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Abstract  

 
Studies in the Methods and Applications of Comparative Effectiveness Research: Hospice Stay 

Determinants, Human Papillomavirus Vaccination in Men, and Analytic Techniques for Evaluating 
Experimental and Non-experimental Data 

 
 
 

by 
 
 

Srinivasu Ammisetty Sunkara 
Doctor of Philosophy in Health Services 

University of California, Los Angeles 2013 
Professor Robert M. Kaplan, Chair  

 
 
 

 The passage of the Affordable Care Act (ACA) of 2011 made comparative effectiveness 

research (CER) a major priority of national healthcare reform. Many health policy and academic 

leaders believe that  direct comparison of competing healthcare interventions will lead to improvements 

in population health outcomes This dissertation contributes to the field by applying CER techniques to 

understand the determinants of hospice stay duration, the cost-effectiveness of male-female Human 

Papillomavirus (HPV) vaccination, and the optimal method for evaluating non-experimental and 

experimental data.  

 

 The research on hospice stay duration uses national-level data from the Dartmouth Atlas. It 

finds positive correlations between the logarithm of hospice days and hospice reimbursement 

(p<0.001), inpatient days and total physician visits (p<0.001), and a negative correlation between 

inpatient days and outpatient reimbursement (p=0.001).  Multiple regression analysis demonstrated that 

nurse staffing numbers are a significant determinant of length-of-stay. In addition, simple regression 

analysis shows that total Medicare reimbursements go down by $117 for each day that a patient stays in 
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hospice.  

 

 The HPV paper aggregates results across 7 published papers. It finds substantial variability in 

the published incremental cost-effectiveness ratios (ICERs) for male-female HPV vaccination. There is 

also a lack of standardization in the disease states that are evaluated across these papers. Using fixed-

effects analysis, male-female HPV vaccination is found to have a cost-effectiveness of $42,425/QALY. 

Comparatively, female HPV vaccination has a cost-effectiveness of $8,498/QALY.  

 

 The third paper compares the accuracy of linear regression, propensity score matching, and 

simple subtraction for approximating the results of a RCT that evaluated competing medications 

(Xalatan and Xalacom) that lower intraocular pressure (mmHg). The RCT measurement in the Xalatan-

to-Xalacom difference was +0.97 mmHg. Comparatively, the results for the approximation results and 

the p-value for the RCT-approximation difference were: linear regression – 0.86 mmHg (p=0.953), 

nearest neighbor propensity scoring- -1.56 mmHg (p=0.28), kernel matching propensity scoring – 

+0.79 mmHg (N/A), radius matching propensity scoring – +0.77 mmHg (p=0.915), stratification 

propensity scoring – +1.03 mmHg (p=0.974), and simple subtraction- -1.10 mmHg (p=0.000). It finds 

all methods excepting simple subtraction and nearest neighbor propensity score matching produce 

results that are not significantly different from the RCT result.  

 

 Each of these three papers contributes to CER by applying quantitative methods to relevant 

policy questions: how best to approximate RCT results when these studies are not available, what is the 

cost-effectiveness of vaccination programs that include adolescent males, and why might there be 

differences across the nation in how long patients at the end-of-life spend in hospice? Much attention is 
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centered on how CER will enhance healthcare delivery, improve health outcomes, and expand 

healthcare access. It is hoped that these papers will help contribute to these goals, and further 

substantively benefit the lives of everyday people.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
v

 
 

Committee Page 
 
 
 
 
 
 

Abdelmonem A. Afifi 
 

Ronald Hays 
 

Arturo Vargas Bustamante 
 

Robert M. Kaplan, Chair  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2013 
 
 
 
 
 
 
 
 
 



 
 

vi

 
 
 
 

Dedication Page 
 
 
 
 
 
 

Completion of this dissertation would not have been possible without the support of two people who 
are very close to my heart. I dedicate this dissertation to my parents, Kusuma and Prasad Sunkara. They 
have been there for me through thick and thin, and I love them dearly. They have taught me about life 
in ways that I will carry deep within me for the rest of my days. Their fundamental message has been: 
'We are always here for you no matter what'. I hope in my life that I can be the same rock for others as 

they have been for me.   
 

Thank you, Amma and Nanna.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

vii

Table of Contents 
 
 

 
 
i. Introduction                  1 
 
 
ii. Determinants of Hospice Stay Duration in the United States            14 

      

iii. Meta-analysis of Male and Female HPV Vaccination            38 

 

iv.The Application of Quantitative Methods to Merge Data between Studies          77 

 
v. Concluding Remarks                129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

viii  

 
 

Acknowledgements 
 
 
 
 
 
 

Thank you first to Professor Richard Brown. Thank you for believing in me, Dr. Brown.  You are 
greatly missed, but are forever remembered. I hope I made you proud.  

 
My committee members helped steer this ship safely to shore. Thank you. It would not have been 

possible without each of you – Dr. Kaplan, Dr. Afifi, Dr. Hays, and Dr. Vargas Bustamante.  
 

Thank you to my sister, Haritha (Sunkara) Naga. Akka sent me a card after I passed my dissertation 
defense: “Dearest Vasu, so proud to see you achieve all of your goals...looking forward to see what's 

next”. The future is still an open book Akka, but I know that I cannot wait to share the good times with 
you, Arathi, Kushal, and Karun.  

 
Sincere thanks to Carina Carriedo, for a friendship that means so much to me.  

 
Thanks to Professor Mary Coombs and Dr. Paul Torrens. You shared your time and invested your 

energy in me. I am greatly appreciative.  
 

Josie Wei and Jessica Shim were indefatigable. You both provided crucial help and timely advice at so 
many critical junctures. Thank you for being there for me, and lending a helping hands at the  times 

when I needed it most.  
 

Thank you to Dr. Jay Enoch, for being a wonderful mentor to me from 18 years old to now.  You are 
one in a million, Dr. Enoch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

ix

 
 
 
 
 

Biographical Sketch 
 
 
 
 

Vasu Sunkara completed his B.A. in Development Studies and Biochemistry at UC Berkeley in 2003. 
While at Berkeley, he was a National Merit Scholar and an Alumni Scholar. As a President's 

Undergraduate Fellow, he conducted research with the supervision of Dr. Daniel McFadden at the UC 
Berkeley Department of Economics. He received his M.D. from the University of Wisconsin School of 
Medicine and Public Health in 2009. As a PhD student at UCLA, he was a recipient of the Jeffrey L. 
Hanson Distinguished Service Award from the UCLA Graduate Student Association. In 2012, he was 

supervised by Dr. Amartya Sen at the Harvard Department of Economics, where he completed a year of 
postdoctoral training. Currently, he is a Family Medicine resident in Erie, Pennsylvania.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
1

 

Introduction  

 

Introduction  

 Comparative effectiveness research (CER) provides perspective on what treatments or 

interventions are  most likely to benefit patients. Knowing which treatments are more effective should 

lead to better patient outcomes, and a better use of available healthcare resources. CER practices have 

been increasingly used at a local and federal level in the United States. This paper combines three 

original papers on comparative effectiveness methodology and application. One paper applies 

established statistical techniques to evaluate between-study treatment differences. The other two papers 

apply CER techniques to understand healthcare phenomena, including the determinants of hospice stay 

duration and the difference in benefit between male-female versus female-only HPV vaccination.  

 

CER: An Overview  

 The  Agency for Healthcare Research and Quality (AHRQ) and the American College of 

Physicians (ACP) provide two revealing descriptions on the definition of CER. The AHRQ states, 

“[ T]he core question of comparative effectiveness research (is) which treatment works best, for whom, 

and under what circumstances.” (National Research Council, page 36, 2009). The ACP states, 

“Comparative effectiveness analysis evaluates the relative (clinical) effectiveness, safety, and cost of 

two or more medical services, drugs, devices, therapies, or procedures used to treat the same 

condition.” (National Research Council, page 35, 2009). 

 

 CER is a descendent of effectiveness and outcomes research  that developed in the 1980s and 

1990s. Due to a substantial growth in health outcomes and clinical trial data during this period, there 
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was a strong interest in making clinical treatment decisions more data-driven.   

 

 In forecasting the future of the field, Paul Ellwood described a multifaceted area of “outcomes 

management” that would more actively connect medical decisions with their projected impact on 

patients: “Outcomes management is a technology of patient experience designed to help patients, 

payers, and providers make rational medical care-related choices based on better insight into the effect 

of these choices on the patient’s life”(Selby, 2010). Later, in the form of “patient outcome research 

teams (PORTs)”, David Blumenthal forecast a deep and unprecedented impact of outcomes research on 

medicine: “[PORTs] represent the coming of age of health services research as a useful, clinically 

relevant discipline, whereby the evaluative sciences for the first time are, with the help and support of 

Congress, [are] going to become directly relevant to clinical decision making in a way that they haven't 

before” (Selby, 2010). 

 

 The Medicare Modernization Act (MMA) of 2003 was a decisive step in transitioning this 

research from academic circles into actual practice. Section 1013 of the MMA (“Research on Outcomes 

of Health Care Items and Services”) stated the provision of $50 million for the explicit purposes of 

supporting “scientific information needs and priorities” that would improve outcomes and 

effectiveness of specified programs associated with Medicare: “The legislation authorizes and 

appropriates $50 million for FY 2004 for the Secretary through AHRQ to conduct research to address 

the scientific information needs and priorities related to improving outcomes, clinical effectiveness and 

appropriateness of specified health services and treatments including prescription drugs identified by 

the Medicare, Medicaid, and State Children Health Insurance Programs and to improving the 

efficiency and effectiveness of these Programs. The Secretary is required to establish a process for 
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developing research priorities” (CMS, 2004). 

 

 The MMA was recognized as an important step forward in reconciling medical evidence with 

healthcare practice. In a January 2005 article in Health Affairs, Carolyn M. Clancy and Kelly Cronin 

described the role of the MMA in aligning the most effective evidence with ultimate Medicare practice: 

“MMA Section 1013 requires the HHS secretary to set priorities and target areas where evidence is 

needed to improve the effectiveness of services delivered ” (Clancy and Cronin, 2005). The authors 

further emphasized the impact of the MMA on medical decision-making in general, long-term 

healthcare spending, and health outcomes: “Such evidence has the potential to greatly reduce out-of-

pocket and government spending for new drug benefits. Section 1013 of MMA thus sets the stage for 

explicitly incorporating decisionmakers’ needs in setting priorities for the effectiveness of health care 

interventions.” (Clancy and Cronin, 2005). 

 

 From 2000 to 2010, there was a rapid transition from the potential benefits of outcomes 

research to the implementation of this research to fill the gaps in the medical evidence base.  A June 

2003 article in the New England Journal of Medicine (NEJM) underscored the importance of these 

concerns by reporting that nearly 50% of medical practice does not conform to clinical guidelines. The 

authors concluded, “These deficits, which pose serious threats to the health and well-being of the U.S. 

public, persist despite initiatives by both the federal government and private health care delivery 

systems to improve care” (McGlynn et al, 2003). The Congressional Budget Office (CBO) reported in 

2007 that, “[o]nly a limited amount of evidence is available about which treatments work best for which 

patients” (Nabel, 2009). A 2009 Journal of the American Medical Association (JAMA) article found 

that approximately 50% of clinical practice recommendations of the American College of Cardiology 
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and the American Heart Association were not evidence-based (Nabel, 2009). 

 

 CER was popularized during this period, and increasingly became seen as a remedy for gaps in 

medical care. Indeed, in a November 2006 article in Health Affairs, Gail Wilensky promoted a new 

center for comparative effectiveness research as a means to optimize decision-making: “Interest in 

objective, credible comparative clinical effectiveness information has been growing in the United 

States, both by those who support competitive behavior in health care and by those who support 

administered pricing...Finding politically acceptable ways to reduce the long-term growth rate in 

health care spending will be difficult. Within this context, learning how to "spend smarter," rather than 

relying on arbitrary mechanisms to limit spending, begins to look very appealing” (Wilensky, 2006). 

 

 CER has similarly gained prominence in Health Services Research (HSR). Academy Health, the 

leading HSR academic organization, has worked diligently to promote understanding of CER. It 

provides support for two major CER projects – the Electronic Data Methods (EDM) Forum and the 

Multi-Payer Claims Database (MPCD). The EDM Forum for Comparative Effectiveness Research is a 

Agency for Healthcare Research and Quality (AHRQ) funded initiative to develop an infrastructure for 

evaluating comparative effectiveness using electronic clinical data. The MPCD is a Center for 

Medicare and Medicaid Services (CMS) funded initiative that will help apply comparative 

effectiveness analysis to longitudinal CMS data (AcademyHealth, 2008-2012). 

 

 Outside of Academy Health, CER is an important topic for other entities involved in HSR. The 

Veterans Affairs Health Services Research and Development (HSR&D) is already positioning itself to 

become a leader in CER in the United States. Its extensive utilization and cost data, combined with its 
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existent electronic database infrastructure, prime it for making an impact in the area. As the Director of 

the HSR&D, Dr. Seth Eisen, states, “For clinicians, patients, and policymakers alike...CER has the 

potential to provide much needed evidence-based criteria for health care decision-making” (Veteran 

Affairs Health Services Research & Development Services, May 2009). 

 

 At a federal level, a capstone moment for the entire CER field was the passage of the American 

Recovery and Reinvestment Act (ARRA) in February 2009, and the American Affordable Care Act 

(ACA) in March 2010. ARRA allocated $1.1 billion to comparative effectiveness research by funding 

the National Institutes of Health ($400 million allocation), the Agency for Healthcare Research and 

Quality (AHRQ)  ($400 million), and the Office of the Secretary of the Department of Health and 

Human Services ($300 million allocation). This legislation also established the (now defunct) Federal 

Coordinating Council for Comparative Effectiveness Research (HHS, 2009). 

 

 The dual CER goals in the ARRA legislation were to: 1) “Conduct, support, or synthesize 

research that compares the clinical outcomes, effectiveness, and appropriateness of items, services, and 

procedures that are used to prevent, diagnose, or treat diseases, disorders, and other health 

conditions.”, and 2) “Encourage the development and use of clinical registries, clinical data networks, 

and other forms of electronic health data that can be used to generate or obtain outcomes data.” (HHS, 

2009).  

 

 The passage of the ACA was a watershed moment for the American healthcare system, and 

CER. The legislation established the Patient-Centered Outcomes Research Institute (PCORI) to oversee 

high priority topics in CER. The objective of PCORI is to:“assist patients, clinicians, purchasers, and 
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policy-makers in making informed health decisions by advancing the quality and relevance of evidence 

concerning the manner in which diseases, disorders, and other health conditions can effectively and 

appropriately be prevented, diagnosed, treated, monitored, and managed through research and 

evidence synthesis.” (Selby et al, 2012). With substantial funding and a wide mandate, the Institute has 

been described by Dr. Francis Collins, the Director of the National Institutes of Health (NIH), as the 

“most significant thing” in the ACA (Saslow, 2010). 

 

Hospice Length-of-Stays in the United States 

 Using Medicare data, Fisher and Wennberg helped demonstrate the magnitude of healthcare 

variation in the United States through their studies with the Dartmouth Atlas (Welch et al, 1993). 

Hospice care is one important area of American healthcare that has wide variations of usage across the 

country. While the variations in length-of-stay have been studied in the literature, the drivers of this 

variation remain poorly understood. Better characterizing the primary drivers of hospice utilization will 

increase understanding on both the provider and patient side on how best to meet the patient's wishes of 

whether to enroll in hospice once it is determined that they qualify.  

 

 The first dissertation paper evaluates the main hospice-stay variable through kernel density 

histogram plotting. Thereafter, correlations between hospice stay and potential predictor variables are 

estimated – including proxies for healthcare reimbursement, quality-of-care indicators, and the number 

of providers. Then, a stepwise selection process is conducted to select a subset of significant predictor 

variables. An Ordinary Least Squares (OLS) model is specified to identify which of the selected 

variables from the Dartmouth Atlas have a significant association with hospice length-of-stay. 

Secondary testing of the OLS model is done to correct for autocorrelation between predictors, and to 
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check whether the model meets the homogeneity requirements of OLS.  

 

 This paper connects with the theme of CER because it evaluates the factors affecting differential 

utilization of a healthcare service. The utilization difference between different hospital referral regions 

(HRRs) warrants attention to how end-of-life care is practiced across the United States, This paper 

evaluates differential uptake of hospice services by patients in the end-of-life within the United States, . 

It further seeks to identify factors that might explain how these differences in the length of stay are 

affected.  

 

The HPV Vaccine for Men: Evaluating Effectiveness through Past Studies  

 Studies of male HPV vaccination have consistently challenged whether it is cost-effective. As 

the number of vaccinated women increases, these studies have shown the incremental cost-

effectiveness ratio (ICER) outside the $100,000 per QALY cost-effectiveness threshold. Despite this 

trend, male HPV vaccination has been actively promoted as an important public health intervention. 

Citing low female HPV vaccination coverage rates in the United States, the Advisory Committee on 

Immunization Practice (ACIP) stated that male HPV vaccination was needed. In October 2011, it 

recommended universal HPV vaccination of all adolescent males, starting at 12 years old (CDC, 2011; 

NYTimes, Oct. 28, 2011; NYTimes, Oct. 25, 2011) . 

 

 Given the ACIP policy recommendation, it is even more critical to understand the circumstances 

in which male HPV vaccination is and is not cost-effective. There are only a few systematic reviews of 

HPV vaccination in males. To the author's knowledge, there is not a single published meta-analysis. 

This is an important gap in the literature that should be resolved.  
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 This paper compiles a selection of cost-effectiveness papers evaluating male HPV vaccination. 

It presents the relevant input and ICER values. It then provides a weighed ICER value based on the 

inverse variance meta-analysis method. Heterogeneity testing is performed to determine if the ICER 

values satisfy the assumption of being derived from the same sample.  

 

CER and Observational Data: Statistical Considerations 

 The randomized clinical trial (RCT) is the best accepted method for determining the efficacy of 

a treatment. The double-blinded randomized allocation of subjects to separate arms of a study 

minimizes the threat of selection and observer bias. However, due to time and resource-limitations, 

conducting an RCT may be impractical. In these situations, observational data is the next best option. 

As D'Agostino and D'Agostino state, “Observational, nonrandomized studies have a role when RCTs 

are not available, and, even when RCTs are available, to quantify effectiveness and other real world 

experiences.” (D'Agostino and D'Agostino, 2007) 

 

 The challenge is that observational data is more likely to have biases that affect the treatment 

results. Controlling for these biases is an important means of calculating reliable CER treatment 

differences. As D'Agostino and D'Agostino conclude, “There are many approaches for making 

statistical inferences from observational data. Some approaches focus on study design, others on 

statistical techniques. However, even with the best of designs, observational studies, unlike the RCTs, 

do not automatically control for selection biases. Therefore, statistical methods involving matching, 

stratification, and/or covariance adjustment are needed.” (D'Agostino and D'Agostino, 2007). Lalonde 

and Dehejia and Wahba have evaluated the robustness of different statistical methods in correcting 
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biases in observational labor economics data (LaLonde, 1986; Dehejia and Wahba, 1999).  

 

 LaLonde determined that major limitations to the use of non-experimental methods included 

specification biases, gender-based differences in effect size, and significant differences in overall effect 

size. Dehejia and Wahba found that propensity score matching applied to non-experimental data could 

approximate experimental results under restricted conditions where the correct propensity score 

matching algorithm is selected, when there are a sufficient number of similar treatment and comparison 

units in the study, and whether there is selection bias occuring amongst observed covariates. Stukel and 

co-authors have also applied different statistical techniques to determine which one minimizes selection 

bias in estimates of the association between cardiac cathertization and long-term acute myocardial 

infarction (AMI) mortality. The authors found that instrumental variables was able to better account for 

unobserved variables compared to propensity score and multivariate risk techniques in assessing 

associations between catheterization and AMI mortality (Stukel et al, 2007). 

 

 The statistics paper in the dissertation seeks to contribute to  CER by determining if statistical 

methods may be used to merge data across studies to obtain a relative treatment difference. There are 

few studies that seek to determine if there are circumstances where data from completely different 

datasets may be applied comparatively to obtain treatment results similar to an RCT. This study selects 

three papers evaluating the impact of two anti-glaucoma medications, Xalatan and Xalacom, on 

lowering intraocular pressure (IOP). Linear regression, propensity score matching, and simple 

subtraction are applied to two datasets. The calculated treatment difference using these methods is then 

compared to the treatment difference for the RCT, where the RCT has head-to-head testing of the two 

medications.  
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Conclusion 

 The hospice length-of-stay paper studies the determinants of hospice stay across the United 

States. The HPV meta-analysis paper calculates an aggregate cost-effectiveness value for male and 

female HPV vaccination using data from the United States and internationally. The accuracy of 

different statistical methods to proxy RCT results is studied in the statistics paper.  The hospice length-

of-stay paper uses multiple regression techniques, while the HPV meta-analysis applies geometric and 

arithmetic means to calculate weighted and unweighted ICER values. The statistics paper compares the 

accuracy of linear regression, propensity score matching, and simple subtraction in approximating the 

results of an RCT. Furthermore, each paper has a clear comparison: the hospice length-of-stay paper 

compares hospice stays across HRRs in the United States, the HPV meta-analysis paper compares the 

male-female and female-only ICER values across 7 published papers, and the statistics paper compares 

three different methods to approximate RCT results.  

 

 The three papers advance the field of CER. The hospice-stay paper uses well-established data to 

help identify important determinants of hospice length-of-stay. For families and patients struggling 

with end-of-life questions, this data provides guidance on what factors affect hospice placement. For 

policy-makers comparing ICU versus hospice stays for end-of-life patients, the paper identifies factors 

that may tilt the choice in one direction versus another. Aggregating values across multiple papers, the 

meta-analysis provides a deeper understanding of the cost-effectiveness of male-female HPV 

vaccination.  

 

 Substantial resources are being invested to vaccinate young male adolescents, but the 
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effectiveness of this intervention varies based on the paper one cites. Instead of allowing for this 

confusion, this paper provides a clearer idea of whether vaccination is indeed worthwhile. Finally, with 

the financial costs and time investments needed to complete a randomized clinical trial, it is 

understandable that researchers seek alternative methods to analyze existent observational data. The 

statistics paper provides further guidance on statistical techniques that researchers can use to get results 

when an RCT is not available.  

 

 In combination, these three papers help patients, researchers, and policy-makers get a clearer 

idea of the impact of important health interventions, and on how to measure such interventions when an 

RCT has not been done. In this way, there are practical benefits to each paper that others can extend 

through future work. In the process, CER can continue its promising rise in the areas of American and 

global healthcare policy.  
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Determinants of Hospice Stay Duration in the United States 
 
Background 
 Medical care received at the end of life is a major driver of health care costs  (Hogan et al, 

2001). One factor that makes end-of-life care so expensive is the use of intensive care unit (ICU) 

resources, often in cases where the care does not have a substantial impact on the ultimate patient 

outcome. In lieu of staying in the ICU, hospice care is an alternative for patients nearing the end of 

their lives. Hospice focuses on patient comfort when medical treatment is unlikely to extend life or 

improve the patient's quality-of-life. While hospice is an option for many patients across the United 

States, its use varies based on different geographic and hospital-specific factors (Kaplan, 2011). 

 A variety of studies have attempted to determine what predisposing factors affect the use of 

hospice services (Goldsmith et al, 2008; O'Hare et al, 2010; Kelley et al, 2011). Goldsmith and co-

authors found that hospital not-for-profit status, specific geographic location, medical school affiliation, 

and hospice ownership increased the likelihood of a hospital having an in-house palliative care 

program. In particular, the West and Midwest were more likely to have a palliative care program. 

Greater use of hospice care was associated with fewer days in the hospital ICU, less total inpatient care, 

and lower overall Medicare spending (Goldsmith et al, 2008).  The amount of care from inpatient 

specialty physicians and in the ICU also seem to play a role in whether a patient elects for hospice 

services or not. O'Hare and co-authors found that patients living in areas with greater availability of 

hospital intensive care services were more likely to die in a hospital setting compared to those with 

lower access to intensive care (O'Hare et al, 2010). 

 Besides an investigation of the ultimate decision of entering hospice care at the end-of-life, 

research has further been done on the factors affecting the duration of hospice stays. Using data from 
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the Health and Retirement Study, Kelley and co-authors evaluated a host of disease-specific, 

demographic, and geographic factors influencing the number of days spent in hospice versus an 

inpatient hospital setting. They found that patients with dementia spent 3.02 fewer days in the hospital, 

while those with diabetes and chronic kidney disease had 2.37 and 2.40 additional hospital days, 

respectively. Patients living closer to family stayed 1.62 fewer days in a hospital, while those already 

enrolled in hospice stayed 1.88 fewer days in the hospital. Death in an inpatient setting was not 

associated with a patient's gender, educational level, completion of an advance directive, or cumulative 

net worth (Kelley et al, 2011). 

 Quality of care also seems to play an intriguing role in the area of end-of-life care. In a 

comparison of cost of end-of-life care in San Diego versus Los Angeles, Kaplan found that Los 

Angeles incurred higher costs and intensity of care for its patients compared to San Diego, but that San 

Diego scored better than Los Angeles on quality-of-care measures. This work helps extend the 

connection between quality-of-care and healthcare costs to the arena of end-of-life care (Kaplan, 2011). 

It aligns with the work reported in the Dartmouth Atlas linking quality-of-care to healthcare costs using 

Medicare data. Two major reports on hospice care have been published by the Dartmouth group: 

Trends and Variations in End-of-Life Care for Medicare Beneficiaries with Severe Chronic Disease and 

Quality of End-of-Life Cancer Care for Medicare Beneficiaries: Regional and Hospital-Specific 

Analyses (Goodman et al, 2011; Goodman et al, 2010).  These two reports evaluate the patterns of end-

of-life care, describing the locations where hospice stays are high versus low. The work echoed much 

of the past literature on the topic. Enrollment into hospice care varied greatly between hospital referral 

regions and between academic and non-academic hospitals. Patients in  hospitals during the last days of 

life received a greater amount of life-supporting interventions such as endotracheal intubation and 

cardiopulmonary resuscitation (CPR) (Goodman et al, 2010). 
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 Hospice stay duration has typically  been evaluated using disease specific comparisons or by 

comparing rates between cities.  However, it has not been evaluated across hospital referral regions in 

the United States. This is an important task, since factors affecting hospice stays at a local level may 

not be applicable at a national level. Using data from the Dartmouth Atlas, the current paper seeks to 

assess what factors affect the duration of hospice stays in the United States.  This paper evaluates the 

association between hospice duration and total Medicare costs to determine whether costs do, in fact, 

go down with longer hospice stays. 

Methods  

 The study used data obtained from the 2003-2007 Dartmouth Atlas of Healthcare (Dartmouth 

Atlas, 2012). These years were selected because they were the most recent years available as of 2012. 

Hospital Referral Regions (HRR) represent the 308 different urban and rural localities across the 

United States. HRR is defined as a collection of zip codes grouped together based on the major 

referring hospitals in the area (Dartmouth Atlas, 2012; Blue Cross/Blue Shield Website).  More detail 

on the methods for forming HRRs can be found in the Research Methods section of the Dartmouth 

Atlas (Dartmouth Atlas, 2012). The primary outcome variable was the number of days spent in 

inpatient hospice care during  the last 6 months of life. We also considered the reimbursement type, 

supply of providers, and quality ratings from the Center for Medicare and Medicaid Services (CMS). 

The data were downloaded from the Dartmouth Atlas website. For each variable, all the HRRs were 

selected. The data were analyzed using STATA 9.1. 

 

The predictor variables were: 

� Number of inpatient hospital days for Medicare beneficiaries between the ages of 67 to 99 years 

old who were admitted to a hospital for a chronic condition, and died within 2 years of the 
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admission (Dartmouth Atlas, 2012). These patients were enrolled in Medicare A and B, did not 

have managed care coverage, and had died within 2 years of the start time of measurement.  

 

� Medicare reimbursements for inpatient hospital short stays - Reimbursement amount drawn 

from the CMHS inpatient short stay code E (Dartmouth Atlas, 2012). 

 

� Medicare reimbursements for inpatient hospital long stays - Data came from the Continuous 

Medicare History Sample (CMHS) long stay inpatient trailer (code D) for Medicare A and B 

beneficiaries ages 65-99 years old (Dartmouth Atlas, 2012). 

 

� Outpatient Medicare reimbursements - Medicare reimbursements derived from the CMHS 

outpatient trailer, for patients aged 65 to 99 years old that were enrolled in both Medicare A 

and B (Dartmouth Atlas, 2012). 

 

� Total Medicare reimbursement - Total Medicare spending (MedPAR, Home Health, Hospice, 

DME, Part B, and Outpatient) for patients who died within 2 years of a hospital admission for a 

chronic condition (Dartmouth Atlas, 2012). 

 

� Medicare reimbursement per enrollee - Total reimbursement amount for both Medicare A and B 

services for enrollees aged 65 to 99 years old (Dartmouth Atlas, 2012). 

 

� Physician per-visit fee - Physician reimbursements for evaluation and management (E&M) and 

consultations for patients ages 67-99 years old admitted for a chronic condition and died within 

2 years of the admission (Dartmouth Atlas, 2012). 

 

� Number of total physician visits - All specialist and primary care visits for patients who died 

within 2 years of an inpatient admission for a chronic condition (Dartmouth Atlas, 2012). 

 

� Center for Medicare and Medicaid Services (CMS) hospital quality score - Hospital quality 

score derived from the CMS Hospital Compare program (Dartmouth Atlas, 2012). 
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� Number of hospital-based physicians per 100,000 people - Number of hospital-based physicians 

in Anesthesiology, Pathology, and Radiology divided by 100,000 people, as determined by the 

U.S. Census (Dartmouth Atlas, 2012). 

 

� Number of hospital-based nurses per 100,000 people - The number of full-time equivalent (FTE) 

nurses working in a hospital setting divided by 1,000 people as tabulated by the U.S. Census 

(Dartmouth Atlas, 2012). 

 

Analysis 
 The dependent variable, the log transformation of hospice days, was evaluated across all HRR's. 

The log transformation was applied because the hospice variable had a strong right skew. The 

transformation helped reduce the skewness in the distribution (from 0.866 to -0.174) and the kurtosis 

(from 3.93 to 3.15). Bivariate correlations between the log hospice variable and the selected predictors 

was assessed. This provided an initial perspective on the association between the dependent and 

independent variables. Thereafter, a multiple linear regression model was specified. The specification 

process was done by a backward-forward stepwise algorithm. All of the independent variables were 

initially included in the model. Only total Medicare reimbursements was a mandatory predictor in the 

loghospice final model. Otherwise, variables were selected into the model if they met the inclusion 

criteria of p<0.05 and the exclusion criteria of p>0.10. 

 After the model was specified, the magnitude and p-value of each selected independent variable 

on hospice duration was assessed. The model was further assessed for regression diagnostics. 

Collinearity of selected variables was evaluated by the Variance inflation factor (VIF). 

Homoskedasticity of the regression residuals was assessed by the  Breusch-Pagan/Cook-Weisberg and 

Cameron-Trivedi tests. 
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Results  

 Figure 1 is a map from the Dartmouth Atlas that shows the number of days individuals were in 

hospice care for the last 6 months of their lives. The data is for hospital referral regions (HRR) in the 

United States, and has a range of hospice stays between 4.9 and 35.5 days. There are scattered areas in 

the Pacific Northwest, North Central states, and the Northeast with no data. Noticeably higher hospice 

stays are observed in the South and Southwest compared to the West and Northeast. 

 Figure 2 also comes from the Dartmouth Atlas and is a map of the total Medicare 

reimbursements in the last 6 months of life across the United States. This map has substantially more 

areas where there are no data compared to Figure 1, particularly in the North Central states and the 

West. There are also fewer areas of especially high reimbursement rates – excepting California, the 

southeast of Texas, Alaska, and a portion of the Northeast. On initial assessment, it appears that areas 

with higher hospice stays in Figure 1 are associated with lower total Medicare reimbursements in 

Figure 2. 

 Figure 3 shows a histogram of the dependent variable, hospice days, while Table 1 provides the 

summary statistics for the hospice days and log hospice days variables. Kernel density plotting was 

used in addition to having the histogram boxes. The hospice days variable had values between 4.9 days 

and 35.5 days. The reduction in the skewness and kurtosis after log transformation is noted in the table.  

 Table 2 shows the bivariate correlations between the different variables. The correlations only 

show associations between variables. Regression analysis yielded p-values, and the significance of 

selected predictors on loghospice after controlling for other variables. As might be expected, there are 

negative correlations between loghospice and inpatient days (r=-0.250) and loghospice and inpatient 

short-stay reimbursements (r= -0.255). Hospice reimbursements was positively correlated with 

loghospice (r=0.794). Total medicare reimbursements was negatively correlated (r=-0.137) with 
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loghospice. As the number of loghospice days go up, the number of total physician visits go down (r=-

0.141). More inpatient days were associated with lower outpatient reimbursements (r=-0.191). 

 Evaluating key bivariate relationships more closely, Figure 4 shows a positive curvilinear 

association between increasing hospice reimbursement and the log of hospice days. Comparatively, 

Figure 5 shows that outside of a negative association at low outpatient reimbursement levels, there 

appears to be no association between increasing outpatient reimbursement and the length of inpatient 

stays for reimbursement exceeding $250. Finally, Figure 6 shows a positive linear relationship between 

increasing physician visits and total inpatient days. 

 The regression model shows that for every 1 day increase in the inpatient stay, there is a -0.035 

change in the log (hospice days) (significant at p<0.01). A 1 unit increase in the ratio of nurses per 

100,000 people has a 0.061 increase in the log (hospice days) (significant at p<0.01). A change in total 

Medicare reimbursements has a beta-coefficient near 0 on the log (hospice days) (while being 

significant at p<0.05). 

 The variance inflation factor (VIF) was calculated to identify collinearity between variables. All 

the predictors had a VIF substantially less than 10, indicating lack of significant collinearity (UCLA 

ATS, 2012).1 As a result, no variables were removed from the regression model. 

 Both the Cameron-Trivedi and the Breusch-Pagan tests statistically evaluate the assumption that 

the residuals from a regression model are homoskedastic. Table 5 shows that the homoskedasticity null 

hypothesis for the Cameron-Trivedi test is rejected with a p-value of 0.000. In contrast, Table 6 

demonstrates that the homoskedasticity null hypothesis for the Breusch-Pagan test is not rejected. Since 

the two tests are contradicting each other, rejection of the homoskedasticity assumption is 

indeterminate. While no changes are made to the regression model, it is appropriate to be concerned 
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about the true significance of the results. 

 Table 7 evaluates the reverse association between hospice days on total Medicare 

reimbursements. Total Medical reimbursements is the dependent variable, while hospice days 

(untransformed) is the single predictor. The model results show that a 1 day increase in hospice stay 

decreases the total Medicare reimbursement by approximately $117. The association is significant at 

p<0.05, but the overall model has a low R-squared of 0.014. 

 

Discussion 

 This paper provides evidence that total Medicare reimbursements a priori do not affect the 

hospice duration for an end-of-life patient. Total Medicare reimbursement includes multiple 

components, including outpatient, inpatient, and hospice reimbursements. Hence, it is reasonable to 

infer that the directional association of Medicare reimbursements on hospice duration will be non-

significant. However, evaluating the a posteriori relationship shows a connection between increased 

hospice length-of-stay and lower total Medicare reimbursements. The $117 per day cost savings is 

substantial, and is in line with previous research by Goldsmith and co-authors showing lower Medicare 

costs with greater use of palliative care services. This research extends The Goldsmith et al finding 

across over 300 hospital referral regions in the United States. 

 After controlling for other variables, regression analysis shows that a higher number of hospital-

based nurses is associated with a greater number of days the patient spends in hospice in the same 

communities. This is an unexpected finding since past work has emphasized the impact of ICU 

providers on reducing hospice length-of-stay. It is possible that this is a spurious relationship because 

patients in hospice have no direct connection with inpatient nurses. 
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  However, it would be important to rule-out whether regions with a high proportion of inpatient 

nurses also facilitate patients entering hospice. In that case, it would be expected that the larger number 

of patients in hospice within these areas are being transferred from hospitals with a higher proportion of 

nurses. If this relationship is true, the relationship between inpatient nursing and hospice use may be 

more plausible. Nurses serve important roles in facilitating communication between patients, their 

families, and medical doctors. It is unclear whether nurses transmit patient preferences more directly to 

medical doctors so that doctors discontinue ICU care, or if nurses help facilitate better direct 

communication between patients and doctors. However the mechanism, further study of this pathway 

may be especially useful in understanding how hospice care decisions are made. Besides this finding, 

the research shows that other forms of reimbursement (such as hospice reimbursements and inpatient 

long-stay reimbursements) do not have a sizable effect on hospice length-of-stay. 

 The results also show that the higher the number of physician visits, the higher the number of 

inpatient days. This finding is potentially confounded by the fact that patients staying for longer 

inpatient stays have more specialists attending to them in the hospital. HRRs with fewer physician 

visits might be smaller hospitals without substantial inpatient intensive care unit (ICU) care. Stratifying 

by hospital size and hospital type (academic versus non-academic) might help elucidate this 

relationship. Nevertheless, it is noted that there is a small but significant correlation of -0.174 between 

total physician visits and log (hospice days). 

 This research extends previous work through the inclusion of data points from across the United 

States. The predictors cover such relatively diverse areas as reimbursements, quality-of-care, and 

provider supply. Another strength is that the data were collected over a longitudinal time-frame from 

2004 to 2007. This increases the reliability of the data because more data points are available. Results 

due to exogenous factors particular to a single year are less likely to have an effect when multiple years 
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are considered.   

 There are also important limitations of this study. For example, the method does not assess other 

pertinent factors such as family influence or the effect of geographic regions on hospice days. Further 

assessment by regression of interactions between predictors could have been done. A main effects 

analysis was done instead because the further studying of interactions may add to spurious findings.  

Finally, the research evaluates hospital referral region, which might not be as good a unit of 

measurement as state-level data. The Dartmouth atlas uses aggregate data based on a random sampling 

of Medicare enrollees. It might not be considered generalizable for non-Medicare patients, or when 

evaluating care at a community level. Furthermore, error bounds are not available, so it is difficult to 

assess the precision of different data points. In addition, Dartmouth data draw from Medicare, is more 

quantitative in nature, and has little quality data from patients or providers. 

 Future research should evaluate the connection between hospice length-of-stay and total 

Medicare reimbursements. More details on how this mechanism acts would be helpful in identifying 

policies that serve patient interests as well as affect healthcare costs. Finally, work that evaluates 

interactions between different salient predictors will allow for a more sophisticated analysis of how 

patients are sorted into hospice care or acute inpatient care. In total, these additional areas of 

investigation will help promote a better understanding of how patients and providers make the critical 

choice of staying in a hospital at the end-of-life, versus being in a palliative setting. Ensuring that 

patients are making the best decision for themselves at this time is something that is critically 

important. 
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Figure 1. Duration of Hospice Stays Mapped across the United States 
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Figure 2. Total Medicare Reimbursements across the United States in the Last 6 
Months of Life 
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Figure 3. Histogram of Hospice Days with Kernel Density Plotting (Epanechnikov 
Option) 
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Figure 4. Scatterplot of Log(Hospice Days) vs Hospice Reimbursement (n=307) 
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Figure 5. Scatterplot of Inpatient Days vs Outpatient Reimbursement (n=307) 
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Figure 6. Scatterplot of Inpatient Days vs Total Physician Visits (n=307) 
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Table 1. Summary Statistics of Hospice Days 
 

 

 Observations Mean Std. Deviation Skewness Kurtosis 

Log Hospice 
Days 

308 2.69 0.35 -0.174 3.15 

Hospice Days  308 15.58 5.39 0.866 3.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Bivariate Correlation Matrix for All Varia bles (with p-values included in 
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paranthesis) 

 

 Loghospice Inpatient 
days 

Average 
copay  

Hospice 
reimburse 

Outpatient 
reimburse 

Inpatient 
short-stay 
reimburse 

Inpatient 
long-stay 
reimburse 

Total MD 
visits 

Hospital-
based 
nurses 

Hospital-
based MDs 

CMS 
Hospital 
Rating 

Total 
Reimburse 

Loghospice 1.000            

Inpatient 
days 

-0.250 
(0.000) 

1.000           

Average 
copay  

-0.024 
(0.677) 

0.697 
(0.000) 

1.000          

Hospice 
reimburse 

0.794 
(0.000) 

-0.098 
(0.102) 

0.057 
(0.348) 

1.000         

Outpatient 
reimburse 

-0.236 
(0.000) 

-0.191 
(0.001) 

-0.377 
(0.000) 

-0.277 
(0.000) 

1.000        

Inpatient 
short-stay 
reimburse 

-0.255 
(0.000) 

0.746 
(0.000) 

0.615 
(0.000) 

-0.155 
(0.010) 

-0.072 
(0.207) 

1.000       

Inpatient 
long-stay 
reimburse 

-0.070 
(0.233) 

0.110 
(0.061) 

0.131 
(0.026) 

-0.034 
(0.578) 

0.118 
(0.044) 

0.050 
(0.397) 

1.000       

Total MD 
visits 

-0.141 
(0.014) 

0.795 
(0.000) 

0.877 
(0.000) 

-0.029 
(0.634) 

-0.206 
(0.000) 

0.705 
(0.000) 

0.061 
(0.304) 

1.000     

Hospital-
based 
nurses 

-0.042 
(0.461) 

0.171 
(0.003)  

-0.262 
(0.000) 

-0.067 
(0.265) 

0.341 
(0.000) 

0.089 
(0.119) 

0.200 
(0.001) 

-0.165 
(0.004) 

1.000      

Hospital-
based MDs 

-0.069 
(0.229) 

0.111 
(0.053) 

0.274 
(0.000) 

-0.139 
(0.021) 

-0.091 
(0.112)  

0.157 
(0.006) 

-0.153 
(0.009) 

0.322 
(0.000) 

-0.180 
(0.002) 

1.000   

CMS 
Hospital 
Rating 

-0.140 
(0.014) 

-0.084 
(0.143) 

-0.084 
(0.143) 

-0.222 
(0.000) 

0.163 
(0.004) 

-0.034 
(0.552) 

-0.197 
(0.001) 

0.037 
(0.518) 

-0.010 
(0.861) 

0.254 
(0.000) 

1.000  

Total 
Reimburse 

-0.137 
(0.017) 

0.259 
(0.000) 

0.259 
(0.000) 

-0.043 
(0.475) 

-0.023 
(0.684)  

0.288 
(0.000) 

0.006 
(0.915)  

0.270 
(0.000) 

-0.077 
(0.179)  

0.050 
(0.386) 

-0.018 
(0.752) 

1.000 
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Table 3. Parameter Estimates for Multiple Regression Model (p-value and standard 
error, 'SE', included in paranthesis; n=272 and R-squared=0.72) 

 

 

Variable Beta Coefficient 

Total Reimbursement -0.000  (p=0.034; SE=0.0000) 

CMS Hospital Rating 0.011  (p=0.053; SE=0.0057) 

Inpatient days -0.035  (p=0.000; SE=0.0052) 

Hospital-based nurses 0.061  (p=0.006; SE=0.0222) 

Average copay 0.000  (p=0.003; SE=0.0000) 

Inpatient long-stay reimburse 0.000  (p=0.005; SE=0.0001) 

Hospice reimburse 0.002  (p=0.000; SE=0.0001) 

Outpatient reimburse -0.000  (p=0.095; SE=0.0001) 

Constant 1.459  (2.66; SE=0.5487) 
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Table 4. Variance Inflation Factor (VIF) Results for Multiple Regression Model 
Variables 
 

 

Variable VIF  

Total Reimburse 1.09 

CMS Hospital Rating 1.16 

Inpatient days 2.77 

Hospital-based nurses 1.64 

Average copay 3.08 

Inpatient long-stay reimburse 1.21 

Hospice reimburse 1.2 

Outpatient reimburse 1.41 
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Table 5. Cameron and Trivedi Decomposition Test for Multiple Regression Model 
Variables 
 

 

Measure  Chi-square   p-value 

Heteroskedasticity 124.26 0 

Skewness 25.74 0 

Kurtosis 2.63 0.11 

Total 152.63 0.00 
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Table 6. Pagan/Cook-Weisberg Heteroskedasticity Test for Multiple Regression 
Model 
 

 

Chi-square 0.28 

P-value 0.6 
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Table 7. Simple Regression Results (for Dependent Variable=Total Medicare 
Reimbursement; for n=306, R-squared=0.014, *=significant at 0.05, and 
**=significant at 0.01) 
 

 

Variable  Beta Coefficient  
Hospice days -117.79 (-2.08)* 

Constant  28742.61 (30.70)** 
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Meta-analysis of Male and Female HPV Vaccination 

 

Introduction  

 Nearly 10 million people in the United States between the ages of 15 and 24 years old are 

infected with HPV. HPV is believed to be an important risk factor for cervical cancer, a disease that is 

diagnosed in 12,000 women annually in the USA, with 4,000 women dying from it each year (CDC, 

2007). The disease is largely preventable if a person is provided a three-dose vaccine ahead of time 

(CDC, 2012).   

 

 The two FDA-approved HPV vaccines are the bivalent vaccine Cervarix and the quadrivalent 

vaccine Gardasil. The quadrivalent vaccine provides protection from 4 strains of HPV, while the 

bivalent vaccine provides coverage against 2 strains (HPV 16 and 18) (CDC, 2007). The quadrivalent 

vaccine provides greater protection against HPV-related sequelae – protecting against nearly 100% of 

cervical pre-cancerous lesions, and also providing coverage against anal, vaginal, and vulvar cancers 

(CDC, 2012). Comparatively, the bivalent vaccine protects against 93% of cervical pre-cancers. The 

vaccines have a long duration of action, and initiate an antibody response in nearly 100% of adolescent 

females (CDC, 2012). 

 

 The quadrivalent and bivalent vaccines are indeed effective. However, there are serious 

concerns about vaccine compliance rates in the United States. Laz and co-authors found that only 3% 

of adolescents received all 3 vaccine doses by 11 to 12 years old. Full three dose compliance was only 
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19% by the ages of 13 to 17 years old. Parents are an important factor in adolescent compliant rates. 

Parental factors affecting vaccine non-compliance included: safety concerns (19%), questions on the 

need for the vaccine (26%), and questions about the vaccine itself (17%) (Laz et al, 2012). At the same 

time, Hirth and co-authors found that the likelihood of completing the three doses decreased as the age 

of vaccine recipients increased (Hirth et al, 2007). 

 

 Despite the compliance issues, female HPV vaccination has been widely seen as an effective 

intervention. Based on this, the ACIP recommended vaccination with the quadrivalent HPV vaccine for 

all male adolescents ages 11 to 12 years (CDC, October 2011; NY Times, 2011; Harris, 2011). In 

justifying its decision, the ACIP stated: “Vaccination of males would provide direct benefits and likely 

would reduce HPV 6, 11, 16, and 18 transmission, and resulting infection, disease, and cancers in 

females (through herd immunity).”(CDC, December 2011). Advocates for male HPV vaccination 

contend that it reduces the transmission of HPV to women, and also reduces the risk of men getting 

male-specific HPV disease such as penile cancer (Fontenot and Morelock, 2012).  

 

 As more and more adolescents receive the HPV vaccine across the United States, much 

attention has been centered on the cost-effectiveness of mass vaccination. In this paper, cost-

effectiveness is defined as the comparison of interventions to determine which produces the same level 

of output at the lowest cost (World Bank IEG, 2007). While the cost-effectiveness of female HPV 

vaccination has been extensively studied, there are considerably fewer research studies evaluating the 

cost-effectiveness of male HPV vaccination. For example, a Pubmed search of 'female hpv cost-

effectiveness' returns 371 results compared to the 77 results for 'male hpv cost-effectiveness' (Pubmed 

Search, 2012). This is not wholly surprising, since a disproportionate amount of the disease burden that 
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HPV alleviates is related to cervical cancer.  

 

  Systematic reviews are one method to evaluate cost-effectiveness. Reflecting the dearth of cost-

effectiveness literature on the topic, there are only a few systematic reviews that look at the cost-

effectiveness of male-female HPV vaccination compared to female-only HPV vaccination (Seto et al, 

2012; Marra et al, 2009; Kim et al, 2008). These include studies by Seto et al and Marra et al that 

evaluate incremental cost-effectiveness ratios (ICERs) to make cost-effectiveness comparisons (Seto et 

al, 2012; Marra et al, 2009). For background, the ICER is a ratio that compares the cost of one practice 

to that of the current gold standard, and then divides this by the health effect of the practice to the 

current gold standard. In other words, it offers the incremental cost-effectiveness beyond the current 

standard of care.  The health effect is defined by the Quality Adjusted Life Year (QALY). The formula 

is: ICER = (Cost of practice 1 – Cost of gold standard)/(Utility of practice 1 – Utility of practice 2). 

Cost-effective thresholds vary, but have been identified in the literature as between ($50,000-

$100,000)/QALY, as well as ($90,000-$120,000)/QALY (Sarnnaliev; Kim and Goldie, 2009). 

Interventions that have ICER values below this cost-effectiveness threshold are designated as relatively 

cost-effective, while those above the threshold are considered relatively less cost-effective. A cost-

effective the intervention is believed to have a good return on health outcomes for the amount of 

money spent (World Bank IEG, 2007). 

 

 The 2009 Seto et al study identified 4 studies. Outside of 1 paper that showed an ICER of 

US$440,000/QALY for adding males to a female-only program, the remaining studies had an ICER 

between US$17,000/QALY -$42,000/QALY. The 2012 Marra et al study had 4 more studies than Seto 

et al. For these additional papers, Marra and co-authors found that 1 study focused on cervical 
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outcomes, a second looked at cervical outcomes and genital warts, while the other 2 looked at cervical 

and non-cervical disease. In line with the 2009 paper, the 2012 study concluded that adding males was 

not cost-effective. It referred to Kim and Goldie's male-female ICER estimate of between 

US$114,000/QALY to $350,000/QALY as a baseline value. Beside this, the authors critiqued Elbasha 

and Dasbach's use of higher model input costs in obtaining their lower male-female ICER values 

(between US$25,664/QALY and $46,978/QALY).  

 

 While systematic reviews are valuable, they do not compare to a meta-analysis. Rigorous 

evaluation of each paper by meta-analytic techniques provides a more robust ICER value, weighted to 

the variability in the ICER estimate. This is valuable because it places relative weights on individual 

papers, and accounts for the variability within and between papers. Having an aggregate ICER value 

for male HPV vaccination will increase precision since investigators will now have a benchmark value 

in assessing male HPV vaccination, compared to multiple values that are confusing. On the other hand, 

if the analysis is not done in an aggregate way, mistakes might be made on the cost-effectiveness of 

HPV vaccination. For example, policy-makers might designate male HPV vaccination as cost-effective 

or not based on results that have large error bounds. In effect, policy decisions could be made without 

appropriately weighting studies for the variability in the reported data. This is especially relevant since 

California Governor Jerry Brown approved HPV vaccination for adolescents without parental approval. 

Advocates saw this measure as increasing access to critical preventive care, while critics contended it 

promoted sexual activity and was not cost-effective (Conley, 2011). With accurate male-female HPV 

cost-effectiveness data, the currently unsuccessful attempts to mandate HPV vaccination across the 

state might be completely changed (NCSL, 2012). 
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Paper Objectives 

 Currently there is a limited  amount of male-female HPV vaccine cost-effectiveness research. 

The current exploratory analysis adds value by aggregating the individual paper results and providing a   

rough benchmark estimate of the cost-effectiveness between vaccination strategies. It is acknowledged 

that there are few papers available to complete a meta-analysis leading to particularly robust inference. 

Nevertheless, the value of aggregating the individual data was considered to be important despite this 

sample size limitation.  

 

 This analysis calculates the ICER values of a female-only vaccination strategy compared to a 

male and female vaccination strategy. The published male-female HPV papers are critically assessed. 

The end result is a single aggregate value that is more useful than multiple values from different papers. 

The main research questions are: 

  

1) When aggregating across papers, what is the fixed-effects incremental cost-effectiveness ratio 

(ICER) value for male and female HPV vaccination compared to female-only HPV vaccination? 

2) Are the ICER results robust after completing sensitivity analysis? 

 

 It is hypothesized that female-only HPV vaccination will have an ICER below the 

$50,000/QALY threshold, while male and female HPV vaccination will have an ICER above the 

$100,000/QALY cutoff. Past research shows female-only vaccination to relatively be cost-effective at 

this cutoff level, with less variability across papers in these results. Comparatively, results for male-

female vaccination are substantially more variable across papers, and do not generally meet the 

$50,000/QALY cutoff level.  
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Comparison of Methods 

 Meta-analysis is a critical method for aggregating results across different studies. Factors that 

affect the quality of the meta-analysis include heterogeneity in the study design, disease data, and 

patient populations in the studies. To assess for robustness, one may conduct subgroup analysis where 

patient subgroups are specifically studied. For example, one might evaluate results for women only, or 

in smokers. Another technique is to complete sensitivity analysis, where certain studies are excluded 

from analysis (Davis and Crombie, 2001). As is discussed in two articles from Medical Decision 

Making and an open-source Cochrane Review article, there are multiple options for among meta-

analysis techniques (Ades et al, 2005; Cochrane Collaborative, 2002).  

 

 Meta-analysis estimation methods include fixed effects, random effects, or Bayesian analysis. 

The fixed effects model assumes that all the studies have the same single “actual” treatment effect 

value, and that any heterogeneous error between study values is systematically random. As a result, 

there is no accounting of between-study error that might arise as a result of different sampling methods 

or varying target populations (Montori et al, 2008). In contrast, the random effects model assumes that 

each study has its own “actual” treatment effect value. The resulting variability in the estimates 

between studies is not interpreted as random, but rather follows a normal distribution (Ades et al, 2005; 

Hasselblad and McCrory, 1995; Cochrane Collaborative, 2002).  

 

 However, Montori, Ioannidis, et al note that random effects models are more likely to produce 

extreme results when the sample size is small (Montori et al, 2008). For studies that are similar, a fixed 

effects weighting can be done, based on the variance of the effect size between studies. On the other 
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hand, in random effects, the results are unweighted to account for between-study variability. Bayesian 

analysis assumes the ICER data has a prior and posterior probability distribution. The prior distribution 

is random, while the posterior distribution is a function of the prior distribution and the likelihood 

function for the model's parameters.  

 

  Fixed effects is advantageous when the data is homogenous and the studies are assumed to be 

the same. It also is better when a single true effect size is expected for all studies.  The fixed effects 

model does not work as well with heterogeneity in the effect size of the data because the studies are 

weighted according to sample size. Random effects is better when the data is heterogeneous and there 

is a substantial difference between the studies (Borenstein et al, 2009). Random effects is also 

advantageous when the results are extended to different sorts of studies, where a common effect size is 

not suitable. Random effects is less appropriate for studies with small sample sizes. In addition, it is not 

good for homogenous data since the studies are weighted equally, and not by sample size (Borenstein et 

al, 2009).  Bayesian analysis is advantageous in that it assumes a range of statistical distributions for the 

ICER values, increasing the chance for more efficient results. However, it is disadvantageous because it 

relies on a priori information that may be limited (Schmid, 2001).  

 

 In this paper, a fixed effects model was chosen. The trade-off for using fixed effects is that it 

assumes a single true ICER value for male-female HPV vaccination. Random effects assumes a 

distribution of true male-female ICER values, based on the conditions of the study. The cost of using 

fixed-effects is that the final ICER value may be skewed as a result of weighting studies by their 

sample size instead of assuming an additional component of variability. The benefit is that fixed-effects 

provides a better estimate for small samples. The major limitation for this paper is the small number of  
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published papers. Only 7 papers are used for the analysis. Based on this serious sample size limitation, 

fixed effects is ultimately used. Bayesian analysis is not used because of the limited data that is 

available for male-female HPV vaccination, and the disadvantage of setting a priori assumptions in 

such circumstances.  

 

Methods 

 A Pubmed search was conducted using the search terms:  men hpv vaccination and "cost-

effectiveness". In addition, the terms 'QALY' and 'boys' were used to expand the set of possible papers. 

Additional papers were identified as references in the 2012 Seto et al and 2009 Marra et all systemic 

reviews of male HPV vaccination. Inclusion criteria were: ICER values for male and/or boy HPV 

vaccination; ICER values for female-only HPV vaccination; and data from English-language 

publications. Both domestic and international papers were selected. In total, 8 papers were identified 

and 7 were used. The 8th paper was removed because it did not report cost-effectiveness in QALYs. It 

is acknowledged that 7 papers is a small sample size for calculation purposes. However, based on no 

previous precedent for male HPV meta-analysis, the study was still seen as contributing new 

information despite the small number of studies.  

 

 The selected papers are: Kim and Goldie, BMJ, 2009 (Kim and Goldie, 2009); Elbasha et al, 

EID, 2007 (Elbasha et al, 2007); Chesson et al, Vaccine, 2011 (Chesson et al, 2011); Jit et al, BMJ, 

2008 (Jit et al, 2008); Kim et al, BJC, 2007 (Kim et al, 2007); Elbasha and Dasbach, Vaccine, 2010 

(Elbasha and Dasbach, 2010); Taira et al, EID, 2004 (Taira et al, 2004); and Insinga et al, Vaccine, 2007 

(Insinga et al, 2007). The Kim et al, BJC, 2007 paper is excluded from meta-analysis because it uses 

Years of Life Saved (YLS) as its main unit of cost-effectiveness analysis instead of quality adjusted life 
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years (QALYs). The two international papers were Jit et al, BMJ 2008 (United Kingdom) and Insinga et 

al, Vaccine 2007 (Mexico).  

 

 Each paper had an ICER value for female-only HPV vaccination and male-female HPV 

vaccination. The search was not restricted by year of publication year. Papers ranged in publication date 

from 2004 to 2011. To standardize ICER values, currency was converted to US dollars when necessary 

(ie. Jit et al, BMJ, 2008; Insinga et al, Vaccine, 2007), and then standardized to 2011 US dollars using 

the consumer price index (CPI) (US Department of Labor, 2012). Each paper had a set of ICER values 

for male-female and female-only vaccination. The mean of these values were calculated to obtain each 

paper's average male-female and female-only ICER value. A fixed-effects estimate was then derived 

across all papers. There was now a set of average male-female and female-only ICER values. The 

variance was calculated for the two sets of data. The inverse variance was obtained by taking the 

reciprocal of the variance for each strategy (1/variance). Next, the average ICER value for each paper 

was multiplied by its inverse variance (effect size (ES) * inverse variance (IV)). For each vaccination 

strategy, the sum of ES*IV across all papers was calculated. This value was divided by the sum of the 

IV across all papers to obtain the fixed-effects estimate for each strategy.  

 

 Meta-analysis is traditionally done for primary studies alone (Montori et al, 2008). This paper 

applies ICER values derived from simulations of primary data. We make this  assumption because each 

paper attempts to evaluate the same phenomenon, despite the use of primary data from other sources 

and the application of simulation models with differing assumptions. To further assess this assumption, 

the comparability of ICER values across vaccination strategy might be evaluated using Bayesian, 

random-effects and fixed-effects approaches. Ultimately it might be a question of comparing the meta-
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analysis to a well-designed HPV vaccination 'gold standard' cost-effectiveness study that has a large 

sample size. The meta-analysis results could then be compared to this reference study.  

 

Data 

 Table 1 summarizes the papers used in the analysis.   The papers did not uniformly measure the 

same disease states. Pre-cancerous lesions, CIN I to III, and genital warts were the most frequent 

disease state evaluated, with 5 of the 7 papers having data. Aggregate cervical cancer incidence and 

juvenile-onset recurrent respiratory papillomatosis (JORPP) was measured in 4 of the 7 papers. Non-

cervical disease was measured in 3 of the 7 papers. Finally, HPV 16 and 18 incidence values were 

collected for at least 2 of the 7 papers.  Few papers had data for the most prevalent disease states of 

cervical cancer, CIN I-III, and genital warts. Elbasha et al and Taira et al only had incidence rates for 

HPV 16 and HPV18. The Jit et al paper has HPV 16/18 and CIN I-III rates, but not rates for cervical 

cancer or genital warts.  Further assumptions have to be made on the conversion rate from HPV 

infection to CIN or cervical cancer in these models – leading to presumably more flawed predictions. 

Only the Chesson et al and Elbasha and Dasbach papers have incidence data for CIN I-III, cervical 

cancer, and genital warts. However, the presence of this data does not lend insight into which data is 

most accurate. This is a clear issue since there is a difference between papers on the rates for cervical 

cancer (4.2 to 12.5), and  genital wart rates (155 to 459).  

 

 

 As observed in Table 2, there is a lack of uniformity in what is measured in the different papers. 

This makes it difficult to assess which papers are the best. Disease states that were commonly assessed 

include: CIN, Cervical Cancer (Untreated and Treated), Genital Warts, Male Cancers (Penile Cancer), 
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and Rare Cancers (Vaginal Cancers, JORPP). There is not much difference between papers for their 

QALY values for genital warts and CIN. There is more variation for how cervical cancer is categorized. 

Certain papers describe treated versus untreated cervical cancer, by its stage. Other papers provide a 

QALY range for cervical cancer. The most limited papers are those by Insinga et al and Elbasha et al. 

They only provide data for CIN I-III and genital warts. There is no data for cervical cancer. There is 

also no variation between the disease states, with all states having a value of 0.97. Jit et al provides 

more comprehensive data for CIN I-III, cervical cancer, and genital warts; including standard 

deviations for the values. Chesson et al and Kim and Goldie provide data for CIN I-III, genital warts, 

cervical cancer, male-specific cancer, and rare cancers.  

 

 As Table 3 demonstrates, cost data varied between papers by the currency unit and year. The 

Insinga et al paper had currency in terms of Mexican pesos, while the Jit et al paper used British 

pounds. The vaccine cost was between $200 and $600 for 4 of the 7 papers. 2 of the 7 papers had a 

vaccine cost below $100. 3 of the 7 papers had cervical cancer costs between $30,000 and $55,000. 3 

of the 8 papers had CIN I to III costs between $1000 and $4500. 1 of these 3 papers had the same value 

for CIN I, II, and III while the other 2 had increasing costs for the higher grade CIN. 1 of the 7 papers 

(Jit et al, 2008) had cost data for different stages of cervical cancer, with and without treatment.  

 

  Even after controlling for inflation, the cost data had a good amount of variability between the 

papers. The main issue was the cost projections for treatment of the different stages of cervical cancer. 

The papers were divided into three cost ranges: $30,000-$50,000 (Kim and Goldie; Elbasha and 

Dasbach, 2010; $15,000-$25,000 (Jit et al; Taira et al); and then $7,000-$7,800 (Insinga et al). The 

Chesson et al paper had a single value for cervical cancer treatment ($35,693), while the Elbasha et al, 
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2007 had starkly different values for female-only ($3,000-$9,000) versus male and female vaccination 

($35,000-$65,000). Somewhat surprisingly, two papers (Elbasha et al, 2005; Taira et al) did not have 

cost data for genital warts, a common condition that the HPV vaccine can help prevent. Two of the 

papers, Insinga et al; Jit et al, used data from Mexico and the United Kingdom, respectively. Excepting 

these two papers, it is difficult to assess which papers are the best – since it is hard to say whether the 

$15,000-$25,000 range approximate the 'true' cost of cervical cancer treatment compared to the 

$30,000-$50,000 range. That being said, the Elbasha and Dasbach paper is the most comprehensive, 

with stage-specific cost data for not only cervical cancer, but also vulvar and vaginal cancer; besides 

having cost data for rare HPV-associated diseases.  

 

 As Table 4 shows, 1 of the 7 papers had ICER values ranging across increasing vaccine efficacy. 

Two of the 7 papers had values across increasing vaccine coverage rates. One of the 7 papers had 

values across increasing vaccine duration. For all 7 of the papers, female-only vaccination was more 

cost-effective than male add-on vaccination. At low coverage rates (<30%), male add-on vaccination 

was cost-effective ($23,600 in Chesson et al, 2011 and $110-$9370 in Kim et al, 2007). At higher 

coverage rates (>75%), male add-on vaccination was not cost-effective ($184,300 in Chesson et al, 

2011 and $9,110-$136,910 in Kim et al, 2007). In comparison, female-only vaccination across the most 

stringent assumptions was still cost-effective ($33,868 for 10 year protection in Jit et al, 2008, and 

$27,370 for 50% efficacy in Kim and Goldie, 2006). Because there is such variety in how the ICER is 

assessed, it is difficult to determine what ICER values are most accurate. For example, Kim and Goldie 

calculate ICER across vaccine efficacy rates, while Chesson et al compare ICER data across vaccine 

coverage rates. Jit et al obtain ICER data for the U.K. and range it across different vaccine durations. 

Besides different scales for evaluating ICER, there is the added challenge of the accuracy of the 
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collected data: with the assumption that later studies draw from more comprehensive and accurate 

cervical cancer data than earlier studies.  

 

 

 As Table 5 shows, sample size differed significantly across the studies. The Kim and Goldie 

paper had a total sample of 282 million, while the Chesson et al paper had 281 million. This is 

substantially larger than the 80,000 to 4.1 million individuals in the other 5 studies. Based on this major 

difference, these two papers disproportionately skew the weighted ICER values. As well, the source for 

QALYs varied between papers. Some would draw from previous work (Insinga et al, 2007; Elbasha et 

al, 2007), while others drew from a standardized set of measures (Kim and Goldie, 2009; Elbasha and 

Dasbach, 2010). Chesson et al drew from 3 different sources, leading to a presumptively more robust 

analysis. Otherwise, there is much overlap between the models in the different papers – from having 

dynamic transmission models, to having similar age groups evaluated, to the timeframe of study. Based 

on the collected data, the Chesson et al paper seems to be the most comprehensive, since it includes 

more HPV strains than the Kim and Goldie paper.  

  

Discussion 

 In evaluating the papers, 3 of the original 7 papers had cost-effectiveness ratios below 

<$50,000/QALY. These 3 papers had overlapping authors (Elbasha et al, 2007; Elbasha and Dasbach, 

2010; Insinga et al, 2007). The ICER values for adding males versus having a female-only program 

were, respectively: $41,803/QALY: $4,666/QALY, $25,664/QALY:$3,282/QALY, and 

$7,075/QALY:$2,719/QALY. These papers did not include non-cervical disease in the analysis. The 

QALY values were disproportionately high compared to the other papers. The QALY range was 0.87-
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0.97 between these 3 papers. In comparison, the Kim and Goldie (2009) paper had a QALY range of 

0.48-0.91. Limited incidence data were available for these papers. Indeed, there is substantial 

heterogeneity in the disease states that are accounted for between papers.  

 

 At high coverage (>75%) and moderate efficacy levels (>50%), male HPV vaccination did not 

meet the conventional threshold for cost-effectiveness. The ratios between adding males and female-

only vaccination for 3 of the papers (Kim and Goldie, 2009; Chesson et al, 2011; Kim et al, 2007; and 

Taira et al, 2004) were, respectively: $114510/QALY:$20990/QALY (at 90-100% vaccine efficacy), 

$184300/QALY:$10500/QALY (at 75% coverage), $136,910/YLS:$4180/YLS (at a vaccine coverage 

of 90% and a vaccine price of $400), and $442039/QALY:$14583/QALY. When coverage rates, and/or 

vaccine dose were low, the cost-effectiveness of male HPV vaccination generally increased. In the 

Chesson et al (2011) paper, reducing vaccine coverage to 20% changed the ICER from $184300/QALY 

to $23600/QALY. In Kim et al (2009), a reduction in vaccine efficacy from 90-100% to 50% changed 

the ICER from $114510/QALY to $164580/QALY. Overall, the fewer women that were vaccinated 

(either in terms of limited coverage, efficacy, or duration of protection), the higher the cost-

effectiveness of vaccinating males. This held in cases where non-cervical disease was included in the 

analysis (Kim et al, 2009; Chesson et al, 2011), as well as in cases where only cervical disease was 

evaluated (Jit et al, 2008; Taira et al, 2004).  

 

 There is a substantial range in ICER values between papers. For male-female vaccination, the 

ICER range is $36,361/QALY to $380,284/QALY – a 10.5 magnitude difference. For female-only 

vaccination, ICERs range between $3,236/QALY to $46,187 – a 14.3 magnitude difference.  The ICER 

is higher in male-female vaccination than female-only vaccination for all papers. At the same time, per 
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the magnitude difference, there is more variability in the ICER numbers for the female-only values than 

the male-female numbers. This may be because more data are available for female vaccination 

compared to male vaccination. Males having a lower risk of HPV-related cancer is the likely rationale 

for the higher male-female ICER value. However, there are differences in the model assumptions that 

makes the difference in ICER between male-female and female-only vaccination quite striking. Indeed, 

the proportionate difference between male-female versus female-only vaccination ranges between 4.45 

to 12.9 – reflecting the heterogeneity between papers.  

 

 Based on the fixed-effects calculations, the aggregate ICER values for female-only vaccination 

is $8,498/QALY, while male-female vaccination is $42,425/QALY. There is an approximately 4-fold 

difference between male-female and female-only cost-effectiveness. Removing the international papers 

in the sensitivity analysis shows that female-only vaccination remains cost-effective. There is an 

approximate $2,700 increase in the aggregate ICER value when the two international papers are 

removed – with the aggregate ICER value changing to $11,269/QALY. Comparatively, there is a nearly 

$28,000 difference in the male-female ICER value with the international papers excluded. Based on 

these results, the initial hypotheses of female-only vaccination being cost-effective at the 

$50,000/QALY cost threshold is satisfied. Likewise, male-female vaccination is not cost-effective at 

the $50,000/QALY cost-effectiveness threshold. 

 

 The strengths to this analysis is that it aggregates multiple papers to obtain an aggregate ICER 

value for male-female and female-only HPV vaccination. This paper also uses multiple methods to 

provide robustness to these results, including weighted/unweighted techniques and 

arithmetic/geometric means. With the extensive data on incidence, costs, QALYs, and model 
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assumptions, there is additionally more context to these results. The heterogeneity in the measured 

disease states and the difference in the  U.S. and international cost measures are two areas where the 

final results are likely influenced.  limitations of this analysis include its small sample size. Only 7 

papers were included in the assessment, making substantial variability in the ultimate findings a 

legitimate concern. There is limited information in many of the papers on how the models are explicitly 

structured. Without this information, it is harder to assess how model assumptions and input data 

directly affects the ICER values. Instead, qualitative assessments are made based on the difference 

between input values and the ICER data. 

 

Conclusion 

 This paper evaluates the cost-effectiveness of male-female HPV vaccination using meta-

analysis techniques. Future research that applies additional meta-analysis techniques on these data 

would be beneficial. Bayesian analysis of the data could be compared to the current analysis reported 

here. It was not done here because limited data are available for the cost-effectiveness of male HPV 

vaccination, placing limitations on a priori probability distributions. Result robustness can be further 

assessed by including more papers in the analysis, and increasing the amount of data. More 

sophisticated analysis can be conducted by, for example, studying the effect of different determinants 

on the ICER using meta-regression. Finally, it will be helpful to apply these findings to calculate the 

cost-benefit ratio of universal male-female HPV vaccination in the United States. The total costs and 

total benefits for mass vaccination is especially useful data when drawn from these aggregate statistics.  

 

 The Affordable Care Act (ACA) is a major factor when considering the total costs of mass HPV 

vaccination. For those with private insurance, the legislation mandates that all vaccines that are ACIP 
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recommended must be available to individuals without a copay or deductible (Healthcare.gov, 2010). 

Those without insurance and under 19 years old can receive the vaccine free-of-cost through the federal 

Vaccines for Children (VFC) program. The three dose regimen costs between $300 and $400. The cost 

subsidization by private insurers and the federal government will play an important role in increasing 

vaccine access, and simultaneously be a source of major expenses for both entities over the ensuing 

years (KaiserEdu.gov, May 2012). 

 

 Transmission of HPV is a major concern across the United States. The HPV vaccine is a 

powerful tool in preventing HPV-related sequelae. With mass vaccination for both adolescent males 

and females now part of official ACIP policy, it is more important than ever to determine the cost-

effectiveness of vaccination. Meta-analysis is one compelling way to do so. Based on these results, and 

using the $100,000/QALY threshold as a cut-off, it is recommended that adolescent males be 

vaccinated with the HPV vaccine. The results of this research may be extended to not only determine 

cost-effectiveness, but also to calculate the overall costs of mass vaccination. In so doing, HPV 

infection prevention may be coordinated with greater precision – leading to even better outcomes for 

young men and women across the United States and larger world.  
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Appendix 
 
Table 1. Incidence Data 

 It is noted that each row represents the incidence rate percent for the specific disease state. 

Values either come as single estimates or in ranges. They may be stratified between men (M), women 

(W), or women and men (W+M). Each column references the specific paper.  

 

 

Incide

n-ce  

Kim 

and 

Goldie, 

BMJ, 

2009  

(per 

100,00

0) 

Elbash

-a et 

al, 

EID, 

2007 

Chesson et 

al, Vaccine, 

2011 

(per 100,000) 

Elbasha and 

Dasbach, 

Vaccine, 2010 

(Model 

predictions only) 

Taira et 

al, EID, 

2004 

Insinga et al, 

Vaccine, 2007 

(per 100,000) 

Jit et al, BMJ, 

2008  

HPV 16 

(% 

Incidence) 

N/A 2.4% 

(W) 

1.7% 

(M)  

N/A N/A <18 yrs: 

2.6% (W), 

3.5% (M) 

N/A 3.30% 

HPV 18 

(% 

Incidence) 

N/A 2.4% 

(W) 

1.7% 

(M)  

N/A N/A <18 yrs: 

0.9% (W), 

1.2% (M) 

N/A 1.10% 

HPV 

16/18 

(% 

Incidence) 

N/A N/A N/A N/A N/A 0.0075% (Upper 

Bound: F) 

0.006%  (Upper 

Bound: M)  

N/A 

CIN I N/A N/A 0.459% 0.052% N/A N/A 3.2% 
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(% 

Incidence) 

CIN II 

(% 

Incidence) 

N/A N/A 0.288 % 0.122% 

(CIN II and III) 

N/A N/A 0.86% 

CIN III 

(% 

Incidence) 

N/A N/A 0.117 % 0.122% 

(CIN II and III) 

N/A N/A 1.1% 

Incide-

nce  

Kim 

and 

Goldie, 

BMJ, 

2009  

(per 

100,00

0) 

Elbash

a et al, 

EID, 

2007 

Chesson et 

al, Vaccine, 

2011 

(per 100,000) 

Elbasha and 

Dasbach, 

Vaccine, 2010 

(Model 

predictions only) 

Taira et 

al, EID, 

2004 

Insinga et al, 

Vaccine, 2007 

(per 100,000) 

Jit et al, BMJ, 

2008  

CIN 

II/III 

(% 

Incidence) 

N/A N/A N/A N/A N/A 0.100% N/A 

Cervical 

Cancer 

(% 

Incidence) 

0.0042%

-

0.0628% 

N/A 0.0125% 0.0065% N/A 0.0048% N/A 

Vulvar 

Cancer 

(% 

Incidence) 

0.0002%

-

0.0196% 

N/A 0.0048% 0.00046% N/A N/A N/A 

Vaginal 

Cancer 

(% 

Incidence) 

0.0001%

-0.006% 

N/A 0.0015% 0.00024% N/A N/A N/A 

Penile 

Cancer 

(% 

Incidence) 

0.0000%

-

0.0076% 

N/A 0.0028% 0.00079% N/A N/A N/A 
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Anal 

Cancer 

(% 

Incidence) 

0.0-

0.0056% 

(W) 

0.0001%

-

0.0043%

(M) 

N/A 0.0053%  0.00249% 

(W+M) 

N/A N/A N/A 

Incide-

nce  

Kim 

and 

Goldie, 

BMJ, 

2009  

(per 

100,00

0) 

Elbash

-a et 

al, 

EID, 

2007 

Chesson et 

al, Vaccine, 

2011 

(per 100,000) 

Elbasha and 

Dasbach, 

Vaccine, 2010 

(Model 

predictions only) 

Taira et 

al, EID, 

2004 

Insinga et al, 

Vaccine, 2007 

(per 100,000) 

Jit et al, BMJ, 

2008  

Oral 

Cancer 

(% 

Incidence) 

0.0002%

-

0.0139% 

(W) 

0.0001-

0.0177% 

(M) 

N/A N/A 0.00573%  

(head/neck) 

N/A N/A N/A 

Orophar-

yngeal 

Cancer 

(% 

Incidence) 

0.0-

0.0019% 

(W) 

0.0-2.9 

(M) 

N/A 0.0052% 0.00573%  

(head/neck) 

N/A N/A N/A 

Genital 

warts 

(% 

Incidence) 

0.0007% 

-

0.0062% 

(W) 

0.00013

%-

0.00501

N/A 0.459% 0.316% 

(W+M) 

0.162% (W) 

0.155% 

(M) 

N/A 0.155 % 0.49% 
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%(M) 

JORRP 

(% 

Incidenc

e) 

0.0043% N/A 0.00074% 0.00072% N/A N/A N/A 

 

 

 

 

 

 

Table 2. QALY Data 

 It is noted that all QALY values are point-in-time wellness for each disease state, excepting 

those values where treatment (Tx) or no treatment (no Tx) are expressly specified.  

QALY  Kim and 

Goldie, 

BMJ, 

2009  

Elbasha 

et al, 

EID, 

2007 

Chesson 

et al, 

Vaccine, 

2011 

(lifetime 

QALYs 

lost) 

Jit et al, BMJ, 

2008  

Elbasha and 

Dasbach, 

Vaccine, 2010 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

HPV 16/18 N/A N/A N/A N/A N/A N/A N/A 

Low Grade 

SIL 

N/A N/A N/A N/A N/A 0.97 N/A 

High Grade 

SIL 

N/A N/A N/A N/A N/A 0.97 N/A 

Cervical 

Cancer, F/U 

-I 

N/A N/A N/A N/A N/A 0.9 N/A 

Cervical 

Cancer, F/U 

N/A N/A N/A N/A N/A 0.62 N/A 
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-II 

Cervical 

Cancer, F/U 

-III 

N/A N/A N/A N/A N/A 0.62 N/A 

Cervical 

Cancer, F/U 

-IV 

N/A N/A N/A N/A N/A 0.62 N/A 

CIN I N/A 0.97 0.959 0.988 (SD=0.031) 0.91 N/A 0.97 

CIN II N/A 0.97 0.943 0.935 (SD=0.0051) 0.87 N/A 0.97 

CIN III/CIS N/A 0.97 0.940 0.946 (SD=0.051)  0.87 N/A 0.97 

Cervical 

Cancer 

0.48-0.76 N/A 0.58 N/A N/A N/A N/A 

Survivors: 

Local 

Cancer 

N/A N/A 0.73 N/A N/A N/A N/A 

QALY  Kim and 

Goldie, 

BMJ, 

2009  

Elbasha 

et al, 

EID, 

2007 

Chesson 

et al, 

Vaccine, 

2011 

(lifetime 

QALYs 

lost) 

Jit et al, BMJ, 

2008  

Elbasha and 

Dasbach, 

Vaccine, 2010 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

Survivors: 

Regional 

Cancer 

N/A N/A 0.67 N/A N/A N/A N/A 

Survivors: 

Distant 

Cancer 

N/A N/A 0.55 N/A N/A N/A N/A 

Non-

Survivors: 

Local 

Cancer 

N/A N/A 0.64 N/A N/A N/A N/A 
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Non-

Survivors : 

Regional 

Cancer 

N/A N/A 0.49 N/A N/A N/A N/A 

Non-

Survivors : 

Distant 

Cancer 

N/A N/A 0.55 N/A N/A N/A N/A 

No Tx:  

Cx – I  

N/A N/A N/A 0.65 (SD=0.082) 0.76 N/A N/A 

No Tx:  

Cx – II 

N/A N/A N/A 0.56 (SD=0.071) 0.76 N/A N/A 

No Tx:  

Cx – III 

N/A N/A N/A 0.56 (SD=0.071) 0.67 N/A N/A 

No Tx:  

Cx – IV 

N/A N/A N/A 0.48 (SD=0.061) 0.48 N/A N/A 

Tx: Cx – I N/A N/A N/A 0.90 (SD=0.066)  N/A 0.79 N/A 

Tx: Cx – II N/A N/A N/A 0.85 (SD=0.077) N/A 0.62 N/A 

Tx: Cx – III N/A N/A N/A 0.85 (SD=0.077) N/A 0.62 N/A 

QALY  Kim and 

Goldie, 

BMJ, 

2009  

Elbasha 

et al, 

EID, 

2007 

Chesson 

et al, 

Vaccine, 

2011 

(lifetime 

QALYs 

lost) 

Jit et al, BMJ, 

2008  

Elbasha and 

Dasbach, 

Vaccine, 2010 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

Tx: Cx – IV N/A N/A N/A 0.62 (SD=0.061) N/A 0.62 N/A 

Vulvar 

Cancer 

0.68 N/A 0.65 N/A N/A N/A N/A 

Vaginal 

Cancer 

0.68 N/A 0.54 N/A N/A N/A N/A 
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Penile 

Cancer 

0.68 N/A 0.66 N/A N/A N/A N/A 

Anal 

Cancer 

0.68 N/A 0.65 (F) 

0.64 (M) 

N/A N/A N/A N/A 

Oral Cancer 0.68 N/A N/A N/A N/A N/A N/A 

Oropharyng

eal Cancer 

0.68 N/A 0.47 (F) 

0.49 (M) 

N/A N/A N/A N/A 

Genital 

warts 

0.91 0.97 0.9807 (F) 

0.9789 (M) 

0.961 (SD=0.017) 0.91 N/A 0.97 

JORRP 0.69 N/A 0.77 N/A 0.8 N/A N/A 
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Table 3. Cost Data 

Costs Kim  and Goldie Elbasha et al Chesson Et al Jit Et al Elbasha, Dasbach Taira Et al Insinga Et al

HPV 16/18 N/A N/A N/A N/A N/A 40929 N/A
Cervical screen N/A N/A N/A 108.9 112 81 16.64

Colposcopy N/A N/A N/A 427.68 187 N/A 44.55
Hysterectomy N/A N/A N/A N/A N/A 7883 N/A

Tx- precancerous lesionN/A N/A N/A 657.36 N/A N/A N/A
S1 Cx Tx N/A N/A N/A 13113.54 30059 14979 6985.64
S2 Cx Tx N/A N/A N/A 21601.8 30059 21811 6985.64
S3 Cx Tx N/A N/A N/A 20946.42 32171 21811 7895.09
S4 Cx Tx N/A N/A N/A 21849.3 51527 24004 7729.27

Warts Tx N/A N/A N/A 265.32 N/A 181.82

Vaccine Cost N/A 118.8-159.4 240.00
School Admin. Cost N/A N/A N/A 7.0488 N/A N/A N/A

Provider Admin. Cost N/A N/A N/A 19.8 N/A N/A N/A
LSIL N/A N/A N/A N/A N/A 630 N/A
HSIL N/A N/A N/A N/A N/A 1218 N/A
CIN I N/A N/A 1959 N/A 1764 N/A 1441.00
CIN II N/A N/A 3642 N/A 3955 N/A 1441.00
CIN III N/A N/A 4135 N/A 3955 N/A 1441.00

Cervical Cancer 29540-45540 35693 N/A N/A N/A

Vulvar Cancer 20430 N/A 19697 N/A N/A N/A

Vaginal Cancer 23440 N/A 26756 N/A N/A N/A
Penile Cancer 17110 N/A 18528 N/A 18528 N/A N/A
Anal Cancer 31300 N/A 33894 N/A 32902 N/A N/A

Oral Cancer 37370 N/A N/A N/A N/A N/A

Oropharyngeal Cancer37370 N/A 40463 N/A N/A N/A

Genital warts 430 N/A 568 N/A N/A 181.82
JORRP 62010 N/A 137308 N/A 214952 N/A N/A

515
(F); 607 (M)

$360 
($300-500)

*Includes administration
$500 

($360-600)
133

 
300 (3 doses) 
100 (booster) 

2422, 9900 (F+CU); 
36,161, 65,810  (F/M+CU)

30059 (Local)
32171 (Regional)
51527 (Distant)
12380 (Local)

26740 (Regional)
28217 (Distant)
27848 (Local)

24512 (Regional)
24512 (Distant)

40463
(labeled 'Head/Neck Cancer)

40463
(labeled 'Head/Neck Cancer)

515
(F); 607 (M)
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Table 4. ICER Data (Without Full Sensitivity Data Included) 

 

ICER Kim and 

Goldie, 

BMJ, 

2009  

  

Elbasha 

et al, 

EID, 

2007 

 

Chesson 

et al, 

Vaccine, 

2011 

 

Jit et al, BMJ, 

2008 
 

Elbasha and 

Dasbach, Vaccine, 

2010 

 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

 

Male and 

Females 

 

$114,510 

(90-100% 

efficacy) 

$164580 

(50% 

efficacy)  

 

 

$41,803 $184,300 

(75% 

coverage) 

$41,400 

(30% 

coverage)  

$23,600 

(20% 

coverage)  

10 yr protection: 

$113,846 

 

 

20 yr protection: 

$172,892 

 

Lifetime 

protection: 

$520,255 

$25,664 $442,039 

 

 

$7,075 

Female 

Only 

 

$20,990 

 (90-100% 

efficacy) 

$27,370 

(50% 

efficacy) 

$4,666 $10,500 

(75% 

coverage) 

$7,200 

(30% 

coverage)  

$5,700 

(20% 

coverage)  

10 yr protection: 

$33,868 

 

 

20 yr protection: 

$22,474 

 

Lifetime 

protection: 

$15,094 

$3,282 $14,583 $2,719 
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Table 5. Model Assumptions Data 

 

Model 

assumptio

-ns 

Kim and 

Goldie, 

BMJ, 

2009  

(2006 US $)  

Elbasha 

et al, 

EID, 

2007 

(2005 US 

$) 

Chesson 

et al, 

Vaccine, 

2011 

(2008 US $) 

Jit et al, BMJ, 

2008 
(Pounds; 1 

Pound=$1.98)  

Elbasha and 

Dasbach, Vaccine, 

2010 

(2008 US $) 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

$US/QALY 

Dynamic or 

Static? 

Dynamic 

Transmissio

-n 

Dynamic Dynamic 

Transmissio

-n 

Dynamic 

Transmission 

Dynamic 

Transmission 

Dynamic 

Transmissio

-n 

Dynamic 

Transmission 

HPV Type 16, 18 6,11,16,18 6,11,16,18 Vaccine #1: 6, 11, 

16, 18 

 

Vaccine #2: 16, 18 

4, 6,11,16,18 16, 18 6,11,16,18 

Effectiveness 

Unit 

QALY QALY QALY QALY QALY QALY 

Per Life-

Year 

QALY 

QALY 

Source 

Gold et al, 

1998. 

Dasbach  et 

al, 2006.   

Institute of 

Medicine 

(IOM), 

2000.  

 

Kulasingam 

et al, 2007. 

 

Myers et al, 

2004. 

 

Parametric fitting 

using Monte Carlo 

sampling 

Gold  et al, 1998.  Unclear  Elbasha  et 

al, 2007.  
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Model 

assumpti-

ons 

Kim and 

Goldie, 

BMJ, 

2009  

(2006 US 

$)  

Elbasha 

et al, 

EID, 

2007 

(2005 US 

$) 

Chesson 

et al, 

Vaccine, 

2011 

(2008 US 

$) 

Jit et al, BMJ, 

2008 

(Pounds; 1 

Pound=$1.98)  

Elbasha and 

Dasbach, 

Vaccine, 2010 

(2008 US $) 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

$US/QAL-

Y 

Discounting 

Rate 

3% 3.00% N/A 3.5% 3% N/A 3.00% 

Perspective Societal Healthcare 

(USA)  

Societal Healthcare  (UK) N/A N/A Healthcare 

system 

(Mexican) 

Population 

Size 

138,595,702 

(M)  

 

143,742,929 

(W)  

 

282,338,631 

(Total)  

100,000 

people 

(equal M:W 

ratio) 

135,858,651

(M) 

145,463,047 

(W)  

 

281 321 698 

(Tota

l) 

Base case: 80,000 

infants/yr  

100,000 people 

(equal M:W ratio) 

Base case: 

2 million 

girls, 2.1 

million 

boys 

100,000 

people 

Model 

assumptions 

Kim and 

Goldie, 

BMJ, 

2009  

(2006 US $)  

Elbasha 

et al, 

EID, 

2007 

(2005 US 

$) 

Chesson 

et al, 

Vaccine, 

2011 

(2008 US $) 

Jit et al, BMJ, 

2008 

(Pounds; 1 

Pound=$1.98)  

Elbasha and 

Dasbach, Vaccine, 

2010 

(2008 US $) 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

$US/QALY 

Population 

Characterist-

ics 

W: 12 yrs 

only 

M: 12 yrs 

only 

C/E: 20 yr-

Base case: 

12 yr old 

girls, 12 yr 

old boys 

 

W: 12-26 

yrs 

M: 12 yrs 

only 

 

Base case: 12 yr 

old girls 

Alternative: 12 yr 

old boys and girls 

Alternative: 13, 14 

W: 9-26 yrs 

M: 9-26 yrs 

Base case: 

12 yr old 

girls, 12 yr 

old boys 

 

12 years or > 



 

68 

old W for 

screening 

Alternative: 

12-24 yr 

catch-up 

(W and M) 

 

 

yr old girls Booster: At 

22 years old 

for girls 

Model 

assumpti-

ons 

Kim and 

Goldie, 

BMJ, 

2009  

(2006 US 

$)  

Elbasha 

et al, 

EID, 

2007 

(2005 US 

$) 

Chesson 

et al, 

Vaccine, 

2011 

(2008 US 

$) 

Jit et al, BMJ, 

2008 

(Pounds; 1 

Pound=$1.98)  

Elbasha and 

Dasbach, 

Vaccine, 2010 

(2008 US $) 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

$US/QAL-

Y 

Timeframe 100 yr 

timeframe 

from  

post-10 yr 

vaccination 

100 years 100 years 100 years 100 years Lifetime, 

not further 

specified  

100 years 

Vaccine 

coverage rate 

50% and 

75%  

Base case: 

90% 

 

Alternative: 

50% 

20%, 30%, 

75% 

Base-case: 80% W: 50% 

(9-12 yrs), 

85% 

(18 yrs), 

90% 

(26 yrs) 

W: 70% 70% 

 (12-24 yrs, 

over 5 yrs) 

Vaccine 

effectiveness 

HPV-

targeted Dx: 

100% (W), 

85% (M) 

 

HPV-

Associated 

Dx:  

100% (W) 

90% (M) 

100%  

(HPV-

specific) 

and 90% 

(“associated 

disease”) 

95% (W) 

90% (M)  

100.00% (W and 

M)  

95% (after 3 doses) 

 

85% (after 2 doses) 

90% against 

HPV 16/18 

90.00% 

95.2%-

incident 

cervical Dx 

98.9%-genital 

warts 

Model 

assumptions 

Kim and 

Goldie, 

Elbasha 

et al, 

Chesson 

et al, 

Jit et al, BMJ, 

2008 

(Pounds; 1 

Elbasha and 

Dasbach, Vaccine, 

2010 

Taira et 

al, EID, 

Insinga et 

al, Vaccine, 
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BMJ, 

2009  

(2006 US $)  

EID, 

2007 

(2005 US 

$) 

Vaccine, 

2011 

(2008 US $) 

Pound=$1.98)  (2008 US $) 2004 2007 

$US/QALY 

Vaccine 

duration 

20 years 

and lifelong 

Base case: 

lifelong 

 

Alternative: 

10 years 

 

Lifelong 10 yrs, 20 yrs, and 

lifelong 

32 years 10 years, 

followed by 

booster 

10 years 

Model 

assumpti-

ons 

Kim and 

Goldie, 

BMJ, 

2009  

(2006 US 

$)  

Elbasha 

et al, 

EID, 

2007 

(2005 US 

$) 

Chesson 

et al, 

Vaccine, 

2011 

(2008 US 

$) 

Jit et al, BMJ, 

2008 

(Pounds; 1 

Pound=$1.98)  

Elbasha and 

Dasbach, 

Vaccine, 2010 

(2008 US $) 

Taira et 

al, EID, 

2004 

Insinga et 

al, Vaccine, 

2007 

$US/QAL-

Y 

Herd 

immunity or 

not? 

Yes Yes Yes Yes Yes Yes Yes 

Cross-

immunity? 

Yes No No Yes No No  No 
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Table 6. Meta-Analysis Results 

 

Vaccination Strategy  Cumulative ICER ($/QALY) Sensitivity 
Analysis ICER  

($/QALY) 

Female-only 8,498 11,269 

Male-Female  42,425 70,248 

  

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

 

 

 

 

 

 

 

 

I.  Individual Paper Assessments: 
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II. Fixed-Effects Calculation for Full Data: 

F Only F Only F only F only  F only F only F12 only
40310 2964 18300 67059 22113 88572 2719
40310 997 14000 52367 20248 108685 2498
28940 7553 8800 41200 10041 284904 2832
28940 5241 5700 33638 6802 27600 3454
20990 2094 21300 269931 5270 28181 3048
20990 4273 16500 44499 3418 27556 8153
14540 3116 10500 37335 3282 2651
14540 2636 7200 32506 M+F 3296

3449 28400 23475 M+F 51646 3690
M+F 4666 22000 254038 195322 116413 12651

290290 2422 14500 29886 178908 285776
382860 9900 10500 27001 69038 57795 M+F
190030 7739 26144 62293 388368 1663
255210 21121 M+F 22788 46978 40865 6319
114510 4187 69600 209561 27511 40835
154420 5403 52100 25664 16702
90870 4922 29700 M+F 22340
123940 4221 23600 225415 8140

5269 121700 342326 33229
89100 1030105 21693

M+F 50800 41486
41803 41400
33469 741300
61250 436000
82700 229600
54755 184300
39990
40269
23862
45506
36161
65810
83714
54928
51436
43930
43974
36235
100418

Kim and 
Goldie, BMJ, 

2009 
 

Elbasha Et al, 
EID, 2007

 

Chesson Et 
al, Vaccine, 

2011
 

Jit Et al, 
BMJ, 2008 

Elbasha and 
Dasbach, 

Vaccine, 2010
 

Taira Et al, 
EID, 2004

Insinga Et al, 
Vaccine, 

2007 
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A. Female-only Data  

Paper  Effect Size Variance  Weight 
(1/Variance) 

Effect Size * 
Weight 

Kim and Goldie 28,914 
 

128,694,908 7.77 E -9 0.000225 

Elbasha et al  6,086 24,496,382 4.08 E -8 0.000248 

Chesson et al  14,872 46,620,998 2.14 E -8 0.000319 

Elbasha and 
Dasbach 

10,603 67,530,498 1.48 E -8 0.000157 

Taira et al 114,297 14,660,817,585 5.82 E -11 7.79 E -6 

Insinga et al 5,092 14,015,580 7.13 E -8 0.000363 

Jit et al 92,308 10,748,495,370 9.30 E -11 0.000009 

Cumulative  
Values 

-- -- 1.56 E -7 0.001329 

Aggregate  
ICER Value 

   8498 
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II. Fixed-Effects Calculation for Full Data: 
B. Male-Female Data 

Paper  Effect Size Variance  Weight 
(1/Variance) 

Effect Size * 
Weight 

Kim and Goldie 22,054 12,500,103,780 7.99 E -11 1.76 E -5 

Elbasha et al  59,118 510,613,883 2.0 E -9 1.16 E -4 

Chesson et al  173,171 46,353,086,507 2.16 E -11 3.74 E -6 

Elbasha and 
Dasbach 

90,234 5,439,890,358 1.84 E -10 1.66 E -5 

Taira et al 190,164 31,233,460,385 3.20 E -11 6.09 E -6  

Insinga et al 24,196 278,121,546 3.60 E -9 8.70 E -5 

Jit et al 629,551 2.64 E 11 3.79 E -12 2.39 E -6 

Cumulative  
Values 

-- -- 5.88 E -9 0.00025 

Aggregate  
ICER Value 

   42,425 
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III. Sensitivity Analysis – Fixed-Effects Calculation with International Papers Removed (Jit et al 
and Insinga et al papers excluded) 
 
A. Female-only Data 

Paper  Effect Size Variance  Weight 
(1/Variance) 

Effect Size * 
Weight 

Kim and Goldie 28,914 
 

128,694,908 7.77 E -9 0.000225 

Elbasha et al  6,086 24,496,382 4.08 E -8 0.000248 

Chesson et al  14,872 46,620,998 2.14 E -8 0.000319 

Elbasha and 
Dasbach 

10,603 67,530,498 1.48 E -8 0.000157 

Taira et al 114,297 14,660,817,585 5.82 E -11 7.79 E -6 

Cumulative  
Values 

-- -- 6.82 E -11 0.000957 

Aggregate  
ICER Value 

   11,269 
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III. Sensitivity Analysis – Fixed-Effects Calculation with International Papers Removed (Jit et al 
and Insinga et al papers excluded) 
 
B. Male-Female Data 

Paper  Effect Size Variance  Weight 
(1/Variance) 

Effect Size * 
Weight 

Kim and Goldie 22,054 12,500,103,780 7.99 E -11 1.76 E -5 

Elbasha et al  59,118 510,613,883 2.0 E -9 1.16 E -4 

Chesson et al  173,171 46,353,086,507 2.16 E -11 3.74 E -6 

Elbasha and 
Dasbach 

90,234 5,439,890,358 1.84 E -10 1.66 E -5 

Taira et al 190,164 31,233,460,385 3.20 E -11 6.09 E -6  

Cumulative  
Values 

-- -- 2.28 E -9 0.000160 

Aggregate  
ICER Value 

   70,248 
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The Application of Quantitative Methods to Merge Data between  

Studies 

 

Introduction  

 This study poses the following research question: Can statistical methods be used on two 

different studies to proxy the results of a third study that is a randomized clinical trial (RCT)? The 

paper considers three different approaches: multiple linear regression, propensity score matching, and a 

simple subtraction technique. A cohort study and an evaluator-blinded randomized study evaluating 

ocular hypertension with one of two medications, Xalatan or Xalacom, are compared to a third RCT 

that tests Xalatan against Xalacom.  

 

 The unique feature of this paper is that it does not apply statistical methods to observational 

data drawn from the same population as the randomized clinical trial. All three studies have different 

patient populations and study designs, but will be evaluated to see if the two studies can replicate the 

results of the double-blinded RCT. This might be possible to some extent since the studies share the 

same outcome measure and primary independent variables of age and gender. However, they differ in 

the treatment timeframe and geographical site of sampling. It is assumed that the data in these studies 

are not correlated and were drawn analogous to an independent random draw. However, it will be an 

important limitation to consider the effect of the differences in study design on the final results. As 

well, unobserved variables and the effect of omitted variable bias is another limitation when evaluating 

the final results.  
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 The pooling of data to obtain between-study treatment results has a long history (e.g.,  meta-

analysis). William Cochran was a pioneer in this area from the 1930s through the 1950s. In a signature 

paper, he sought to merge data from studies measuring the same outcome variable, but with different 

treatment  conditions in each study (Cochran, 1954).   

 

 In Cochran's analysis, there was an overarching question of whether the between-study 

difference in the value of replicates violated the assumption of homogeneity of variance. The classic 

Bartlett test was used to determine whether there was a violation of the homogeneity assumption. If 

there was not, then the mean values from each study could be arithmetically averaged to obtain the 

cumulative between-study value. However, if homogeneity was violated, then a weighting had to be 

done for the mean and standard error of each study, with further inclusion of a correction factor, f. 

Cochran concluded that weighting generally was unnecessary in this study (Cochran, 1954). 

 

 Heterogeneity is routinely evaluated in meta-analysis (Higgins and Thompson, 2002; Thompson 

and Sharp, 1999; Olkin, 1995). 

 

 There have been several evaluations of different studies proxying the results of a randomized 

study including LaLonde (1986), and Dehejia and Wahba (1999 and 2002). Using data from the 

National Supported Work (NSW) Demonstration, LaLonde (1986) concluded that non-experimental 

methods were prone to specification biases, gender-based differences in effect size, and significant 

differences in overall effect size compared to an experimental control. He recommended the use of 

longitudinal data and a two-step estimation technique originated by Heckman to reduce selection bias.  
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 For the NSW example, the wages that workers earn might be affected by the workers selected to 

participate in the study—that is, a correlation between the workers that participate and the overall wage 

measurement. The conditional error from the wages equation can be used as an additional regressor in 

the wage equation to approximate the conditional error associated with participation. The multiple time 

points in longitudinal data reduce the risk of misspecification found with cross-sectional data.  

 

 Dehejia and Wahba applied propensity scores to determine the difference in calculated NSW 

treatment effect between the original study and the observational study proxy. They reported a non-

experimental treatment difference in labor earnings for people undergoing labor training versus not. 

These results  were comparable to the NSW experimental treatment results (Dehejia and Wahba, 1999). 

The sensitivity of these non-experimental results were affected by level of variable overlap between the 

studies is a contributing factor to the accuracy of the results (Dehejia and Wahba, 1999; Pfizer, 2006). 

Specifically, when the amount of overlap between the experimental and control units is high, there is 

less variability between different propensity score matching methods, and a smaller chance of 

misspecification.   

 

Data 

 Three studies were identified either through a PubMed search or the ClinicalTrials.gov data 

registry site. Glaucoma studies were selected solely on the basis of data availability and its satisfaction 

of the inclusion criteria. There was no prior established preference for ophthalmalogic-specific data. 

The inclusion criteria were that the three studies had: the same outcome measure, and that the 'gold 

standard' study was a randomized clinical trial, where at least one of the comparison studies was an 

observational study.  
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 All three studies evaluated the effectiveness of glaucoma treatment in a sample of patients using 

change in intraocular eye pressure (IOP) in mmHg from the start to the end of each study.  

The first study (designated 'Study 1') was the “gold standard” study.  It was a double-blinded parallel 

assignment randomized clinical trial of Xalatan (also labeled 'XT' henceforth) versus Xalacom (also 

labeled 'XC' henceforth). The study had a sample size of 289 patients that were drawn from 55 

treatment centers in Japan. Each patient received one of the medications once daily for 8 weeks. The 

change in IOP was measured at 4 week and 8 week time intervals (Pfizer, 2006). 

 

 The second study (designated 'Study 2') was a 12 week parallel-assignment evaluator-blinded 

(but not patient-blinded) randomized study of Xalatan versus Dorzolamide/Timolol (also labeled 'D' 

henceforth; where Dorzolamide is a carbonic anhydrase inhibitor, while Timolol is a beta-blocker). 

There was an initial sample of 300 patients drawn from 25 centers across Europe. Of the original 300 

patients, 270 patients were randomly allocated to one of the two treatment arms. Patients had a 

diagnosis of ocular hypertension or open-angle glaucoma. They were resistant to traditional beta-

blocker therapy. Patients were further evaluated for their IOP three times at 4 weeks, and three times at 

12 weeks (Miglior et al, 2010). With blinding occuring only on the evaluator side, this study is noted to 

have a weaker study design than Study 1.  

 

 The third study (designated 'Study 3') was a prospective non-interventional cohort study that 

included patients diagnosed with glaucoma or ocular hypertension. The study lasted for 3 years, and 

had an initial sample size of 28,812 patients, drawn from approximately 385 offices of different 

practicing ophthalmologists. The IOP of patients in each treatment arm was measured at baseline 
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(time=0), and annually thereafter. Over the course of the 3 year study, 2,487 patients were lost to 

attrition, leading to a final sample size of 26,835 patients. The study had four arms: a Xalatan arm, a 

Xalacom arm, a Beta-blocker arm, and an Other arm (where 'Other' represents no anti-hypertensive 

treatment, and is also labeled 'O' henceforth) (Pfizer, 2009). 

 

Methods 

 Multiple quantitative techniques were tested on the Study 2 and Study 3 data to determine 

which ones most accurately replicate the results from Study 1. As Table 1 shows, the overall methods 

that were tested were: simple subtraction, linear regression, and propensity score matching (nearest 

neighbor, stratification, radius, and kernel methods). Each propensity score estimate calculates the 

Average effect of Treatment on the Treated (ATT). The ATT is calculated by first determining the 

difference between the treatment and a placebo control group within a single balanced block. The ATT 

is the average of the difference for all blocks satisfying the balancing test (Becker and Ichino, 2002). 

 

Simple Subtraction Method: 

 The first method, simple subtraction, involves subtracting the published mean of Study 2 from 

the published IOP mean of Study 3. The logic behind this method is that the difference represents the 

net difference between Xalatan and Xalacom when not controlling for between-study differences in 

participant characteristics. Also, this method does not seek to minimize the within-study error through 

estimation techniques such as ordinary least squares or propensity score matching.  
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 However, the mean is just one data point. More data is needed to do linear regression or 

propensity score matching. The mean and standard deviation of Study 2 and Study 3 are used to 

generate a normal distribution with 200 observations (100 treatment observations and 100 control 

observations) for Study 2, and 200 observations for Study 3. Four equations are generated to obtain 

four sets of data. Each set has 100 observations, and represents one arm of either Study 2 or 3. The 200 

observation number was selected based on it being a reasonable simulation sample size per faculty 

input.   

 

Simulation Process 

Study 2: 

� Given a Mean and Standard Deviation of Ocular Pressure (mmHg) for each arm of Study 2  

� Generate a normal distribution in STATA with a sample size of 100 observations per study arm, 

with the given mean and standard deviation for Study 2 

� Use the 200 total observations as the data for linear regression and propensity score matching 

to be described below.  

Study 3:  

� Given a Mean and Standard Deviation of Ocular Pressure (mmHg) for each arm of Study 3 

� Generate a normal distribution in STATA with a sample size of 100 observations, with the given 

mean and standard deviation for Study 3 

� Use the 200 total observations as the data for linear regression and propensity score matching 

 

 The data simulation involved setting the number of observations to 100 for each study arm, and 
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then generating the distribution of parameters for the 100 observations. Setting the number of 

observations in each study arm is done with the following STATA code: 'SET OBS 100 '. Next, the 

mean and standard deviation for each arm of Study 2 and Study 3 are incorporated into a STATA 'GEN' 

command to obtain a set of 100 observations for each study arm.  

 

 The simulation equation for the treatment arm ('XT'') of Study 2 is: GEN YXT2=-

9.7+0.2*INVNORM(UNIFORM(), where 9.7=Mean ocular pressure of treatment arm in Study 2 

(Xalatan), and 0.2= Standard deviation of ocular pressure for treatment arm in Study 2 (Xalatan). The 

simulation equation for the control arm ('Dorzolamide/Timolol') of Study 2 is: GEN YDT2=-

9.5+0.3*INVNORM(UNIFORM()), where 9.5=Mean ocular pressure of control arm in Study 2 

(Dorzolamide/Timolol), and 0.2= Standard deviation of ocular pressure for control arm in Study 2 

(Dorzolamide/Timolol).  

 

 The simulation equation for the control arm ('Other') of Study 3 is: GEN 

YO3=66.9+13.3*INVNORM(UNIFORM(), where 66.9=Mean ocular pressure of control arm in Study 3 

('Other'), and 13.3= Standard deviation of ocular pressure for control arm in Study 3 ('Other'). The 

simulation equation for the treatment arm ('Xalacom') of Study 3 is: GEN 

YXC3=66.5+12.7*INVNORM(UNIFORM())  where 66.5=Mean ocular pressure of treatment arm in 

Study 3 (Xalacom), and 13.3= Standard deviation of ocular pressure for treatment arm in Study 3 

(Xalacom).  

 

 The newly-derived Y-variables (YXT2, YDT2, YO3, YXC3) are then merged for each study. 

The variable Y2 is the merging of YXT2 and YDT2, and has 200 observations. Likewise, Y3 merges 
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YO3 and YXC3, and also has 200 observations.  

 

 Y2 and Y3 are set as the dependent variables in separate regression equations in order to 

determine the IOP difference between the experimental and control arms of Study 2 and Study 3. The 

linear regression approach determines what the difference in ocular pressure is between the treatment 

and control arms of a single study, after controlling for the age and gender of the study participants. 

This is done by setting-up a dummy variable, dummy2 and dummy3 (defined below), in each equation, 

controlling for age and gender.  

 

 The STATA code for the equation for Study 2 is: regress y2 dummy2 age2 gender2 . 

The code for Study 3 is:  regress y3 dummy3 age3 gender3 . 

 

 The regression equations are formally specified below. The dependent variables, Ystudy_2 and 

Ystudy_3, are the mean ocular pressure (in mmHg) for each observation in Study 2 and Study 3, 

respectively. Dummy variables, Xdummy_2 and  Xdummy_3, are equal to 1 when the observations are from 

the treatment group for Study 2 and Study 3, respectively. They are equal to 0 when the observations 

are from the control group. The variables, Xage_2 and  Xage_3, are continuous variables that represent the 

age of each observation in Study 2 and Study 3, respectively. Variables, Xgender_2 and  Xgender_3, are 

dichotomous variables for each observation, where  Xgender=1 when the observation is female, and  

Xgender=0 when the observation is male.  

 

Within-Study Regression Equations: 
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Study 2: Y2= βdummy_2* dummy2 + βage_2* age2 + βgender_2* gender2+ ε_2 

Study 3: Y3= βdummy_3 * dummy3 + βage_3 * age3 + βgender_3 * gender3 + ε_3 

 

                         dummy2: dummy2=1 where treatment=1 (Xalatan=1, Dorzolamide/Timolol=0) 

     dummy2=0 where treatment=0 (Xalatan=0, Dorzolamide/Timolol=1) 

 

dummy3: dummy3=1 where treatment=1 (Xalacom=1, 'Other – No antihypertensive'=0) 

     dummy3=0 where treatment=0 (Xalacom=0, 'Other  – No antihypertensive'=1) 

 

 βdummy_2  and βdummy_3 represent the within-study treatment difference for Study 2 and Study 3. 

Each represents the difference in mean ocular pressure between the treatment and control observations, 

after adjustment for the age and gender of each observation. To calculate the overall between-study 

treatment difference for linear regression, one subtracts βdummy_2 from βdummy_3.  

 

Between-Study Treatment Difference: 

 

βdummy_2-βdummy_3=Between-Study Treatment Difference  

 

 The next set of analyses is done by propensity score matching. Linear regression calculates the 

best-fit line based on the smallest sum of squares of differences between the actual and predicted 

observations. Propensity score matching generates predicted probabilities that an observation would be 

in one group versus another. Linear regression calculates the within-study treatment difference by 
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adjusting for the additive effect of the age and gender variables. Propensity score matching controls for 

these variables by calculating a propensity score for each of the 200 observations in the study. The 

score is derived from an equation including the dummy variable indicator of x, age variable, and gender 

variable. It is used to match similar scores for observations between study group arms, according to 

different matching methods. In this study, the nearest neighbor, radius, kernel, and stratification 

matching methods were performed, with at most 5% of cases being dropped for any treatment or 

control group (Becker and Ichino, 2002; D'Agostino, 1998; Guo et al, 2004). 

 

 In the propensity score approach, the 200 observations of either Study 2 or Study 3 must first 

have a propensity score assigned to each observation. First we perform a logistic regression in which 

the dependent variable is the observation's dummy variable value (1=treatment; 0=control) and where 

the independent variables are the age (a continuous variable) and gender of the observation (1=female; 

0=male). The propensity score is the probability of being in the treatment group based on the computed 

logistic regression. The raw data for this calculation is a 200 X 3 dataset, with the three columns being 

the values for the dummy variable (1=treatment; 0=control), age variable, and gender variable for each 

observation. Once the propensity score is calculated for each observation, a fourth column appears in 

the dataset. 

 

 The next step is matching scores for observations in Study 2, and for the observations in Study 

3. The four different matching techniques (nearest neighbor, stratification, radius, and kernel matching), 

are used to match observations where the dummy=1 (treatment) to the observations where the 

dummy=0 (control), based on the pairs that have close propensity scores. If this can be done, the 

'balancing test' is successful. The difference in the Y-values for each set of paired observations will then 
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be calculated, aggregated across all pairs in Study 2, and across all pairs in Study 3. The aggregate 

difference in the Study 2 and Study 3 Y-values is the between-study difference.  

 

 First, propensity scores are derived for the dummy variables in Studies 2 and 3, dummy2 and 

dummy3 respectively. The pscore.ado program (Becker and Ichino, 2002) first specifies a probit or 

logit equation. Thereafter, the sample is repeatedly divided into intervals, until the average propensity 

score and mean for the treatment and control groups are equivalent (Becker and Ichino, 2002). If the 

means are not equivalent between groups (cannot satisfy the 'Balancing Test'), then the model has to be 

made less restrictive by not including just first order covariates in the probit or logit equation, but also 

higher order covariates, such as interaction terms. Besides pscore, the command comsup activates the 

common support function, while the number of equally-spaced bins used in the balancing test are 

specified using the numblo command (Becker and Ichino, 2002). The Study 2 propensity score equation 

is specified using the pscore command: pscore d2 a2 g2, pscore(mypscore1) blockid(myblock1) comsup 

numblo(5) level(0.005) logit. Likewise, the Study 3 propensity score equation is: pscore  dummy3 age3 

gender3, pscore(mypscore) blockid(myblock) comsup numblo(5).  

 

 After the propensity scores are derived, the specific balancing tests are performed. The tests are   

nearest neighbor (ATTND), kernel (ATTK), radius (ATTR), and stratification (ATTS). Each test 

performs balancing within each block after the propensity score has been calculated for all blocks using 

the pscore command.  The ATTND command matches experimental and control propensity scores 

based on nearest neighbor matching, a random selection of an experimental propensity score, and 

identification of the closest control propensity score within the same block. The ATTK command has a 

matching method that calculates a distance between observations based on a weighting formula using a 
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kernel function. The ATTR command matches the experimental propensity score with a control score 

limited to a certain pre-established distance (the radius). The ATTS command matches based on 

stratification, where propensity scores are divided into quintiles (strata), and the experimental and 

control propensity scores within the same strata are matched (Becker and Ichino, 2002; D'agostino, 

1998; Guo et al, 2004). 

 

 The ATTND command is: attnd y2 dummy2 age2 gender2, comsup bootreps(100) dots logit and 

attnd y3 dummy3 age3 gender3, comsup bootreps(100) dots logit. The ATTK command is: attk y2 d3 

a3 g3, comsup bootreps(100) and attk y3 d3 a3 g3, comsup bootreps(100). The ATTR command is: attr 

y2 d3 a3 g3, comsup bootreps(100) dots logit and attr y2 d3 a3 g3, comsup bootreps(100) dots logit. 

The ATTS command is: atts y2 d2 a2 g2, pscore(mypscore1) blockid(myblock1) bootstrap and  

atts y3 d3 a3 g3, pscore(mypscore) blockid(myblock) bootstrap.  

 

 The ATT is determined for Study 2 and Study 3 for each matching method. The final treatment 

difference between Study 2 and Study 3 is determined by the expression: Study 3 ATT – Study 2 ATT. 

This net ATT difference is calculated for each method and represents the “between-study treatment 

difference.” The 'between-study' results from linear regression, simple subtraction, and propensity score 

matching are compared to the within-study difference in Study 1. The percent difference between the 

Study 1 result and the experimental results are compared.  

 

Data 

 Figure 1 provides the characteristics of each study. Notable differences include the fact that both 

Study 1 and Study 2 are randomized, but only Study 1 is a double-blinded study. In addition, while the 
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sample size for Study 1 and Study 2 are roughly comparable at between 240-290 participants, Study 3 

has a sample size that is much larger at 9,830 participants. Participant age is roughly similar for Study 2 

and Study 3, but age in Study 1 was stratified into age groups. Finally, while Study 2 and Study 3 have 

roughly equal gender ratios, Study 3 has a greater proportion of males in in the 'Other' category. The 

treatment difference between Xalatan and Xalacom in Study 1, Study 2, and Study 3 were respectively: 

0.97 mmHg, -0.20 mmHg, and 0.90 mmHg. More information about each individual study is available 

in the Appendix. 

 

Results 

Simple Subtraction Method 

Study 2 Difference – Study 3 Difference: -0.2-0.9=-1.10 mmHg 

 

 The first approach that is evaluated is the simple subtraction method. In this method, the 

published IOP number from Study 2 is simply subtracted from the published IOP number in Study 3 

without controlling for participant age or gender. For example, in Study 3, the published IOP value for 

Xalacom (0.2) is subtracted from the published value for 'Other' (-1.1), where 0.2-(-1.1) = 0.9 mmHg. 

Furthermore, no assumptions are made about the probability distribution for the published IOP values. 

Based on this, the simple subtraction method calculates the -1.1 mmHg difference between Xalatan and 

Xalacom.  

 

 

 The second approach is the linear regression approach. In this method, two separate regression 

equations are specified. The variables 'Age' and 'Gender' are independent variables along with a dummy 
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variable for treatment. The dummy variable equals 1 for the treatment-group (Xalatan or Xalacom), and 

0 for the control group (Dorzolamide/Timolol or 'Other Medications  – No antihypertensive'). As 

Figure 2 shows, the Study 2 dummy variable shows a -0.17 mmHg treatment difference between 

Xalatan and Dorzolamide/Timolol. There is a -1.03 mmHg difference between Xalacom and 'Other 

Medications'. The net treatment difference between Xalatan and Xalacom is calculated to be 0.86 

mmHg.  

 

 The final approach is the application of three propensity score methods. Again, the variables 

'Age' and 'Gender' were independent variables. Kernel, radius, and nearest neighbor matching are 

selected. All three methods successfully balanced the covariates. The average treatment effect on the 

treated (ATT) is calculated by each method for each study. The ATT is then differenced between studies 

for each method to obtain the overall treatment difference. Figure 3 shows that the nearest neighbor, 

kernel, and radius matching result in a Xalatan to Xalacom treatment difference of -1.56 mmHg, 0.788 

mmHg, and 0.77 mmHg, respectively. The large difference of the nearest neighbor method in particular 

is in-line with research showing it as one of the poorer propensity score balancing methods (Huber et 

al, 2010). The method is included here for the purposes of comparison.  

 

 Figure 4 shows the inter-study treatment differences for all the tested methods. Simple 

subtraction and nearest neighbor are furthest from the gold standard reference with values of -1.1 

mmHg and -1.56 mmHg, respectively. Linear regression, kernel matching, and radius matching are all 

fairly close to the gold standard with values of 0.86 mmHg, 0.79 mmHg, and 0.77 mmHg, respectively.  

 

 The standard errors of each method are next determined in order to calculate the t-statistic 
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between the gold standard and each method. If the difference between the gold standard value and the 

experimental method value is sufficiently close, then the values will be assumed to be from the same 

population distribution. However, if the standardized difference has a p-value below 0.05, then the 

experimentally-derived value is significantly different from the gold standard value. The two values 

cannot be assumed to arise from the same population distribution.  

 

 Figure 5 provides the full table of pooled standard errors from the gold standard and each 

experimental method. The simple subtraction errors are obtained directly from the published results. 

The linear regression standard error is the calculated standard error for the dummy variable in each 

study's regression equation. The propensity score standard error is the calculated standard error for the 

ATT in each study.  

 

 Two sample t-tests with unequal variances are performed to evaluate each experimental method 

against the gold standard. As Figure 6 illustrates, only the simple subtraction method yields a result that 

is significantly difference from the gold standard value. The null hypothesis is rejected, and it is 

assumed that the simple subtraction between-study value arises from a different distribution than the 

gold standard value. The linear regression, nearest neighbor, radius matching, and stratification 

matching procedures all have p-values>0.05. For a reason that could not be determined, no numerical 

value was produced on attempting to calculate the kernel matching-based value. STATA was not 

contacted regarding this. A 'not available' designation (N/A) was included in Table 7. The null 

hypothesis of their values being from the same distribution as the gold standard cannot be rejected.  

 

Conclusion  
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 Previous research has shown the limited accuracy of replicating RCT results through the 

application of quantitative methods on non-experimental data. This paper evaluates the application of 

simple subtraction, linear regression, and propensity score matching to obtaining a treatment difference 

from two non-equivalent studies. It then compares the derived result from the actual treatment 

difference obtained from an RCT. 

 

 In the simple scenario using only two independent variables, this study finds that certain  

methods are more accurate than others in replicating RCT results. In particular, linear regression, 

nearest neighbor matching, stratification matching, kernel matching, and radius propensity score 

matching methods did not reject the null hypothesis of the merged study results being from the same 

population as the Study 1 results. Stratification matching was the closest to the gold standard at 1.03 

mmHg, approximately 6.2% away from the RCT result. The linear regression result of a Xalatan to 

Xalacom treatment difference of 0.86 mmHg was 11.3% away from the RCT result of 0.97 mmHg.  

 

 Kernel and Radius matching were even less accurate in their predictions, despite the fact that 

the results were relatively close to one another. The kernel matching method calculated a 0.79 mmHg 

treatment difference between the two medications, an 18.6% difference from the RCT result. Radius 

matching calculated a 0.77 mmHg treatment difference between Xalatan and Xalacom, a 20.6% 

difference from the RCT value. With a calculated value of -1.56 mmHg, nearest neighbor was 261% 

away from the RCT value. It was the furthest of all the methods that still rejected the null hypothesis.  

 

 In contrast to the above mentioned methods, the simple subtraction method did reject the null 

hypothesis. Like nearest neighbor matching, it predicted a negative value for the treatment difference 
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between Xalatan and Xalacom. The opposite sign was due to the method predicting a positive value for 

the Study 3 treatment difference (1.1 mmHg). In contrast, linear regression, kernel matching, 

stratification matching, and radius matching all computed negative values for Study 3 (-1.03 mmHg, -

0.953 mmHg, and -0.941 mmHg).  

 

 The cumulative results appear to demonstrate the feasibility of two non-equivalent studies 

proxying for the results of a third experimental study. Simple subtraction and nearest neighbor 

matching do not match within-study observations effectively. A cautious observation is that the 

accuracy of the quantitative method is directly based on the robustness of controlling or matching 

across covariates within the study. Robustness here depends on successful convergence for the 

propensity score matching algorithm, but can be further evaluated by simulation testing. In terms of its 

implications, the requirement for successful convergence limits how extensively the technique may be 

used, especially when there are many covariates between experimental and placebo groups.  

 

 While the results appear tentatively promising, there are important limitations to this work. 

Especially important is there are difficulties in generalizing these results. Reasons for this include that 

there are only two independent variables in Studies 2 and 3. Linear regression methods in particular are 

expected to perform poorly as there is an increase in the number of non-overlapping between-study 

variables. On the other hand, propensity score methods generate an index of all independent variables 

to create the propensity score; thereby limiting the effect of a single non-overlapping variable in 

skewing the results.  

 

 Another limitation is that the Study 2 and 3 results were assumed to be simulated with a normal 
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distribution assumption. Applying linear regression to a normally distributed dependent variable helps 

ensure that ordinary least squares (OLS) is an appropriate estimator. However, it is possible that there 

may be study-specific characteristics that may make the distribution non-normal. This study does not 

make this assumption, and as a result, may produce results that are biased towards the tested estimation 

techniques.  

 

 Assuming that there is no treatment time-specific difference in study results is another 

important qualifier to these findings. The patient treatment periods were substantially different between 

Study 3 and the other two studies. Patients were treated for 8 weeks in Study 1, 12 weeks in Study 2, 

and 1 year in Study 3. It is possible that the treatment-specific effect is different both at 8 and 12 weeks, 

as well as at the further 1 year time-point. In this case, it would not be appropriate to assume a constant 

treatment effect over time, but would instead be necessary to weight the treatment results by the 

treatment period.  

The treatment time difference might have a minor effect if treatment effect beyond 8 weeks is relatively 

constant.  

 

 There are unequal sample sizes in the original data between Study 3 versus Study 1 and 2. The 

smaller samples sizes in Study 1 and Study 2 might be insufficient to capture the true effect size. 

Furthermore, the average age of participants may be markedly lower in Study 1 versus Study 2 and 

Study 3. The reference treatment effect size in Study 1 may be skewed based on age-dependent factors. 

A final limitation is that Study 3 has only two of the four study groups, the 'Xalacom' and 'Other' 

groups, used in the ultimate analysis. It is possible that performing one-to-one testing in this setting 

leads to biased results, where the 'Other' category is not the optimal control. As well, Study 2 is a 
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randomized trial, not an observational study. It is tentatively inferred that ambiguities on the nature of 

the variability between studies may be clarified to some extent with a few of these tested methods. 

However, in differentiating between systematic and random between-study variability, the level of 

covariate overlap between studies would be critical in exactly determining the robustness of the 

calculated between-study effect size.  

 

 Strengths to this work are that this study compares the results from multiple quantitative 

approaches. Significance testing is done as well to determine whether the method-specific calculation is 

significantly different from the gold standard. The selected studies meet the criteria of having the same 

Y-variable of ocular pressure (in mmHg), and Study 1 being a double-blinded RCT while Study 2 and 

Study 3 have weaker study designs. Finally, the three studies are independent from one another further, 

limiting the effect of correlated independent variables biasing the treatment difference results.  

 

 Future work might further evaluate the robustness of these findings for different medications. 

Further areas of extension include testing these methods for small samples, and across different time-

intervals. It would be especially helpful if the precise bounds by which this method achieves unbiased 

estimates are determined. Simulation tests would be an excellent means for determining these bounds.  

 

 Overall, this study demonstrates that in certain limited circumstances, statistical methods 

applied to non-experimental and non-double-blinded experimental data can approximate the results of a 

double-blinded RCT. Propensity score matching is conjectured to perform better than the other tested 

methods because it is used to explicitly balance the covariates between a placebo control and 

experimental group, in the process randomizing the study. If further validated, this approach might be 
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especially useful in comparative effectiveness research and in clinical trial studies.  
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Appendix  

Study Tables 

Table 1.Specified Method for Each Evaluated Quantitative Technique  

Type Method  

Simple Subtraction Direct subtraction of between-study published 

mean values 

Linear Regression  Data simulation and subtraction of between-study 

dummy variables 

Propensity Scores: Radius Matching Data simulation and subtraction of between-study 

ATT  

Propensity Scores: Kernel Matching Data simulation and subtraction of between-study 

ATT  

Propensity Scores: Nearest Neighbor Matching Data simulation and subtraction of between-study 

ATT  

Propensity Scores: Stratification Matching Data simulation and subtraction of between-study 

ATT  
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Table 2. Study Characteristics 

 Study 1  Study 2  Study 3  

Experimental Structure  Double-blinded 

Randomized Parallel 

Assignment Study 

(Randomized)  

Randomized Evaluator-

Blinded Controlled Trial 

(Randomized)  

Prospective Non-

Interventional Cohort 

(Observational)  

Sample Size 144 (XC)/145 (XT)/ 289 

(T)  

238 434 (XC)/9336 (O)/9830 

(T) 

Participant Age XT: 18-65 yrs: 78 obs, 

>65 yrs: 66 obs  

XC: 18-65 yrs: 77 obs, 

>65 yrs: 68 obs  

XT: 65.8 yrs 

D: 66.6 yrs 

XC: 66.5 yrs  

O: 66.9 yrs  

Participant Gender  XT: 70 obs (F), 74 obs 

(M) 

XC: 74 obs (F), 71 obs 

(M)  

XT: 67 obs (M) 68 obs 

(F) 

D: 54 obs (M), 58 obs 

(F)  

XC: 383 obs (F), 363 obs 

(M) 

O: 7493 obs (F), 5203 

obs (M) 

Treatment Difference  

(mmHg)  

0.97 -0.20 0.90 
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Table 3. Linear Regression Method: 

 Dummy Coefficient Value 

Study 2 -0.17 

Study 3  -1.03 

 

S2-S3=-0.1689-(-1.0268)= 0.86 
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Table 4. Propensity Score Method: 

 Kernel  Radius  Nearest Neighbor Stratification  

Study 2  -0.17 -0.17 -0.197 -0.18 

Study 3 -0.94 -0.95 1.359 -1.21 

 

Interstudy Difference (Propensity Score-Derived) 

Nearest Neighbor: S2-S3=(-0.197)-1.359=-1.56 mmHg 

Kernel Matching: S2-S3=-0.165+0.953= 0.788 mmHg 

Radius Matching: S2-S3=-0.171+0.941=0.77 mmHg 

Stratification Matching: S2-S3=-0.18+1.21=1.03 mmHg 
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Table 5. Aggregate Results: Different Approaches 

Approach  Inter-study Treatment Difference (mmHg) 

Gold Standard 0.97 

Linear Regression  0.86 

Propensity Scores: Nearest Neighbor  -1.56 

Propensity Scores: Kernel Matching  0.79 

Propensity Scores: Radius Matching  0.77 

Propensity Scores: Stratification Matching 1.03 

Simple Subtraction  -1.10 
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Table 6. Table of Standard Errors: 

 Gold 

Standard  

Simple 

Subtractio

n  

Linear 

Regression 

Nearest 

Neighbor 

PScore 

Kernel  

PScore 

Radius 

PScore 

Stratification  

PScore  

1st Study 

Standard 

Error 

0.17 0.167 1.85 0.061 N/A 0.04 0.04 

2nd Study 

Standard 

0.17 0.048 0.039 2.344 N/A 1.85 1.84 
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Error 

Pooled 

Standard 

Error 

0.24 0.174 1.85 2.344 N/A 1.85 1.84 

Mean 

difference  

0.97 -1.1 0.86 -1.56 0.79 0.77 1.03 

Total n  289 10,040 200 307 395 395 394 

 

 

 

 

 

 

 

 

 

 

Table 7. Significance Testing of the Difference between the Method-Specific Calculated IOP and 

the Gold Standard 

Approximation Type  Null Hypothesis: Difference between Gold 

Standard and Selected Test is equal to 0 2  

                                                 
2 The alternative hypothesis is rejected at alpha<0.05  
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Simple Subtraction  p-value=0.0000 (reject H0) 

Linear Regression  p-value=0.9530 (do not reject H0) 

Nearest Neighbor PScore p-value=0.28 (do not reject H0) 

Kernel PScore N/A 

Radius PScore p-value=0.9147 (do not reject H0) 

Stratification PScore p-value=0.9742 (do not reject H0) 
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Study Backgrounds 

a. Study 1 

 Study 1 had a total of 289 participants divided between the Xalacom and Xalatan group. The 8 

week medication treatment timeframe was selected for this paper. The Xalacom-treatment group had a -

2.59 mmHg average reduction in ocular pressure over this period. There was a -1.62 mmHg reduction 

in ocular pressure in the Xalatan-treatment group. The standard errors for the Xalacom and Xalatan 

treatment groups were relatively small at 0.17 mmHg and 0.17 mmHg, respectively.  Subtracting the 

treatment difference between groups results in Xalatan-treated patients having a 0.97 mmHg higher 

ocular pressure than their Xalacom-treated counterparts.  

 
Study 1 Actual Results3 

 
 Xalacom 

Group  Xalatan Group   

Number of Participants Analyzed  
[units: participants] 

144 145 

Change of Intraocular Pressure (IOP) From Baseline to 
Week 8  
[units: mmHg] 
Least Squares Mean (95% Confidence Interval)  

 -2.59  
(-2.92 to -2.25)   

-1.62   
(-1.96 to -1.28)   

Study 1 Difference: Xalatan-Xalacom: -1.62-(-2.59) = 0.97 mmHg 
 
 

 

 

 

b. Study 2  

                                                 
3 Study 1 Reference: Pfizer. “A Study Comparing Xalacom And Xalatan In Patients With Primary Open Angle Claucoma 

(POAG) Or Ocular Hypertension (OH)”. Data first received September 29, 2006. Data last updated August 3, 2009. 
Website: 
http://clinicaltrials.gov/ct2/show/results/NCT00383019?term=xalatan&recr=Closed&rslt=With&type=Intr&rank=2&sec
t=X6015&view=results#outcome1 
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 Study 2 had a total sample of 238 patients. The Xalatan-treated group had 121 patients while the 

control group, receiving treatment with Dorzolamide/Timolol, had 117 patients. The ocular pressures 

were measured 4 times daily over a 12 week period. The multiple time interval measurements were 

averaged to obtain an overall 12-week treatment difference. The Xalatan-treated group had an ocular 

pressure change of -9.725 mmHg, while the control Dorzolamide/Timolol-treated group had a -9.525 

mmHg ocular pressure reduction. Xalatan-treated patients had a -0.200 mmHg ocular pressure than the 

control group. T-test calculation of the between-group treatment difference was not significant for all 

time intervals at the 12 week period.  

 
Study 2 Actual Results4

                                                 
4 Study 2 Reference: Miglior S, Grunden JW, Kwok K, Xalacom/Cosopt European Study Group. “Efficacy and safety of 

fixed combinations of latanoprost/timolol and dorzolamide/timolol in open-angle glaucoma and ocular hypertension.” 
Eye. 2010 Jul; 24(7): 1234-42. Website: http://www.nature.com/eye/journal/v24/n7/fig_tab/eye2009307t3.html#t3-fn4 
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Measurement 
time  

IOP change from baseline to week 12 (mm�Hg) 
least square mean (SE)  95% CI  

Between-group  
P-value  

 

Fixed-combination 
latanoprost/timolol 

(N=121)  

Fixed-combination 
dorzolamide/timolol 

(N=117)    

Daytime −9.7 (0.2)  −9.5 (0.2)  −0.8, 0.4 0.51 

0800 hours −9.8 (0.2)  −9.5 (0.3) −0.96, 0.3 0.32 

1200 hours −9.8 (0.2)  −9.7 (0.3) −0.8, 0.5 0.72 

1600 hours −9.6 (0.2)  −9.4 (0.3) −0.9, 0.4 0.43 

 
Study 2 Difference: Xalatan – Dorzolamide/Timolol: -9.725-(-9.525)= -0.200 mmHg 

 
 

 

 

 

 

 

c. Study 3 

 Study 3 had 4 treatment groups and three time interval measurements. To approach the 8 week 

and 12 week intervals for studies 1 and 2, the shortest time interval of 1 year was selected. The 

Xalacom and Other Medications groups were selected for the head-to-head testing. The sample sizes of 

the Xalacom and 'Other Medications' groups at 1 year were 209 and 3029 patients, respectively. The 

change in IOP was -0.2 mmHg and -1.1 mmHg for Xalacom and the 'Other Medications' group. Each 

group had wide standard errors. The Xalacom group had a 0.9 mmHg ocular pressure difference. 

 
Study 3 Actual Results5 

                                                 
5 Study 3 Reference: Pfizer. “Non-Interventional Study in Patients With Ocular Hypertension And Open Angle Glaucoma 

Treated With Xalatan and Xalacom (XCHANGE). ClinicalTrials.gov Website. Data received November 11, 2009. Data 
last updated February 18, 2010. Website: 



 

110 

 All Subjects   Xalatan   Betablockers   Xalacom  
 Other 

Medications   

Number of Total Participants Analyzed  20073 8735 1508 494 9336 

Change in IOP: 1 year  
(n=10886,4134, 357, 209, 3029)  

-1.5 ± 4.4  
 -0.7 ± 

3.5  
 -1.0 ± 3.4   

 -0.2 ± 
3.5   

 -1.1 ± 4.6  

 
Study 3 Difference: Xalacom – Other: -0.2-(-1.1)= 0.9 mmHg 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results from the Analysis 
 
Linear Regression Results 
 
 
Study 2 Regression Results 
 

 SS df MS 

Model 1.73 3 0.58 

Residual 14.38  196 0.07 

Total 16.11 199 0.08 
 
 
          Number of obs =     200 
          F(  3,   196) =    7.84 

                                                                                                                                                                        
http://www.clinicaltrials.gov/ct2/show/results/NCT01012245?term=xalatan&recr=Closed&rslt=With&type=Obsr&rank
=2&sect=X6015#outcome1 
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          Prob > F      =  0.0001 
          R-squared     =  0.1071 
          Adj R-squared =  0.0934 
          Root MSE      =  .27091 
 
 

 Coef.  Std. Err. t P-value 95% 
Confidence 
Interval  

d2 -0.17 0.04 -4.37 0.00 (-0.25,-0.09)  

a2 0.00 0.00 0.72 0.47 (-0.00,0.00) 

g2 -0.05 0.04 -1.38 0.17 (-0.13,0.02) 

Constant -9.58 0.13 -76.53 0.00 (-9.83,-9.34_  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Study 3 Regression Results 
 

 SS df MS 

Model 151.58 3 50.53 

Residual 33525.96 196 171.05  

Total 33677.53  199 169.23  
 
           Number of obs =     200 
           F(  3,   196) =    0.30 
           Prob > F      =  0.8287 
           R-squared     =  0.0045 
           Adj R-squared = -0.0107 
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           Root MSE      =  13.079 
 
 

 Coef.  Std. Err. t P-value 95% 
Confidence 
Interval  

d2 -1.03 1.85 -0.55 0.58 (-4.68,2.62) 

a2 -0.02 0.08 -0.20 0.84 (-0.17,0.13) 

g2 1.46 1.90 0.77 0.44 (-2.28,5.21) 

Constant 67.95 5.14 13.22 0.00 (57.82,78.09)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Study 2 Propensity Score Results 
 
1. Nearest Neighbor Matching  
 

Logistic regression                               N umber of obs   =        200 
                                                  L R chi2(2)      =       3.30 
                                                  P rob > chi2     =     0.1922 
Log likelihood =  -136.9802                       P seudo R2       =     0.0119 
 
 
 

 Coef.  Std. Err. z P-value 95% 
Confidence 
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Interval  

a2 -0.01 0.01 -1.12 0.26 (-0.04,0.01)  

g2 0.42 0.29 1.47 0.14 (-0.14,0.99)  

Constant 0.82 0.91 0.90 0.37 (-0.97,2.61)  

 
ATT estimation with Nearest Neighbor Matching metho d (random draw version) 
Analytical standard errors 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 49 -0.20 0.06 -3.22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Kernel Matching 
 

ATT estimation with the Kernel Matching method  
 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 95 -0.17 -- -- 

 
 
 



 

114 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3, Radius Matching 
 

ATT estimation with the Radius Matching method 
 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 95 -0.17 0.04 -4.13 
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4. Stratification Matching  
 

ATT estimation with the Stratification method 
 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 95 -0.18 0.04 -4.19 
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Study 3 Propensity Score Results 
 
1. Nearest Neighbor Matching 
 
Logistic regression                               N umber of obs   =        200 
                                                  L R chi2(2)      =       0.25 
                                                  P rob > chi2     =     0.8834 
Log likelihood = -138.50549                       P seudo R2       =     0.0009 

 
 Coef.  Std. Err. z P-value 95% 
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Confidence 
Interval  

a3 -0.00 0.01 -0.41 0.68 (-0.03,0.02)  

g3 0.10 0.29 0.35 0.73 (-0.47,0.67)  

Constant  0.27 0.77 0.35 0.73 (-1.24,1.78)  

 
 
ATT estimation with Nearest Neighbor Matching metho d (random draw version) 
Analytical standard errors 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 58 1.36 2.34 0.58 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Kernel Matching 
 
ATT estimation with the Kernel Matching method  
 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 100 -0.94 -- -- 
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3, Radius Matching 
 

ATT estimation with the Radius Matching method 
Analytical standard errors 
 

n. treat  n. contr.  ATT  Std. Err. t 

100 100 -0.95 1.85 -0.52 
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4. Stratification Matching  
 

ATT estimation with the Stratification method 
 

 

n. treat  n. contr.  ATT  Std. Err. t 

100 99 -1.21 1.84 -0.66 
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Standard Error Calculations 
 

 
Gold Standard (GS):  

Xalacom SE: SExc=0.17 
Xalatan SE: SExt=0.17  

Pooled SE=√(0.17^2+0.17^2)=0.24 [for n=289 for the two treatment arms] 
 

Simple Subtraction Method (SS): 
Study 2 Standard Errors 

 Xalatan SE:       SExt=0.2 
 Dorzolamide SE: Sedz=0.2 
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 Pooled Study 2 SE=√(0.2^2+0.2^2)=0.28 [for n=270 for the two treatment arms] 
 

 Study 3 Standard Errors  
  Xalacom SE: SExc=3.4/[√(494)]=0.15,  
   Other SE      : SEo=4.6/[√(9334)]=0.21,  

  Pooled Study 3 SE=(0.15^2+0.21^2)^0.5=0.26  [for n=9,770 for the two treatment arms] 
     

 Overall Study 2-Study 3 Pooled SE=(0.26^2+0.28^2)^0.5=0.38 [for n=10,040 for the combined 
studies 2 and 3]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Linear Regression Method (LR): 
Study 3 SE: Ses3=1.85 
Study 2 SE: Ses2=0.039 

Pooled SE=√(0.039^2+1.85^2)=1.85 [for n=400 for the combined studies 2 and 3] 
 

     Propensity Score Method (PS): Nearest Neighbor 
 Study 2 SE: 0.061 (for n=149) 
 Study 3 SE: 2.344 (for n=158) 

 Overall Study 2-Study 3 Pooled SE=(0.061^2+2.344^2)^0.5=2.344  
 [for n=307 for the combined studies 2 and 3] 

 
 Propensity Score Method (PS): Kernel Matching 

 Study 2 SE: N/A (for n=195) 
 Study 3 SE: N/A (for n=200) 

 Overall Study 2-Study 3 Pooled SE: N/A 
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 Propensity Score Method (PS): Radius Matching 

 Study 2 SE: 0.04 (for n=195) 
 Study 3 SE: 1.85 (for n=200) 

 Overall Study 2-Study 3 Pooled SE=(0.04^2+1.85^2)^0.5=1.85  
 [for n=395 for the combined studies 2 and 3] 

 
 Propensity Score Method (PS): Stratification Matching 

 Study 2 SE: 0.04 (for n=195) 
 Study 3 SE: 1.84 (for n=199) 

 Overall Study 2-Study 3 Pooled SE=(0.04^2+1.84^2)^0.5=1.84  
 [for n=394 for the combined studies 2 and 3] 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T-Test Calculations: 
 
 
Gold Standard versus Simple Subtraction 
. ttesti 289 0.97 4.08 10040 -1.1 28.06, une 
 
Two-sample t test with unequal variances 

 Obs  Mean  Std. Error Std. Dev.  95% 
Confidence 

Interval  

x 289 0.97 0.24 4.08 (0.50,1.44) 

y 10,040 -1.1 0.28 28.06 (-1.65,-0.55)  

combined 10,329 -1.04 0.27 27.68 (-1.58,-0.51)  

diff   2.07 0.37  (1.35,2.79) 
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    diff = mean(x) - mean(y)                                      t =   5.6126 
Ho: diff = 0                     Satterthwaite's de grees of freedom =  1524.99 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gold Standard versus Linear Regression 
 
. ttesti 289 0.97 4.08 400 0.86 37, une 
 
Two-sample t test with unequal variances 

 Obs  Mean  Std. Error Std. Dev.  95% 
Confidence 

Interval  

x 289 0.97 0.24 4.00 (0.50,1.44) 

y 307 0.86 1.85 37 (-2.78,4.50)  

combined 689 0.91 1.08 28.30 (-1.21,3.02)  

diff   0.11 1.87  (-3.56,3.78)  
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    diff = mean(x) - mean(y)                                      t =   0.0590 
Ho: diff = 0                     Satterthwaite's de grees of freedom =  412.381 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.5235         Pr(|T| > |t|) = 0.9530          Pr(T > t) = 0.4765 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gold Standard versus Propensity Score (Nearest Neighbor) 
 
. ttesti 289 0.97 4.08 307 -1.56 41.07, une 
 
Two-sample t test with unequal variances 
 

 Obs  Mean  Std. Error Std. Dev.  95% 
Confidence 

Interval  

x 289 0.97 0.24 4.08 (0.50,1.44) 

y 307 -1.56 2.34 41.07 (-6.17,3.05)  

combined 596 -0.33 1.21 29.62 (-2.72,2.05)  

diff   2.53 2.36  (-2.11,7.17)  
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    diff = mean(x) - mean(y)                                      t =   1.0737 
Ho: diff = 0                     Satterthwaite's de grees of freedom =  312.413 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.8581         Pr(|T| > |t|) = 0.2838          Pr(T > t) = 0.1419 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gold Standard versus Propensity Score (Radius Matching) 
 
. ttesti 289 0.97 4.08 395 0.77 36.77, une 
 
Two-sample t test with unequal variances 

 Obs  Mean  Std. Error Std. Dev.  95% 
Confidence 

Interval  

x 289 0.97 0.24 4.08 (0.50,1.44) 

y 395 0.77 1.85 36.77 (-2.87,4.41)  

combined 684 0.85 1.07 28.05 (-1.25,2.96)  
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diff   0.2 1.87  (-3.47,3.87)  

 
 diff = mean(x) - mean(y)                                      t =   0.1072 
Ho: diff = 0                     Satterthwaite's de grees of freedom =  407.214 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.5427         Pr(|T| > |t|) = 0.9147          Pr(T > t) = 0.4573 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Gold Standard versus Propensity Score (Kernel Matching) 
 
Not available because unable to obtain standard err ors for kernel matching.  

 
Gold Standard versus Propensity Score (Stratification Matching) 
 
. ttesti 289 0.97 4.08 394 1.03 36.52, une 
 
Two-sample t test with unequal variances 
 

 Obs  Mean  Std. Error Std. Dev.  95% 
Confidence 
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Interval  

x 289 0.97 0.24 4.08 (0.50, 1.44)  

y 394 1.03 1.84 36.52 (-2.59,4.65)  

combined 683 1.00 1.07 27.85 (-1.09,3.10)  

diff   -0.06 1.86  (-3.71,3.59)  

 
    diff = mean(x) - mean(y)                                      t =  -0.0323 
Ho: diff = 0                     Satterthwaite's de grees of freedom =  406.328 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.4871         Pr(|T| > |t|) = 0.9742          Pr(T > t) = 0.5129 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STATA Code 
 
Data Simulation  
. set mem 1g 
 
. set obs 100 
 
. set seed 2000 
 
. gen YXT2=-9.7+0.2*invnorm(uniform()) 
 
. gen YDT2=-9.5+0.3*invnorm(uniform()) 
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. gen YO3=66.9+13.3*invnorm(uniform()) 
 
. gen YXC3=66.5+12.7*invnorm(uniform()) 
 
. gen A2XT=65.8+11.3*invnorm(uniform()) 
 
. gen A2D=66.6+10.0*invnorm(uniform()) 
 
. gen A3XC=64.9+13.4*invnorm(uniform()) 
 
. gen A3O=66.9+13.3*invnorm(uniform()) 
 
Nearest Neighbor  
. pscore  dummy3 age3 gender3, pscore(mypscore) blo ckid(myblock) 
comsup numblo(5) 
level(0.005) logit 
 
. attnd y3  dummy3 age3 gender3, comsup bootreps(10 0) dots logit 
 
. pscore dummy2 age2 gender2, pscore(mypscore2) blo ckid(myblock2) 
comsup numblo(5) level(0.005) logit 
 
. attnd y2  dummy2 age2 gender2, comsup bootreps(10 0) dots logit 
 
Kernel Matching 
. attk y3 d3 a3 g3, comsup bootreps(100) dots logit  
. attk y2 d3 a3 g3, comsup bootreps(100) dots logit  
 
Radius Matching 
. attr y2 d3 a3 g3, comsup bootreps(100) dots logit  
. attr y2 d3 a3 g3, comsup bootreps(100) dots logit  
 
Stratification  
.pscore d3 a3 g3, pscore(mypscore) blockid(myblock)  comsup numblo(5) 
level(0.005) logit 
 
. atts y3 d3 a3 g3, pscore(mypscore) blockid(mybloc k) bootstrap 
 
 
.pscore d2 a2 g2, pscore(mypscore1) blockid(myblock 1) comsup 
numblo(5) level(0.005) logit 
 
. atts y2 d2 a2 g2, pscore(mypscore1) blockid(myblo ck1) bootstrap 
 
Regression  
. regress y3  dummy3 age3 gender3  
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. regress y2  dummy2 age2 gender2 
T-tests 
. ttesti 289 0.97 0.24 10040 -1.1 0.174, une 
 
. ttesti 289 0.97 0.24 200 0.86 1.85, une 
 
. ttesti 289 0.97 0.24 307 -1.56 2.34, une 

 
 

 
 

 

 

 

 

 

 

Concluding Remarks 
 

 This dissertation tackled subjects central to comparative effectiveness research today. While the 

topics are different, each paper is connected to the other. There is a common emphasis on measurement,  

comparisons between multiple sources, and variation. Each paper is seeking to aggregate data from 

multiple sources to increase understanding of a relevant clinical or policy issue. The hospice care paper 

compares length-of-stay data between hospital referral regions, while the statistics paper uses different 

statistical methods to compare glaucoma treatment levels between papers. Similarly, the HPV paper 

aggregates cost-effectiveness data between different published papers. Overall, each one of the papers 

is looking at variation in the measurement of data of from multiple sources: the hospice care paper in 

terms of what are the determinants of hospice stay variation between hospital-referral regions, the 

statistics paper for the variation in estimates between different statistical methods, and the HPV paper 

in the amount of variation between female-only HPV vaccination compared to male and female HPV 

vaccination.  
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 The hospice care paper points to the potential importance of reimbursement for decisions on 

end-of-life care. Hospice reimbursement is substantially lower than inpatient care reimbursement, but 

even a small increase in hospice reimbursement appears to have a significant effect on how long a 

patient stays in hospice. Further work that clarifies how hospice reimbursement is affected by family 

decision-making and the strength of the physician-patient relationship is important. The statistics paper 

provides compelling initial evidence that quantitative techniques might possibly be used to simulate 

randomized control trial results. Next steps are to evaluate the different techniques for additional data 

sets, and to evaluate the techniques for simulations with larger sample sizes. Finally, the HPV paper 

points to only two papers in the male HPV literature that show a significant effect of male and female 

HPV vaccination. In addition to the lack of significance of the other papers, male and female HPV 

vaccination is cost-effective at a $100,000/QALY threshold, while female-only HPV vaccination is 

cost-effective at a $50,000/QALY cutoff. Important future work includes re-testing the accuracy of 

these results, and using different ICER estimation techniques such as Bayesian analysis.  

 

 These three essays in comparative effectiveness research each make a unique and original 

contribution to  CER. They contribute to the fundamental CER questions - what works best, and under 

what circumstances? As CER is in the national spotlight with the passage of healthcare reform, the way 

that healthcare is assessed and measured in the United States will increasingly draw from the field. 

With their application of quantitative methods to relevant policy topics, it is hoped that these papers 

will continue moving the field forward in its goal of improving healthcare delivery, optimizing health 

outcomes, and increasing healthcare access.  
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