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Abstract

Targeted Learning for Capture Recapture Models and Treatment Effect Estimation

by

Yue You

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan Hubbard, Co-chair

Professor Mark van der Laan, Co-chair

This dissertation develops modern statistical methods, targeted maximum likelihood esti-
mation (TMLE) and ensemble machine learning, for two common problems in epidemiology
and public health: 1) estimating the population size based on capture recapture designs,
and 2) estimating the continuous and discrete treatment effect of multiple exposures. For
the first problem, We proposed novel target parameters for each identification assumption
and robust estimators based on TMLE, provided the efficient influence curves for each the
parameter, proved the statistical properties of the estimators, and applied them to data
collected from national-level infectious disease surveillance systems. We also used simula-
tions with identification assumption violations to test the reliability of the estimation. For
the second problem, we developed our target parameter and TMLE estimators and applied
them to various types of empirical data collected by community-level follow-up surveys and
state-level electronic health record data. We provided simulations and sensitivity analysis
to show the performance of the TMLE estimators compared to existing ones. In chapter 1,
we gave an introduction to TMLE, the road map of targeted learning, and a more detailed
summary of the following chapters. In chapter 2, we developed a novel approach to estimate
the population size based on capture recapture designs and evaluated the estimation relia-
bility. In chapter 3, we utilized the targeted learning approach to assess the performance
of a diabetes care program on glycemic control of type 2 diabetes patients, and identified
patient subgroups with most successful treatment effects. In chapter 4, we proposed a robust
variable importance measure based on TMLE and applied it in estimating the transmission
effects of mother’s eating behavior on the next generation.
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Chapter 1

Introduction

1.1 Background

In this section we briefly reviewed the elements of targeted maximum likelihood estimation
(TMLE) for general estimation problem with an example of estimating the average treatment
effect (ATE) [1] in observational studies. For more details we refer to [2].

Introduction to targeted maximum likelihood estimation (TMLE)

The idea of targeted maximum likelihood estimator (TMLE) was introduced by van der Laan
and Rubin [3]. TMLE is a doubly robust, maximum-likelihood–based estimation method
that includes a secondary “targeting” step to optimize the bias-variance trade-off for the
target parameter. A detailed step-by-step guide to TMLE can be found in Chapter 4 of
[2], and a simple motivating example can be found in [4]. One common use case for TMLE
is to estimate the ATE in observational studies. Let us denote the data structure of such
an observational study as O = (W,A, Y ) ∼ P0, where W represents the covariates, A
represents a binary exposure or treatment, Y represents the outcome, P0 represents the true
probability distribution of O, and the nonparametric or semi-parametric statistical model
M represents the set of possible probability distributions for P0. The additive causal effect
target parameter Ψ(P0) = EW,0[E0(Y |A = 1,W ) − E0(Y |A = 0,W )]. There are four steps
to implement a targeted maximum likelihood estimator for Ψ:

1. Estimate outcome mechanism (initial estimate of E(Y |A,W )): we could use a variety
of machine learning algorithms in this step, such as linear regressions, LASSO [5] and
random forest [6]. Because we do not know the true distribution of the empirical
data, selecting an optimal algorithm can be challenging. We recommend using an
ensemble machine learning method which allows researchers to include a collection of
algorithms and report the optimal one or a combination of algorithms based on pre-
specified criteria. We often use an ensemble learner called Super Learner [7] in this
step. Super learner is a data-adaptive ensemble learner which combines user-input
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algorithms through weighting to minimize the cross-validated mean squared error (or
other risk measure) [4]. We denote the estimated value of E(Y |A = 1,W ) as Ŷ1, and
the estimated value of E(Y |A = 0,W ) as Ŷ0.

2. estimate exposure(treatment) mechanism P (A = 1|W ): for this step, we could also
use the algorithms discussed in the first step (such as Super Learner).

3. update the initial estimate of E(Y |A,W ): for ATE, a ”clever covariate” is defined as

Ha(A = a,W ) = 1(A=1)
Pn(A=1|W )

− 1(A=0)
Pn(A=0|W )

. The clever covariate is derived from the
efficient influence function, and is used to define a parametric working sub-model
that fluctuates the initial estimator to reduce bias for the target parameter. We
fit a logistic regression of the outcome Y on Ha using as a fixed intercept the off-
set logit(Ŷa) : logit(E∗(Y |A,W )) = logit(Ŷa) + εHa(A,W ), and compute ε̂ which
minimizes the empirical loss function. Then we generate the updated estimates as
logit(Ŷ ∗a ) = logit(Ŷa) + ε̂Ha.

4. Generate targeted estimate of target parameter: the targeted maximum likelihood
estimator of the target parameter (which is ATE in this case) is ψTMLE

n = 1
n

∑n
i=1(Ŷ ∗1 −

Ŷ ∗0 ).

In all the following three chapters, we developed the TMLE for their corresponding target
parameters. The target parameter in chapter 3 is the ATE, and the TMLE in chapter 3 is
constructed in a similar way to the example above. In chapter 4, the target parameter
involves the ATE of a continuous treatment variable, and the updating step of the TMLE
utilizes a different efficient influence function in step 3. In chapter 1, the target parameter is
not related to ATE, and the implementation of the TMLE only has three steps: 1) generate an
initial estimate, 2) construct a least favorable parametric model through the initial estimator
and update the initial estimator through an iterative process, and 3) generate targeted
estimate of target parameter. The implementation specifications of the three TMLE’s are
reported in the corresponding chapters.

All the three targeted maximum likelihood estimators developed in the dissertation share
the following common advantages. First, TMLE has great flexibility to incorporate a va-
riety of statistical learning algorithms as its initial estimator. By incorporating various
algorithms, the TMLE is less vulnerable to the bias induced by model mis-specifications,
which is a practical concerns for complex observational data. Second, TMLE is a plug-in or
substitution estimator, which are know to be more robust to outliers and sparsity than are
non-substitution estimators. Third, TMLE is an asymptotically efficient estimator under
certain assumptions. When ATE is the target parameter, TMLE is an asymptotically effi-
cient when both the outcome and exposure mechanisms are consistently estimated. Finally,
with ATE as the target parameter, TMLE is a doubly robust and will yield unbiased esti-
mates if either E(Y |A,W ) or P (A = 1|W ) is consistently estimated (e.g., correctly specified
in the case of parametric regression). If the outcome regression is not consistently estimated,
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the final ATE estimate will still be unbiased if the exposure mechanism is consistently esti-
mated. Conversely, if the outcome is consistently estimated, the targeting step will preserve
this unbiasedness and may remove finite sample bias [2, 4].

1.2 Road map and chapter summaries

In all the following chapters we followed the road map proposed by Rose and van der Laan [2].
The road map has three components and the language is shared by all three chapters. First,
we define the research question. The data are n identically and independently distributed
observations of random variable O, which has probability distribution P0. The statistical
modelM is a set of possible distributions of O. P0 ∈M. The target parameter or parameter
of interest Ψ(P0) is a particular feature of P0 where Ψ maps the probability distribution P0

into the target parameter. Second, We estimate the target parameter. We build an initial
estimator of the relevant part Q0 of P0 using machine learning algorithm Super Learner.
Then we update the initial fit in a step targeted toward making an optimal bias-variance
tradeoff for the target parameter, now denoted as Ψ(Q0), instead of the overall probability
distribution. Last, we provide inference and interpretation for our estimation. In this step,
standard errors are calculated for the estimator of the target parameter using the influence
curve or resampling-based methods to assess the uncertainty in the estimator. The target
parameter can be interpreted as a purely statistical parameter or as a causal parameter
under possible additional nontestable assumptions in our model [2].

In chapter 2, we developed a novel approach to estimate the population size based on
capture recapture designs and evaluated the estimation reliability. In particular, we pro-
posed a modern method to estimate population size based on capture-recapture designs of
K samples. The observed data is formulated as a sample of n i.i.d. K-dimensional vectors
of binary indicators – where the k-th component of each vector indicates the subject be-
ing caught by the k-th sample – such that only subjects with nonzero capture vectors are
observed. The target quantity is the unconditional probability of the vector being nonzero
across both observed and unobserved subjects. We covered models assuming a single general
constraint on the K-dimensional distribution such that the target quantity is identified and
the statistical model is unrestricted. We presented solutions for general linear constraints, as
well as constraints commonly assumed to identify capture-recapture models, including no K-
way interaction in linear and log-linear models, independence or conditional independence.
We demonstrated that the choice of constraint(identification assumption) has a dramatic
impact on the value of the estimand, showing that it is crucial that the constraint is known
to hold by design. For the commonly assumed constraint of no K-way interaction in a
log-linear model, the statistical target parameter is only defined when each of the 2K − 1
observable capture patterns is present, and therefore suffers from the curse of dimensional-
ity. We proposed a targeted MLE based on undersmoothed lasso model to smooth across
the cells while targeting the fit towards the single valued target parameter of interest. For
each identification assumption, we provided simulated inference and confidence intervals to
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assess the performance on the estimator under correct and incorrect identifying assumptions.
We applied the proposed method, alongside existing estimators, to estimate prevalence of a
parasitic infection using multi-source surveillance data from a region in southwestern China,
under the four identification assumptions.

In chapter 3, we utilized a machine-learning-based targeted learning approach to assess
the performance of a diabetes care program on glycemic control of type 2 diabetes patients,
and identified patient subgroups with most successful treatment effects. Specifically, we an-
alyzed the EHR and laboratory databases from the year 2012 to 2016 of T2D patients from
six family medicine clinics (FMCs) delivering the DIABETIMSS program, and five FMCs
providing routine care. The primary outcome was glycemic control. The study covariates
included: patient sex, age, anthropometric data, history of glycemic control, diabetic com-
plications and comorbidity. We measured the effects of DIABETIMSS program through 1)
simple unadjusted mean differences; 2) adjusted via standard logistic regression and 3) ad-
justed via targeted machine learning. We treated the data as a serial cross-sectional study,
conducted a standard principal components analysis to explore the distribution of covari-
ates among clinics, and performed regression tree on data transformed to use the prediction
model to identify patient sub-groups in whom the program was most successful. To explore
the robustness of the machine learning approaches, we conducted a set of simulations and
the sensitivity analysis with process-of-care indicators as possible confounders. The results
showed that the impact of DIABETIMSS ranged, among clinics, from 2 to 8% improvement
in glycemic control, with an overall (pooled) estimate of 5% improvement. T2D patients with
fewer complications have more significant benefit from DIABETIMSS than those with more
complications. At the FMC’s delivering the conventional model the predicted impacts were
like what was observed empirically in the DIABETIMSS clinics. The sensitivity analysis did
not change the overall estimate average across clinics. In conclusion, the DIABETIMSS pro-
gram had a small, but significant increase in glycemic control. The use of machine learning
methods yields both population-level effects and pinpoints the sub-groups of patients the
program benefits the most. These methods exploit the potential of routine observational
patient data within complex healthcare systems to inform decision-makers.

In chapter 4, we proposed a robust variable importance measure based on TMLE and
applied it in estimating the transmission effects of mother’s eating behavior on the next gen-
eration. To start with, we proposed a parameter within a non-parametric model that mea-
sures the importance of each variable as the amount of attribution of that variable towards
changes in the mean outcome. The proposed parameter provides comparable results across
continuous and categorical variables, and provides clinically meaningful interpretations on
how changing the variable changes the outcome. To estimate such a parameter, we utilized
an ensemble machine learning model as an initial estimator (Super Learner), and updated
the estimator via target learning. This updated estimator, known as the Non-Parametric
Variable Importance (NPVI) estimator, is not only independent of arbitrary model specifica-
tions, but also asymptotically linear (locally efficient) for which robust asymptotic inference
is available. The linear coefficient can also be seen as an estimator of the proposed param-
eter under parametric model assumptions. We implemented both the linear coefficient and
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the NPVI estimator to determine the influence of mother’s and midlife eating behavior on
child’s body mass index (BMI) based on empirical data. Our results showed that if the
mother has higher levels of drive for thinness, body dissatisfaction, bulimia, or interoceptive
awareness, her child tend to have a higher level of BMI, adjusted for mother’s adulthood
stress, early-year socioeconomic status, health status and child’s age and sex. We compared
the performance of four estimators (with and without linear model specifications, and with
and without target learning updates) under linear and non-linear simulation settings, and
showed the robustness of the NPVI estimator. Our method for variable importance estima-
tion can serve as an alternative to more standard variable importance procedures that lack
both broad clinical interpretability and mechanisms for accurate statistical inference in the
context of data-adaptive estimation.
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Chapter 2

Population size estimation based on
capture recapture and estimation
reliability evaluation

2.1 Introduction

Epidemiologists use surveillance networks to monitor trends in disease frequency. When
multiple surveillance components or surveys gather data on the same underlying population
(such as those diagnosed with a particular disease over a particular time period), a variety of
methods (capture-recapture designs [8], distance sampling [9], multiple observers [10], etc.)
may be used to better estimate the disease occurrence in the population. Capture-recapture
models are widely used for estimating the size of partially observed populations, usually
assuming that individuals do not enter or leave the population between sample collections
[11, 12]. These models have been widely applied to epidemiological data [13].

Due to the unobservability of outcomes for individuals not captured by any survey, addi-
tional identifying assumptions have to be made in capture-recapture problems. In two-sample
scenarios, a common identification assumption is independence between the two samples (i.e.
that capture in one survey does not change the probability of capture in the other survey).
The estimator of population size based on this assumption is known as the Lincoln-Petersen
estimator [14]. However, the independence assumption is often violated in empirical studies.
In problems involving three or more surveys, it is common to assume that the highest order
interaction term in log-linear or logistic model equals zero (i.e., that correlations between sur-
vey captures can be described by lower-order interactions alone), an assumption that is very
difficult to interpret or empirically verify [11]. An additional challenge to capture-recapture
estimators is the curse of dimensionality in the finite sample case, whereby the absence of
one or more capture patterns from the observed sample leads to undefined interaction terms.
Traditionally, a common approach to selecting among alternative capture-recapture models
is to perform model selection based on Akaike’s Information Criterion (AIC) [15], Bayesian
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Information Criterion (BIC) [16], or Draper’s version of the Bayesian Information Criterion
[17]. However, this approach is known to have limited reliability in the presence of violations
of its identifying assumptions [11, 18, 19]. Das and Kennedy made contributions on a dou-
bly robust method under a specific identification assumption that two lists are conditionally
independent given measured covariate information [20].

In this chapter, we propose a generalizable framework for estimating population size
with as few model assumptions as possible. This framework can be adapted to posit various
identification assumptions, including independence between any pair of surveys or absence
of highest-order interactions, and can be applied to linear and nonlinear constraints. In high
dimensional settings with finite samples, we use machine learning methods to smooth over
unobserved capture patterns and apply targeted maximum likelihood estimation (TMLE) [2]
updates to reduce estimation bias. Previous work has shown the vulnerability of the existing
estimators with violations of identification assumptions [21, 22], and we further show the
significant impact of the misspecified identification assumption on the estimation results for
all existing and proposed estimators.

Chapter outline

In this chapter, we start with the statistical formulation of the estimation problem. In sec-
tion 2.2, we define the framework of our estimators under linear and non-linear constraints.
Specifically, we develop the estimators under each of the following identification assump-
tions: no K-way interaction in a linear model, independence among samples, conditional
independence among samples, and no K-way interaction in a log-linear model. In section
2.3, we derive the efficient estimator of the target parameter, and the statistical inference.
In section 2.4 we provide the targeted learning updates for the smoothed estimators under
the no K-way interaction log-linear model. In section 2.5, we illustrate the performance
of existing and proposed estimators in various situations, including high-dimensional finite
sample settings. In section 2.6, we show the performance of the estimators under violations
of various identification assumptions. In section 4.2, we apply the estimators to surveillance
data on a parasitic infectious disease in a region in southwestern China [23]. In section 2.8,
we summarise the characteristics of the proposed estimators and state the main findings of
the chapter.
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2.2 Statistical formulation of estimation problem

Defining the data and its probability distribution

We define the capture-recapture experiments in the following manner. One takes a first
random sample from the population of size n1, records identifying characteristics of the
individuals captured and an indicator of their capture, then repeats the process a total of K
times, resulting in K samples of size n1, . . . , nK .

Each individual i in the population, whether captured or not, defines a capture history
as a vector B∗i = (B∗i (1), . . . , B∗i (K)), where B∗i (k) denotes the indicator that this individual
i is captured by sample k. We assume the capture history vectors B∗i of all i = 1, . . . , N
individuals independently and identically follow a common probability distribution, denoted
by PB∗ . Thus PB∗ is defined on 2K possible vectors of dimension K.

Note that, for the individuals contained in our observed sample of size n =
∑K

k=1 nk, we
actually observe the realization of B∗. For any individual i that is never captured, we know
that B∗i = 0, where 0 = (0, . . . , 0) is the K dimensional vector in which each component
equals 0. However, for theseN−n individuals we do not know the identity of these individuals
and we also do not know how many there are (i.e., we do not know N − n).

Therefore, we can conclude that our observed data set B1, . . . , Bn are n independent and
identically distributed draws from the conditional distribution of B∗, given B∗ 6= 0. Let’s
denote this true probability distribution with P0 and its corresponding random variable with
B.

So we can conclude that under our assumptions we have that B1, . . . , Bn ∼iid P0, where
P0(b) = PB∗,0(b | B 6= 0) for all b ∈ {0, 1}K . Since the probability distribution P of B
is implied by the distribution P ∗ of B∗ we also use the notation P = PP ∗ to stress this
parameterization.

Full-data model, target quantity

Let MF be a model for the underlying distribution PB∗,0. The full-data target parameter
ΨF : MF → IR is defined as

ΨF (PB∗) = PB∗(B 6= 0).

In other words, we want to know the proportion of N that on average will not be caught
by the combined sample. An estimator ψFn of this ψF0 = ΨF (PB∗,0) immediately translates
into an estimator of the desired size N of the population of interest: Nn = n

ψF
n

. We will
focus on full-data models defined by a single constraint, where we distinguish between linear
constraints defined by a function f and a non-linear constraint defined by a function Φ.
Specifically, for a given function f , we define the full-data model

MF
f =

{
PB∗ :

∑
b

f(b)PB∗(b) = 0, 0 < P ∗(0) < 1

}
.
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We will require that f satisfies the following condition:

f(b = 0) 6= 0. (2.1)

In other words, MF
f contains all probability distributions of B∗ for which EPB∗f(B∗) = 0.

An example of interest is:

fI(b) = (−1)K+
∑K

k=1 bk .

In this case, E0fI(B
∗) = 0 is equivalent with∑

b

(−1)K+
∑K

k=1 bkPB∗,0(b) = 0. (2.2)

We note the left-hand side represents a K-th way interaction term α1 in the saturated model

PB∗(b) = α0 +
∑
b′ 6=0

αb′
∏
j:b′j=1

bj.

For example, if K = 2, then the latter model states:

PB∗(b1, b2) = α00 + α10b1 + α01b2 + α11b1b2,

and the constraint EfI(B
∗) = 0 states that α11 = 0.

One might also use a log-link in this saturated model:

logPB∗(b) = a0 +
∑
b′ 6=0

ab′
∏
j:b′j=1

bj.

In this case, a1 is the K-way interaction term in this log-linear model, and we now have

a1 ≡
∑
b

(−1)K+
∑K

k=1 bk logPB∗,0(b) = 0.

So, assuming a1 = 0 corresponds with assuming

0 =
∑
b

(−1)K+
∑K

k=1 bk logPB∗,0(b).

This is an example of a non-linear constraint ΦI(P
∗) = 0, where

ΦI(P
∗) ≡

∑
b

(−1)1+
∑K

k=1 bk logPB∗(b). (2.3)

We will also consider general non-linear constraints defined by such a function Φ, so that
for that purpose one can keep this example ΦI in mind. As we will see the choice of this con-
straint has quite dramatic implications on the resulting statistical target parameter/estimand
and thereby on the resulting estimator. As one can already tell from the definition of ΦI ,
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ΦI is not even defined if there are some b for which PB∗(b) = 0, so that also an NPMLE
of ΨF

ΦI
(P ∗0 ) will be ill defined in the case that the empirical distribution Pn(B = b) = 0

for some b 6= 0. As we will see the parameter ΨF
fI

(P ∗0 ) is very well estimated by the MLE,
even when K is very large relative to n, but for ΨF

ΦI
(P ∗0 ) we would need a so called TMLE,

incorporating machine learning [2].
Since it is hard to believe that the ΦI constraint is more realistic than the f -constraint

in real applications, it appears that, without a good reason to prefer ΦI , the f -constraint is
far superior. However, it also raises alarm bells that the choice of constraint, if wrong, can
result in dramatically different statistical output, so that one should really try to make sure
that the constraint that is chosen is known to hold by design.

Another example of a non-linear constraint is the independence between two samples,
i.e., that

P ∗(B∗(1 : 2) = (0, 0)) = P ∗(B∗(1) = 0)P ∗(B∗(2) = 0),

i.e., that the binary indicators B∗(1) and B∗(2) are independent, but the remaining com-
ponents can depend on each other and depend on B∗(1), B∗(2). This corresponds with
assuming ΦII(P

∗) = 0, where

ΦII(P
∗) ≡

∑
b

I(b(1 : 2) = (0, 0))P ∗(b)−
∑
b1,b2

I(b1(1) = b2(2) = 0)P ∗(b1)P ∗(b2). (2.4)

A third non-linear constraint example is conditional independence between two samples,
given the others. Suppose we have K samples in total, and the distribution of the jth sample
Bj is independent of the mth sample Bm given all other samples (there’s no time ordering of
j,m). Then we can derive the target parameter and efficient influence curve for this condi-
tional independence constraint. The conditional independence constraint ΦCI = 0 is defined
as

ΦCI,(j,m) = P ∗(Bj = 1|B1 = b1, · · · , Bm = 0, · · · , BK = bk)

−P ∗(Bj = 1|B1 = b1, · · · , Bm = 1, · · · , BK = bk), bt = 0, 1, t = 1, · · · , K.

Because we must have the term P ∗(0, 0, · · · , 0) in the constraint to successfully identify the
parameter of interest, the constraint ΦCI = 0 is sufficient. Thus the equation above can be
presented as

ΦCI,(j,m) = P ∗(Bj = 1|B1 = 0, · · · , Bm = 0, · · · , BK = 0)

−P ∗(Bj = 1|B1 = 0, · · · , Bm = 1, · · · , BK = 0). (2.5)

This is because for all the combinations of

{B1 = b1, · · · , Bm−1 = bm−1, Bm+1 = bm+1, · · · , BK = bK},∀bt ∈ {0, 1}, t = 1, · · · , K,

only the situation of {B1 = 0, · · · , Bm−1 = 0, Bm+1 = 0, · · · , BK = 0} can generate the
required term P ∗(0, 0, · · · , 0) in the constraint.
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Identifiability from probability distribution of data

Given such a full-data model with one constraint defined by f or Φ, one will need to establish
that for all P ∗ ∈MF

f , we have (say we use f)

ΨF (P ∗) = Ψf (P ).

for a known Ψf : M → (0, 1) and P = PP ∗ , where the statistical model for P0 is defined as

Mf = {PPB∗ : PB∗ ∈MF
f }.

Let’s first study this identifiability problem in the special case of our full data models
defined by the linear constraint P ∗0 f = 0 with f(0) 6= 0 (equation 2.2). It will show that we
have identifiability of the whole PB∗ from P = PPB∗ . Firstly, we note that PP ∗(b) = P ∗(b)/ψF

for all b 6= 0. Thus, P ∗(b) = ψFP (b) for all b 6= 0. We also have P ∗(0) = 1 − ψF , so that∑
b f(b)P ∗(b) = 0 yields:

0 =
∑
b

f(b)P ∗(b) =
∑
b 6=0

f(b)ψFP (b) + f(0)P ∗(0)

= ψF
∑
b6=0

f(b)P (b) + f(0)(1− ψF ).

We can now solve for ψF :

ψF =
f(0)

f(0)−
∑

b6=0 f(b)P (b)
.

At first sight, one might wonder if this solution is in the range (0, 1). Working backwards
from the right-hand side, i.e., using f(0)P ∗(0) +

∑
b 6=0 f(b)P ∗(b) = 0 and P ∗(b) = P (b)/ψF ,

it indeed follows that the denominator equals f(0)+f(0)(1−ψF )/ψF , so that the right-hand
side is indeed in (0, 1). Thus, we can conclude that:

ΨF (P ∗) = Ψf (P ) ≡ f(0)

f(0)− Pf
, (2.6)

where we use the notation Pf =
∫
f(b)dP (b) for the expectation operator.

Suppose now that our the one-dimensional constraint in the full-data model is defined in
general by Φ(P ∗) = 0 for some function Φ : MF

Φ → IR. The full data model is now defined by
MF

Φ = {P ∗ : Φ(P ∗) = 0, 0 < P ∗(0) < 1}, and the corresponding observed data model can be
denoted with MΦ. To establish the identifiability, we still use P ∗(b) = ψFP (b) for all b 6= 0.
We also still have P ∗(0) = 1− ψF . Define P ∗P,ψ as P ∗P,ψ(0) = 1− ψ and P ∗P,ψ(b) = ψP (b) for
b 6= 0. The constraint Φ(P ∗) = 0 now yields the equation

Φ(P ∗P,ψF ) = 0 in ψF

for a given P = PP ∗ .
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Consider now our particular example ΦI . Note that

ΦI(P
∗
P,ψ) =

∑
b 6=0

(−1)K+
∑

k bk log{ψP (b)}+ (−1)K log(1− ψ).

We need to solve this equation in ψ for the given P . For K is odd, we obtain

ΨI(P ) =
1

1 + exp
(∑

b 6=0 fI(b) logP (b)
) ,

and for K even we obtain log(1− ψ)/ψ) =
∑

b6=0 logP (b) and thus

ΨI(P ) =
1

1 + exp
(
−
∑

b6=0 fI(b) logP (b)
) .

So, in general, this solution can be represented as:

ΨI(P ) =
1

1 + exp
(

(−1)K+1
∑

b 6=0 fI(b) logP (b)
) . (2.7)

This solution Ψ(P ) only exists if P (b) > 0 for all b 6= 0. In particular, a plug-in estimator
Ψ(Pn) based on the empirical distribution function Pn would not be defined when Pn(b) = 0
for some cells b ∈ {0, 1}K .

For general Φ, one needs to assume that this one-dimensional equation H(ψF , P ) ≡
Φ(P ∗P,ψ) = 0 in ψ, for a given P ∈ M , always has a unique solution, which then proves the
desired identifiability of ψF (P ∗) from PP ∗ for any P ∗ ∈ MF

Φ . This solution is now denoted
with ΨΦ(P ). So, in this case, ΨΦ : MΦ → IR is defined implicitly by H(ΨΦ(P ), P ) = 0. If Φ
is one-dimensional, one will still have that MΦ is nonparametric.

Let’s now consider the ΦII constraint which assumes that B∗(1) is independent of B∗(2).
Again, using P ∗(b) = P (b)ψ for b 6= 0 and P ∗(0) = (1− ψ), the equation ΦII(P

∗) = 0 yields
the following quadratic equation in ψ:

aII(P )ψ2 + bII(P )ψ = 0,

where

aII(P ) = −
∑

b1 6=0,b2 6=0

I(b1(1) = b2(2) = 0)P (b1)P (b2)

+
∑
b2 6=0

I(b2(2) = 0)P (b2) +
∑
b1 6=0

I(b1(1) = 0)P (b1)− 1

bII(P ) =
∑
b 6=0

I(b(1 : 2) = (0, 0))p(b)−
∑
b2 6=0

I(b2(2) = 0)P (b2)

−
∑
b1 6=0

I(b1(1) = 0)P (b1) + 1.
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Since ψ 6= 0, this yields the equation aII(P )ψ + bII(P ) = 0 and thus

ΨII(P ) =
−bII(P )

aII(P )
.

A more helpful way this parameter can be represented is given by:

ΨII(P ) =
1− P (B(1) = 0)− P (B(2) = 0) + P (B(1 : 2) = (0, 0))

1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0)
. (2.8)

This identifiability result relies on ΨII(P ) ∈ (0, 1), i..e, that P (B(1) = B(2) = 0) <
P (B(1) = 0)P (B(2) = 0). In particular, we need 0 < P (B(1) = 0) < 1 and 0 < P (B(2) =
0) < 1 and thereby that each of the three cells (1, 0), (0, 1), (1, 1) has positive probability
under the bivariate marginal distribution of B(1), B(2) under P . It follows trivially that
the inequality holds for K = 2 since in that case P (B(1) = B(2) = 0) = 0. It will have
to be verified if this inequality constraint always holds for K > 2 as well, or that this is an
actual assumption in the statistical model. Since it would be an inequality constraint in the
statistical model, it would not affect the tangent space and thereby the efficient influence
function for ΨII : M → IR presented below, but the MLE would now involve maximizing
the likelihood under this constraint so that the resulting MLE of P0 satisfies this constraint.

Similarly, for the conditional independence assumption, the parameter ΨCI can be derived
as

ΨCI =
P (Bm = 1, Bj = 1, 0, ..., 0)

C0(P )
, (2.9)

where

C0(P ) = P (Bm = 1, Bj = 1, 0, ..., 0)

+P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 1, Bj = 0, 0, ..., 0). (2.10)

Details on this derivation are presented in the appendix 2.9.
One could also define a model by a multivariate Φ : MF → IRd. In this case, the full

data model is restricted by d constraints Φ(P ∗) = 0 and the observed data model will not be
saturated anymore. Let’s consider the example in which we assume that (B∗(1), . . . , B∗(K))
are K independent Bernoulli random variables. In this case, we assume that P ∗(B∗ = b) =∏K

k=1 P
∗(B∗(k) = b(k)) for all possible b ∈ {0, 1}K . This can also be defined as stating that

for each 2 components B∗(j1), B∗(j2), we have that these two Bernoulli’s are independent.
Let Φ,II,j1,j2(P ) be the constraint defined as in (2.4) but with B(1) and B(2) replaced by
B(j1) and B(j2), respectively. Then, we can define ΦIII(P ) = (ΦII,j1,j2(P ) : (j1, j2) ∈
{1, . . . , K}2, j1 6= j2), a vector of dimension K(K − 1)/2. This defines now the model
MF

III = {P ∗ : ΦIII(P
∗) = 0}, which assumes that all components of B∗ are independent. We

will also work out the MLE and efficient influence curve of ψF0 for this restricted statistical
model.
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Statistical Model and target parameter

We have now defined the statistical estimation problem for linear and non-linear constraints.
For linear constraints defined by a function f , we observe B1, . . . , Bn ∼ P0 ∈ Mf = {PP ∗ :
P ∗ ∈ MF}, MF = {P ∗ : P ∗f = 0, 0 < P ∗(0) < 1}, and our statistical target parameter is
given by Ψf : M → IR, where

Ψf (P ) =
f(0)

f(0)− Pf
. (2.11)

The statistical target parameter satisfies that ΨF (P ∗) = P ∗(B∗ 6= 0) = Ψf (PP ∗) for all
P ∗ ∈MF .

Since the full-data model only includes a single constraint, it follows thatMf consists of all
possible probability distributions of B on {b : b 6= 0}, so that it is a nonparametric/saturated
model.

Similarly, we can state the statistical model and target parameter for our examples using
non-linear one-dimensional constraints Φ.

In general, we have a statistical model M = {PP ∗ : P ∗ ∈ MF} for some full data model
MF for the distribution of B∗, and, we would be given a particular mapping Ψ : M → IR,
satisfying ΨF (P ∗) = Ψ(PP ∗) for all P ∗ ∈ MF . In this case, our goal is to estimate Ψ(P0)
based on knowing that P0 ∈M .

Efficient influence curve of target parameter

An estimator of Ψ is efficient if and only if it is asymptotically linear with influence curve
equal to canonical gradient of pathwise derivative of Ψ. Therefore it is important to deter-
mine this canonical gradient. It teaches us how to construct an efficient estimator of Ψ(P )
in model MF . In addition, it provides us with Wald type confidence intervals based on an
efficient estimator. As we will see for most of our estimation problems Ψ with a nonparamet-
ric model, P and Ψ can be estimated with the empirical measure Pn and Ψ(Pn). However
for constraint ΦI , an NPMLE is typically not defined due to empty cells, so that smoothing
and bias reduction is needed.

Let Ψ1f (P ) =
∑

b6=0 f(b)P (b) so that Ψf (P ) = f(0)
f(0)−Ψ1f (P )

. Note that Ψ1f (P ) = Pf is

simply the expectation of f(B) w.r.t its distribution. Ψ1f : Mf → IR is pathwise differ-
entiable parameter at any P ∈ M with canonical gradient/efficient influence curve given
by:

D∗1f (P )(B) = f(B)−Ψ1f (P ).

By the delta-method the efficient influence curve of Ψf at P is given by:

D∗f (P )(B) =
f(0)

{f(0)−Ψ1f}2
D∗1f (P )(B). (2.12)
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In general, if Ψ : M → IR is the target parameter and the model M is nonparametric,
then the efficient influence curve D∗(P ) is given by D∗(P ) = dΨ(P )(Pn=1 − P ), where

dΨ(P )(h) =
d

dε
Ψ(P + εh)

∣∣∣∣
ε=0

is the Gateaux derivative in the direction h, and Pn=1 is the empirical distribution for a
sample of size one {B}, putting all its mass on B [24].

Consider now the model MΦ for a general univariate constraint function Φ : MF
NP → IR

that maps any possible P ∗ into a real number. Recall that ΨΦ : MΦ → IR is now defined
implicitly by Φ(P ∗P,ψ) = 0. For notational convenience, in this particular paragraph we
suppress the dependence of Ψ on Φ. The implicit function theorem implies that the general
form of efficient influence curve is given by:

D∗Φ(P )(B) = −
{
d

dψ
Φ(P ∗P,ψ)

}−1
d

dP
Φ(P ∗P,ψ)(Pn=1 − P ).

where the latter derivative is the directional derivative of P → Φ(P ∗P,ψ) in the direction
Pn=1 − P .

Note that
d

dψ
Φ(P ∗P,ψ) = dΦ(P ∗P,ψ)

d

dψ
P ∗P,ψ.

We now use that P ∗P,ψ(b) = P (b)I(b 6= 0) + (1− ψ)I(b = 0). So we obtain:

d

dψ
Φ(P ∗P,ψ) = dΦ(P ∗P,ψ)(−1I0),

where I0(b) is the function in b that equals 1 if b = 0 and zero otherwise, and

dΦ(P ∗0)(h) ≡ d

dε
Φ(P ∗0 + εh)

∣∣∣∣
ε=0

is the directional/Gateaux derivative of Φ in the direction h. We also have:

d

dP
Φ(P ∗P,ψ)(Pn=1 − P ) = dΦ(P ∗P,ψ)

d

dP
P ∗P,ψ(Pn=1 − P ).

We have d
dP
P ∗P,ψ(h) = I0ch, where I0c(b) is the function in b that equals zero if b = 0 and

equals 1 otherwise. So we obtain:

d

dP
Φ(P ∗P,ψ)(Pn=1 − P ) = dΦ(P ∗P,ψ)(I0c(Pn=1 − P )).

We conclude that

D∗Φ(P ) = −{dΦ(P ∗P,ψ)(−1I0)}−1dΦ(P ∗P,ψ)(I0c(Pn=1 − P )).
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Let’s now consider our special example ΦI . In this case, the statistical target parameter
ΨI : M → IR is given by (2.7). It is straightforward to show that the directional derivative
of Ψ at P = (P (b) : b) in direction h = (h(b) : b) is given by:

dΨI(P )(h) = (−1)KΨI(P )(1−ΨI(P ))
∑
b6=0

fI(b)

P (b)
h(b).

As one would have predicted from the definition of ΨI , this directional derivative is only
bounded if P (b) > 0 for all b 6= 0. The efficient influence curve is thus given by dΨI(P )(Pn=1−
P ):

D∗ΦI
(P ) = (−1)KΨI(P )(1−ΨI(P ))

∑
b6=0

fI(b)

P (b)
{IB(b)− P (b)}

= (−1)KΨI(P )(1−ΨI(P ))

{
fI(B)

P (B)
+ fI(0)

}
, (2.13)

where we use that
∑

b 6=0 fI(b) = −fI(0) so that indeed the expectation of D∗ΦI
(P ) equals

zero (under P ).
The efficient influence function for ΨII : M → IR (2.8), corresponding with the constraint

ΦII(P
∗) = 0, is the influence curve of the empirical plug-in estimator ΨII(Pn), and can thus

be derived from the delta-method:

D∗ΦII
(P ) = C2(P ){I(B(1) = 0)− P (B(1) = 0)}

+C3(P ){I(B(2) = 0)− P (B(2) = 0)}
+C4(P ){I(B(1) = B(2) = 0)− P (B(1 : 2) = 0)}, (2.14)

where
C2(P ) = 1−P (B(1)=0)−P (B(2)=0)−P (B(1)=B(2)=0)

(1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0))2P (B(2) = 0)

C3(P ) = 1−P (B(1)=0)−P (B(2)=0)−P (B(1)=B(2)=0)
(1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0))2P (B(1) = 0)

C4(P ) = − 1
1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0)

.

Similarly, we can derive the efficient influence curve for conditional independence con-
straint ΦCI and parameter ΨCI under this constraint as

D∗ΦCI
(P ) =

1

C5(P )
(C6(P )− C7(P )− C8(P )). (2.15)
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where

C5(P ) = −
∑

b1 6=0,b2 6=0

I(b1(1) = b2(2) = 0)P (b1)P (b2).

C6(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 0, Bj = 0, 0, ..., 0)

[I(Bm = 1, Bj = 1, 0, ..., 0)− P (Bm = 1, Bj = 1, 0, ..., 0)].

C7(P ) = P (Bm = 1, Bj = 0, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)

[I(Bm = 0, Bj = 1, 0, ..., 0)− P (Bm = 0, Bj = 1, 0, ..., 0)].

C8(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)

[I(Bm = 1, Bj = 0, 0, ..., 0)− P (Bm = 1, Bj = 0, 0, ..., 0)].

The details for deriving the influence curve D∗ΦCI
(P ) can be found in appendix, section 2.9.

Finally, consider a non-saturated model M implied by a multidimensional constraint
function Φ. In this case, the above D∗Φ(P ) is still a gradient of the pathwise derivative,
where division by a vector x is now defined as 1/x = (1/xj : j) component wise. However,
this is now not equal to the canonical gradient. We can now determine the tangent space
of the model M and project D∗Φ(P ) onto the tangent space at P , which then yields the
actual efficient influence curve. We can demonstrate this for the example defined by the
multidimensional constraint ΦIII using the general result in appendix 2.9.
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2.3 Efficient estimator of target parameter, and

statistical inference

Estimation of Ψf (P0) based on statistical model Mf and data B1, . . . , Bn ∼iid P0 is trivial
since Ψ1f (P0) = P0f is just a mean of f(B). In other words, we estimate Ψ1f (P0) with the
NPMLE

Ψ1f (Pn) = Pnf =
1

n

n∑
i=1

f(Bi),

where Pn is the empirical distribution of B1, . . . , Bn, and, similarly, we estimate Ψf (P0) with
its NPMLE

Ψf (Pn) =
f(0)

f(0)−Ψ1f (Pn)
=

f(0)

f(0)− Pnf
.

This estimator is asymptotically linear at P0 with influence curve D∗Φ(P0) under no further
conditions. As a consequence, a valid asymptotic 95% confidence interval is given by:

Ψf (Pn)± q(0.975)σn/
√
n,

where

σ2
n ≡

1

n

n∑
i=1

{D∗f (Pn)(Bi)}2,

and q(0.975) is the 0.975 quantile value of standard normal distribution. If the general
constraint Φ : M → IR is differentiable so that Φ(Pn) is an asymptotically linear estimator
of Φ(P0) [25], then, we can estimate ΨΦ(P0) with the NPMLE ΨΦ(Pn). Again, under no
further conditions, ΨΦ(Pn) is asymptotically linear with influence curve D∗Φ(P0), and an
asymptotically valid confidence interval is obtained as above. The estimator Ψf (Pn) is
always well behaved, even when n is relatively large relative to K. For a general Φ, this
will very much depend on the the precise dependence on P of Φ(P ). In general, if Φ(Pn)
starts suffering from the dimensionality of the model (i.e., empty cells make the estimator
erratic), then one should expect that ΨΦ(Pn) will suffer accordingly, even though it will
still be asymptotically efficient. In these latter cases, we propose to use targeted maximum
likelihood estimation, which targets data-adaptive machine learning fits towards optimal
variance-bias trade-off for the target parameter.

Let’s consider the ΦI-example which assumes that the K-way interaction on the log-scale
equals zero. In this case the target parameter ΨI(P ) is defined by (2.7), which shows that
the NPMLE ΨI(Pn) is not defined when Pn(b) = 0 for some b ∈ {0, 1}K . So in this case,
the MLE suffers immensely from the curse of dimensionality and can thus not be used when
the number K of samples is such that the sample size n is of the same order as 2K . In this
context, we discuss estimation based on TMLE in the next section.

ΨII(P0) can be estimated with the plug-in empirical estimator which is the NPMLE.
So, this estimator only relies on positive probability on (0, 1), (1, 0) and (1, 1) under the
bivariate distribution of B(1), B(2) under P . We also note that this efficient estimator of
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ψII,0 does only use the data on the first two samples. Thus, the best estimator based upon
this particular constraint ΦII ignores the data on all the other samples. More assumptions
will be needed, such as the model that assumes that all components of B∗ are independent,
in order to create a statistical model that is able to also incorporate the data with the other
patterns.

Constrained models based on multivariate Φ: For these models, if the NPMLE would
behave well for the larger model in which just one of the Φ constraints is used, then it will
behave well under more constraints. If on the other hand, this NPMLE suffers from curse
of dimensionality, it might be the case that the MLE behaves better due to the additional
constraints, but generally speaking that is a lot to hope for (except if Φ is really high
dimensional relative to 2K). To construct an asymptotically efficient estimator one can thus
use the MLE ΨΦ(P̃n) where now P̃n is the MLE over the actual model MΦ. In the special
case that the behavior of this MLE ΨΦ(P̃n) suffers from the curse of dimensionality, we
recommend the TMLE below instead, which will be worked out for the example ΦI .

2.4 Targeted maximum likelihood estimation when

the (NP)MLE of target parameter suffers from

curse of dimensionality

Consider the statistical target parameter ΨI : MΦI
→ IR defined by (2.7), whose efficient

influence curve is given by (2.13). Let P 0
n be an initial estimator of the true distribution P0

of B in the nonparametric statistical model MΦI
that consists of all possible distributions of

B = (B(1), . . . , B(K)). An ideal initial estimator for P would be consistent and identifiable
when empty cells exist. One could use, for example, an undersmoothed lasso estimator
constructed in algorithm 1 as the initial estimator [26]. In algorithm 1, we establish the
empirical criterion by which the level of undersmoothing may be chosen to appropriately
satisfy the conditions required of an efficient plug-in estimator. In particular, we require
that the minimum of the empirical mean of the selected basis functions is smaller than a
constant times n−

1
2 , which is not parameter specific. This condition essentially enforces the

selection of the L1-norm in the Lasso to be large enough so that the fit includes sparsely
supported basis functions [26]. When the hyperparameter λ equals zero, the undersmoothed
lasso estimator is the same as the NPMLE plug-in estimator, and when λ is not zero,
the undersmoothed lasso estimator will smooth over the predicted probabilities and avoid
predicting probabilities of exact zero when empty cells exist.



CHAPTER 2. POPULATION SIZE ESTIMATION BASED ON CAPTURE
RECAPTURE AND ESTIMATION RELIABILITY EVALUATION 20

Algorithm 1 Undersmoothed Lasso

The log-linear model can be expressed as:

logEB∗(b) = a0 +
∑
b6=0

ab
∏
j:bj=1

bj.

In this case, b = (b1, b2, ..., bK), and bj = 1 if the subject is captured by sample j, j =
1, 2, ..., K. EB∗(b) is the count of observations in cell b. The K-way interaction term is
a1,1,...,1(K terms of 1), and the identification assumption is that a1,1,...,1 = 0.
Fit a lasso regression Mlasso with all but the highest way interaction term as the inde-
pendent variable, EB∗(b) (the count) as the dependent variable, and specify model fam-
ily as Poisson. The regularization term λ is chosen such that the absolute value of the
empirical mean of the efficient influence function PnD

∗
ΦI

(Pn)(Bi) ≤ T ∗ = σn√
n
, where

σn =
√

1
n

∑n
i=1{D∗I,cv(Pn)(Bi)}2. The probabilities Pn(Bi), i = 1, ..., n used in computing

σn are estimated by the lasso regression with regularization term chosen by cross-validation.
This algorithms will naturally avoid fits with Pn(Bi) = 0 for any Bi since that would result
in a log-likelihood equal to minus infinity.
while PnD

∗
ΦI

(Pn)(Bi) ≥ T ∗ do
1. decrease λ;
2. predict count ÊB∗(b) using Mlasso and the new λ;
3. calculate predicted probability P̂B(b) by dividing the count ÊB∗(b) by the sum of all
counts;
4. calculate Ψ̂I(P ) = 1

1+exp((−1)K
∑

b 6=0 fI(b)logP̂B(b))
;

5. calculate D∗ΦI
(Pn)(Bi) = Ψ̂I(P )(1− Ψ̂I(P ))[ fI(b)

P̂B(b)
+ fI(0)];

6. update PnD
∗
ΦI

(Pn)(Bi) = 1
n

∑n
i=1D

∗
ΦI

(Pn)(Bi).

end

Result: Predicted probability P̂B(b) for each cell

We denote P 0
n ≡ P̂B(b) as our initial estimator, the TMLE P ∗n will update this initial

estimator P 0
n in such a way that PnD

∗
ΦI

(P ∗n) = 0, allowing a rigorous analysis of the TMLE
ΨI(P

∗
n) of ΨI(P0) as presented in algorithm 2.

Note that indeed this submodel 2.16 {Pε : ε} ⊂MΦI
through P is a density for all ε and

that its score is given by:
d

dε
logPε

∣∣∣∣
ε=0

= D∗ΦI
(P ).

Recall that
∑

b 6=0 fI(b) = −fI(0), so that indeed the expectation of its score equals zero:
EPD

∗
ΦI

(P )(B) = 0. This proves that if we select as loss function of P the log-likelihood loss

L(P ) = − logP , then the score d
dε
L(Pε)

∣∣
ε=0

spans the efficient influence function D∗ΦI
(P ).

This property is needed to establish the asymptotic efficiency of the TMLE, with details in
appendix section 2.9.
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In accordance with general TMLE procedures [2], the TMLE updating process in algo-
rithm 2 will be iterated till convergence at which point εmn ≈ 0, or PnD

∗
ΦI

(Pm
n ) = oP (1/

√
n).

Let P ∗n = limm P
m
n be the probability distribution in the limit. The TMLE of ΨI(P0) is now

defined as ΨI(P
∗
n). Due to the fact that the MLE εmn solves its score equation and εmn ≈ 0,

it follows that this TMLE satisfies PnD
∗
ΦI

(P ∗n) = 0 (or oP (1/
√
n)).

Algorithm 2 Targeted maximum likelihood estimation(TMLE) update procedure

Input: Vector of predicted probability P̂B(b); observed population size n;
Procedure:
1. Denote P 0

n = P̂B(b), calculate Ψn(P 0
n) using equation 2.7, D∗ΦI

(P 0
n) using equation 2.13,

the empirical mean of D∗ΦI
(P 0

n) as PnD
∗
ΦI

(P 0
n) = 1

n

∑n
i=1D

∗
ΦI

(P 0
n)(Bi), and the stopping point

s =

√
1
n

∑n
i=1D

∗
ΦI

(P 0
n)(Bi)2

max(log(n),C)
√
n

, where C is a positive constant.

2. Let m ∈ Z be the number of iterations, and Pm
n is the updated probability in iteration

m. Initial m = 0. δ is a positive constant close to zero.

while |PnD∗ΦI
(Pm

n )(Bi)| > s and |ε| > δ do
2.1. calculate the bounds for ε such that the updated probability ∈ [0, 1].

lε = maxi[min(− 1

D∗ΦI
(Pm

n )(Bi)
,

1− Pm
n (Bi)

Pm
n (Bi)D∗ΦI

(Pm
n )(Bi)

))]

uε = mini[max(− 1

D∗ΦI
(Pm

n )(Bi)
,

1− Pm
n (Bi)

Pm
n (Bi)D∗ΦI

(Pm
n )(Bi)

))]

2.2. Construct a least favorable parametric model {Pm
n,ε : ε} through Pm

n defined as
follows:

Pm
n,ε = C(Pm

n , ε)(1 + εD∗ΦI
(Pm

n ))Pm
n , (2.16)

where

C(P, ε) =
1∑

b6=0(1 + εD∗ΦI
(P (b)))P (b)

,

2.3. calculate

εmn = argmaxε
1

n

∑
b 6=0

log(Pm
n,ε),

where ε ∈ [lε, uε].
2.4. m← m+ 1, and update Pm

n ← Pm
n,εmn

.

end
3. Denote P ∗n = Pm

n in the final iteration m. Calculate TMLE Ψn(P ∗n) using equation 2.7,
and its efficient influence function D∗ΦI

(P ∗n) using equation 2.13.
Result: TMLE Ψn(P ∗n) and efficient influence function D∗ΦI

(P ∗n).
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The proof of the asymptotic efficiency of TMLE is provided in appendix section 2.9.

2.5 Simulations

In this section, we show the performance of all the estimators given that their identification
assumptions (linear and non-linear constraints) hold true. The estimand Ψf (P ) and ΨΦ(P )
refer to the probability of an individual being captured at least once under the linear con-
straint f or non-linear constraint Φ. In subsection 2.5, the linear constraint Φf is defined in
equation 2.2, the corresponding estimand (equation 2.11)

Ψf (P ) =
f(0)

f(0)− Pf
,

and its plug-in estimator

Ψf (Pn) =
f(0)

f(0)−
∑

b 6=0 f(b)Pn(b)
,

where Pn(b) is the empirical probability of cell b. In subsection 2.5, we provide a summary
of all the non-linear constraints defined by equation Φ and their corresponding estimators.
In subsection 2.5, the non-linear constraint ΦI is defined by the assumption in equation 2.2.
The estimand (equation 2.7)

ΨI(P ) =
1

1 + exp
(

(−1)K+1
∑

b 6=0 fI(b) logP (b)
) .

The plug-in estimator

ΨI(PNP ) =
1

1 + exp
(

(−1)K+1
∑

b6=0 fI(b) logPn(b)
) .

In addition, the undersmoothed lasso estimator ΨI(Plasso) replaces the plugged-in Pn(b) in
ΨI(PNP ) with estimated probability in a lasso regression with regularization parameters
chosen by the undersmoothing algorithm, the estimator ΨI(Plasso cv) replaces the plugged-
in Pn(b) with estimated probability in a lasso regression with regularization parameters
optimized by cross-validation. The estimator ΨI(Ptmle) updates the estimated probabilities
of ΨI(Plasso) using targeted learning techniques, and the estimator ΨI(Ptmle cv) updates the
estimated probabilities of ΨI(Plasso cv) using targeted learning techniques. In addition, we
compare the performance of our proposed estimators to existing estimators ΨI(PM0) and
ΨI(PMt).

In subsection 2.5, the non-linear constraint ΦII is defined by the independence assumption
in equation 2.4. The estimand (equation 2.8)

ΨII(P ) ≡ 1− P (B(1) = 0)− P (B(2) = 0) + P (B(1 : 2) = (0, 0))

1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0)
,
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and its plug-in estimator

ΨII(Pn) ≡ 1− Pn(B(1) = 0)− Pn(B(2) = 0) + Pn(B(1 : 2) = (0, 0))

1− Pn(B(1) = 0)− Pn(B(2) = 0) + Pn(B(1) = 0)Pn(B(2) = 0)
.

In subsection 2.5, the non-linear constraint ΦCI is defined by the conditional independence
assumption in equation 2.5. The estimand (equation 2.9, C0(P ) is defined in equation 2.10)

ΨCI(P ) ≡ P (Bm = 1, Bj = 1, 0, ..., 0)

C0(P )
,

and its plug-in estimator

ΨCI(Pn)
Pn(Bm = 1, Bj = 1, 0, ..., 0)

C0(Pn)
.

Linear identification assumption

The linear identification constraint is EPB∗f(B∗) = 0, for any function f such that f(b =

0) 6= 0. An example of interest is f(b) = (−1)K+
∑K

k=1 bk , where K is the total number of
samples. In this case, the linear identification assumption is equation 2.2. For example, if
K = 3, then the constraint (equation 2.2) states:

PB∗(b1, b2, b3) = α0 + α1b1 + α3b2 + α4b1b2 + α5b1b3 + α6b2b3 + α7b1b2b3

and the constraint EPB∗f(B∗) = 0 states that α7 = 0. The identified estimator

Ψf (Pn) =
f(0)

f(0)−
∑

b 6=0 f(b)Pn(b)
,

where Pn(b) is the observed probability of cell b, and the efficient influence curve (equation
2.12) is

D∗f =
f(0)

(f(0)−
∑

b 6=0 f(b)P (b))2
[f(B)−

∑
b6=0

f(b)P (b)].

We use the parameters below to generate the underlying distribution. The assumption
that the highest-way interaction term α7 = 0 is satisfied in this setting.

α0 α1 α2 α3 α4 α5 α6 α7

0.0725 0.03 0.01 0.04 0.01 0.02 0.02 0

The simulated true probabilities for all 7 observed cells are:
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P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.1213 0.0889 0.1429 0.1105 0.1752 0.1428 0.2183

We can calculate the true value of Ψf (P ) analytically as Ψf (P0) = 0.9275, and draw 104

samples to obtain the asymptotic Ψf,asym(Pn) = 0.9316, asymptotic σ̂2 = 0.7492.
Figure 2.1 shows that our estimators perform well when the identification assumption

holds true.
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Figure 2.1: Simulation results when the linear identification assumption holds true. Upper
left: ratio of estimated variance over true variance vs sample size. The line is the ratio
at each sample size, and the grey horizontal line is the true value; Upper right: coverage
of 95% asymptotic confidence interval based on normal approximation with σ̂2 estimated
from efficient influence curve vs sample size. The line is the average coverage; Lower left:
mean value of estimated ψ and its 95% asymptotic confidence interval based on normal
approximation with σ̂2 estimated from efficient influence curve vs sample size. The line is
the mean, and shaded area is the confidence interval and the grey horizontal line is the true
value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000, the vertical
line is the true value, and the dashed line is the mean value.

Non-linear identification assumption

We perform simulations for three types of non-linear identification assumptions: 1) K-way
interaction term equals zero in log-linear models, 2) independence assumption, and 3) condi-
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tional independence assumption. For assumption 1), we provide simulations for the following
estimators:

1. Existing estimator defined by model M0, which assumes that in the log-linear model, all
the main terms have the same values, and there are no interaction terms [27]: ΨI(PM0)

2. Existing estimator defined by model Mt, which assumes that the log-linear model does
not contain interaction terms [11]: ΨI(PMt)

3. Non-parametric plug-in estimator: ΨI(PNP )

4. Estimator based on undersmoothed lasso regression: ΨI(Plasso)

5. Estimator based on lasso regression with cross-validation: ΨI(Plasso cv)

6. TMLE based on ΨI(Plasso): ΨI(Ptmle)

7. TMLE based on ΨI(Plasso cv): ΨI(Ptmle cv)

Model M0 and Mt were calculated using R package ”RCapture” (version 1.4-3) [28].

Non-linear identification assumption: k-way interaction term
equals zero

Given that we have three samples B1, B2 and B3, the identification assumption is that in
the log-linear model

log(EB∗(b)) = α0 + α1b1 + α2b2 + α3b3 + α4b1b2 + α5b1b3 + α6b2b3 + α7b1b2b3,

α7 = 0 (equation 2.2). Here EB∗(b) is the count of observations in cell b = (b1, b2, b3), and
bi = 1 if the subject is captured by sample i, i = 1, 2, 3. The parameter ΨI(P ) is identified
in equation 2.7, and its influence curve D∗ΦI

(P ) is identified in equation 2.13.
In this section, we evaluated both our proposed estimators as well as two existing para-

metric estimators. The first estimator we evaluated is the Mt model [29], where Pij denotes
the probability that subject i is captured by sample j, and modeled as log(Pij) = µj for
subject i and sample j. This estimator assumes that all the interaction terms are zero in
the log-linear model, and only use the main term variables in model training. The second
estimator is M0 [27], with the formula log(Pij) = α, where α is a constant.

Log-linear model with main term effects

We used the parameters below to generate the underlying distribution. The assumption that
the k-way interaction term α7 = 0 is satisfied in this setting. The model assumptions for M0

and Mt are also satisfied in this setting.
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α0 α1 α2 α3 α4 α5 α6 α7

-0.9398 -1 -1 -1 0 0 0 0

The simulated observed probabilities for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.2359 0.2359 0.0868 0.2359 0.0868 0.0868 0.0319

Under this setting, the true value of ΨI(P ) can be calculated analytically as ΨI(P0) =
0.6093. Figure 2.2 and table 2.1 shows the performance of estimators ΨI(PM0),ΨI(PMt),ΨI(PNP ),
ΨI(Plasso),ΨI(Plasso cv),ΨI(Ptmle), and ΨI(Ptmle cv). Table 2.2 shows that the model fit statis-
tics forΨI(PM0) and ΨI(PMt).

Figure 2.2: Left: Distribution of 1000 estimates of ψ for sample size of 1000 with estimators
ΨI(Plasso cv) and ΨI(Ptmle cv), the black vertical line is the true value, and the dashed vertical
lines represent mean values for each estimator;
Right: Distribution of 1000 estimates of ψ for sample size of 1000 with estimators ΨI(Plasso)
and ΨI(Ptmle), the black vertical line is the true value, and the dashed vertical lines represent
mean values for each estimator.
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Estimator Average ψ Lower 95% CI Upper 95% CI Coverage(%)
ΨI(PNP ) 0.6078 0.4791 0.7366 95
ΨI(Plasso) 0.6473 0.5237 0.7708 84.2
ΨI(Ptmle) 0.6078 0.4806 0.735 93.7
ΨI(Plasso cv) 0.8534 0.7984 0.9083 4.4
ΨI(Ptmle cv) 0.4044 0.2988 0.5101 13.6
ΨI(PM0) 0.6093 0.5659 0.6521 97.8
ΨI(PMt) 0.6096 0.5662 0.6525 97.8

Table 2.1: Estimated ψ̂ and 95% asymptotic confidence interval based on normal approxi-
mation with σ̂2 estimated from efficient influence curve and its coverage by each estimator.
ΨI(PNP ) is the plug-in maximum likelihood estimator, ΨI(Plasso) uses probabilities esti-
mated from undersmoothed lasso regression, ΨI(Ptmle) is the TMLE based on ΨI(Plasso),
ΨI(Plasso cv) uses probabilities estimated from lasso regression with regularization term op-
timized by cross-validation, ΨI(Ptmle cv) is the TMLE based on ΨI(Plasso cv), ΨI(PM0) and
ΨI(PMt) are existing estimators defined in section 2.5. True ψ0 = 0.6093.

Estimator Df AIC BIC
ΨI(PM0) 5 56.532 66.348
ΨI(PMt) 3 58.034 77.665

Table 2.2: model fit statistics for ΨI(PM0) and ΨI(PMt) estimators.

Figure 2.2 and table 2.1 compared the performance of two base learners: lasso regression
with regularization term chosen by cross-validation (ΨI(Plasso cv)), and undersmoothed lasso
regression (ΨI(Plasso)).The ΨI(Plasso cv) estimator is significantly biased from the true value
of ψ, and the TMLE estimator based on it, ΨI(Ptmle cv) estimator is also biased. And
although the ΨI(Plasso) estimator is biased, the TMLE based on it, ΨI(Ptmle) estimator
(mean = 0.6078, coverage = 93.7%) is able to adjust the bias and give a fit as good as the
NPMLE estimator (mean = 0.6078, coverage = 95%). Thus, in the section below we will
only use the undersmooting lasso estimator ΨI(Plasso) as the base learner.
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Log-linear model with main term and interaction term effects

We used the parameters below to generate the underlying distribution. The assumption that
the k-way interaction term α7 = 0 is satisfied in this setting.

α0 α1 α2 α3 α4 α5 α6 α7

-0.9194 -1 -1 -1 -0.1 -0.1 -0.1 0

The simulated observed probabilities for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.2440 0.2440 0.0812 0.2440 0.0812 0.0812 0.0245

Under this setting, the true value of ΨI(P ) can be calculated analytically as ΨI(P0) =
0.6013. The model assumptions of ΨI(PM0) and ΨI(PMt) are violated, and their estimates
are biased (estimated mean Ψ̂I(PM0) = Ψ̂I(PMt) = 0.572, bias = ΨI(P0) − Ψ̂I(PMt) =
0.6013−0.5720 = 0.0293). The coverage of their 95% confidence interval is also low (81.5%).
Table 2.4 shows that the model fit statistics forΨI(PM0) and ΨI(PMt). As the ΨI(PNP ) and
ΨI(Ptmle) estimators do not have model assumptions, they are unbiased and the coverage of
their 95% asymptotic confidence intervals are close to 95%. (94.7% for ΨI(PNP ) and 93.7%
for ΨI(Ptmle)), shown in figure 2.3 and table 2.3.
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Figure 2.3: Distribution of 1000 estimates of ψ for sample size of 1000, the black vertical line
is the true value, and the dashed vertical lines represent mean values for each estimator..
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Estimator Average ψ Lower 95% CI Upper 95% CI Coverage(%)
ΨI(PNP ) 0.6013 0.4625 0.7401 94.7
ΨI(Plasso) 0.6482 0.5159 0.7805 78.4
ΨI(Ptmle) 0.6005 0.4653 0.7358 93.7
ΨI(PM0) 0.572 0.5274 0.6163 81.5
ΨI(PMt) 0.5722 0.5277 0.6166 81.5

Table 2.3: Estimated ψ̂ and 95% asymptotic confidence interval based on normal approxi-
mation with σ̂2 estimated from efficient influence curve and its coverage by each estimator.
ΨI(PNP ) is the plug-in maximum likelihood estimator, ΨI(Plasso) uses probabilities estimated
from undersmoothed lasso regression, ΨI(Ptmle) is the TMLE based on ΨI(Plasso), ΨI(PM0)
and ΨI(PMt) are existing estimators defined in section 2.5. True ΨI(P0) = 0.6013.

Estimator Df AIC BIC
ΨI(PM0) 5 55.499 65.314
ΨI(PMt) 3 58.440 78.071

Table 2.4: model fit statistics forΨI(PM0) and ΨI(PMt) estimators.
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Log-linear model with empty cells

When the probability for some cells are close to zero, in the finite sample case, there are likely
to be empty cells in the observed data. For example, if the probability of a subject being
caught in all 3 samples, represented as P (1, 1, 1), is less than 10−6 and the total number of
unique subjects caught by any of the 3 samples is less than 103, then it’s likely that we will
not observe any subject being caught three times, i.e., cell P (1, 1, 1) will likely be empty.

We used the parameters below to generate the underlying distribution. The assumption
that the k-way interaction term α7 = 0 is satisfied in this setting.

α0 α1 α2 α3 α4 α5 α6 α7

-0.4578 -1 -2 -3 -1 -1 -1 0

The simulated observed probabilities for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.0857 0.2331 0.0043 0.6336 0.0116 0.0315 2e-04

Figure 2.4 and table 2.5 show the performance of the estimators when there’s no obser-
vation in cell (1, 1, 1), .

Figure 2.4 shows that all the existing estimators are biased when empty cells of (1, 1, 1)
exist. Table 2.5 shows that the coverage of the 95% asymptotic confidence intervals for
ΨI(Ptmle) is the highest (58.8%), and the coverage of the 95% asymptotic confidence intervals
for ΨI(PM0), ΨI(PMt) are both 0, due to the estimation bias and narrow range of intervals.
Table 2.6 shows the model fit statistics forΨI(PM0) and ΨI(PMt).

Estimator Average ψ Lower 95% CI Upper 95% CI Coverage(%)
ΨI(Plasso) 0.5565 0.1956 0.9174 20
ΨI(Ptmle) 0.2308 0.0875 0.374 58.8
ΨI(PM0) 0.1318 0.0995 0.169 0
ΨI(PMt) 0.1729 0.1313 0.2201 0

Table 2.5: Estimated ψ̂, 95% asymptotic confidence interval based on normal approximation
with σ̂2 estimated from efficient influence curve and its coverage of the estimators in figure
2.4. ΨI(Plasso) uses probabilities estimated from undersmoothed lasso regression, ΨI(Ptmle)
is the TMLE based on ΨI(Plasso), ΨI(PM0) and ΨI(PMt) are existing estimators defined in
section 2.5.True ΨI(P0) = 0.3674.
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Figure 2.4: Distribution of 1000 estimates of ψ for sample size of 1000, the black vertical line
is the true value of ΨI(P0) = 0.3674, and the dashed vertical lines represent mean values for
each estimator.

Non-linear identification assumption: independence

Given 3 samples, we assume that the first and second sample B1, B2 are independent of each
other, that is, P ∗(B1 = 1, B2 = 1) = P ∗(B1 = 1) × P ∗(B2 = 1). Then we have ΨII(P )
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Estimator Df AIC BIC
ΨI(PM0) 5 501.562 511.378
ΨI(PMt) 3 45.506 65.137

Table 2.6: model fit statistics forΨI(PM0) and ΨI(PMt) estimators.

identified in equation 2.8, and the influence curve D∗II(P ) identified in equation 2.14.
Here we illustrate the performance of our estimators with the following underlying dis-

tribution:

P (B1 = 1) = 0.1

P (B2 = 1|B1 = 1) = 0.2

P (B2 = 1|B1 = 0) = 0.2

P (B3 = 1|B1 = 1) = 0.25

P (B3 = 1|B1 = 0) = 0.3

The probability distribution for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.4355 0.2540 0.1089 0.1210 0.0403 0.0302 0.0101

We can calculate the true value of ΨII(P ) analytically as ΨII(P0) = 0.4960, and draw 106

samples to obtain the asymptotic ΨII(Pn) = 0.4963, asymptotic σ2 = 1
n

∑
D∗2 = 4.2657.

Figure 2.5 shows that our estimators perform well when the independence assumptions
hold true.
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Figure 2.5: Simulation results when the independence identification assumption holds true.
Upper left: ratio of estimated variance over true variance vs sample size. The line is
the ratio at each sample size, and the grey horizontal line is the true value; Upper right:
coverage of 95% asymptotic confidence interval based on normal approximation with σ̂2

estimated from efficient influence curve vs sample size. The line is the average coverage;
Lower left: mean value of estimated ψ and its 95% asymptotic confidence interval based on
normal approximation with σ̂2 estimated from efficient influence curve vs sample size. The
line is the mean, and shaded area is the confidence interval and the grey horizontal line is
the true value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000,
the vertical line is the true value, and the dashed line is the mean value.
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Non-linear identification assumption: conditional independence

Given 3 samples, we assume that the third sample B3 is conditionally independent on the
second sample B2, that is, P ∗(B3 = 1|B2 = b2, B1 = 0) = P ∗(B3 = 1|B1 = 0). Then we can

derive that P ∗(0, 0, 0) = P ∗(0,1,0)P ∗(0,0,1)
P ∗(0,1,1)

and ΨCI(P ) = P (0,1,1)
P (0,1,1)+P (0,1,0)P (0,0,1)

from equation
2.9, and the efficient influence curve can be derived from equation 2.15 as

D∗ΦCI
(P ) =

P (0, 1, 0)P (0, 0, 1)

[P (0, 1, 1) + P (0, 1, 0)P (0, 0, 1)]2
[I(0, 1, 1)− P (0, 1, 1)]−

P (0, 0, 1)P (0, 1, 1)

[P (0, 1, 1) + P (0, 1, 0)P (0, 0, 1)]2
[I(0, 1, 0)− P (0, 1, 0)]−

P (0, 1, 0)P (0, 1, 1)

[P (0, 1, 1) + P (0, 1, 0)P (0, 0, 1)]2
[I(0, 0, 1)− P (0, 0, 1)]

Here we illustrate the performance of our estimators with the following underlying dis-
tribution:

P (B1 = 1) = 0.1

P (B2 = 1|B1 = 1) = 0.2

P (B2 = 1|B1 = 0) = 0.15

P (B3 = 1|B1 = 1) = P (B3 = 1|B2 = 1, B1 = 1) = 0.25

P (B3 = 1|B1 = 1) = P (B3 = 1|B2 = 0, B1 = 1) = 0.25

P (B3 = 1|B1 = 0) = P (B3 = 1|B2 = 1, B1 = 0) = 0.2

P (B3 = 1|B1 = 0) = P (B3 = 1|B2 = 0, B1 = 0) = 0.2

The probability distribution for all 7 observed cells P (B1, B2, B3) are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.3943 0.2784 0.0696 0.1546 0.0515 0.0387 0.0129

We can derive the true ΨCI(P ) analytically as ΨCI(P0) = 0.388, and draw 106 samples
to obtain the asymptotic Ψ̂CI(Pn) = 0.3887, asymptotic σ̂2 = 1.0958.

Figure 2.6 shows that our estimator performs well when the conditional independence
assumptions are met.



CHAPTER 2. POPULATION SIZE ESTIMATION BASED ON CAPTURE
RECAPTURE AND ESTIMATION RELIABILITY EVALUATION 37

Figure 2.6: Simulation results when the conditional independence identification assumption
holds true. Upper left: ratio of estimated variance over true variance vs sample size. The
line is the ratio at each sample size, and the grey horizontal line is the true value; Upper
right: coverage of 95% asymptotic confidence interval based on normal approximation with
σ̂2 estimated from efficient influence curve vs sample size. The line is the average coverage;
Lower left: mean value of estimated ψ and its 95% asymptotic confidence interval based on
normal approximation with σ̂2 estimated from efficient influence curve vs sample size. The
line is the mean, and shaded area is the confidence interval and the grey horizontal line is
the true value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000,
the vertical line is the true value, and the dashed line is the mean value.
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2.6 Evaluating the sensitivity of identification bias to

violations of the assumed constraint

In this section, we use simulations to show the sensitivity of identification bias for all the
estimators with identification assumptions violations.

Violation of linear assumptions

In this section we analyzed the same problem stated in section 2.5, but the identification
assumption is violated.

We used the parameters below to generate the underlying distribution. The assumption
that the k-way interaction term α7 = 0 is violated in this setting(α7 = 0.2).

α0 α1 α2 α3 α4 α5 α6 α7

0.11 0.1 0.05 0.08 -0.2 -0.2 -0.1 0.2

The simulated observed probabilities for all 7 cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.2135 0.1798 0.0449 0.2360 0.1011 0.1978 0.0449

We can calculate the true value of Ψ analytically as Ψ0 = 0.8900, and draw 105 samples
to obtain the asymptotic Ψf (Pn) = 0.7419, asymptotic σ̂2 = 0.2662. The asymptotic value
is biased by 0.1481.

Figure 2.7 shows that the linear estimator is biased when the identification assumption
is violated.
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Violation of non-linear assumption: independence

Given 3 samples, we suppose that the first and second sample B1, B2 are independent of
each other, that is, P ∗(B1 = 1, B2 = 1) = P ∗(B1 = 1)× P ∗(B2 = 1). Then we can compute
ψ̂ and its efficient influence curve as stated above.

Here we illustrate the performance of our estimators with the following underlying dis-
tribution:

P (B1 = 1) = 0.5

P (B2 = 1|B1 = 1) = 0.6

P (B2 = 1|B1 = 0) = 0.5

P (B3 = 1) = 0.5

The probability for all 7 observed cells is given by:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.1429 0.1429 0.1429 0.1143 0.1143 0.1714 0.1714

We can calculate the true value of Ψ analytically as Ψ0 = 0.875, and draw 106 samples
to obtain the asymptotic ΨII(Pn) = 0.9544, asymptotic σ2 = 0.4415, the asymptotic value
is biased by 0.0794.

Figure 2.8 shows that violation of the independence assumption will create a significant
bias in the results.
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Figure 2.7: Simulation results when the linear identification assumption is violated. Upper
left: ratio of estimated variance over true variance vs sample size. The line is the ratio
at each sample size, and the grey horizontal line is the true value; Upper right: coverage
of 95% asymptotic confidence interval based on normal approximation with σ̂2 estimated
from efficient influence curve vs sample size. The line is the average coverage; Lower left:
mean value of estimated ψ and its 95% asymptotic confidence interval based on normal
approximation with σ̂2 estimated from efficient influence curve vs sample size. The line is
the mean, and shaded area is the confidence interval and the grey horizontal line is the true
value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000, the vertical
line is the true value, and the dashed line is the mean value.
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Figure 2.8: Simulation results when the independence identification assumption is violated.
Upper left: ratio of estimated variance over true variance vs sample size. The line is
the ratio at each sample size, and the grey horizontal line is the true value; Upper right:
coverage of 95% asymptotic confidence interval based on normal approximation with σ̂2

estimated from efficient influence curve vs sample size. The line is the average coverage;
Lower left: mean value of estimated ψ and its 95% asymptotic confidence interval based on
normal approximation with σ̂2 estimated from efficient influence curve vs sample size. The
line is the mean, and shaded area is the confidence interval and the grey horizontal line is
the true value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000,
the vertical line is the true value, and the dashed line is the mean value.
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Violation of non-linear assumption: conditional independence

Same as above, our assumption is that given 3 samples, the third sample B3 is independent
on the second sample B2 conditional on the first sample B1. Then we can derive the influence
curve same as above.

Here we illustrate the performance of our estimators when the identification assumption
does not hold.

The simulated distribution is as follows:

P (B1 = 1) = 0.1

P (B2 = 1|B1 = 1) = 0.2

P (B2 = 1|B1 = 0) = 0.15

P (B3 = 1|B1 = 1, B2 = 1) = 0.10

P (B3 = 1|B1 = 1, B2 = 0) = 0.50

P (B3 = 1|B1 = 0, B2 = 1) = 0.20

P (B3 = 1|B1 = 0, B2 = 0) = 0.50

The probability distribution for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.6194 0.1749 0.0437 0.0648 0.0648 0.0291 0.0032

The true value of Ψ is Ψ0 = 0.6175, and we drew 106 samples and obtained the asymptotic
ΨCI(Pn) = 0.2931, asymptotic σ2 = 1.2349, the asymptotic value is biased by 0.3244.

Figure 2.9 shows that with a strong violation of conditional independence assumptions,
the estimated values will have significant biases.
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Violation of non-linear assumption: K-way interaction term
equals zero

Here we illustrate the performance of our estimators when the identification assumption
that the k-way interaction term α7 = 0 does not hold. We used the parameters below to
generate the underlying distribution. The underlying distribution follows the same model as
in section 2.5.

α0 α1 α2 α3 α4 α5 α6 α7

-1.6333 0 0 0 -1 -2 -0.5 1

The simulated observed probabilities for all 7 observed cells are:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.2386 0.2386 0.0878 0.2386 0.0323 0.1447 0.0196

Figure 2.10 and table 2.7 show that when the assumption is heavily violated, all estimators
are significantly biased. The true value of ψ = 0.8074. The bias for ΨI(PNP ) estimator is
0.2032, for ΨI(Plasso) estimator is 0.1372, for ΨI(Ptmle) is 0.2055, for ΨI(PM0) estimator is
0.2217, and for ΨI(PMt) estimator is 0.2185. The coverage of 95% asymptotic confidence
intervals for ΨI(PNP ) estimator is 26%, for ΨI(Plasso) estimator is 59%, for ΨI(Ptmle) is 22%,
for ΨI(PM0) and ΨI(PMt) is 0%. Table 2.10 shows the information on M0,Mt models.

Estimator average ψ lower 95% CI upper 95% CI coverage(%)
ΨI(PNP ) 0.6042 0.4491 0.7592 26.3
ΨI(Plasso) 0.6702 0.5261 0.8142 58.6
ΨI(Ptmle) 0.6019 0.4516 0.7523 21.9
ΨI(PM0) 0.5857 0.5416 0.6295 0
ΨI(PMt) 0.5889 0.5447 0.6328 0

Table 2.7: Estimated ψ̂ and 95% asymptotic confidence interval based on normal approxi-
mation with σ̂2 estimated from efficient influence curve and its coverage by each estimator.
True Ψ0 = 0.8074.

Estimator df AIC BIC
ΨI(PM0) 5 157.720 167.535
ΨI(PMt) 3 128.623 148.254

Table 2.8: model fit statistics forΨI(PM0) and ΨI(PMt) estimators.
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Violation of all identification assumptions

In the sections above we showed that if an identification assumption is violated, its corre-
sponding estimators will be biased and their asymptotic confidence intervals will have low
coverage. In this section, all the identification assumptions are violated in the simulated
distribution, and we analyzed the performance of all the estimators discussed above in this
setting.

The underlying distribution of three samples B1, B2, B3 follows the same log-linear model
in section 2.5, with the parameters as below.

α0 α1 α2 α3 α4 α5 α6 α7

-1.1835 -1 -1 -1 -1.5 -1 2 1

The simulated observed probability for all 7 observed cells is given by:

P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)
0.1624 0.1624 0.0133 0.1624 0.0220 0.4414 0.0362

Figure 2.11 and table 2.9 show that all estimators are significantly biased, when none of
their identification assumption holds. The true value of ψ = 0.6938. Under the assumption
that sample B1 and B2 are independent conditional on B3 (”Conditional Independence” in
table 2.9), the plug-in estimator has a bias of -0.2497. Under the assumption that sample
B1 and B2 are independent (”Independence” in table 2.9), the plug-in estimator has a bias
of 0.3760. Under the Under the assumption that the 3-way additive interaction term in the
linear model equals zero (”K-way additive interaction equals zero” in table 2.9), the plug-in
estimator has a bias of -0.2627. And under the assumption that the 3-way multiplicative
interaction term in the log-linear model equals zero (”K-way multiplicative interaction equals
zero” in table 2.9), the ΨI(PNP ) estimator has a bias of 0.2517, the ΨI(Plasso) estimator has
a bias of -0.1573, the ΨI(Ptmle) has a bias of -0.1867, the ΨI(PM0) estimator has a bias of
-0.1017, and the ΨI(PMt) estimator has a bias of -0.1446. The coverage of 95% asymptotic
confidence intervals for all the estimators are far below 95%. Table 2.10 shows the information
on M0,Mt models.
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Figure 2.9: Simulation results when the conditional independence identification assumption
is violated. Upper left: ratio of estimated variance over true variance vs sample size. The
line is the ratio at each sample size, and the grey horizontal line is the true value; Upper
right: coverage of 95% asymptotic confidence interval based on normal approximation with
σ̂2 estimated from efficient influence curve vs sample size. The line is the average coverage;
Lower left: mean value of estimated ψ and its 95% asymptotic confidence interval based on
normal approximation with σ̂2 estimated from efficient influence curve vs sample size. The
line is the mean, and shaded area is the confidence interval and the grey horizontal line is
the true value; Lower right: Distribution of 1000 estimates of ψ for sample size of 1000,
the vertical line is the true value, and the dashed line is the mean value.
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Figure 2.10: Distribution of 1000 estimates of ΨI for sample size of 1000, the black vertical
line is the true value, and the dashed vertical lines represent mean values for each estimator.
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Figure 2.11: Distribution of 1000 estimates of ψ for sample size of 1000, the black vertical
line is the true value, and the dashed vertical lines represent mean values for each estimator.
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2.7 Data Analysis

Schistosomiasis is an acute and chronic parasitic disease endemic to 78 countries world-
wide. Estimates show that at least 229 million people required preventive treatment in 2018
[30]. In China, schistosomiasis is an ongoing public health challenge and the country has
set ambitious goals of achieving nationwide transmission interruption [31]. To monitor the
transmission of schistosomiasis, China operates three surveillance systems which can be con-
sidered as repeated samples of the underlying infected population. The first is a national
surveillance system designed to monitor nationwide schistosomiasis prevalence (S1), which
covers 1% of communities in endemic provinces, conducting surveys every 6-9 years. The
second is a sentinel system designed to provide longitudinal measures of disease prevalence
and intensity in select communities (S2), and conducts yearly surveys. The third system
(S3) comprises routine surveillance of all communities in endemic counties, with surveys
conducted on a roughly three-year cycle [31]. In this application, we use case records for
schistosomiasis from these three systems for a region in southwestern China [23]. The com-
munity, having a population of about 6000, reported a total of 302 cases in 2004: 112 in S1;
294 in S2; and 167 in S3; with 202 cases appearing on more than one system register (figure
2.12). The three surveillance systems are not independent, and we apply estimators under
the four constraints (highest-way interaction equals zero in log-linear model, highest-way
interaction equals zero in linear model, independence, and conditional independence)to the
data.

Figure 2.12: Schistosomiasis case frequencies among S1, S2, S3 surveillance systems in a
community (population ∼ 6000) in southwestern China in 2004 [23]

The estimated ψ̂ with its 95% asymptotic confidence intervals are shown in table 2.11.
The highest estimate of ψ is 0.9969 (with 95% CI: (0.8041, 0.9829)) under conditional in-
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dependence assumption, and the lowest is 0.8935 (with 95% CI: (0.9965, 0.9972)) under the
linear model with no highest-way interaction assumption (table 2.11). This analysis illus-
trates the heavy dependence of estimates of Ψ on the arbitrary identification assumptions
using real data.

One way to solve this problem is to hold certain identification assumptions true by design.
In this case, we could make an effort to design the sentinel system S2 and routine system
S3 to be independent of each other conditional on national system S1. For example, let
the sampling surveys in S2 and S3 be done independently, while each of them could borrow
information from S1. In so doing we can assume the conditional independence between the
two samples and conduct the analysis correspondingly.
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2.8 Discussion

Summary table

In this section we summarise all the estimators we proposed under linear and non-linear
constraints as below.

Identification assumption Highest-way interaction term in linear model equals zero

Constraint EPB∗f(B∗) =
∑

b(−1)K+
∑K

k=1 bkPB∗,0(b) = 0

Method Plug-in

Target parameter ψf = f(0)
f(0)−

∑
b 6=0 f(b)P (b)

Efficient influence curve D∗f = f(0)
(f(0)−

∑
b 6=0 f(b)P (b))2 [f(B)−

∑
b6=0 f(b)P (b)]

Table 2.13: Summary table for identification assumption: highest-way interaction term in
linear model equals zero, where f(b) = (−1)K+

∑K
k=1 bk .

Identification assumption Independence between two samples

Constraint
ΦII(P

∗) ≡
∑

b I(b(1 : 2) = (0, 0))P ∗(b)
-
∑

b1,b2
I(b1(1) = b2(2) = 0)P ∗(b1)P ∗(b2)

Method Plug-in

Target parameter ΨII(P ) = 1−P (B(1)=0)−P (B(2)=0)+P (B(1:2)=(0,0))
1−P (B(1)=0)−P (B(2)=0)+P (B(1)=0)P (B(2)=0)

Efficient influence curve

D∗ΦII
(P ) = C2(P ){I(B(1) = 0)− P (B(1) = 0)}

+ C3(P ){I(B(2) = 0)− P (B(2) = 0)
+ C4(P ){I(B(1) = B(2) = 0)− P (B(1 : 2) = 0},
where C2(P ) = 1−P (B(1)=0)−P (B(2)=0)−P (B(1)=B(2)=0)

(1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0))2P (B(2) = 0)

C3(P ) = 1−P (B(1)=0)−P (B(2)=0)−P (B(1)=B(2)=0)
(1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0))2P (B(1) = 0)

C4(P ) = − 1
1−P (B(1)=0)−P (B(2)=0)−P (B(1)=0)P (B(2)=0)

Table 2.14: Summary table for identification assumption: independence between two sam-
ples.
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Identification assumption Conditional independence between two samples

Constraint
ΦCI,(j,m) = P ∗(Bj = 1|B1 = 0, · · · , Bm = 0, · · · , BK = 0)
- P∗(Bj = 1|B1 = 0, · · · , Bm = 1, · · · , BK = 0)

Method Plug-in

Target parameter ΨCI =
P (Bm=1,Bj=1,0,...,0)

P (Bm=1,Bj=1,0,...,0)+P (Bm=0,Bj=1,0,...,0)P (Bm=1,Bj=0,0,...,0)

Efficient influence curve

D∗ΦCI
(P ) = 1

C5(P )
(C6(P )− C7(P )− C8(P )),

where C5(P ) = −
∑

b1 6=0,b2 6=0[I(b1(1) = b2(2) = 0)P (b1)P (b2)

C6(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 0, Bj = 0, 0, ..., 0)
[I(Bm = 1, Bj = 1, 0, ..., 0)− P (Bm = 1, Bj = 1, 0, ..., 0)]
C7(P ) = P (Bm = 1, Bj = 0, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)
[I(Bm = 0, Bj = 1, 0, ..., 0)− P (Bm = 0, Bj = 1, 0, ..., 0)]
C8(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)
[I(Bm = 1, Bj = 0, 0, ..., 0)− P (Bm = 1, Bj = 0, 0, ..., 0)]

Table 2.15: Summary table for identification assumption: conditional independence between
two samples.

Identification assumption Highest-way interaction term in log-linear model equals zero

Constraint ΦI(P
∗) ≡

∑
b(−1)1+

∑K
k=1 bk logPB∗(b) = 0

Method Plug-in (NPMLE), undersmoothed lasso, TMLE based on lasso

Target parameter ΨI(P ) = 1
1+exp((−1)K+1

∑
b 6=0 f(b) logP (b))

Efficient influence curve D∗ΦI
(P ) = (−1)KΨI(P )(1−ΨI(P ))

{
f(B)
P (B)

+ f(0)
}

Table 2.16: Summary table for identification assumption: highest-way interaction term in
log-linear model equals zero, where f(b) = (−1)K+

∑K
k=1 bk .
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We developed a modern method to estimate population size based on capture-recapture
designs with a minimal number of constraints or parametric assumptions. We provide the
solutions, theoretical support, simulation study and sensitivity analysis for four identifica-
tion assumptions: independence between two samples, conditional independence between
two samples, no highest-way interaction in linear models, and no highest-way interaction
in log-linear models. We also developed machine learning algorithms to solve the curse of
dimensionality for high dimensional problems under the assumption of no highest-way inter-
action in log-linear model. Through our analysis, we found that whether the identification
assumption holds true plays a vital role in the performance of estimation. When the as-
sumption is violated, all estimators will be biased. This conclusion applies to models of all
forms, parametric or non-parametric, simple plug-in estimators or complex machine-learning
based estimators. Thus one should always ensure that the chosen identification assumption
is known to be true by survey design, otherwise all the estimators will be unreliable. Under
the circumstances where the identification assumptions hold true, the performance of our
targeted maximum likelihood estimator, ΨI(Ptmle), is superior to ΨI(PM0)(identical capture-
probabilities, no highest-way interaction in log-linear model), ΨI(PMt)(no interaction terms
in log-linear model) and ΨI(PNP )(plugged-in, no highest-way interaction in log-linear model)
estimators in several aspects: first, by making the least number of assumptions required for
identifiability, the estimator ΨI(Ptmle) is more robust in empirical data analysis, as there
will be no bias due to violations of parametric model assumptions. Second, the estimator
ΨI(Ptmle) is based on a consistent undersmoothed lasso estimator. This property ensures the
asymptotic efficiency of TMLE. Third, when there are empty cells, the estimator ΨI(Ptmle)
solves the curse of dimensionality by correcting the bias introduced by the undersmoothed
lasso estimator, and gives a more honest asymptotic confidence interval, wider that those
from parametric models, and hence a higher coverage.
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2.9 Appendix

In the appendix, we formally state the lemmas used in the context and provide the proofs. In
section 2.9, we derive the target parameter ΨII(P ) under identification assumption that the
first two samples B1, B2 are independent, given there are three samples in total. In section
2.9 we derive the efficient influence curve D∗ΦII

(P ) for ΨII(P ). In section 2.9, we state the
lemma on how to derive the efficient influence curve under multidimensional constraint ΦIII .
In section 2.9, we formally state the target parameter ΨCI(P ) under identification assumption
that the first two samples B1, B2 are independent conditional on the third samples. In section
2.9 we derive the efficient influence curve D∗ΦCI

(P ) for ΨCI(P ). In section 2.9 we prove the
asymptotic efficiency of the TMLE.

Target parameter under independence assumption

Lemma 1. For constraint ΦII(equation 2.4), we have the target parameter ΨII as:

ΨII(P ) =
1− P (B(1) = 0)− P (B(2) = 0) + P (B(1 : 2) = (0, 0))

1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0)

Proof. We provide a brief proof of lemma 1 when there are three samples. In this case,
ΦII(P

∗) = 0 is equivalent to

P ∗(B∗(1 : 2) = (0, 0)) = P ∗(B(1) = 0)P ∗(B∗(2) = 0). (2.17)

When there are three samples, equation 2.17 can be expanded as:

P ∗(0, 0, 1) + P ∗(0, 0, 0) = P ∗(0, 0, 0)2 + [P ∗(0, 1, 0) + P ∗(0, 1, 1) + P ∗(0, 0, 1)

+P ∗(1, 0, 0) + P ∗(1, 0, 1) + P ∗(0, 0, 1)]× P ∗(0, 0, 0)

+[P ∗(0, 1, 0) + P ∗(0, 1, 1) + P ∗(0, 0, 1)]

×[P ∗(1, 0, 0) + P ∗(1, 0, 1) + P ∗(0, 0, 1)] (2.18)

Denote a∗ = P ∗(0, 1, 0) + P ∗(0, 1, 1) + P ∗(0, 0, 1), b∗ = P ∗(1, 0, 0) + P ∗(1, 0, 1) + P ∗(0, 0, 1).
Equation 2.18 can be written as:

0 = P ∗(0, 0, 0)2 + (a∗ + b∗ − 1)× P ∗(0, 0, 0)− P ∗(0, 0, 1).

Plug in ψ = 1− P ∗(0, 0, 0), we have

P (0, 1, 0) =
P ∗(0, 1, 0)

ψ
, ..., P (0, 0, 1) =

P ∗(0, 0, 1)

ψ
, a =

a∗

ψ
, b =

b∗

ψ
.

Thus equation 2.18 can be expressed as:

0 = (1 + ab− a− b)ψ2 + (a+ b− 1− P (0, 0, 1))ψ. (2.19)
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Here, let aII = 1 + ab − a − b, bII = a + b − 1 − P (0, 0, 1), from equation 2.19 we know
aIIψ + bII = 0, thus we have

ψ = − bII
aII

=
1− P (B(1) = 0)− P (B(2) = 0) + P (B(1 : 2) = (0, 0))

1 + P (B(1) = 0)P (B(2) = 0)− P (B(1) = 0)− P (B(2) = 0)

where P (B(1) = 0) = P (0, 1, 0)+P (0, 1, 1)+P (0, 0, 1), P (B(2) = 0) = P (1, 0, 0)+P (1, 0, 1)+
P (0, 0, 1), and P (B(1 : 2) = (0, 0)) = P (0, 0, 1)

Efficient influence curve under independence assumption

Lemma 2. For constraint ΦII = 0(equation 2.4), we have the efficient influence curve
D∗ΦII

(P ) as:

D∗ΦII
(P ) =

∂ψ

∂P (B(1) = 0)
×D∗ΦII

(P (B(1) = 0))

+
∂ψ

∂P (B(2) = 0)
×D∗ΦII

(P (B(2) = 0))

+
∂ψ

∂P (B(1 : 2) = (0, 0))
×D∗ΦII

(P (B(1 : 2) = (0, 0))). (2.20)

Proof. By the delta method [32], the efficient influence curve of ψ can be written as a function
of each components’ influence curve. The efficient influence curves of the three components
are presented as follows:

D∗ΦII
(P (B(1) = 0)) = I(B(1) = 0)− P (B(1) = 0).

D∗ΦII
(P (B(2) = 0)) = I(B(2) = 0)− P (B(2) = 0).

D∗ΦII
(P (B(1 : 2) = (0, 0))) = I(B(1 : 2) = (0, 0))− P (B(1 : 2) = (0, 0)).

Therefore, we only need to calculate the derivatives to get D∗ΦII
(P ), and the three parts of

derivatives are given by

∂ψ

∂P (B(1) = 0)
=

(1− P (B(2) = 0))(P (B(1 : 2) = (0, 0))− P (B(1) = 0))

(1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0))2
.

∂ψ

∂P (B(2) = 0)
=

(1− P (B(1) = 0))(P (B(1 : 2) = (0, 0))− P (B(1) = 0))

(1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0))2
.

∂ψ

∂P (B(1 : 2) = (0, 0))
=

1

1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0)
.
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Plug each part into equation 2.20, we have

D∗ΦII
(P ) =

(1− P (B(2) = 0))(P (B(1 : 2) = (0, 0))− P (B(2) = 0))

(1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0))2

[I(B(1) = 0)− P (B(1) = 0)]

+
(1− P (B(1) = 0))(P (B(1 : 2) = (0, 0))− P (B(1) = 0))

(1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0))2

[I(B(2) = 0)− P (B(2) = 0)]

+
1

1− P (B(1) = 0)− P (B(2) = 0) + P (B(1) = 0)P (B(2) = 0)

[I(B(1 : 2) = (0, 0))− P (B(1 : 2) = (0, 0))].

Efficient influence curve under multidimensional constraint

Lemma 3. Consider a model M ≡ {P ∈M1 : Φ(P ) = 0} defined by an initial larger model
M1 and multivariate constraint function Φ : M1 → IRK. Suppose that Φ : M1 → IRK is
path-wise differentiable at P with efficient influence curve D∗Φ(P ) for all P ∈M1. Let T1(P )
be the tangent space at P for model M1, and let ΠT1 : L2

0(P ) → T1(P ) be the projection
operator onto T1(P ). The tangent space at P for model M is given by:

T (P ) = {S ∈ T1(P ) : S ⊥ D∗Φ(P )}.

The projection onto T (P ) is given by:

ΠT (S) = ΠT (S)− ΠD∗Φ
(ΠT (S)),

where ΠD∗Φ
is the projection operator on the K-dimensional subspace of T1(P ) spanned by

the components of D∗Φ(P ). The latter projection is given by the formula:

ΠD∗Φ
(S) = E(SD∗Φ(P )>)E(D∗Φ(P )D∗Φ(P )>)−1D∗Φ(P ).

Target parameter under conditional independence assumption

Lemma 4. For constraint ΦCI = 0 (equation 2.5), we have the target parameter ΨCI as

ΨCI =
P (Bm = 1, Bj = 1, 0, ..., 0)

C0(P )
.

where

C0(P ) = P (Bm = 1, Bj = 1, 0, ..., 0)

+P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 1, Bj = 0, 0, ..., 0).
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Proof. The constrain ΦCI = 0(equation 2.5) can be written as

P ∗(Bj = 1|B1 = 0, · · · , Bm = 0, · · · , BK = 0) =

P ∗(Bj = 1|B1 = 0, · · · , Bm = 1, · · · , BK = 0).

This equation is equivalent to

P ∗(0, . . . , 0) =
P ∗(Bm = 0, Bj = 1, 0, . . . , 0)

P ∗(Bm = 1, Bj = 1, 0, . . . , 0)

×P ∗(Bm = 1, Bj = 0, 0, . . . , 0). (2.21)

As ΨCI ≡ 1− P ∗(0, . . . , 0), we have

P ∗(Bm = 1, Bj = 0, 0, . . . , 0) = P (Bm = 1, Bj = 0, 0, . . . , 0)ΨCI .

P ∗(Bm = 0, Bj = 1, 0, . . . , 0) = P (Bm = 0, Bj = 1, 0, . . . , 0)ΨCI .

P ∗(Bm = 1, Bj = 1, 0, . . . , 0) = P (Bm = 1, Bj = 1, 0, . . . , 0)ΨCI .

Therefore, equation 2.21 is equivalent to

ΨCI =
P (Bm = 1, Bj = 1, 0, . . . , 0)

P (Bm = 1, Bj = 1, 0, . . . , 0) + C9

.

where
C9 = P (Bm = 0, Bj = 1, 0, . . . , 0)P (Bm = 1, Bj = 0, 0, . . . , 0).

Efficient influence curve under conditional independence
assumption

Lemma 5. For constraint ΦCI = 0 (equation 2.5), we have the efficient influence curve
D∗ΦCI

(P ) as

D∗ΦCI
(P ) =

1

C5(P )
(C6(P )− C7(P )− C8(P ))

where

C5(P ) = −
∑

b1 6=0,b2 6=0

I(b1(1) = b2(2) = 0)P (b1)P (b2).

C6(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 0, Bj = 0, 0, ..., 0)

[I(Bm = 1, Bj = 1, 0, ..., 0)− P (Bm = 1, Bj = 1, 0, ..., 0)].

C7(P ) = P (Bm = 1, Bj = 0, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)

[I(Bm = 0, Bj = 1, 0, ..., 0)− P (Bm = 0, Bj = 1, 0, ..., 0)].

C8(P ) = P (Bm = 0, Bj = 1, 0, ..., 0)P (Bm = 1, Bj = 1, 0, ..., 0)

[I(Bm = 1, Bj = 0, 0, ..., 0)− P (Bm = 1, Bj = 0, 0, ..., 0)].
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Proof. By the delta method [32], the efficient influence curve of ΨCI can be written as a
function of each components’ influence curve. The efficient influence curves of the three
components are presented as follows

D∗ΦCI
(P (Bm = 1, Bj = 1, 0, . . . , 0)) = I(Bm = 1, Bj = 1, 0, . . . , 0)

−P (Bm = 1, Bj = 1, 0, . . . , 0). (2.22)

D∗ΦCI
(P (Bm = 0, Bj = 1, 0, . . . , 0)) = I(Bm = 0, Bj = 1, 0, . . . , 0)

−P (Bm = 0, Bj = 1, 0, . . . , 0). (2.23)

D∗ΦCI
(P (Bm = 1, Bj = 0, 0, . . . , 0)) = I(Bm = 1, Bj = 0, 0, . . . , 0)

−P (Bm = 1, Bj = 0, 0, . . . , 0)). (2.24)

Therefore, we only need to calculate the derivatives to get D∗ΦCI
(P ), and the three parts of

derivatives are given by

∂ψ

∂P (Bm = 1, Bj = 1, 0, . . . , 0)
=

P (Bm = 0, Bj = 1, 0, . . . , 0)

C4

×P (Bm = 1, Bj = 0, 0, . . . , 0).

∂ψ

∂P (Bm = 0, Bj = 1, 0, . . . , 0)
= −P (Bm = 1, Bj = 1, 0, . . . , 0)

C4

×P (Bm = 1, Bj = 0, 0, . . . , 0).

∂ψ

∂P (Bm = 1, Bj = 0, 0, . . . , 0)
= −P (Bm = 1, Bj = 1, 0, . . . , 0)

C4

×P (Bm = 1, Bj = 1, 0, . . . , 0).

where

C4 = [P (Bm = 1, Bj = 1, 0, . . . , 0) + P (Bm = 0, Bj = 1, 0, . . . , 0)

×P (Bm = 1, Bj = 0, 0, . . . , 0)]2.

Plug each part into equation 2.24, we have that lemma 5 is true.

Asymptotic efficiency of TMLE

In this section we prove the following theorem 1 establishing asymptotic efficiency of the
TMLE. The empirical NPMLE is also efficient since asymptotically all cells are filled up. And
TMLE is just a finite sample improvement and asymptotically TMLE acts as the empirical
NPMLE. The estimators Pn∗ will be like parametric model MLE and thus converge at rate
oP (1/

√
n).

Theorem 1. Consider the TMLE ΨI(P
∗
n) of ΨI(P0) defined above, satisfying PnD

∗
ΦI

(P ∗n) =

oP (1/
√
n). We assume P0(b) > 0 for all b 6= 0. If P ∗n − P0 = oP (n−1/4), then ΨI(P

∗
n) is an
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asymptotically efficient estimator of ΨI(P0):

ΨI(P
∗
n)−ΨI(P0) = (Pn − P0)D∗ΦI

(P0) + oP (1/
√
n).

Proof. Define fI,0(b) = fI(b) + fI(0).Note that

P0D
∗
ΦI

(P ) = (−1)KψI(1− ψI)
∑
b 6=0

fI,0(b)
(P0 − P )(b)

P (b)
.

Consider the second order Taylor expansion of ΨI(P0) at P :

ΨI(P0)−ΨI(P ) = dΨI(P )(P0 − P ) +R2(P, P0),

where

dΨI(P )(h) =
d

dε
ΨI(P + εh)

∣∣∣∣
ε=0

= (−1)KΨI(P )(1−ΨI(P ))
∑
b 6=0

fI(b)h(b)

P (b)
,

R2(P, P0) =
1

2

d2ΨI(P + εh)

dε2
(P0 − P )2

∣∣∣∣
ε=0

+ oP ((P0 − P )2)

=
1

2
ΨI(P )(1−ΨI(P ))(P0 − P )2(b)×

[(1− 2ΨI(P ))(
∑
b 6=0

fI(b)h(b)

P (b)
)2 + (−1)K+1

∑
b 6=0

fI(b)h(b)2

P (b)2
]

+oP ((P0 − P )2(b)) (2.25)

From equation 2.25 we know that R2(P, P0) is a second order term involving square differ-
ences (P0 − P )2(b) for b 6= 0. Thus, we observe that

P0D
∗
ΦI

(P ) = dΨI(P )(P0 − P ).

This proves that
P0D

∗
ΦI

(P ) = ΨI(P0)−ΨI(P )−R2(P, P0).

We can apply this identity to P ∗n so that we obtain P0D
∗
ΦI

(P ∗n) = ΨI(P0) − ΨI(P
∗
n) −

R2(P ∗n , P0). Combining this identity with P ∗nD
∗
ΦI

(P ∗n) = 0 yields:

ΨI(P
∗
n)−ΨI(P0) = (Pn − P0)D∗ΦI

(P ∗n) +R2(P ∗n , P0).
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We will assume that P ∗n is consistent for P0 and P0(b) > 0 for all b 6= 0, so that it follows
that D∗ΦI

(P ∗n) is uniformly bounded by a M < ∞ with probability tending to 1, an that it
falls in a P0-Donsker class (dimension is finite 2K − 2), and P0{D∗ΦI

(P ∗n) − D∗ΦI
(P0)}2 → 0

in probability as n→∞. By empirical process theory, it now follows that

(Pn − P0)D∗ΦI
(P ∗n) = (Pn − P0)D∗ΦI

(P0) + oP (1/
√
n).

We also note that R2(P ∗n , P0) has denominators that are bounded away from zero, so that
R2(P ∗n , P0) = oP (1/

√
n) if P ∗n − P0 = oP (n−1/4) (e.g., Euclidean norm). Thus theorem 1 is

proved.
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Chapter 3

Targeted learning in assessing the
health care program performance

3.1 Introduction

Background of the health care program

In Mexico, type 2 diabetes (T2D) is a major public health concern. The prevalence of
this condition is above 9.4% in the adult population and increasing [33]. T2D is a chronic
disease characterized by a progressive loss of β-cell insulin secretion and frequent insulin
resistance [34]. In poorly controlled patients, the chronic hyperglycemia causes damage of
multiple organ systems and development of micro- and macrovascular complications. The
manifestations of microvascular complications are nephropathy, retinopathy and neuropathy.
Macrovascular complications are coronary artery disease, peripheral arterial disease, and
stroke. These complications are accountable for most of the morbidity, hospitalizations,
and deaths that occur in patients with diabetes mellitus [35, 36]. A recent meta-analysis
of 28 randomized trials that included 34,912 T2D patients found that targeting intensive
glycemic control (HbA1C < 7%) reduces the risk of microvascular complications, compared
with conventional glycemic control; yet, it also increases the risk of hypoglycemia and did
not show significant differences for all-cause and cardiovascular mortality [37].

The Mexican Institute of Social Security (Spanish acronym IMSS), is the most extensive
health system in Mexico with nearly 65 million affiliates provides care to approximately 3.8
million T2D adult patients. The growing demand and healthcare requirements of T2D pose
a heavy burden for family medicine clinics (FMCs), the frontline of IMSS healthcare. T2D
patients are the second cause of consultation at FMCs, and those with acute and chronic
complications, including comorbidities (i.e., hypertension) are among the top ambulatory
and emergency consultations and hospital admissions [38]. Furthermore, T2D has substantial
economic consequences, since in 2016, diabetes expenditures alone accounted for 2.5 billion
US dollars [39].

T2D is a complex chronic condition that requires multidisciplinary healthcare and strict
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patient’s adherence to reduce the risk of acute and chronic complications. The primary
goal of T2D treatment is to reach glucose control (glycated hemoglobin -HbA1C- below
7%). Conventionally, IMSS FMC consultations and follow-ups for T2D have been provided
by a family doctor including physical examination, laboratory tests (i.e., blood glucose)
prescription of treatment and self-care counseling. The family doctor refers patients to
the dietitian, social worker, ophthalmologist or other specialists for a consultation, but the
frequency of referrals and waiting time to receive multidisciplinary care might last several
weeks or months due to the limited supply of these specialists and the increasing demand of
patients with T2D. An analysis of the electronic health records of 25,130 T2D patients found
that only 13% were referred to an ophthalmologist, 3.9% received nutritional counseling,
and 23% had HbA1c < 7% (or plasma glucose ≤ 130 mg/dl) [40]. Though there are specific
clinical guidelines for T2D treatment, care is irregular and uncoordinated [41]. Evaluations
of patient outcomes of FMCs at IMSS revealed less than 30% of T2D patients achieved
HbA1c below 7% [42, 43, 44].

The need to improve health outcomes of T2D patients prompted IMSS to design and
launch the DIABETIMSS program in 2008. DIABETIMSS is a comprehensive model of
care that fulfills the Chronic Care Model attributes [45, 45]. The building block of DIA-
BETIMSS is a multidisciplinary team (medical doctor, nurse, psychologist, dietitian, dentist,
and social worker) that delivers coordinated and comprehensive healthcare. In addition to
regular consultations with the team, T2D patients receive individual, family and group ed-
ucation on self-care and prevention of complications. Only T2D patients with less than 10
years after diagnosis and without severe chronic complications are eligible to enter DIA-
BETIMSS. The primary goal of DIABETIMSS focuses on improving patient’s self-care and
achieving glycemic and metabolic control (reducing high blood pressure, cholesterol levels,
and excess body fat, among others). Ultimately, DIABETIMSS care is expected to avert
acute complications, reduce demand for emergency services and hospitalizations and delay
the progression of organ damage.

The program has expanded gradually. Currently, ∼ 91,000 patients attend 136 DIA-
BETIMSS program modules distributed throughout the country. DIABETIMSS introduced
healthcare delivery changes for which an effectiveness evaluation is worthwhile. Previous
evaluations of DIABETIMSS reported improvements in patient self-care and reductions in
blood glucose levels. However, small samples and lack of a control group limit drawing ro-
bust conclusions [46, 47, 48]. In fact, in complex health systems, such as IMSS, it might
not be possible to evaluate a new program by design, as it can be impractical to randomize
the initiation of the program across different clinics for logistic and organizational reasons;
therefore, to evaluate the impact of a program one often must rely on observational data.

Background of the statistical methods

A new trend of statistical approaches including targeted Learning [2] and Super Learner [7]
have been developed to use routine health data (e.g., electronic health records) to adjust
for confounding and produce robust results that estimate parameters, such as the average
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treatment effect (ATE). The motivation for these methods are the desire to have a combi-
nation of study design and analytical methods that can use observational data, but produce
results akin to the robustness of a randomized control trial. Given that is often impracti-
cal to randomize the initiation of a program across different clinics, one often must rely on
observational data to assess program impacts. Because controlling the experiment by de-
sign is no longer possible, one must use a combination of rich data that contains potentially
high-dimensional patient/clinic variables and statistical methods to tease apart the impacts
of programs from other potential competing causes of health outcomes.

Traditionally, standard parametric regression methods (e.g., logistic regression) were used
to adjust for confounding factors in order to derive estimates of the associations. The
main motivation for such methods was a combination of availability (available in standard
statistical software) and interpretability (produce coefficients convenient interpretations of
relative importance, such as odds ratios). However, because such models are inevitably biased
(typically incorrect to assume the relationship of health outcome and predictor variables
has simple form), the results could not be trusted the same as those from an ”equivalent”
randomized trial. However, the recently manifest combination of new modes of collecting
data (e.g., electronic health record data, new forms of biomarkers of disease), accessible
machine learning algorithms and the theory to develop combine the two (machine learning for
estimation of causal impacts) allows the possibility of robustly evaluating health programs.
This chapter demonstrates the practicality of leveraging these new forms of information and
methods towards robust systems of program evaluation.

One of the main goals in this chapter was to set-up an efficient and robust data analytical
stream that could estimate impacts of the program (or similar program evaluation analyses)
using the most modern statistical methodology that relies on as few arbitrary assumptions
as possible. Recent methodological developments have created the opportunity for analytic
streams that take very little user-input, yet produce results that with trustworthy statistical
inference (e.g., confidence intervals with the desired properties). This chapters uses the
super learner [7] and causal inference [49] to define quantities of interest that are directly
related to desired evaluation statistics, and targeted learning [2] to leverage these two towards
estimation of these quantities. In addition, we have used methods that not only estimate the
population impact of the program, but exploratory methods that can highlight among which
clinics and patient sub-groups the program is working best. The latter are methods being
developed within the context of precision medicine and precision public health. Ultimately,
with sufficient data of high quality, one can even develop treatment rules to target patients
that are most likely to benefit from the program in a context of limited resources. The
ultimate goal is to create the basis for a dashboard analytical framework that can be applied
across large medical systems for evaluating programs/treatments using sophisticated machine
learning technology but with simple interfaces for non-technical users. Evaluation of the
DIABETIMSS program provides a unique opportunity to both evaluate the success of the
program in addressing the progression of diabetes, but also to see how the combination of
detailed data collection and statistical algorithms move towards this goal, with the target of
improving care.
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3.2 Methodology

Data

The data used were generated by IMSS. We analyzed the information from 11 family medicine
clinics (FMC) located in the Mexico City and in the state of Mexico. We included in the
study 6 clinics that implemented DIABETIMSS between 2008 and 2011 and 5 without DI-
ABETIMSS program (those with conventional model of care). We selected by convenience
three DIABETIMSS FMCs from the Mexico City and three from the State of Mexico, in-
cluding in the study clinics with complete 2011-2016 laboratory databases (not all FMC
clinics had laboratory databases for the above-mentioned period). The control clinics were
randomly selected from the list of FMCs without DIABETIMSS program, choosing from
those within the same geographic area and with the similar number of examining rooms
(1014, 1524 and ≥ 25). The sources of information were the IMSS electronic health records
and clinical laboratory databases [39].

Besides being a high volume health care system, IMSS has an established Electronic
Health Record system, which in turn is a component of the IMSS information system that
includes administrative data (i.e., personnel information, inventories, characteristics of clin-
ical settings), affiliation data (i.e.,socioeconomic information of affiliates and beneficiaries)
and financial data among others.

Statistical Methodology

We used both standard regression and targeted learning methods to evaluate the impact of
the program. First, we performed simple bi-variate analyses, looking at the association of the
indicator of glucose control (via the HbA1c indicator) and each of the predictor variables (the
HbA1c indicator is based either directly on HbA1c levels or inferred from fasting glucose levels
if data on HbA1c was lacking). For continuous variables, we use generalized versions of the t-
test (that account for correlation of repeated outcome measures on a subject) or contingency
table analysis for categorical predictors, via the generalized estimating equations approach
[50]. We also used bar graphs to demonstrate the distribution of diabetes complications
across those in and out of the DIABETIMSS program.

Parameters of Interest

First, we formally define the data structure. We assume the data are independent individuals,
i = 1, · · · ,m, with repeated observations, j = 1, ..., ni, that is we allow for some subjects to
have fewer than the total possible number of times, 5. Then the data on each person can be
represented by:

Oi ≡ (Rij, Tij,Wij, Aij, Yij, j = 1, · · · , ni), (3.1)
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where Rij is the specific clinic, Tij is the year of the program and measurement of outcome,
Aij is the indicator of the DIABETIMSS program (1 = yes), Wij is the set of confounders
that can include measurements made in past years, and Yij is the indicator of glucose control.

In this analysis, we treat the data like a serial cross-sectional study, so define the ob-
served data for an individual at time Tij = t. In this case, P0(O(Tij) = t) is the joint
data-generating distribution of the data of observations made at time t. We estimate the
association parameter based upon causal inference, separately by clinic, Rij = r, but we
average the impact over the years (Tij = t) of the study. We define the yearly parameter of
interest as:

Ψ(P )(r) = E{E(Y1 − Y0 | Tij = t, Rij = r)} assumptions= Ψ(P0)(r) (3.2)

=E{E [E(Yij|Aij = 1, Tij = t,Wij, Rij = r)− E(Yij|Aij = 0, Tij = t,Wij, Rij = r)]}.
(3.3)

The left equation (E(Y1 − Y0 | Tij = t, Rij = r) in (3.2) is a causal mean difference,
where Ya is the so-called counterfactual outcome had the patient, possibly contrary to fact,
had level a of the intervention (in our case A(t) = 1 → patient is on the DIABETIMSS,
0 if not in program). Our parameter averages the annual association over the years of the
program (T = 2012, . . . , 2016). The statistical association parameter (3.3) can be thought of
as the average of the stratified average differences in the proportion of subjects that achieve
glucose control in the DIABETIMSS program versus those not in the program. Given that
the outcome of interest in this case is binary (glucose control yes/no), the adjusted mean
differences (3.2) can be thought of adjusted risk differences. If the assumptions are met, then
the numbers returned by the procedure can be interpreted as the difference in the proportion
of subjects with glucose control in the DIABETIMSS program versus those not enrolled.

In addition to the clinic specific estimates, we also reported estimates pooled across all
the DIABETIMSS clinics:

Ψpooled(P0) = ER (E{E [E(Yij|Aij = 1, Tij = t,Wij, Rij = r)

− E(Yij|Aij = 0, Tij = t,Wij, Rij = r)},

(3.5)

where we simply take the mean now over the distribution of the population across clinics by
adding the external expectation operator ER to (3.3) to get (3.4). Thus, the main parameters
of interest can be interpreted as adjusted means, where the associations are adjusted for a
set of potential confounders. We define the parameters of interest in a way that does not
rely on a parametric regression model, e.g.,

E(Yij|Aij,Wij, Tij = t, Rij = r) = βr,t0 + βr,t1 Aij + βr,t2 Wij (3.6)
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so that we can estimate meaningful potentially causal parameters without resorting to mis-
specified parametric models, such as (3.6). In essence, we try to get back to the statistical
assumptions of a typical randomized clinical trial, where one can estimate similar parame-
ters in a nonparametric model, that is, get the inferences as close to a randomized trial as
possible.

Comparisons to Traditional Statistical Techniques
To note, if one takes (3.6) as the true model, then for a fixed r, t,

βr,t1 = E [E(Yij|Aij = 1, Tij = t,Wij, Rij = r)

− E(Yij|Aij = 0, Tij = t,Wij, Rij = r)] ,

so that the parameter we propose estimating is, in these very special cases, equivalent to
a coefficient in multivariate regression model. However, in our case, we derive unbiased
estimates whether or not the underlying true model is of a specific parametric form.

Estimation

We estimate the above parameters of interest using three basic methods: 1) simple unad-
justed mean differences, 2) adjusted via standard logistic regression and 3) adjusted via
machine learning. For 3), we use an approach that first optimizes the prediction model
(dropping the ij for now), Q(A,W, t, r) ≡ E(Y |A,W, T = t, R = r) and then targets that
initial prediction fit towards estimation of the target parameter using Targeted Learning
[2]. Given we do not know the true data-generating distribution, we can not use the data
directly to assess the relative performance of the more advanced machine learning methods
with simpler and more traditional approaches. Thus, we also use the data to flexibly estimate
the relevant parts of the data-generating distribution. Once this is done, we forward sim-
ulate from these (where now the data-generating distribution of thus parameter of interest
is known) and compare the performance of the more advanced estimators with traditional
approaches (see Simulation section below).

SuperLearning

For estimating the prediction function, Q, we use the ensemble machine learning algorithm
called SuperLearner (SL; [7]). The SL algorithm uses cross-validation to avoid over-fitting
(choosing a overly complex model). The SL algorithm works by taking a weighted average
of the included prediction algorithms (learners), that optimizes the cross-validated fit of the
resulting prediction function. To ensure optimal performance in a wide-variety of situations,
SL should include both very simple learners (such as standard regression models) as well as
more flexible, machine learning algorithms. To cover a wide landscape of potential prediction
functions, we included the following library of learners in our SL fit:

1. mean: average of outcome given predictors (constant model),
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2. earth: multivariate adaptive regression splines [51], which provides flexible fits via use
of linear splines and adaptively chosen knots,

3. xgboost: extreme gradient boosting, which produces a fit that can be interpreted as a
weighted average of regression tree fits [52]

4. standard logistic regression,

5. stepwise hierarchical logistic regression allowing for 2-way interactions,

6. ranger: computational fast implementation of so called random forests [6].

In our analyses that pool across clinics and require cross-validation (CV), we clustered
form of CV that keeps all observations in the same clinic, R, within the same validation
sample. This is done again to avoid over-fitting, which can occur when clustered data are
separated in different validation samples. For all analyses, we used the statistical program-
ming language R [53]. For the SL fits, we used the SuperLearner R package [54]. The package
not only returns an estimate of the prediction function Q, but also provides estimates of the
performance of the prediction model. In our case, we also report resulting cross-validated
receiver-operator curves and associated estimated area-under-the-curves (AUC’s) [55].

Substitution Estimator

We use substitution estimators to estimate the parameters discussed above (the adjusted
risk differences) which empirically estimates the outer expectations in the parameters of
interest by plugging an estimate, Q̂, for the corresponding conditional mean in 3.3. Thus,
the estimator has the form:

Ψ(Pn)(r) =
1

nr

2016∑
t=2012

m∑
i=1

ni∑
j=1

I(Rij = r) ∗ I(Tij = t) ∗ (Q̂(1,Wij, t, r)− Q̂(0,Wij, t, r)), (3.7)

where nr =
∑m

i=1

∑ni

j=1 I(Rij = r). We fit three estimators of Q̂ that result in three es-
timators of Ψ: unadjusted, maximum likelihood model (logistic regression), and targeted
maximum likelihood (tmle and SL). For the unadjusted, we simply compare the proportions
of glucose control among those in and out of DIABTIMSS program in a clinic in a particular
year:

Ψ(Pn)(r) =
1

nr

∑
t

∑
i

∑
j

I(Rij = r) ∗ I(Tij = t) ∗ (Q̂0(1, t, r)− Q̂0(0, t, r)), (3.8)

where Q̂0(1, t, r) is simply the proportion of observations with Yij = 1 among all observations
in clinic r (Rij = r) within year Tij = t; simply the standard estimate of the risk difference
(we discuss deriving our measures of uncertainty below which account for the repeated mea-
sures structure of the data). For the next two estimators, we either plug in an estimate
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of Q based upon logistic regression or on tmle/SL estimate into (3.7). The gold-standard
estimator (less biased, asymptotically normally distributed) is that based upon targeted
maximum likelihood estimation (tmle), but we estimate the others to provide some context
for interpretation.

Whereas the unadjusted and standard regression estimators are easy to motivate and
understand, they are based on faulty assumptions that can result in bias in the resulting
estimator. For unadjusted, it is the implicit unmeasured confounding assumption, for the
standard regression, it is the assumption of a logit-linear model. The tmle has essentially no
modeling assumptions. In the case of our estimators, it is based on a Q̂ that is an augmented
version of our original SL fit described above. Specifically, it is simply adding a covariate
that has the property of accounting for any residual confounding remaining in the SL fit
as well as ”smoothing” the estimator so it has a predictable (normal) sampling distribution
so that formal statistical inference is possible. Note, this would not be the case if a pure
machine-learning approach was used (in our case, simply plugging in the original SL fit as
the Q̂). The details of the estimator can be found in [2]; we used the tmle package available
in the programming language R [53, 56]. Note we do the estimates of the average treatment
effect both stratified by clinic as described, but also pooled over clinics, or simply by adding
one more outer, empirical average:

Ψ(Pn) =
1

n

∑
t

∑
r

∑
i

∑
j

I(Rij = r) ∗ I(Tij = t) ∗ (Q̂(1,Wij, t, r)− Q̂(0,Wij, t, r)), (3.9)

where, n =
∑m

i=1 ni, is the total number of observations in the data. The only difference
of this estimator from a weighted average of the clinic-specific estimators is that we do the
tmle-step over the entire data, thereby gaining some potential power in estimation. Again,
we repeat this for 3 different plug-in estimates of Q as discussed above. Note, that the actual
sums are over only the observations with no missing values for all relevant variables; thus,
the divisor in the averages, e.g., in (3.9), are adjusted accordingly.

Heterogeneity of DIABETIMSS Impacts

To examine the heterogeneity of the intervention impacts across clinics, we simply estimate
the average treatment effects stratified by clinic, which gives a directly accessible picture of
between clinic heterogeneity. However, we also examine further sources of heterogeneity by
using a combination of exploratory statistical methods (such as tree regression [57]) as applied
to a transformation of the so-called blip-function. Ignoring clinic and year for this exposition
(though extensions to repeat different years and clinics is trivial), consider simplified data
O = (W,A, Y ). The blip function is defined as:

blip(W ) ≡ E(Y | A = 1,W )− E(Y | A = 0,W ) = Q(1,W )−Q(0,W ). (3.10)

Note, it is a measure of the DIABETIMSS impact on subjects with the same confounders,
W , so in our case, we examine how the treatment impact can vary across the joint distribution
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of confounders. We could simply plug in estimates of Q as we did above, either using SL or
TMLE. In this, we explored variation in the treatment effect by sub-populations by using
tree regression on a transformed outcome

Y ∗ ≡ Q̂(1,W )− Q̂(0,W ),

where Q̂(a,W ) is an estimate of E(Y | A = a,W ). Y ∗ is obtained in the following steps:

1. build a training dataset with indicator of glucose control as outcome, and all the
variables we used as predictors (minus clinic ID) as predictors,

2. build a Super Learner model with same algorithms as above(”SL.mean”, ”SL.earth”,
”SL.xgboost”, ”SL.glm”, ”SL.glm.interaction”) on the training dataset,

3. build 5 test datasets, one for each control clinic, and set the indicator of DIATBETIMSS
program status (enrolled to DIABETIMSS) as 1, keeping the Wi(t) for the clinic fixed
at the original values,

4. fit the Super Learner model on the test datasets, and compute the predicted outcome
as Q̂∗(1,W ) for each observation,

5. build 5 test datasets, one for each control clinic, and set the indicator of DIATBETIMSS
program status (enrolled to DIABETIMSS) as 0,

6. fit the Super Learner model on the test datasets, and compute the predicted outcome
as Q̂∗(0,W ) for each observation,

7. compute Y ∗ = Q̂∗(1,W )− Q̂∗(0,W ) for each observation.

Because E(Y ∗ | W ) = blip(W ), one can regress Y ∗ against W to explore what factors are
most important for impacting the treatment effect. There are more formal ways of deriv-
ing so-called optimal treatment regimes and estimates of the future benefit of implementing
such a rule [58]. However, there is little reason to think the program should decrease the
probability of glucose control, and empirically this was born out (as discussed below in Re-
sults), so finding an optimal rule seems most likely trivial: enroll everyone in DIABETIMSS.
One could also estimate the optimal subset of patients to enroll in DIABETIMSS if there
was resource constraints (could not give the program to everyone), but that is beyond the
current scope of our chapter. We simply used tree-regression, regressing Y ∗ against W to
find sub-groups (defined in W -space) that have similar intervention impacts. We also simply
examined the empirical distribution of the estimated blip function to see if the intervention
impact seem to be uniform across patients, or was concentrated in a subset of patients. The
combination of these descriptive approaches provides some indication of the potential bene-
fit of targeting the program to subsets of patients, and to highlight subsets of patients that
might not be currently benefiting from the program as much as desired.
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We were also able to use models developed on the six clinics to predict the impact of the
DIABETIMSS program on the clinics who have no enrolled participants (we refer to them
as ”control clinics”). This demonstrates how one can use the local patient characteristics,
potentially clinic characteristics as well, to predict the impact of the program. This will be
particularly important if there is large heterogeneity in the impact across clinics and subjects
within clinics.

Missing Data

We performed complete case analysis. Given at this point, there were no other (outcome)
predictive covariates available to explain missingness beyond what we used in our models
means that the conditional regression estimates (either from parametric models or SL) as-
sume the data are missing at random (MAR), meaning that the outcome is independent of
whether or not data were missing, conditionally on the predictors in the model. This avoids
additional errors that can result from misspecification in either inverse weighting related
models or imputation models. However, it does mean the marginal estimates are on the sub-
set of the population that have non-missing data as we do not extrapolate to observations
without missing data. Future work will involve sensitivity of results to other methods of
handling missing data.

Sensitivity analysis

We performed the same set of analyses, but also adjusting for the process of care indicators
in addition the original adjustment variables described above. Because of the time-resolution
available for this analysis, and that these indicators could be influenced by being enrolled in
the DIABETIMSS program (e.g, comprehensive foot exam), we were worried about mixing
up confounders and downstream causes of the program and potentially biasing our results.
However, there is also some risk of not including them, as they might be argued to be
important confounders. Thus, we repeated are analyses with these indicators included in
adjustment set to see 1) if the overall associations were importantly different and 2) if we
could provide evidence for the issues surrounding these indicators. Thus, in addition to
duplicating the analyses, we also look at the distribution of the estimated propensity score
(the g(W ) above). If there is strong relationship of being enrolled in the program and these
indicators, then one would expect the propensity score distribution to shift to more extreme
numbers (closer to 0 and 1) than the distribution of the estimate of the propensity score that
does not contain those variables. If there is a significant proportion of the distribution close
to ĝ(W ) = 0, then estimation adjusting for these variables becomes problematic. Data at a
more refined time-scale would be necessary to tease apart cause and effect if these indicators
were thought to have a large influence on the outcome.



CHAPTER 3. TARGETED LEARNING IN ASSESSING THE HEALTH CARE
PROGRAM PERFORMANCE 72

Simulations for evaluating relative performance of estimators

To explore the relative merits of a more non-parametric (machine learning) approach relative
to standard regression analyses, we conducted a set of simulations. We based the simulations
closely upon the actual data, using a specific clinic’s data to estimate the data-generating
distributions. We used flexible, machine (SL) methods to estimate both the outcome and
treatment models. We then ran simulations based upon this model (can be thought of as a
semi-parametric bootstrap) and one where more non-linearity was entered into estimation of
the prediction model (details to follow). We then compared the performance of the estimates
and the confidence intervals of competing methods.

The purpose is to show the greater robustness of the Targeted Learning approach to
estimation of adjusted associations.

Details of the data-generating distribution for prediction, Q

We used clinic C at year 2016 to motivate the data-generating distribution. We could have
chosen others, but we wanted sufficient number of observations (6,793) to get a reasonable
estimate of the distribution of covariates, and both the treatment and prediction models.

We then fit the response variable, (the HbA1c control indicator), on the DIABETIMSS
status and covariates (the restricted set that does not include quality of care indicators 1
to 7, as in the primary data analysis) and obtained the estimated ĝ(W ) ≡ P̂ (A = 1|W ),
and estimated Q̂(A,W ) ≡ Ê(Y |A,W ). These were then treated as the true distributions in
repeated simulations. We also did a separate set of simulations by augmenting the prediction
model in the following way, making a Q̂(0,W )aug and Q̂(1,W )aug:

logit(Q̂(0,W )aug) = logit(Q̂(0,W ))− A− A× logit(Q̂(0,W ))− A× logit(Q̂(0,W ))2,

logit(Q̂(1,W )aug) = logit(Q̂(1,W )) + A+ A× logit(Q̂(1,W )) + A× logit(Q̂(1,W ))2.

For the second set of simulations, we simply replace the original fit by this one when gen-
erating the simulated data. The estimators used to generate estimates from simulated data
do not change, whether we use the original fit. Thus, we get the relative performance in
two different data-generating situations. Of course, this is a small set of possible simula-
tions, but the purpose is to show the robustness of one method (that it works regardless of
data-generating distribution) versus that of competing standard methods.

Generating the truth

The performance is based upon knowing the true parameter in these simulations. Given the
black-box nature of the methods used to make the data-generating distributions, there is no
simply analytical way to derive the true average treatment effect (ATE). Thus, we did so by
simulation. Given the true parameter is E(Q(1,W ) − Q(0,W )), we can generate the true
value of this by 1) taking a random sample with replacement of W of very large size (in our
case, 1,000,000). For each W, we get its corresponding Q(1,W ), Q(0,W ) and take there
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differences, and average over the randomly drawn W’s. This was repeated both by defining
Q to be original and augmented estimates from the clinic C data.

Simulation algorithm

The simulations are thus just repeated the estimators we compared among repeated samples
from the two distributions. For each simulated data set, we:

1. draw 6,793 samples from W with replacement;

2. generate random binomial variables A from the W samples using gW (based on fit,
ĝ(W ) from original data),

3. generate binomial Y using Q(A,W ) either on the original fit (Q̂ or augmented Q, Q̂aug,

4. estimate the ATE from three different substitution estimators based upon (bold is how
these are referenced in figures):

• unadjusted logistic regression (standard unadjusted analysis - will be biased if
there is A is not randomized so thus there is confounding),

• adjusted logistic regression (standard regression approach, and will be biased if
true Q is not well-approximated by a linear model), and

• targeted learning (tmle) based upon SL fits of the g and Q as done in the main
analyses.

5. calculate the 95% CI’s for each of the estimators,

6. store the three estimates of the ATE,

7. repeated the 4 steps above for 1,000 times,

8. compare the repeated estimates of each type to the true value to get the mean-squared
error (MSE), and

9. compare the 1000 95% CI’s to true ATE to get the true coverage probabilities of the
three approaches.

3.3 Results

Summary Statistics

Table 3.1 reports the data dictionary for this chapter and table 3.2 displays the overall
association (across the years) of each of the predictor variables and indicator of diabetes
control. First of all, there is a a significant (p < 0.001) unadjusted positive association with



CHAPTER 3. TARGETED LEARNING IN ASSESSING THE HEALTH CARE
PROGRAM PERFORMANCE 74

the participation in the DIABETIMSS program and having a positive indicator of glucose
control (36 versus 32%). Not surprisingly, the recent history of HbA1c is a strong predictor of
current HbA1c status: 61% of subjects that had HbA1c< 7% in the previous year had control
in the following year, where only 18% of subjects that had lack of control the previous year,
achieved control the following year ( p < 0.01). There is a significant positive association of
age and the HbA1c indicator: 35% of patients of ≤ 55 years had glucose control, whereas
37% of patients over 71 years had control (p < 0.001). No anthropometric nor nutrition
related variables are related to glucose control. Those that had multiple risk factors had
unexpectedly similar glucose as those with no risk factors (28 versus 30%; p = 0.406).
Interestingly, those that smoke have higher positive HbA1c indicators (35% for smokers
versus 29 % for non-smokers). There is a significantly higher average number of complications
related to diabetes in subjects with lack of glucose control (p < 0.001).
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Variables Type Description Values

Treatment Variable

diabetimss binary Patient referred to DIABETIMSS 0) No 1) Yes

Covariates

edad continuous age
sexo binary sex 1) Female 2) Male

tipo pac categorical type of patient
1) Insured 2) Spouse of insured
3) Child of insured
4) Parents insured 5) Retired

anttab binary smoking habit 0) No 1) Yes
pesoini continuous Weight at the beginning of the year (kg)
tallaini continuous Height at the beginning of the year (m)
imcIni continuous BMI at the beginning of the year (kg/m2)

edoNutricioIni categorical Nutrition status at the beginning of the year
1) Underweight 2) Normal weight
3) Overweight 4) Obesity

sobObes binary Overweight / Obesity 0) No 1) Yes
tot enfcrondiab continuous Total number of diabetic complications

indic10 prev binary

Indicator 10: Having HbA1C <7% in the last
measurement; or in the absence of HBA1 test
fasting glucose <= 130mg/dl
in the last 3 measurement in previous year

0) No 1) Yes

facriesg binary
Patients with Risk Factors
(smoking; hypertension; dyslipidemia)

0) No 1) Yes

year categorical record year 2012 to 2016

Process-of-care Variable

indic1 binary
Indicator 1: Referral to the screening for
dyslipidemia by measuring total cholesterol
in patients without previous dyslipidemia

0) No 1) Yes

indic2 binary Indicator 2: At least one measurement of HbA1C 0) No 1) Yes
indic3 binary Indicator 3: Comprehensive foot evaluation 0) No 1) Yes
indic4 binary Indicator 4: Referral to the ophthalmologist 0) No 1) Yes

indic5 binary
Indicator 5: At least one nutritional counseling
provided by the nutrition service

0) No 1) Yes

indic6 binary
Indicator 6: Overweight and obese patients who
received metformin unless contraindicated

0) No 1) Yes

indic7 binary
Indicator 7: Patients with hypertension receiving
inhibitors of angiotensin converting enzyme (IACE)
or angiotensin-receptor blocker unless contraindicated

0) No 1) Yes

Outcome Variable

indic10 curr binary

Indicator 10: Having HbA1C <7% in the last
measurement; or in the absence of HBA1 test
fasting glucose <= 130mg/dl in the last 3
measurement in current year

0) No 1) Yes

Table 3.1: Variables analyzed in the chapter
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Missing Data

Table 3.2 shows the relationship of missing data for each of the variables to the missingness
of the outcome. One can see there is extensive missing data, particularly for the HbA1c
indicator. Over half (62%) of observations had missing HbA1c indicators, so a very significant
proportion of missing data that does limit the confidence by which one can extrapolate the
results to the larger population. As we have stated above, we did complete case analyses,
but such a large share of missing data, there is no silver bullet for unbiased extrapolation of
the results based on the non-missing observations to the larger population.

Estimated Impact of Program

The results of the analyses estimating the impact of the DIABETIMSS program are shown
in figure 3.1 and table 3.3. Comparing first at the TMLE results across clinics and pooled
(”All” clinics), there looks to be a fair amount of variability in the treatment impact; clinic E
shows an estimated improvement in the HbA1c indicator of around 2%, whereas results for
F suggests an 8% improvement. The overall (pooled) estimated suggests a 5% improvement
in glucose control (last row of table 3.3). Comparing the unadjusted to the two adjusted
estimates (standard regression and machine-learning adjusted TMLE) shows strong evidence
of confounding by the measured factors. For most clinics (and the pooled estimate) the
adjusted estimates are generally more significant than the unadjusted (estimates move away
from the null), suggesting that the DIABETIMSS was assigned with higher probability to
patients with higher risk of disease.
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Figure 3.1: Targeted Learning adjusted associations of DIABETIMSS and glucose control
for all DIABETIMSS clinics

Exploration of heterogeneity among clinics

We explored potential heterogeneity across clinics in a few ways. First, we looked at the con-
sistency of associations of predictor variables with the HbA1c indicator. Figure 3.2 shows the
results of running logistic regression stratified by clinic and showing the resulting estimated
log odds ratios by clinic. It shows, not surprisingly, a consistently strong assocation with the
previous years HbA1c indicator, relatively consistent associations of DIABETIMSS across
clinics (similar to the universal positive associaitons discussed above), and consistent associ-
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Clinic DIABETIMSS n
Unadjusted logistic regression Adjusted logistic regression TMLE

% HbA1c <7% (95% CI) % HbA1c <7% (95% CI) % HbA1c <7% (95% CI)

A
No 4778 0.3599 (0.3517, 0.3680) 0.3692 (0.3574, 0.3810) 0.3694 (0.3577, 0.3812)
Yes 573 0.4122 (0.3864, 0.4381) 0.3907 (0.3564, 0.4249) 0.3997 (0.3665, 0.4329)
RD 0.0524 (0.0252, 0.0795) 0.0215 (-0.0141, 0.0570) 0.0302 (-0.0131, 0.0736)

B
No 6335 0.4027 (0.3950, 0.4103) 0.4028 (0.3918, 0.4138) 0.4034 (0.3926, 0.4143)
Yes 2324 0.3901 (0.3777, 0.4025) 0.4530 (0.4368, 0.4693) 0.4598 (0.4444, 0.4752)
RD -0.0125 (-0.0271, 0.0020) 0.0502 (0.0312, 0.0693) 0.0564 (0.0334, 0.0794)

C
No 11535 0.3419 (0.3369, 0.3470) 0.3285 (0.3222, 0.3349) 0.3291 (0.3228, 0.3354)
Yes 3269 0.3713 (0.3612, 0.3814) 0.3694 (0.3554, 0.3833) 0.3815 (0.3673, 0.3957)
RD 0.0293 (0.0181, 0.0406) 0.0408 (0.0255, 0.0561) 0.0524 (0.0310, 0.0737)

D
No 3500 0.3067 (0.2982, 0.3151) 0.2911 (0.2801, 0.3022) 0.2917 (0.2809, 0.3026)
Yes 2208 0.3446 (0.3330, 0.3563) 0.3382 (0.3252, 0.3513) 0.3385 (0.3257, 0.3513)
RD 0.0380 (0.0236, 0.0523) 0.0471 (0.0307, 0.0635) 0.0468 (0.0272, 0.0663)

E
No 1050 0.1570 (0.1483, 0.1657) 0.1624 (0.1503, 0.1746) 0.1623 (0.1501, 0.1744)
Yes 229 0.1717 (0.1514, 0.1919) 0.1860 (0.1551, 0.2169) 0.1781 (0.1493, 0.2069)
RD 0.0147 (-0.0073, 0.0367) 0.0236 (-0.0095, 0.0567) 0.0158 (-0.0239, 0.0555)

F
No 1160 0.2049 (0.1944, 0.2154) 0.2370 (0.2219, 0.2520) 0.2376 (0.2226, 0.2527)
Yes 337 0.2590 (0.2352, 0.2828) 0.3073 (0.2753, 0.3393) 0.3169 (0.2844, 0.3494)
RD 0.0542 (0.0281, 0.0802) 0.0703 (0.0351, 0.1056) 0.0793 (0.0360, 0.1226)

All
No 28325 0.3278 (0.3247, 0.3309) 0.3225 (0.3184, 0.3266) 0.3227 (0.3185, 0.3268)
Yes 8940 0.3548 (0.3489, 0.3608) 0.3692 (0.3617, 0.3768) 0.3716 (0.3639, 0.3794)
RD 0.0270 (0.0204, 0.0337) 0.0467 (0.0383, 0.0552) 0.0490 (0.0377, 0.0602)

Table 3.3: Associations of DIABETIMSS program and the HbA1c indicator by clinic and
pooled over all clinics. The first two rows in each clinic give the estimates of the proportion
of subjects with HbA1c < 7% and 95% confidence intervals (CI). The last line is the risk
difference (RD) as just the difference in these estimated proportions so it provides the mea-
sure of association of interest (estimated change in proportion of those with HbA1c < 7% in
DIABETIMSS - those outside the program. We show three esitmators as discussed in text:
unadjusted, adjusted within a linear-logistic regression and finally using targeted maximum
likelihood estimation (TMLE).

ations with age. The other variables have less consistent associations, being positive in some
clinics, negative in others. To explore whether some clinics had very different distributions
of predictors, we performed a standard principle components analysis and colored the points
on a resulting PCA plot by clinic (see Figure 3.3), which shows consistent overlap among
clinics. This suggest there is no dramatic differences in covariate distributions among the 6
clinics. Finally, we examined the distribution of treatment impacts across all the individuals
in the study. In figure 3.4, we plot the estimated blip(W ) function across index of individual
after sorting by the magnitude of this blip function. In an idealized situation where all
subjects had the same treatment impact (same blip function), then this plot would look like
a horizontal line right at the average treatment impact. In practice, even if the treatment
impact is homogeneous, given estimation error one would expect some departure from this
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line. In our case, their appears to be a relatively notable departure from homogeneity, such
that around 20000 units (individual/years) have impacts greater than the average impact,
whereas the majority of subjects have impacts below this average impact. Very few subjects
have estimated negative impacts, and this could be due to random estimation error, not
actual negative effects of DIABETIMSS among the small proportion of subjects that have
negative estimated blip functions (our Y ∗ defined above in equation 3.10).
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Figure 3.2: Comparison of Associations of Covariates and outcome by Clinic. The last 2 vari-
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which is total number of diabetes complications. The 3 levels of tot enfcrondiab are: 0, 1,
> 1
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Figure 3.3: Principle components analysis of DIABETIMSS clinics. Note that clinic E does
not appear distinct from other clinics.
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Figure 3.4: Distribution of DIABETIMSS treatment impacts among all subjects in DIA-
BETIMSS clinics.

Finally, we attempted to explain the heterogeneity seen in figure 3.4 by performing tree
regression [57] on the blip-function transformed data (Y ∗) to explore the factors most re-
sponsible for differences in the treatment impact. The results of this are presented in figure
3.5. Tree regression is a simple form of histogram regression based on binary splits on co-
variates. It results in distinct nodes (representing sub-populations) that ”best” characterize
the variability seen in the outcome (in our case, the blip function). One can see the terminal
nodes (the smallest subgroups) vary in their treatment impact from relatively small (2.6% in
left most node) to modestly larger than the average treatment effect (6.4 %). If one exams
the variables that define these splits, if there is a general message, it is that those with fewer
existing complications of diabetes appear to have a greater benefit from the program than
those with more progressed diabetes. This is not surprising as the magnitude of the reversal
of the disease progression is larger and harder to achieve among this subset. However, one
sees no obvious sub-populations where either the program is universally effective or visa
versa. Thus, for any group, using the average impact estimated (around 5% improvement)
is not a unrealistic estimate.
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Figure 3.5: Tree diagram showing the distribution of treatment effects based on fit to data
from all DIABETIMSS clinics and applied to all control clinics

Predicting benefit of DIABETIMSS in control clinics

As described above, we also predicted the impact on a patient by patient basis for the control
clinics, and show the results in figure 3.6. As one can see, the predicted impacts are quite
similar to what was observed empirically in the DIABETIMSS clinics, that is, there is some
variation but one would expect above a 5% improvement in HbA1c indicators (on average)
if the program were implemented in these clinics.
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Figure 3.6: Boxplot (showing interquartile range) of predicted impact (blip function) of
implementing DIABETIMSS program in control clinics, based upon TMLE fit of Q in DIA-
BETIMSS clinics

Simulations

Figure 3.7 shows the plots of the sampling distribution along with the mean of the 3 estima-
tors and and the true mean (black line). In addition, the caption contains specific numbers
regarding the performance of the different estimators. The left and middle plots are the es-
timates of one component of the ATE (adjusted mean when A = 0 and A = 1, respectively).
The farthest right is that of the parameter of interest, the ATE. One can see small reduction
in bias in the tmle, versus the standard adjusted and unadjusted. However, even the mean
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of the unadjusted estimates is close to the true value, and its confidence interval has nearly
perfect 95% coverage, so there is very little room for improvement.

Figure 3.7: Distribution of model estimation using original data parameters. Dashed lines are
the mean values. For Q0W: unadjusted (MSE = 4.56e-05, coverage = 94.0%); adjusted(MSE
= 4.25e-05, coverage = 94.6%); TMLE(MSE = 4.34e-05, coverage = 94.8%). For Q1W:
unadjusted (MSE = 0.0005, coverage = 72.5%); adjusted(MSE = 0.0003, coverage = 82.7%);
TMLE(MSE = 0.0002, coverage = 92.7%). For ATE: unadjusted (MSE = 0.0006, coverage
= 73.9%); adjusted(MSE = 0.0004, coverage = 86.5%); TMLE(MSE = 0.0002, coverage =
94.2%).

This is why we also used a augmented distribution to examine the relative performance
when there is potential confounding by measured covariates as well as important non-
linearities in the true prediction model. Figure 3.8 shows of the results of these simulations,
along with detailed information on the relative importance. shows the three distributions
with their asymptotic mean values, MSE and coverage rate for the 95% confidence interval.
Clearly, the performance of the tmle estimator is far superior to the other two simpler es-
timators - they fail to pick up the confounding and are poor approximations for the true
prediction model.

The message is that, if simpler, more parametric approaches work, so does tmle (simula-
tion 1). However, tmle still works in cases where they fail (Simulation 2).
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Figure 3.8: Distribution of model estimation using more variant data parameters. Dashed
lines are the mean values. For Q0W: unadjusted (MSE = 1.97e-04, coverage = 77.1%);
adjusted(MSE = 0.0021, coverage = 74.6%); TMLE(MSE = 0.0008, coverage = 94.2%). For
Q1W: unadjusted (MSE = 2.15e-03, coverage = 33.5%); adjusted(MSE = 2.11e-03, coverage
= 36.4%); TMLE(MSE = 4.44e-04, coverage = 90.7%). For ATE: unadjusted (MSE =
1.42e-03, coverage = 64.1%); adjusted(MSE = 1.38e-03, coverage = 67.8%); TMLE(MSE =
5.22e-04, coverage = 90.2%).

Sensitivity: including process-of-care indicators as confounders

The resulting adjusted targeted learning estimates are shown in Figure 3.9, analogous to
those shown in figure 3.1. One can see what appear to be more variable results (possibly
more unstable) results, but the overall estimate average across all clinics does not change
greatly. Thus, adjustment by these indicators does not change the main conclusions of the
chapter. One can see that the distribution of propensity scores (see figure 3.10) has a larger
proportion of the distribution at very low values (near 0) when the process-of-care indicators
are included in the adjustment set. This indicates other variable importance results (not
included by available upon request) that suggest weak association of these indicators with
the outcome, but strong correlation with the program, again suggesting they are problematic
as confounders for our outcome (HbA1c indicator).
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Figure 3.9: Targeted Learning adjusted associations of DIABETIMSS and glucose control
for all DIABETIMSS clinics that includes adjust for process-of-care variables.
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Figure 3.10: Distribution of estimated propensity scores, g(W ) both including and excluding
the process-of-care indicators.

3.4 Discussion

The study provides evidence on the positive effect of DIABETIMSS program (pooled esti-
mate of a 5% of improvement in glycemic control) and shows the potential and challenges in
using routine observational patient data and machine learning methods to evaluate the per-
formance of health interventions within complex health- care institutions to inform decision-
makers.

DIABETIMSS was implemented to improve diabetes care and health outcomes by ad-
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dressing three critical elements of the Chronic Care Model (CCM): 1) re-design of the delivery
system through multidisciplinary teams, 2) decision support through evidence-based clinical
guidelines, and 3) counseling and empowering of patients on self-management. Multiple clin-
ical trials in different countries have tested these three elements, showing positive effects on
the improvement of the processes of care and patients’ outcomes [59, 60]. CCM has been in-
creasingly advocated for effective management and control of NCDs within primary care [61].
Results from randomized controlled trials that have tested CCMs in primary care contexts in
Europe show that compared to usual diabetes care, more patients reached treatment targets
for blood pressure, and levels of blood sugar and cholesterol [62]. Experiences with CCMs
in 8 Caribbean countries show improvements in baseline to follow up measures of blood
glucose control and increases in the proportion of patients receiving a preventive practice or
meeting quality-of-care indicators [63].DIABETIMSS evaluation results are consistent with
other CCMs interventions, revealing a small but essential impact of this program with an
overall pooled estimate of 5% improvement in glycemic control of T2D patients. Nonethe-
less, this slight increase in the percentage of T2D patients who achieved glycemic control
call for further research, as IMSS’ decision-makers require additional evidence to ascertain
whether DIABETIMSS provide the interventions of the CCM optimally in compliance with
evidence-based guidelines to assure high-quality care and better health outcomes [61, 64].
The evidence suggests that more significant benefits could be obtained through combining
all six elements of the CCM that means incorporating the organizational changes that focus
on creating a culture and mechanisms that promote safe, high-quality care, including the
introduction of strategies to facilitate changes, and management of errors and quality control
problems [60]. Another critical element of the CCM is the availability of timely and accu-
rate health information systems to ensure program accountability and provide information
for future improvement efforts [61].

The outcome variable of this study was HbA1C < 7%. Since 2000, this goal is recom-
mended by the IMSS diabetes clinical guidelines, independently of patient age. However,
since 2016, American Diabetes Association (ADA), highlighted that HbA1C measurement
may have limitations primarily in older adults who have medical conditions that increase red
blood cell turnover (e.g., hemodialysis, recent blood loss or transfusion, or erythropoietin
therapy), which can falsely increase or decrease A1C. Therefore, for adults ≥ 65years of age
ADA recommends specific glycemic control goals of HbA1C < 7.5% for healthy older adults
with few coexisting chronic illnesses and HbA1C < 8.0% or < 8.5% for older adults with
multiple coexisting chronic illnesses or instrumental impairments or cognitive impairment
[65]. If we apply the ADA recommendation to our study, this could probably increase the
effect of the DIABETIMSS on glycemic control of older patients; yet, further analysis is
recommended to support this hypothesis.

To date, diabetes research that used machine learning methods, was focused primarily on
biomarker identification, prediction of diagnosis and diabetes complications, with low em-
phasis on evaluation of healthcare programs [66]. Our study is one of the pioneers to evaluate
the performance of an ongoing health program using machine learning methods and routine
observational patient data to inform decision-makers. The study showed both the potential
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and challenges in using detailed observational patient data to evaluate the performance of a
healthcare program. Though the estimates from standard regression were not radically dif-
ferent from those based upon less biased, machine learning methods, they do show enough
different to be important, particularly when the impacts apply to so many potential patients.
In addition, simulations based upon the data suggest the relative merits of using a more ag-
nostic, machine-learning approach when they give different results than standard methods.
In addition, the simulations show that the more complex targeted learning estimator does not
harm performance when a simpler model provides an adequate approximation. Of course,
one never knows whether or not standard methods will suffice at the beginning of a study,
so standard methods are used, one is betting on the relationships being having a particular
form. Thus, it increases the risk of misleading conclusions, with very little of any benefit
relative to using more data-adaptive methods. The study not only shows the merits of using
targeted learning approaches to evaluate the average performance of the intervention, but
also to explore the heterogeneity of this performance across different clinics. Based upon
the distribution of patient characteristics, the analyses also provide information regarding
which clinics are most likely to benefit from future implementation of DIABETIMSS. The
information provided could be the basis of informed cost-benefit analyses of DIABETIMSS
or other programs.

The limits of the analysis are related to the limits of the available data. First, the data had
significant missing values, particularly for the outcome, making extrapolation of the results
on those non-missing observations more problematic for the entire population. In addition,
more detailed measurements made a finer time scale would allow more refined estimation of
the impact of DIABETIMSS and through which pathways the program operates to impact
patient health. Given the limits of the resolution, however, the analyses were able to provide
actionable information about the benefits of the program and how it might be optimally
distributed within the relevant population of clinics. Beyond the specific application to
DIABETIMSS, the combination of methods and data suggest this type of study is valuable
for evaluating programs and treatments within large health care systems.
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Chapter 4

Application of targeted learning in
variable importance measure

4.1 Introduction

With overwhelmingly complex high-dimensional Electronic Health Record data nowadays,
it’s our primary goal in evidence-based medicine to establish the importance of numerous
measured variables with regard to certain health outcomes, and hence assist researchers and
healthcare workers to make optimal care decisions based on the entirety of the participants’
data. There is not a universal definition of ”most important” variables. One type of defini-
tion is motivated by prediction power, where the ”most important” variables are those which
accurately predict the outcome (like those generated from random forest [6]), and another
type by causal association, where the ”most important” variables are those whose change
cause most changes in outcomes (like the average treatment effect of binary treatments [1]).
Here, we focus on the latter one and define the variable importance as the amount of attri-
bution of that variable towards changes in the mean outcome. There are plenty of medical
literature measuring variable importance and building associations between these variables
and outcomes of interest. Yet most of them only applies parametric models or evaluate the
importance of the variable as how well the variable predicts the outcome [67]. In comparison,
our method makes no parametric modeling assumptions and relies on data-adaptive ensem-
ble machine learning models to estimate the data-generating distribution. The method we
used in this chapter is developed based on the Non-Parametric Variable Importance (NPVI)
estimator first proposed by Chambaz, Neuvial and van der Laan [68], which utilized the
combination of machine learning and causal inference via targeted learning [2], to determine
how changing the variable changes the outcome. There are several other approaches to mea-
sure the variable importance under different definitions utilizing targeted learning, including
the collaborative targeted maximum likelihood estimation by Gruber and van der Laan [69,
70, 71], the data-adaptive target parameter by Hubbard, Kennedy and van der Laan [72],
variable importance measure in longitudinal data by Diaz et al [73], variable importance
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measure by Hubbard et al [74], the semiparametric regression model approach by Tuglus
and van der Laan [75] and by Wang, Rose and van der Laan [76, 77]. Our approach has the
following benefits. First, our approach does not dependent on arbitrary parametric assump-
tions between the covariates, the exposure and the outcomes (for example, coefficients in an
arbitrary linear model). Second, our estimator is asymptotically linear (locally efficient) for
which robust asymptotic inference is available. The relationship with causal intervention pa-
rameters also makes our estimator interpretable to health care workers. Third, our approach
allows for variable importance comparisons that are comparable regardless of the original
scale of the variable. We applied both the traditional linear model coefficients and our pro-
posed estimator to measure the variable importance of mother’s midlife eating behavior on
child’s BMI, adjusted for mother’s adulthood stress, early-year socioeconomic status and
health conditions, and child’s age and sex, for participants involved in the National Heart,
Lung, and Blood Institute Growth and Health Study [78]. We estimated the importance of
five variables measuring mother’s midlife eating behaviors, adjusted for eight variables mea-
suring mother’s early-year socioeconomic and health status, one variable measuring mother’s
adulthood strain count, and child’s age and sex. Our results showed that if the mother has
a higher level of drive for thinness, body dissatisfaction, bulimia, or interoceptive awareness,
her child tends to have a higher level of BMI.

The remainder of the chapter is organized as follows. In section 4.2, we illustrated the
methodology, including source of data, parameter of interest, and model specifications. In
section 4.3, We presented the summary statistics and results. In section 4.4, we provided
simulations for four estimators under linear and non-linear model settings, and evaluated
their performance. In section 4.5, we discussed our findings.

4.2 Methodology

In this section, we first stated the source of data (section 4.2), then established the causal
framework for our analysis(section 4.2), as well as the parameter of interest (section 4.2), and
then we provided the specifications for the four estimators analyzed in this study (section
4.2).

Data

The data from the National Heart, Lung, and Blood Institute Growth and Health Study
(NGHS) [78]. Women from the original Richmond, CA site (N=883) were recruited for a
follow-up study that extended the previous cardiometabolic aims to midlife. Comprehensive
anthropometric, health, behavioral, psychosocial, and demographic data, collected annually
from the original study period (1987-1997) when the women were age 9-10 to age 19-21,
were combined with similar data collected when the women were age 37-43. To be eligible
for the follow-up, women could not be pregnant, have given birth/miscarried within the
last three months, or be incarcerated at recruitment. In this study, we used a sample of
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women and children who completed the baseline questionnaire and the clinic visit (either
at home, at Berkeley or a package with a scale and tape measure was mailed to them).
Women and their biological children who either had a home visit or came to Berkeley were
weighed and measured by trained staff. Women who completed the protocol via distance,
where guided over the phone by a trained staff member to weigh and measure themselves
and their children. Of the 883 original participants, 624 enrolled the follow-up study and
completed the baseline questionnaire. Of the 624 participants 373 had 586 children who
had measured weight, height and waist circumference. This study was approved by the
University of California, Berkeley Institutional Review Board.

Causal Framework

The variables we used in this study has of three components:

1. Exposures(X): mothers’ eating behaviors collected in the follow-up study (age 37-43):
Four measures from the Eating Disorder Inventory that reflect dimensions of disordered
thoughts, behaviors and attitudes toward eating, weight, body parts and emotions [79]:

• drive for thinness (dt): The ”drive for thinness” construct has been described
as one of the cardinal features of eating disorders and has been considered an
essential criterion for a diagnosis according to many classification schemes. The
7 items on this scale assess an extreme desire to be thinner, concern with dieting,
preoccupation with weight and an intense fear of weight gain. Prospective studies
have indicated that the drive for thinness scale is a good predictor of binge-eating
and the development of formal eating disorders.

• body dissatisfaction (bd): The body dissatisfaction scale consists of 10 items that
assess discontentment with the overall shape and with the size of those regions of
the body of extraordinary concern to those with eating disorders (i.e., stomach,
hips, thighs, buttocks). One item on body dissatisfaction scale measures the
feeling of bloating after eating a normal meal, a common feature of those who are
dissatisfied with their body weight. Given the fact that body dissatisfaction is
endemic to young women in Western culture, it is does not cause disorder alone;
however, it may considered a major risk factor responsible for initiating and then
sustaining extreme weight controlling behaviors seen in eating disorders.

• bulimia (bul): The bulimia construct assesses the tendency to think about and
to engage in bouts of uncontrollable overeating (binge-eating). The 8 items on
this scale assess concerns about overeating and eating in response to being upset.
The presence of binge eating is one of the defining features of bulimia nervosa and
differentiates the bingeing/purging and restrictor subtypes of anorexia nervosa.
Research has shown that binge eating is common in individuals who do not meet
all of the criteria to qualify for a formal diagnosis of an eating disorder; however,
in most cases, severe binge eating is associated with marked psychological distress.
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• interoceptive awareness (int): The interoceptive awareness (int) scale consists of 9
items that measure confusion related to accurately recognizing and responding to
emotional states. There is a “fear of affect” item cluster indicating distress when
emotions are too strong or out of control that contrasts with an “affective con-
fusion” item cluster indicating difficulty in accurately recognize emotional states.
Confusion and mistrust related to affective and bodily functioning have been re-
peatedly described as an important characteristic of those who develop eating
disorders.

An additional measure that captured non pathological tendency to overeat in the
presence of food, reward-based eating drive (red), was also collected [80].

2. Covariates(W ): mothers’ adulthood cumulative strain count collected in the follow-
up study, her background information collected in the original study (age, race, parent
education, household income, single or two parent household status, number of siblings,
birth order, and her baseline BMI measure at age 10), and child’s age and sex.

3. Outcome(Y ): child’s BMI.

There exist a clear timeline for the three components, namely the covariates are determined
before the exposures, and the outcome is measured at the same time with exposures. There-
fore, we can build a Directed Acyclic Graph (DAG) [81] showing the causal relationship
of the three components in Figure 4.1. Our hypothesis is that under mother’s early year
socioeconomic status, baseline BMI at age 10 and adulthood stress, and adjusting for child’s
age and sex, all the five exposures that measure mother’s midlife eating behaviors will have
a positive effect on child’s BMI.

Figure 4.1: Directed Acyclic Graph (DAG) for the covariates, exposures, and outcomes
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Parameter of Interest

First, we build the causal framework for data analysis. Suppose the observed data structure
is O = (W,X, Y ), where the W represents the covariates, X represents the exposures,
and Y represents the outcome. We wish to investigate the relationship between X on Y ,
accounting for W . Taking W into account is desirable because we know (or cannot rule out
the possibility) that it contains confounding factors, i.e., common factors upon which the
exposure X and the response Y may simultaneously depend. One classical approach to study
such relationship is the Average Treatment Effect (ATE) [1], which investigates the causal
effect of binary exposure X on outcome Y . However, most variables measured in empirical
studies are not binary, but feature a reference level x0 with positive mass (P (X = x0) > 0)
and a continuum of other levels. Thus, we desire to upgrade the simple ATE parameter to one
that measures the causal effect of continuous exposures on outcomes, and hence evaluate the
relative importance of several variables (treated as exposures) with regard to outcomes. Such
a parameter is named Targeted Maximum Likelihood Estimation-Non-Parametric Variable
Importance (tmle.npvi) parameter [68]. In this study, we use the identity link for the f
function and reference level x0 = 0 in the original definition of the tmle.npvi parameter. Our
parameter of interest Ψ is defined in proposition 1.

Proposition 1. For all P ∈M:

Ψ(P ) =
EP{X[EP (Y |X,W )− EP (Y |X = 0,W )]}

EPX2

Proof. The target parameter is formally defined as

Ψ(P ) = arg min
β∈R

EP [EP (Y |X,W )− EP (Y |0,W )− βX]2

Thus, we have that

Ψ(P ) =
EP{X[EP (Y |X,W )− EP (Y |X = 0,W )]}

EPX2

The formal proof of proposition 2 can be found in [68] Section A.2.

If the linear model is true, the implied causal parameter Ψ(P ) is EP (Y −Y0), the average
change in outcome if every observation were changed to have X = 0, where Y is the observed
outcome and Y0 is the counterfactual outcome if X = 0. Furthermore, if X = 0 represents
the a priori, lowest risk level, then Ψ(P ) can be interpreted as the attributable difference on
Y (risk if Y is binary). We used the target parameter Ψ(P ) rather than EP [EP (Y |X,W )−
EP (Y |X = 0,W )] directly because targeting Ψ(P ) is more efficient as it is the projection on
a linear model which allows estimators to borrow from the whole dose-response curve much
like fitting a line EP (Y |X) = α+ βX, where α̂ is an estimate of EP (Y |X = 0), so we could
just use the data at X = 0,

∑
i Yi1(Xi = 0)/

∑
i 1(Xi = 0), or a line which borrows across

the distribution of X.
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The efficient influence function for our proposed parameter Ψ(P ) is defined in proposition
2.

Proposition 2.

D∗(P ) =
1

Ep(X2)
X[EP (Y |X,W )− EP (Y |0,W )−XΨ(P )] +

1

Ep(X2)
(Y − Ep(Y |X,W ))(X − Ep(X|W )1{X = 0}

P (X = 0|W )
)

Proof. The formal proof of proposition 2 can be found in [68] Section A.2.

Here we emphasize that we do not assume a semi-parametric model

Y = βX + η(W ) + U,

with unspecified η and U such that EP (U |X,W ) = 0. Setting

R(P, β)(X,W ) = EP (Y |X,W )EP (Y |0,W )βX

for all (P, β) ∈ M × R, the latter semi-parametric model holds for P ∈ M if there exists
a unique β(P ) ∈ R such that R(P, β(P )) = 0. Note that β is always the solution to the
equation

βEP (X2) = EP{X[EP (Y |X,W )− EP (Y |0,W )−R(P, β)(X,W )]}.

In particular, if the semi- parametric model holds for a certain P ∈ M, then β(P ) = Ψ(P )
by Proposition 1. Furthermore, If the relationship of Y on (X,W ) is truly linear, the target
parameter Ψ(P ) can be seen as the projection of the difference Ep(Y |X,W )−Ep(Y |0,W ) on
to the vector space of X, which has exactly the same definition as the parametric coefficients
β reported in linear regressions. On the contrary, if the semi-parametric model does not hold
for P , then it is not clear what β(P ) could even mean whereas Ψ(P ) is still a well-defined
parameter worth estimating. Further discussions can be found in [68] Section 4.2.

Estimators

We evaluated four estimators for the target parameter Ψ(P ).

1. Linear model plug-in estimator & linear model coefficient Ψlm(Pn):
For linear model plug-in estimator, EP (Y |X,W ), EP (Y |0,W ) are estimated by linear
regression of outcome (Y ) on one of the five exposures (one of X) plus all eleven
covariates (all W ′s), then the estimates are plugged in. The linear model coefficient
estimator is the coefficient of X in the linear model of outcome Y on one of the five
exposures (one of X) plus all eleven covariates (all W ′s). These two estimators are the
same.
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2. Super Learner plug-in estimator ΨSL(Pn):
EP (Y |X,W ), EP (Y |0,W ) are estimated by an ensemble learner called Super Learner
[82] with user-supplied machine learning algorithms, then the estimates are plugged
in.

3. Linear model target maximum likelihood estimator(TMLE)
Ψtmle.lm(Pn):
we update Ψlm(Pn) using the targeted learning techniques with its efficient influence
function defined in Proposition 2.

4. Super Learner target maximum likelihood estimator(TMLE) Ψtmle.npvi(Pn)
(NPVI estimator):
we update ΨSL(Pn) using the targeted learning techniques with its efficient influence
function defined in Proposition 2.

4.3 Results

Summary characteristics of the covariates are reported in Table 4.1. There are 624 partic-
ipants who enrolled the follow-up study and completed the baseline questionnaire. Of the
624 participants 373 (60%) had 586 children that are used in this study, the other 40% of the
participants are not included due to the lack of information on whether they have children
or the lack of their children’s records. Among the 586 children, only a small fraction of
covariates are missing (max of 4%). We imputed the continuous covariates with the mean,
and categorical ones with the mode. Observations missing exposures or outcomes are not
included in the analysis. We performed data analysis with two distinct estimators, linear
model coefficient Ψlm(Pn) and NPVI estimator Ψtmle.npvi(Pn). The linear model coefficient
Ψlm(Pn) is reported for the exposures in each of the five linear models (with same covariates
and same outcome). The Ψtmle.npvi(Pn) estimator is constructed on an initial estimate of a
Super Learner. The Super Learner is constructed with general additive models (R package
’gam’-version 1.20 [83]), general linear models (R core package ’stats’-version 3.6.2), piece-
wise linear spline regressions (R package ’polspline’-version 1.1.19 [84]), and random forest
(R package ’randomForest’-version 4.6-14 [85]).
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Mother’s Characteristic Sample size Mean (SD) or number (%)
Baseline age 586 9.93 (0.56)
Race 586

Black 296 (51%)
White 290 (49%)

Parents’ income 564
0− 10K 115 (20%)
10K−19999 97 (17%)
20K−39999 161 (29%)
40K+ 191 (34%)

Parents’ education 585
College Grad+ 185 (32%)
High School or Less 117 (20%)
Some College 283 (48%)

Parents’ marital status 586
One parent household 204 (35%)
Two parent household 382 (65%)

Birth order 586 2 (1)
Number of kids in household 586 1 (1)
Baseline BMI 581 18.4 (3.5)
Children’s Characteristic Sample size Mean (SD) or number (%)
Age 586 9 (4)
Sex 586

Boy 293 (50%)
Girl 293 (50%)

Table 4.1: Participant characteristics of mothers and children in the NGHS cohort study
(373 mothers with 586 children)

The results of the data analysis is reported in Table 4.2. Overall, the estimated effects
are consistent with similar scales across different estimators. In particular, drive for thinness
(dt), body dissatisfaction (bd) and bulimia (bul) show consistently significant positive effects
on the outcome, for both estimators with similar magnitude (dt: 0.08(0.02,0.15) for linear
estimator and 0.12(0.08, 0.15) for NPVI estimator, bd: 0.07(0.02, 0.12) for linear estima-
tor and 0.06(0.04, 0.07) for NPVI estimator, bul: 0.18(0.06, 0.30) for linear estimator and
0.2(0.12, 0.34) for NPVI estimator). Reward-based eating drive (red) has no effect on the
outcome for both estimators (0.63(-0.06, 1.32) for linear estimator and 0.09(-0.28, 0.46) for
NPVI estimator). interoceptive awareness (int) is the only exposure where the linear estima-
tor and NPVI estimator have different results- linear estimator of shows no effect (0.08(-0.03,
0.18)) and NPVI shows a significant positive effect (0.15(0.06, 0.24)). The discrepancy could
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be due to the very different statistical methods used in the linear and NPVI estimators,
where the former assumes a linear relationship between the outcome and the exposure plus
covariates, and the latter is much more flexible with model assumptions by including several
non-linear machine learning models in the base learner. Thus we believe that the NPVI es-
timator is able to capture both linear and non-linear effect of the exposure on the outcome,
and hence more robust and reliable than the linear estimator.

Variable Linear estimator(95% CI) NPVI estimator(95% CI)
bulimia 0.18(0.06, 0.30) 0.2(0.12, 0.34)
interoceptive awareness 0.08(-0.03, 0.18) 0.15(0.06, 0.24)
drive for thinness 0.08(0.02,0.15) 0.12(0.08, 0.15)
body dissatisfaction 0.07(0.02, 0.12) 0.06(0.04, 0.07)
reward-based eating drive 0.63(-0.06, 1.32) 0.09(-0.28, 0.46)

Table 4.2: Variable importance estimates with 95% confidence interval for mothers’ eating
behaviors, sorted by descending order of the magnitude of the NPVI estimator mean value.
Variable with CI covering zero effects appear last.

4.4 Simulations

In this section, we performed two simulations based on the observed data. In both settings,
the initial data sets are comprised of the outcome (Y0), one of the exposures (X0), and
all eleven covariates (W ′s). In the first simulation setting (Algorithm 3), we assume a
linear relationship between outcome and exposure plus covariates. Figure 4.2 illustrated the
distribution of the mean values for the four different estimators in 1,000 iterations under
this settings, and the estimator performance is summarized in Table 4.3. In this setting, all
of the four proposed estimators in section 4.2 are unbiased with proper coverage for 95%
confidence intervals (Table 4.3). The MSE of the SL plug-in estimator ΨSL(Pn) and NPVI
estimator Ψtmle.npvi(Pn) are larger than that for the linear estimators.
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Figure 4.2: Distribution of the four estimator values under linear simulation settings. The
black vertical line is the true value ψ0 = 0.47, and the colored dashed lines are the mean
values for each estimator.

Estimator Mean Bias MSE Coverage(%)
lm coefficient & lm plug-in 0.48 0.01 0.14 94.7
lm tmle 0.46 -0.01 0.68 94.2
SL plug-in 0.47 0 0.13 95
SL tmle 0.47 0 0.61 93.9

Table 4.3: Performance of the four estimators under linear simulation settings. True ψ0 =
0.47.

In the second simulation setting (Algorithm 4), we assume a non-linear relationship
(combination between linear and random forest) between outcome and exposure plus co-
variates. Figure 4.3 illustrated the distribution of the mean values for the four different
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estimators in 1,000 iterations under this settings, and the estimator performance is summa-
rized in Table 4.4. In this setting, the linear estimator Ψlm(Pn) is biased by 0.14, and its
TMLE updated version (Ψtmle.lm(Pn)) reduced its bias dramatically to -0.03. The SL plug-
in estimator ΨSL(Pn) is biased by -0.08, and its TMLE updated version (NPVI estimator
Ψtmle.npvi(Pn)) reduced its bias to -0.05. The TMLE updated estimators are not only less
biased, but also achieved better coverage for the 95% confidence intervals (95.3% coverage
for Ψtmle.lm(Pn) and 94% coverage for Ψtmle.npvi(Pn)), whereas the plug-in estimators have
lower coverage (88.9% coverage for Ψlm(Pn) and 89.9% coverage for ΨSL(Pn)). The MSE of
the four estimators are relatively small and of the same scale.
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Figure 4.3: Distribution of the four estimator values under non-linear simulation settings.
The black vertical line is the true value ψ0 = 0.62, and the colored dashed lines are the mean
values for each estimator.
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Estimator Mean Bias MSE Coverage(%)
lm coefficient & lm plug-in 0.77 0.14 0.05 88.9
lm tmle 0.6 -0.03 0.09 95.3
SL plug-in 0.55 -0.08 0.02 89.9
SL tmle 0.58 -0.05 0.04 94

Table 4.4: Performance of the four estimators under non-linear simulation settings. True
ψ0 = 0.62.

4.5 Discussion

The study provides evidence on the transmission effect of mother’s midlife eating behaviors
on child’s BMI and shows the potential and challenges in using surveyed data and statis-
tical learning methods to evaluate the influences of mother’s health exposures on the next
generation. The two distinct estimators (linear estimator and NPVI estimator) both showed
positive effects of mother’s drive for thinness, body dissatisfaction and bulimia on child’s
BMI, and both showed no effect of mother’s reward-based eating drive. For mother’s intero-
ceptive awareness, the NPVI estimator found a significant effect whereas the linear estimator
found no effect. We used simulations from empirical data to show that the NPVI estimator is
more robust with respect to parametric assumption violations than linear estimators. Apart
from the robustness, the NPVI estimator is also has the similar interpretability as linear co-
efficients. For example, The NPVI estimator for drive for thinness is 0.12(0.08, 0.15), which
means if mother’s drive for thinness is increased by 1, her child’s BMI will increase by 0.12,
with 95% confidence interval of (0.08, 0.15) (Table 4.2).

The data analysis and simulation results further illustrates the benefits of our approach
in comparison to linear models and general machine learning models. The fact that our
approach does not assume any form of relationship between all the variables make it robust
with respect to model violations. On the other hand, both linear models and machine
learning algorithms assume such a relationship and their corresponding variable importance
measure reflects how well those models fit the data, not how changing the variable changes
the outcome. Furthermore, our estimator is asymptotically linear (locally efficient) for which
robust asymptotic inference is available. This makes our estimator interpretable to health
care workers. For example, when the linear model assumptions hold true, our estimator has
the same interpretability as the most widely accepted linear model coefficients when causality
of the exposure on the outcome is established - both can be interpreted as: increasing the
exposure by 1 will cause the outcome to increase by β).
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4.6 Appendix

Simulation Specification

Algorithm 3 Linear Simulation Specification

1. Create XBin = 1(X0 == 0), and fit a logistic regression of Y0 on (XBin,W
′s), get the

predicted probability of Y0 = 1 as g1w;

2. For the vector of W ′s, generate a random variable X, where X ∼ Binomial(n, g1w)
(n = number of observations in W ′s).
if X == 1 then

Fit a linear regression of X0 on W ′s, get the predicted value X̂0, and the noise εX where
εX ∼ N(0, V ar(X̂0 −X0)). Let X̂ = X̂0 + εX .

else

X̂ = 0

end

3. Fit a linear regression of Y0 on (X̂,W ′s), get the predicted value Ŷ0, and the noise εY
where εY ∼ N(0, V ar(Ŷ0 − Y0)). Let Ŷ = Ŷ0 + εY .

4. Draw 1,000,000 samples ofW ′s with replacement randomly from the initial data set, use
Step 1-3 to generate a simulated data set df = (Ŷ , X̂,W ′s). Calculate the asymptotic
true value of Ψ(P ) as ψ0 using proposition 1.

5. Draw n samples of W ′s with replacement randomly from the initial data set, gen-
erate simulated data set df , calculate the values of estimators Ψlm(Pn), ΨSL(Pn),
Ψtmle.lm(Pn), Ψtmle.npvi(Pn) using df . Repeat for 1,000 times, and report the mean,
MSE and coverage of 95% confidence intervals for the four estimators.
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Algorithm 4 Non-linear Simulation Specification

1. Create XBin = 1(X0 == 0), and fit a logistic regression of Y0 on (XBin,W
′s), get the

predicted probability of Y0 = 1 as g1w;

2. For the vector of W ′s, generate a random variable X, where X ∼ Binomial(n, g1w)
(n = number of observations in W ′s).
if X == 1 then

Fit a linear regression of X0 on W ′s, get the predicted value X̂0, and the noise εX where
εX ∼ N(0, V ar(X̂0 −X0)). Let X̂ = X̂0 + εX .

else

X̂ = 0

end

3. Fit a Super Learner of Y0 on (X̂,W ′s) (base learners include random forest and
general additive models), get the predicted value Ŷ0, and the noise εY where εY ∼
N(0, V ar(Ŷ0 − Y0)). Let Ŷ = Ŷ0 + εY .

4. Draw 1,000,000 samples ofW ′s with replacement randomly from the initial data set, use
Step 1-3 to generate a simulated data set df = (Ŷ , X̂,W ′s). Calculate the asymptotic
true value of Ψ(P ) as ψ0 using proposition 1.

5. Draw n samples of W ′s with replacement randomly from the initial data set, gen-
erate simulated data set df , calculate the values of estimators Ψlm(Pn), ΨSL(Pn),
Ψtmle.lm(Pn), Ψtmle.npvi(Pn) using df . Repeat for 1,000 times, and report the mean,
MSE and coverage of 95% confidence intervals for the four estimators.
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[48] Marıa Eugenia Figueroa-Suárez et al. “Life style and metabolic control in DiabetIMSS
program”. In: Gaceta medica de México 150.1 (2014), pp. 29–34.

[49] Judea Pearl et al. “Causal inference in statistics: An overview”. In: Statistics surveys
3 (2009), pp. 96–146.

[50] Scott L Zeger, Kung-Yee Liang, and Paul S Albert. “Models for longitudinal data: a
generalized estimating equation approach”. In: Biometrics (1988), pp. 1049–1060.

[51] Stephen Milborrow et al. “earth: Multivariate adaptive regression splines”. In: R pack-
age version 5.2 (2017).

[52] Tianqi Chen et al. xgboost: Extreme GradientBoosting. 2018. url: https://CRAN.R-
project.org/package=xgboost.

[53] Ross Ihaka and Robert Gentleman. “R: a language for data analysis and graphics”. In:
Journal of computational and graphical statistics 5.3 (1996), pp. 299–314.

[54] Eric Polley and Mark van der Laan. SuperLearner: Super Learner Prediction. Tech.
rep. R package version 2.0-6. 2012. url: http://CRAN.R-project.org/package=
SuperLearner.

[55] Erin LeDell, Maya Petersen, and Mark van der Laan. “Computationally efficient confi-
dence intervals for cross-validated area under the ROC curve estimates”. In: Electronic
journal of statistics 9.1 (2015), p. 1583.

[56] Susan Gruber and Mark J. van der Laan. “tmle: An R Package for Targeted Maximum
Likelihood Estimation”. In: Journal of Statistical Software 51.13 (2012), pp. 1–35. url:
http://www.jstatsoft.org/v51/i13/.

[57] Leo Breiman et al. Classification and regression trees. CRC press, 1984.

[58] Alexander R Luedtke and Mark J Van Der Laan. “Statistical inference for the mean
outcome under a possibly non-unique optimal treatment strategy”. In: Annals of statis-
tics 44.2 (2016), p. 713.



BIBLIOGRAPHY 111

[59] Lee Ling Lim et al. “Aspects of multicomponent integrated care promote sustained
improvement in surrogate clinical outcomes: a systematic review and meta-analysis”.
In: Diabetes Care 41.6 (2018), pp. 1312–1320.

[60] Deise Regina Baptista et al. “The chronic care model for type 2 diabetes: a systematic
review”. In: Diabetology & metabolic syndrome 8.1 (2016), pp. 1–7.

[61] Edward H Wagner et al. “Improving chronic illness care: translating evidence into
action”. In: Health affairs 20.6 (2001), pp. 64–78.

[62] Brenda WC Bongaerts et al. “Effectiveness of chronic care models for the management
of type 2 diabetes mellitus in Europe: a systematic review and meta-analysis”. In: BMJ
open 7.3 (2017), e013076.

[63] Pan American Health Organization. Innovative Care for Chronic Conditions: orga-
nizing and delivering high quality Care for Chronic Noncommunicable Diseases in the
Americas. 2013.

[64] Julia Worswick et al. “Improving quality of care for persons with diabetes: an overview
of systematic reviews-what does the evidence tell us?” In: Systematic reviews 2.1
(2013), pp. 1–14.

[65] American Diabetes Association et al. “12. Older adults: standards of medical care in
diabetes—2019”. In: Diabetes Care 42.Supplement 1 (2019), S139–S147.

[66] Ioannis Kavakiotis et al. “Machine learning and data mining methods in diabetes
research”. In: Computational and structural biotechnology journal 15 (2017), pp. 104–
116.

[67] Pengfei Wei, Zhenzhou Lu, and Jingwen Song. “Variable importance analysis: A com-
prehensive review”. In: Reliability Engineering & System Safety 142 (2015), pp. 399–
432.

[68] Antoine Chambaz, Pierre Neuvial, and Mark J van der Laan. “Estimation of a non-
parametric variable importance measure of a continuous exposure”. In: Electronic Jour-
nal of Statistics 6 (2012), p. 1059.

[69] Mark J van der Laan and Susan Gruber. “Collaborative double robust targeted max-
imum likelihood estimation”. In: The international journal of biostatistics 6.1 (2010).

[70] Mark J van der Laan and Susan Gruber. “Collaborative double robust targeted pe-
nalized maximum likelihood estimation”. In: UC Berkeley Division of Biostatistics
Working Paper Series (2009), p. 246.

[71] Susan Gruber and Mark J van der Laan. “An application of collaborative targeted max-
imum likelihood estimation in causal inference and genomics”. In: The International
Journal of Biostatistics 6.1 (2010).

[72] Alan E Hubbard, Chris J Kennedy, and Mark J van der Laan. “Data-adaptive target
parameters”. In: Targeted Learning in Data Science. Springer, 2018, pp. 125–142.



BIBLIOGRAPHY 112

[73] Iván Dıaz et al. “Variable importance and prediction methods for longitudinal problems
with missing variables”. In: PloS one 10.3 (2015), e0120031.

[74] Alan Hubbard et al. “Targeted Learning for High-Dimensional Variable Importance”.
In: University of California, Berkeley (2016).

[75] Catherine Tuglus and Mark J van der Laan. “Targeted methods for biomarker discov-
ery, the search for a standard”. In: (2008).

[76] Hui Wang, Sherri Rose, and Mark J van der Laan. “Finding quantitative trait loci genes
with collaborative targeted maximum likelihood learning”. In: Statistics & probability
letters 81.7 (2011), pp. 792–796.

[77] Hui Wang, Sherri Rose, and Mark J van der Laan. “Finding quantitative trait loci
genes”. In: Targeted Learning. Springer, 2011, pp. 383–394.

[78] Jeffrey A Kelly et al. “Community AIDS/HIV risk reduction: the effects of endorse-
ments by popular people in three cities.” In: American Journal of Public Health 82.11
(1992), pp. 1483–1489.

[79] David M Garner. Eating Disorder Inventory-3 (EDI-3) Scale Descriptions.

[80] Elissa S Epel et al. “The reward-based eating drive scale: a self-report index of reward-
based eating”. In: PloS one 9.6 (2014), e101350.

[81] Alison Gopnik, Laura Schulz, and Laura Elizabeth Schulz. Causal learning: Psychology,
philosophy, and computation. Oxford University Press, 2007.

[82] EC Polley, AE Hubbard, et al. “Super learner.” In: Statistical applications in genetics
and molecular biology 6 (2007), Article25–Article25.

[83] Trevor Hastie. gam: Generalized additive models. version 1.15, 2018. url: https://
CRAN.R-project.org/package=gam.

[84] Charles Kooperberg. polspline: Polynomial Spline Routines. version 1.1.12, 2015. url:
https://CRAN.R-project.org/package=polspline.

[85] Andy Liaw and Matthew Wiener. “Classification and Regression by randomForest”.
In: R News 2.3 (2002), pp. 18–22. url: https://CRAN.R-project.org/doc/Rnews/.


