line segments corresponding to cube edges
are skew; that is, they do not actually intersect. We are interested in two points,
one at the front of the cube and one at the back. These points are where the
viewing ray intersects each of the line segments. The same figures that provide
the standard triangulation for the fans also show which edges must be used for
computing the front and back intersection points. Although front and back points
will project to the same place in the viewed image, the 3D distance between them
is the length [ of the viewing ray segment. This length I must also be computed
for viewing rays that enter the cube through a vertex (like vertex 6 in Figure 6)
and then exit through a face, or vice-versa (like vertex 0 in Figure 4). Suppose
the average of extinction coefficients at the ray segment’s endpoints is a. Then
the correct alpha to use in compositing is o = 1 —e~%, as discussed in [7,10 12].

If we were to calculate colors and opacities for each vertex of the triangle fans,
linear interpolation across the face of the triangles would be an approximation
to evaluating the exponential opacity function for each pixel. The approximation



is only good when for cells that are relatively small and transparent. We do not
assume all cells are relatively transparent. Also, when rendering at mixed reso-
lution, relatively large cells could be selected for rendering. We use the texture
map of [7,10,12] to achieve the correct opacities.

The texture map at texture coordinates (u,v) is loaded with 1 —e~**. Then
the ray length [ and average extinction coefficient a are used as the (u,v) texture
coordinates for each vertex in a triangle, triangle fan, or triangle strip. Since each
triangle lies in the projection of a single front and back face of the cube, it is
a very good approximation to let the graphics hardware linearly interpolate
these texture coordinates across the triangle, and then look up the effect of
the exponential in the texture table to get the alpha for compositing. (If the
projection were orthogonal instead of perspective, this approximation would be
exactly correct.)

8 Results

We applied our method to a 256 x 256 x 110 CT dataset of an engine block.
Computation and rendering was performed on a PC running Linux on a 1.4
GHz Pentium 4 and using an nVIDIA GeForce 2 graphics processor.

Figure 9 summarizes the parameters and timing for the images in Color Plate
1. The images correspond to no allowed error, some allowed error, and a lot of
allowed error, respectively. Selection is the time it takes to traverse the hierar-
chy in view-dependent back-to-front order, selecting cells which satisfy the error
tolerance. The selection time is not included in the rendering time. Cell classifi-
cation was used to skip cells which were completely transparent, so the number
of cubes reflects only those which contribute to the image. It took 4 seconds to
construct the hierarchy.

Color Plate 1b does not look significantly different from Color Plate 1la,
yet it renders 39 times faster. Color Plate lc is noticeably poorer in quality,
although it renders at about 14 frames per second. It still shows many of the
essential features of the data, allowing meaningful interactive data navigation
where detail can be added progressively when navigation stops.

|Error| Cubes|Triangles| Selection|Rendering|

0%15.20 M 62 M| 0.85 sec| 37.5 sec
18%]0.19 M 2.3 M| 0.036 sec| 0.95 sec
48%]15.8 K| 0.19 M|0.0019 sec| 0.070 sec

Fig. 9. Rendering statistics for the engine block dataset



9 Conclusion

We have demonstrated a fast method of volume rendering in perspective. The
method utilizes a hierarchical data structure for mixed resolution rendering,
which, along with triangle fans, minimizes traffic to the graphics hardware sub-
system. Cell projections come from a few sets of standard triangle fan cases
that are easily identified by computing simple dot products and using fast table
lookups.
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Color Plate 1: The engine block dataset at full resolution (a) takes 38.3 seconds
to render. With an 18% error tolerance (b), it takes 0.986 seconds to render, and
with a 43% error tolerance (c), it renders in 0.072 seconds, (or about 14 frames

per second).





