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Inversion of Many-Beam Bragg Intensities for Phasing by Iterated Projections:
Removal of Multiple Scattering Artifacts from Diffraction Data
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1Department of Applied Mathematics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, USA
3Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA

An iterated projection algorithm (N-Phaser) is developed that reconstructs a scattering potential from
N-beam multiple Bragg scattered intensities. The method may be used to eliminate multiple scattering 
artifacts from electron diffraction data, solving the phase problem and increasing the thicknesses of samples 
used in materials science, solid-state chemistry, and small molecule crystallography. For high-energy 
transmission electron diffraction, we show that the algorithm recovers accurate complex structure factors 
from a wide range of thicknesses, orientations, and relativistic beam energies, and does not require known 
thickness or atomic-resolution data if sufficient multiple scattering occurs. Extensions to Cryo-electron 
microscopy and Micro-electron diffraction are suggested.

Multiple elastic scattering in x-ray, electron, and neutron
diffraction prevents extraction of structure factors, but is
useful for standing waves (modulating fluorescence),
chirality, and space-group determination, and for phase
determination. The size limit which multiple scattering
imposes on samples severely hampers the effort toward
whole-cell imaging in cryoelectron microscopy, the size of
protein microcrystals analyzed by the new method of
Micro-electron diffraction, sample thickness in coherent
x-ray diffractive imaging, and the thickness of the crystals
and their defects (which control the properties of matter)
which may be imaged by atomic-resolution transmission
electron microscopy (TEM) in condensed matter physics
and materials science.
Since interference between Bragg components of Bloch

waves excited inside a crystal is the basis of the effect,
multiply scattered Bragg intensities are sensitive to struc-
ture factor phases. Inversion from multiple to single
scattering therefore solves the phase problem, by recover-
ing complex structure factors. Three-beam cases may allow
phasing for inorganic crystallography (see, e.g., Ref. [1]).
The phase problem is an urgent issue in Micro-electron
diffraction, where protein microcrystal structures are solved
by transmission electron diffraction (TED) using Cryo-
electron microscopy instrumentation with thousands of
simultaneously excited Bragg beams. Direct methods are
limited by the number of atoms in the molecule, while
molecular replacement depends on existing models. With
the development of nanometer-diameter x-ray beams, a
general solution to this problem would also provide an
x-ray microdiffraction technique giving phased lensless
images of small regions of much thicker samples in
materials science and biology.

Since Bethe’s formulation [2] of the multiple electron
scattering problem in explanation of the Davisson-Germer
experiment, there have been several distinct alternative
formulations, including multislice, Darwin equation,
Bloch-wave, scattering matrix, and path integral
approaches [3,4]. Partially successful inversion schemes
for N-beam TED, which would recover the same complex
structure factors Vg from measured Bragg intensities at any
thickness, have been based on closed-form solutions [5,6],
large-angle convergent-beam patterns [7], dynamical pty-
chography [8], optical multislice ptychography [9], iterated
projections [10], data collected at two adjacent beam
energies [11,12], and inversion from a scattering matrix
S [13]. Although limited by lens resolution, inversion from
the complex multiply scattered amplitudes which form
atomic-resolution scanning transmission electron micros-
copy images [14], using multiple detector pixels to provide
simultaneous tilted images, is an important recent advance.
The scattering matrix solution to a relativistically cor-

rected Schroedinger equation, describing high-energy
transmission electron diffraction (HEED) through a slab
of crystal of thickness t, is defined as S ¼ expð2πiAtÞ [15].
Here the matrix A of order N contains entries σVg=ð2πÞ ¼
1=ð2ξgÞ ¼ Ug=ð2KÞ in off-diagonal positions, where the
wanted structure factors Vg (in volts) or Ug (potential
energy terms in Hamiltonian A) are the Fourier coefficients
of the Coulomb potential VðrÞ. ξg is an extinction distance,
K ∼ 1=λ0 a corrected beam wave vector, and σ ¼
2πmjejλ=h2 with m the relativistic electron mass. The
diagonal of A contains known excitation errors sg ¼ λg2=2
in symmetric zone axis orientations [for lattice vectors
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g ¼ gðh; k; lÞ] which define the diffraction conditions and
kinetic energy (beam wavelength and direction). For
example, for N ¼ 5,

A ¼ 1

2K
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The moduli of the elements of S are proportional to the
intensities of the transmitted Bragg beams. Each column of
S contains magnitudes from one two-dimensional Bragg
diffraction pattern, while adjacent columns correspond to
patterns obtained by changing the incident beam direction
to a succession of different Bragg conditions around the
zone axis orientation [8]. As for crystal band structure, the
HEED Bloch-wave solutions are periodic in the transverse
component of K, lying in the first Brillioun zone, giving
periodicity relations for both eigenvalues and eigenvectors
of A [16]. In the absence of inelastic scattering, A is
Hermitian, S is unitary and symmetric, and the problem
amounts to inverting this unitary transformation, given the
magnitudes of the entries in S (which we assume given), the
diagonal of A, and its many symmetries. Symmetries are
imposed by the space group of the crystal [17], an
antidiagonal symmetry [13], and the fact that the same
difference between indices on the diagonal (which defines
off-diagonal element positions) occurs more than once.
See Fig. S2 in Supplemental Material for an overview of
the relation between the scattering potential and the
scattering matrix magnitude data [18]. Inelastic scattering
(absorption) destroys the orthogonality of A.
The first-order expansion of the exponential (single

scattering, or first Born approximation) relates the three-
dimensional crystallographic indices of entries in the two-
dimensional matrix S to those of A. Since all of S is needed,
inversion from one dynamical diffraction pattern in a single
orientation is impossible [19].
In general, forward and reverse computation between A

and S is possible. In particular, both matrices share the same
eigenvectors, and the eigenvalues γi of A are related to the
eigenvalues λi of S by λi ¼ expð2πiγitÞ. Therefore,
γi ¼ logðλiÞ=ð2πitÞ þ ni=t, where ni is an integer deter-
mined by the logarithm branch. The known diagonal of A
provides N linear constraints which assist in solving for the
N branch indices ni, and thus for A. Remarkably, A can also
be recovered without knowledge of the thickness t by
solving for γi directly instead of the branch cuts. In some
situations, such as for a symmetric zone axis orientation,
these linear equations can become linearly independent, but
additional linear constraints based on the known sym-
metries of A (see Ref. [13]) can be used to improve the
invertibility of the linear system.

If the phases of S are measured, then the linear system
described above provides direct one-step inversion from
complex S to A [13]. This is the basis of the successful
imaging method of Ref. [14]. Interferometric methods
(such as ptychography and imaging) are, however, sensitive
to instrumental phases (e.g., focusing errors, sample move-
ment between tilts), which may then affect structure factor
phase estimates. Instead, here we describe inversion from
Bragg intensities, which is more robust, insensitive to
sample displacement at the atomic scale, is not limited
by the resolution of imaging lenses, and does not involve
loss of relative phase information between tilts.
Use of the orthogonality constraint equations for S to

find its complex entries from their magnitudes produces a
system of nonlinear equations which are not readily solved
except for small N. In fact, the number of orthogonal
matrices whose elements have given magnitudes is very
large [20]. In addition, for large thickness t, small changes
in γ produce very large changes in λ, leading to instabilities
in inversion.
In an earlier paper [10], we studied the nonconvex

iteration between the set of all S matrices obtained from
A with correct symmetry and diagonal, and the set of all S
matrices with given magnitudes, providing successful
phase retrieval at moderate thickness, but unstable at large.
Our improved algorithm (N-Phaser) imposes these three
constraints via iterative Bregman projections [21], while
avoiding the instability at large thickness and, optionally,
incorporating an additional “charge-flipping” step to assist
phasing. Charge flipping (here potential flipping, demon-
strated for experimental HEED in Ref. [22]) requires
atomic-resolution data, and, by driving the potential to
zero between atoms, applies an atomicity constraint [23].
Our resulting method recovers complex structure factors
from Bragg TED intensities over a wide range of thickness,
orientation, and beam energies.
Our goal is to reconstruct the real-space potential VðrÞ

from the scattering matrix magnitudesMij ¼ jSijj. Initially
we limit our treatment to recovering 2D projected potentials
from HEED with all reciprocal lattice vectors lying in a
plane normal to the beam (but with curved Ewald sphere),
and discuss other cases below. A finite value of the zero-
order structure factor (gauge transformation) appears as an
unobservable phase factor on Bragg beams for a parallel-
sided slab.
Computational trials suggest that three constraints are

sufficient to define a “unique” solution: the symmetry
constraints on A, its known diagonal, and the known
magnitudes of the elements of S. By “unique” we refer
to equivalent solutions differing by an origin shift on VðrÞ,
which appears as a similarity transform on S, leaving
eigenvalues unchanged. A reversal in the chirality (hand) of
VðrÞ, as for the two forms of quartz, or the enantiomorphs
important for small molecules in the drug industry, does
affect the Bragg intensities under multiple scattering, but



not under single scattering, so these are not equivalent
multiple scattering solutions, allowing enantiomorphs to be
distinguished.
We now describe our algorithm for reconstructing the

potential VðrÞ from the scattering matrix magnitudes M.
Initially we assume that the crystal thickness t is known.
The algorithm begins with a random initial potential V0ðrÞ,
and during the nth iteration performs the following oper-
ations (see Figs. S3–S6 in Supplemental Material for flow
diagrams [18]).
(1) Compute the Fourier transform Vn

g from VnðrÞ.
(2) Construct the structure matrix An

ii ¼ sgi
, and for

i ≠ j, An
ij ¼ Vn

gi−gj .
(3) Compute the eigenvalue expansion An ¼ UnΓnUn�.
(4) Compute the matrix exponential via Sn ¼ UnΛnUn�,

where Λn
ii ¼ expð2πiΓn

iitÞ.
(5) Renormalize Sn to be consistent with the magnitude

data via S̃nij ¼ ðSnij=jSnijjÞMij.

(6) Transform S̃n into a unitary matrix by computing the
Schur decomposition S̃n ¼ ŨnTnŨn�, and then zero out
the off-diagonal elements T̃n

ij ¼ 0 for i ≠ j and normalize
the diagonal T̃n

ii ¼ Tn
ii=jTn

iij [24].
(7) Update the structure matrix as Ãn ¼ ŨnΓ̃nŨn�, where

Γ̃n
ii ¼ logðT̃n

iiÞ=ð2πitÞ þ ηi=t, the branch index is estimated
as

ηi ¼ round½xit − logðT̃n
iiÞ=ð2πiÞ�;

x ¼ yþD†ðb −DyÞ; yi ¼ ðŨn�AnŨnÞii;

Dij ¼ jUn
ijj2, bi ¼ sgi , and D† is the pseudoinverse of D.

When D is nonsingular, the y contributions cancel out in
the above equation. However, when D is singular, the
above equation will choose the solution that minimizes the
structure matrix perturbation jjÃn − AnjjF.
(8) Average symmetry-related structure factors for g ≠ 0

from A via

Ṽn
g ¼

8<
:

1
Ng

P
ði;jÞ∈g

An
ij if Ng ≥ Nmin

0 otherwise;

where ði; jÞ ∈ g refers to the set of index pairs such that
gi − gj ¼ g, and Ng is the number of such pairs. In
particular, the structure factors that only have a few entries
in A are set to 0 to improve stability of the algorithm. The
constant component is allowed to float, i.e., Ṽn

0 ¼ Vn
0 .

(9) Compute the inverse Fourier transform to get the
potential ṼnðrÞ.
(10) Update the potential via

Vnþ1ðrÞ ¼
�
ṼnðrÞ if ṼnðrÞ ≥ τ

αṼnðrÞ if ṼnðrÞ < τ;

where 0 < α ≤ −1 corresponds to charge flipping, α ¼ 0
for flattening, and α ¼ 1 if neither flipping or flattening
is used.
In the limiting case of small thickness, the above

algorithm is equivalent to standard phasing using charge
flipping alone. However, note that flipping requires the 2D
projected potential to be sufficiently sparse, and so may not
be effective in recovering 2D projections of very complex
3D crystal structures. If the thickness t is not precisely
known, it can, depending on the physical parameters, be
inferred during the reconstruction procedure. We accom-
plish this with a modification to step (4), where we use a
golden section search to find the value of t that minimizes
the Frobenious norm between the magnitudes of Sn and the
magnitude data M.
Note that λi depends only on γi − bγitc=t, which for large

t becomes completely dominated by small perturbations to
γi. Therefore, when the thickness becomes large, so that
γit ≫ 1, calculation of λ from γ in step (4) becomes
unstable. However, the eigenvectors of S can still be stably
computed from A. To handle this instability for large t, we
no longer compute the eigenvalues of S from A and instead
use the magnitude constraint on S to estimate its eigen-
values. Hence, knowledge of the thickness is no longer
needed in this case. Furthermore, in step (7), Γ̃n

ii ≈ xi when t
is large, and so we modify this step to solve for Γ̃ii directly
instead of determining the branch index. With these
modifications, the algorithm no longer requires an estimate
of the thickness. The modifications to steps (4) and (7) for
the large thickness case are as follows.
(4b) The scattering matrix is computed as

Sn ¼ UnΛnUn�, where Λn is now given by the mini-
mizer of

Λn ¼ argminΛ
X
i;j

½jðUnΛU�nÞijj −Mij�2:

Here we approximate this minimizer by using another
iterative projection algorithm starting with S ¼ Sn−1 and
then applying several iterations of the following:
(i) Sij ¼ ðSij=jSijjÞMij, (ii) Λii ¼ ðUn�SUnÞii, Λij ¼ 0

for i ≠ j, (iii) S ¼ UnΛUn�.
(7b) Same as (7) except we take Γii ¼ xi.
For the n ¼ 1 iteration, we initialize S0 to be a random

unitary matrix. Since this second algorithm does not
enforce the relationship between γ and λ, it may lead to
an information deficiency for very small thickness, and is
not equivalent to standard charge flipping alone.
The above two algorithms could be merged into one, in

which case one would compute the eigenvalues λi of S from
only the small eigenvalues γi of A and would instead use
the magnitude constraint on S to determine the remaining
λi. If not all columns of M can be measured, then
reconstruction may still be possible by allowing the
magnitudes of the missing columns to float during



reconstruction, i.e., by only performing the update in
(5) where Mij is available.
We applied the N-Phaser algorithms to scattering matrix

magnitude data with N ¼ 441 generated by a simulated tilt
series of diffraction patterns from the GaAs noncentrosym-
metric crystal structure with axial beam direction [110], and
from a spinel crystal with beam direction [100]. We tested
beam energies of 100, 300, and 1000 kV and crystal
thicknesses 10, 100, and 1000 nm. We recovered 840
unique structure factors for several different thicknesses
and beam energies. Structure factors for electron diffraction
were obtained from Ref. [4] with a mean absorption
included on the diagonal of A. The only effect of this
potential is a constant rescaling of the Smatrix magnitudes,
which are renormalized at the start of the reconstruction
algorithm. The entry in the center of A was the direct beam.
In general there are ðN2 − 1Þ=2 free real parameters in
Hermitian A when account is taken of the antidiagonal
symmetry. This is reduced further here by crystal symmetry
to 2ðN −

ffiffiffiffi
N

p Þ.
Each reconstruction ran for a total of 200 iterations. In

the cases where step (10) was used, we alternated between
50 iterations of charge flipping followed by 50 iterations of
charge flattening, repeated twice. All reconstructions took
less than 10 min on a desktop machine. In step (10), the
tolerance τ was set at each iteration to be above 90% of the
potential values computed in step (9). During flipping we
used α ¼ −1=2 instead of the traditional −1 to dampen
oscillations in the solvent regions leading to improved
convergence.
In order to asses the quality of the reconstructions, we

aligned each to the ground truth and computed a Pearson
correlation coefficient between the two resulting potentials,
which are listed in Tables I and II and Table S1 in Ref. [18].
Surface plots of the ground truth and reconstructed poten-
tials are shown in Fig. 1 and in Figs. S7–S14 in
Supplemental Material [18]. Computing λ from A is shown
to be superior for smaller thicknesses, while computing λ
fromM is better at larger thicknesses. This is due to the fact
that at smaller thicknesses, the eigenvalues of A provide
extra constraints on the eigenvalues of S, but, as discussed
earlier, this relationship becomes unstable for large t.

Computing λ from M avoids this instability since the
eigenvalues of A are not used at all in the computation
of S.
Table II shows that for sufficiently large thickness,

flipping is not needed, and, therefore, multiple scattering
contains sufficient information to solve the phase problem
directly without the need for additional real-space con-
straints, such as support or atomicity (atomic-resolution
data). For spinel, with 71 atoms in the cubic cell, charge
flipping was found to be less effective, as its 2D projected
potential is much denser than GaAs, but reconstruction was
still possible for sufficiently thick crystals due to the extra
information provided by multiple scattering.
Additional results are provided in the Supplemental

Material [18]. Table SI and Fig. S11 demonstrate that a
precise estimate of thickness is not needed in the λ from A
version, as t can be found during the reconstruction without
a significant change in the quality of the reconstruction.
Figure S14 shows that reconstruction is still possible when

FIG. 1. GaAs (a),(b) and spinel (c),(d) potential maps projected
along [110] and [100], respectively. (a),(c) Ground truth. (b),(d)
Recovered from Bragg intensities extending to less than 1 Å
resolution withN ¼ 441, for a beam energy of 300 kV in the zone
axis orientation at a thickness of 100 nm by computing λ from M
with (b) and without (d) flipping.

TABLE I. Pearson correlation coefficients between the poten-
tials of the reconstruction and ground truth for GaAs at three
thicknesses and beam energies, using both versions of the
algorithm for computing λ and flipping.

λ from A, flipping λ from M, flipping

10 nm 100 nm 1000 nm 10 nm 100 nm 1000 nm

100 kV 0.98 0.90 0.82 0.96 0.95 0.96
300 kV 0.97 0.89 0.80 0.90 0.97 0.96
1000 kV 0.97 0.84 0.57 0.82 0.70 0.67

TABLE II. Pearson correlation coefficients between the poten-
tials of the reconstruction and ground truth for GaAs and spinel at
three thicknesses and beam energies, by computing λ from M
without flipping.

GaAs, λ from M Spinel, λ from M

10 nm 100 nm 1000 nm 10 nm 100 nm 1000 nm

100 kV 0.46 0.97 0.93 0.88 0.96 0.96
300 kV 0.29 0.97 0.96 0.93 0.98 0.97
1000 kV 0.97 0.74 0.77 0.5 0.98 0.95



several columns of M are not available and how
reconstruction quality is affected by missing columns.
The algorithms starts to fail at very high energies (see

1000 kV). Then the Ewald sphere becomes very flat,
causing diagonal entries of A to approach 0. The linear
system relating the branch cuts to the diagonals of A then
becomes homogeneous, and is solved by any scalar
multiple of the true branch cuts and the trivial solution
x ¼ 0 corresponding to the principal branch cut. For small
thickness this does not present a problem, as the principal
branch cut is then the correct branch cut for each
eigenvalue.
Applications of the method to experimental data will

require elastically filtered diffraction patterns [25]. For the
application of the method to soft x-ray scattering [26,27],
where charge density plays the role of potential, the main
limitation will be the neglect of backscattering and beam
polarization effects. Reference [28] describes a way to
include 3D effects of structure factors not lying in a plane
normal to the beam (but near the Ewald sphere), while
Refs. [29,30] include backscattering, both retaining our
formalism. These 3D higher-order laue zones (HOLZ)
structure factors, describing variation of the potential
VðrÞ along the beam direction, might then be recovered.
For the larger unit-cell protein crystals studied by Micro-
electron diffraction where HOLZ Bragg spots may appear
at high tilts, the Ref. [18] provides a relationship between
periodicity along the beam direction c and resolution d if
limited to the range within which HOLZ reflections do not
appear. We find d ¼ 0.25 nm for c ¼ 16 nm at 200 kV.

With further development, an adapted algorithm could
reduce R factors in protein crystallography for low-order
reflections in high-quality crystals, revealing new features
in charge-density maps affected by multiple scattering. For
diffractive x-ray imaging, where denser Shannon, rather
than Bragg sampling is needed, the algorithm might
provide a general method of lensless imaging.
Application of the method to the removal of multiple
scattering from Cryo-electron microscopy images remains
to be investigated.
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