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Abstract
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role 
in how organisms respond to short-term temperature changes. Plasticity buffers the 
impact of harmful temperature changes; therefore, understanding variation in plastic-
ity in natural populations is crucial for understanding how species will respond to the 
changing climate. However, very few studies have examined patterns of phenotypic 
plasticity among populations, especially among ant populations. Considering that 
this intraspecies variation can provide insight into adaptive variation in populations, 
the goal of this study was to quantify the short-term acclimation ability and thermal 
tolerance of several populations of the winter ant, Prenolepis imparis. We tested for 
correlations between thermal plasticity and thermal tolerance, elevation, and body 
size. We characterized the thermal environment both above and below ground for 
several populations distributed across different elevations within California, USA. In 
addition, we measured the short-term acclimation ability and thermal tolerance of 
those populations. To measure thermal tolerance, we used chill-coma recovery time 
(CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. 
Short-term phenotypic plasticity was assessed by calculating acclimation capacity 
using CCRT and knockdown time after exposure to both high and low temperatures. 
We found that several populations displayed different chill-coma recovery times and 
a few displayed different heat knockdown times, and that the acclimation capaci-
ties of cold and heat tolerance differed among most populations. The high-elevation 
populations displayed increased tolerance to the cold (faster CCRT) and greater plas-
ticity. For high-temperature tolerance, we found heat tolerance was not associated 
with altitude; instead, greater tolerance to the heat was correlated with increased 
plasticity at higher temperatures. These current findings provide insight into thermal 
adaptation and factors that contribute to phenotypic diversity by revealing physi-
ological variance among populations.
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1  | INTRODUC TION

One of the most substantial drivers of biodiversity loss is climate 
change (Sala et al., 2000). When novel climatic conditions are physi-
ologically strenuous, species are driven to adapt via genetic change, 
to migrate, to persist via physiological plasticity (i.e., acclimation), or 
to succumb to extinction (Fuller et al., 2010). Migration to new suit-
able habitat is possible, yet difficult for most species (Parmesan & 
Yohe, 2003). Of the potential outcomes that stressed species will 
face, adaptation and plasticity are the only options that do not in-
volve local extinction.

Adaptation to new conditions requires organisms to possess ge-
netic architecture that can respond to natural selection in a relatively 
short time. Although there are examples of rapid heritable genetic 
changes in populations in response to climate change (Bradshaw & 
Holzapfel, 2008), most organisms’ life spans are too long and climate 
change occurs too rapidly. Within this short time frame, an organism's 
susceptibility to new environmental conditions (i.e., “tolerance”) can 
be buffered by plasticity of fitness-related traits (Huey et al., 2012; 
Seebacher, White, & Franklin, 2015; Somero, 2010). Understanding 
how species will respond to changing conditions requires under-
standing the extent of plasticity in fitness-related traits in natural 
populations (Bozinovic, Calosi, & Spicer, 2011; Calosi, Bilton, & 
Spicer, 2008; Fuller et al., 2010; Seebacher et al., 2015). Intraspecific 
variation in thermal tolerance has been well-documented in several 
Drosophila species, including D. buzzatti and D. melanogaster (Sarup, 
Frydenberg, & Loeschcke, 2009; Sgrò et al., 2010), as well as other 
organisms (e.g., the common killifish (Fundulus heteroclitus; Fangue, 
Hofmeister, & Schulte, 2006), Collembola (Bahrndorff, Loeschcke, 
Pertoldi, Beier, & Holmstrup, 2009), and tsetse fly (Glossina pallidipes; 
Terblanche, Clusella-Trullas, Deere, & Chown, 2008)). Variation in 
traits among populations within a species can provide insights into 
adaptive variation in thermal tolerance (Somero, 2002) as well as 
ecological factors that contribute to evolution of a species in nature 
(McKechnie, Freckleton, & Jetz, 2006). In this study, we examined 
the patterns of thermal tolerance (resistance to both heat and cold 
stress) and plasticity (variation in tolerance after prior exposure to 
heat or cold) as our fitness traits.

When a species is distributed across a heterogeneous envi-
ronment, its populations undergo local adaptation. This is often 
manifested in novel physiological adaptations, tolerance, or accli-
mation capacities. Such changes commonly occur in species that 
occupy ecological gradients such as latitudinal and altitudinal clines 
(Bozinovic et al., 2011). Local adaptation in thermal limits can be 
detected when populations are raised over successive generations 
in a common environment (Hoffmann, Sørensen, & Loeschcke, 
2003; Somero, 2010). Such approaches can reveal whether pat-
terns in variation in thermal tolerance is the result of developmental 

acclimation, maternal effects, or genetic variation (Hoffmann & Sgrò, 
2017; Kawecki & Ebert, 2004).

Local adaptation can be beneficial for individuals in predictable 
environments; however, for populations that are in unpredictable 
or rapidly changing environments, an ability to acclimate might 
become maladaptive. For example, Kristensen et al. (2008) found 
that cold-acclimated fruit flies (Drosophila melanogaster) were bet-
ter able than flies that were susceptible to the cold at locating re-
sources at low temperatures in the field. Yet, such advantage was 
lost in warm temperatures, indicating acclimation to the cold came 
at a cost. Phenotypic plasticity can be costly as it requires energy 
and flexibility on many different biological scales (Auld, Agrawal, & 
Relyea, 2010; Murren et al., 2015). Several studies have found an 
inverse relationship between stress resistance and the capacity 
for plasticity, suggesting an evolutionary trade-off. For example, 
Stillman (2003) found Porcelain crabs (genus Petrolisthes) with the 
highest upper thermal limits also had the lowest acclimation ability. 
In this case, the evolution of basal thermal tolerance has occurred 
at the expense of plasticity in thermal tolerance. This is often seen 
in organisms that are already near their thermal limits (Hoffmann, 
Chown, & Clusella-Trullas, 2013; Stillman, 2003; Sunday, Bates, & 
Dulvy, 2011). However, other studies have found no such trade-off 
(Calosi et al., 2008; Gunderson & Stillman, 2015; Kellett, Hoffmann, 
& McKechnie, 2005) and some have even found the opposite pat-
tern; for instance, increased upper thermal limits in diving beetles 
(genus Deronectes) were associated with a greater ability to accli-
mate (Calosi et al., 2008).

Ants have proven to be extremely useful model systems for mon-
itoring environmental impacts: They are abundant, widespread, eco-
logically vital, sensitive to environmental stress, and relatively easy 
to collect (Ribas, Campos, Schmidt, & Solar, 2012). For ants, tem-
perature is the primary constraining force in determining seasonal 
activities (Dunn, Parker, & Sanders, 2007; Netherer & Schopf, 2010). 
Tolerance of extreme temperature in ants has been positively linked 
to body size (Verble-Pearson, Gifford, & Yanoviak, 2015).

The winter ant (Prenolepis imparis; Say, 1836) is particularly well 
suited for studying responses to temperature changes. It is found 
across a large elevational gradient in California, from sea level to high 
elevation, and thus provides an opportunity to study mechanisms 
of thermal adaptation in a wide range of natural populations. This 
species is often associated with cooler microhabitats in mesic for-
ests (Cuautle, Vergara, & Badano, 2016; Frye & Frye, 2012; Wheeler, 
1930), and it decreases foraging in response to warmer temperatures 
(Stuble et al., 2013). Worker ants are usually highly abundant and 
behaviorally dominant when colonies are actively foraging (Fellers, 
1987, 1989; Lessard, Dunn, & Sanders, 2009; Lynch, Balinsky, & Vail, 
1980). Activity of P. imparis is also quite seasonal, often low during 
the warmer months and high in cooler months (early spring and late 
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fall) when most other ant species exhibit reduced foraging (Dunn 
et al., 2007). This preference for cooler temperatures and capacity 
to survive in a broad geographic range make the winter ant an ideal 
candidate to study plastic responses to thermal stress.

In this study, we examined natural populations of P. imparis to il-
lustrate patterns of thermal tolerance (resistance to both heat and 
cold stress) and plasticity (variation in tolerance after prior exposure 
to heat or cold). To assess tolerance, we quantified responses to ther-
mal stress by measuring heat knockdown time and chill-coma recov-
ery time (CCRT) as indicators of heat and cold tolerance, respectively 
(Maysov & Kipyatkov, 2009). We included these performance tests 
because they are simple and robust measures of tolerance (Angilletta 
et al., 2007; Overgaard & MacMillan, 2017). To examine plasticity, we 
quantified short-term reversible acclimation (Piersma & Drent, 2003) 
and analyzed these data in the contexts of altitude and body size. We 
also measured the thermal characteristics of P. imparis habitat across 
geographically dispersed sites and related these conditions to the ob-
served physiological responses to thermal stress.

2  | MATERIAL S AND METHODS

We chose populations of P. imparis for performance tests from sites 
across different elevations within California, USA (Figure 1). Ants 
were collected via aspirator, primarily during January, February, and 
March 2015. Samples from one population (Mt. Diablo) were col-
lected in March 2017. Elevation and GPS coordinates were taken at 
all locations using a Garmin GPS (WGS1984; Table 1). All statistical 
analyses were performed in R version 3.4.0 (R Core Team, 2017) in 
RStudio 1.0.143 (RStudio Team, 2015).

2.1 | Field temperatures

To assess the thermal environment of the ants’ habitat, we collected 
microclimate data at a subset of localities. At these sites, we meas-
ured ambient and underground temperatures once per hour from 
January 2015 to August 2017: We placed iButtons (DS1922L, Maxim 
Integrated) in the field two meters above each ant nest and below 
ground at the minimum depth that we expected to find nesting 
chambers (60 cm; Tschinkel, 1987). Additionally, we used this depth 
to record underground temperatures that were less susceptible to 
daily fluctuations (Parton & Logan, 1981). We calculated the mean 
temperature and standard deviation at each site for each month 
using the individual hourly temperature readings obtained for that 
month over multiple years, when applicable. We then used these 
monthly means to calculate the annual means.

2.2 | Performance tests

Only nonreplete foragers (workers that do not have enlarged abdo-
mens due to food storage) were collected for use in knockdown trials. 

To acclimate these individuals to a constant temperature, we divided 
them into two separate 20-cm-diameter plastic tubs containing a 
dish of 20% sugar water solution and two nesting chambers. Each 
tub contained approximately 125 ants when the collection numbers 
allowed (Appendix S1). One plastic tub was placed in an incubator 
(CAT# 11-690-650D, Fisher Scientific) at 27°C (warm-acclimated), 
and the other was placed in a growth chamber (CMP3246; Conviron) 
at 10°C (cold-acclimated). Both treatments were kept in the dark for 
the entire acclimation period. To reduce positional effects of accli-
mation temperature, ant tubs were periodically rearranged within 
the chamber or incubator. Dead ants were removed, and sugar water 
was replaced every three days. The ants were kept in these condi-
tions for at least seven consecutive days, after which we performed 
thermal tolerance assays.

To quantify cold tolerance, we measured CCRT, defined as the 
time required for ants to resume an upright position after exposure 
to a temperature low enough to induce a chill coma (Macmillan, 
Williams, Staples, & Sinclair, 2012). We used this timing as a measure 
of tolerance because it has been previously demonstrated to cor-
relate with minimum temperature (Andersen et al., 2015). Yet, it is 
worth noting that this is a measurement of resistance to the effects 
of cold rather than tolerance. Nevertheless, it is commonly used as 
a measure of thermal tolerance and especially useful for examining 
relative differences (Sinclair, Coello Alvarado, & Ferguson, 2015). 
After acclimating the ants to 10°C or 27°C, as described above, we 
covered them in ice for three hours which, in preliminary trials, was 
the amount of time required for all individuals to enter a chill coma, 

F I G U R E  1   Map of California with sampled localities. Localities 
colored according to elevation
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but not so long that they were unable to recover. To do this, we en-
closed ants in a glass Petri dish with a glass lid, which was placed 
on ice in a Styrofoam cooler. We then placed ice on top of the dish 
and closed the cooler. After the prespecified time, we removed the 
ants from the ice-surrounded dish and immediately placed them on 
their backs in a 140-mm Petri dish at room temperature (~22°C). We 
recorded CCRT for each ant. We included five replicates of ten ants 
for each population when collection numbers allowed (Appendix S1). 
Ants that did not recover after 25 min at room temperature were 
considered as having incurred chill injury (Castañeda, Lardies, & 
Bozinovic, 2005). We recorded these data as 25 min, with a delta of 
one and flagged as being right-censored (see Section 2.3).

For heat tolerance assays, we acclimated the ants to 10°C or 
27°C. We then placed five replicates of ten cold- or warm-accli-
mated ants on a 140-mm Petri dish with Insect-A-Slip (BioQuip)-
coated sides. The Petri dish was floated in a prewarmed water bath 
(Fisher Scientific Isotemp Digital-Control Water Bath). We contin-
uously monitored the surface of the Petri dish with a self-adhesive 
thermocouple (SA1-T-SRTC; Omega) and maintained the tempera-
ture at 43°C ± 1°C. This temperature was obtained from prelimi-
nary trials in which the ants did not knockdown immediately and 
experienced knockdown within fifteen minutes (data not shown). 
The time for ants to collapse on the surface of the Petri dish due 
to a loss of coordination was recorded as the knockdown time for 
each ant.

After thermal testing, all ants used for CCRT and heat knock-
down trials were frozen on dry ice and preserved in 100% ethanol. 
The dry weight of these samples was taken after evaporating the 
ethanol in a drying oven for at least one hour. Ethanol preservation 
will change the mass of the individuals; however, because all individ-
uals were stored the same way, their masses can be compared within 
this study (Knapp, 2012).

2.3 | Data analysis

We used accelerated failure time models to analyze both knockdown 
and chill-coma trials using the survreg function in the “survival” 
package v2.42-3 (Therneau, 2016; Therneau & Grambsch, 2000). 
This model was chosen over the more commonly used Cox propor-
tional hazards (PH) to overcome the violation of proportionality of 
hazards rates (Williams et al., 2014). For our data, “survival” corre-
sponded to “remaining standing” versus “remaining in chill coma.” In 
the model, we included “delta” which corresponds to survival after 
the temperature trial. In order to accentuate the among-population 
and environmental effects, we used a mixed effects model. Time until 
recovery (for chill-coma trials) or time until knockdown was used as a 
dependent variable. As fixed explanatory variables, we included ac-
climation temperature and population of origin, while biological rep-
licate was included as a random effect. Significance of fixed effects 
was assessed using the ANOVA function in the “car” package (Fox 
et al., 2019). For post hoc tests, we then compared combinations of 
population of origin and acclimation temperature against the null hy-
pothesis (the differences between the effects is zero) using the glht 
function in “multcomp” package (Hothorn, Bretz, & Westfall, 2008), 
adjusting for false discovery rates (Tukey). For all analyses, signifi-
cance was taken at the level p < .05. We simplified the model by re-
moving statistically nonsignificant interactions and conditions until 
no further simplification was possible. Then, we chose the most par-
simonious model with the lowest Akaike information criterion (AIC) 
among exponential, Weibull, Gaussian, logistic, lognormal, and loglo-
gistic error distributions (Lebreton, Burnham, Clobert, & Anderson, 
1992). To account for skewed distributions of heat knockdown times 
and CCRT, we reported the predicted means as calculated by the 
predict function in the “survival” package (Therneau, 2016). We 
employed the calculated means to quantify the level of thermal plas-
ticity in response to acclimation. For each population, we calculated 

TA B L E  1   For each locality, altitude (m), GPS coordinates, mean mass, chill-coma recovery times (CCRT ± SE), and knockdown times (±SE) 
after a 10°C and 27°C acclimation are reported

Population Longitude Latitude Alt (m)
Massa  
(mg)

Mean CCRT Mean knockdown

10°Cb  27°Cb 
Acclimation 
capacity 10°Cb  27°Cb 

Acclimation 
capacity

Berkeley −122.26317 37.87281 71 1.00 174 ± 9 744 ± 36 570 41 ± 5 87 ± 11 46

Whittier −118.05395 34.00381 100 0.78 180 ± 9 768 ± 38 588 60 ± 7 127 ± 15 67

Stebbins −122.09678 38.50867 109 0.90 189 ± 9 807 ± 39 618 50 ± 6 106 ± 13 56

Quail Ridge −122.14895 38.48307 388 0.88 149 ± 7 636 ± 30 487 46 ± 6 98 ± 12 52

Castle Rock −122.09495 37.22829 973 0.82 137 ± 6 583 ± 28 446 47 ± 6 101 ± 12 54

Mt Diablo −121.916667 37.219167 1,130 0.83 144 ± 7 616 ± 29 472 48 ± 6 102 ± 13 54

Yosemite −119.58584 37.74763 1,233 1.28 143 ± 10 612 ± 39 469 85 ± 11 182 ± 22 97

Palomar −116.92146 33.34078 1,442 0.95 145 ± 7 619 ± 32 474 46 ± 6 99 ± 12 53

Notes: Units for CCRT and knockdown are reported in seconds as calculated from predicted means. Acclimation capacity is also reported across the 
different populations.
aIndicates mean dry weight of individuals tested. 
bAcclimation temperature. 
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the cold- and heat-specific acclimation capacity individually similar 
to Kellett et al. (2005) and van Heerwaarden, Kellermann, and Sgrò 
(2016):

A smaller acclimation capacitycold (faster recovery to the cold) and 
larger acclimation capacityhot (able to resist the heat) indicate a bet-
ter ability to phenotypically adjust to a changing environment (i.e., 
greater plasticity).

To determine the relationship between thermal tolerance and 
elevation, body size, and plasticity levels, we used linear regression. 
We applied a Bonferroni correction for multiple tests.

3  | RESULTS

Approximately 250 worker ants were collected from each test popu-
lation across elevations ranging from 71 to 1,442 m above sea level 
(Figure 1, Table 1; Appendix S1). Average dry weight of the individu-
als ranged from 0.78 to 1.28 mg (Table 1). The mean underground 
temperatures over 12 months (3,876–22,509 hourly readings) 
ranged from 11.9 to 18.1°C (Figure 2; Appendix S2; Berkeley; 17.8°C, 
Whittier; 18.0°C, Quail Ridge; 18.1°C, Castle Rock; 12.6°C, Mt. 
Diablo; 11.9°C, Palomar Mtn.; 12.6°C). The mean aboveground tem-
peratures over 12 months (7,749–33,984 hourly readings) ranged 
from 12.3 to 18.3°C (Figure 2; Appendix S3; Berkeley; 15.4°C, 
Whittier; 18.3°C, Quail Ridge; 17.0°C, Castle Rock; 13.4°C, Mt. 
Diablo; 12.3°C, Palomar Mtn.; 13.8°C).

3.1 | Chill-coma recovery

After three hours of being surrounded by ice, all ants were in chill 
coma. The most parsimonious model for CCRT was the Weibull 
error distribution. Chill-coma recovery was influenced by acclima-
tion temperature and population of origin (biological replicate as 
random variable; χ2

4 = 2.66, p = .62). The strongest effect was from 
acclimation temperature, indicating a strong environmental effect: 
Individuals acclimated to 10°C recovered faster than those accli-
mated to 27°C (χ2

1 = 124.99; p < .0001). Among-population variance 
was higher than that of within-population, indicating a genetic effect 
as well (population; χ2

7 = 43.44; p < .0001; population:acclimation; 
χ2

7 = 18.02; p < .05). Ants from all eight populations recovered faster 
when acclimated to the low temperature (Figure 3; Table 2). In ad-
dition, several populations (7/28) displayed different CCRT after the 
low versus the high-temperature acclimation (6/28) (Table 2).

Our estimator of thermal plasticity, acclimation capacitycold, 
ranged from 446 to 618s. Chill-coma recovery after 27°C and CCRT 
after 10°C were highly correlated (Figure 4a; R2 = 1.0, F1,6 = 36,090, 

p < .0001); therefore, we used only CCRT after 27°C for the follow-
ing comparisons. Chill-coma recovery was correlated with elevation 
(Figure 4b; R2 = 0.72, F1,6 = 15.31, p = .008) but not with body size 
(Figure 4c; R2 = 0.037, F1,6 = 0.23, p = .65), there was a strong rela-
tionship was between CCRT (i.e., thermal tolerance) and acclimation 

acclimation capacitycold =

(

mean CCRT at 27◦C acclimation
)

−

(

mean CCRT at 10◦C acclimation
)

acclimation capacityhot =
(

mean knock down time at 27◦C acclimation
)

−

(

mean knock down time at 10◦C acclimation
)

F I G U R E  2   Monthly mean temperatures (±SE) both above 
ground (solid lines) and 60 cm below ground (dashed lines). (a) 
Berkeley, (b) Whittier, (c) Stebbins, (d) Quail Ridge, (e) Castle Rock, 
(f) Mt. Diablo, (g) Yosemite, and (h) Palomar Mtn
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capacitycold indicating that high tolerance was significantly cor-
related with high plasticity (Figure 4d; R2 = 1.0, F1,6 = 669,000, 
p < .00001). Ants from the high-elevation populations were char-
acterized by faster CCRT times, indicating greater cold tolerance, 
than ants from low-elevation sites. This was true for both hot- and 
cold-acclimated ants.

3.2 | Heat knockdown trials

All ants succumbed to heat stress. The most parsimonious model for 
the knockdown trials was the lognormal error distribution. Knockdown 
time was influenced by acclimation temperature and population of origin 
(biological replicate as random variable; χ2

4 = 0.019, p = .99). The strong-
est effect from was due to acclimation temperature, indicating a strong 
environmental effect: Individuals acclimated to 10°C experienced 
knockdown faster than those acclimated to 27°C (χ2

1 = 81.11 p < .0001). 
Among-population variance was higher than within-population, in-
dicating a genetic effect as well (population; χ2

7 = 26.833; p < .001; 
population:acclimation; χ2

7 = 18.94; p < .01). Six populations showed 
significant improvements in knockdown time after acclimation to 27°C 
(Figure 5; Table 3), but few population differences (3/28 after 10°C ac-
climation and 1/28 after 27°C) indicating much less among-population 
variability (Table 3).

The mean acclimation capacityhot for knockdown times ranged 
from 46 to 97s. Knockdown time after acclimation to 27°C was signifi-
cantly correlated with knockdown time after 10°C (Figure 4e; R2 = 1.00, 
F1,6 = 11,220, p < .0001); therefore, all comparisons were made with the 
knockdown time after acclimation to 27°C. The population knockdown 
means did not correlate with elevation (Figure 4e; R2 = 0.08, F1,6 = 0.55, 

p = .49) nor body size (Figure 4f; R2 = 0.49, F1,6 = 5.68, p = .054); yet, 
as with CCRT, the strongest relationship appeared to be between the 
mean acclimation capacityhot and knockdown after warm acclimation 
(Figure 4h; R2 = 0.99, F1,6 = 3,192, p < .0001). We observe a similar pat-
tern as we saw with CCRT, higher tolerance to heat, as shown by slower 
knockdown time, is significantly correlated with higher acclimation ca-
pacity or plasticity. There was no difference in heat tolerance (knock-
down time) between ants from low-elevation and high-elevation sites, 
for both acclimated treatments; instead, greater tolerance correlated 
with greater plasticity.

4  | DISCUSSION

The vulnerability of a taxon to escalating temperatures depends on 
its ability to buffer those changes, largely through phenotypic plas-
ticity (Chevin, Lande, & Mace, 2010; Chown et al., 2010; Gunderson 
& Stillman, 2015; Huey et al., 2012; Somero, 2010; Williams, Shoo, 
Isaac, Hoffmann, & Langham, 2008). Here, we studied whether 
there are differences in thermal tolerance or plasticity among natu-
ral populations of the winter ant, P. imparis, a thermally sensitive ant. 
We found differences among populations in both thermal tolerance 
and plasticity at their upper and lower thermal limits.

Almost all populations were able to physiologically adjust to 
conditions after warm or cold acclimation. While there was greater 
cold tolerance in high altitude populations (i.e., more rapid CCRT at 
higher altitude), heat tolerance (knockdown time) was not correlated 
with elevation (Figure 4b, f). We also found increased tolerance in 
populations that also had increased plasticity for both cold and heat 
(Figure 4d, h).

F I G U R E  3   Chill-coma recovery time 
for populations of Prenolepis imparis. 
(a) Chill-coma recovery times after 
acclimation to 10°C and (b) chill-coma 
recovery times after acclimation to 27°C. 
Individuals were pooled and represented 
by single lines colored according to 
population of origin
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4.1 | Chill-coma recovery

We observed that most populations had similar CCRT survivorship 
curves when they were acclimated to cold beforehand (10°C). There 
were a few population combinations (7/28) which we were able to de-
tect changes after the low-temperature acclimation: The differences 
were primarily observed in Whittier, Stebbins, or Palomar popula-
tion. This adaptive phenotype allows cold-exposed ants to endure 
even colder weather. Quick recovery is expected in cold-tolerant 
species. For such species, David, Gibert, Moreteau, Gilchrist, and 
Huey (2003) reported an instant recovery to 0°C and recommended 
exposure to lower temperatures. After warm acclimation (27°C), in-
dividuals took longer to recover from the cold stress, presumably due 
to its magnification after higher temperature endurance. Previous 
studies have demonstrated similar results regarding linear associa-
tions between acclimation temperature and cold tolerance (Noh, 
Everman, Berger, & Morgan, 2017; Overgaard, Kristensen, Mitchell, 

& Hoffmann, 2011; Schou, Mouridsen, Sørensen, & Loeschcke, 
2017).

Interestingly, CCRT after warm acclimation allowed for sepa-
ration of different population combinations (6/28) indicating that 
different physiological mechanisms are employed to recover after 
a larger variation in temperature. The different patterns of response 
to CCRT can be explained by two different recovery methods driving 
the same trait. Insects will enter a chill coma as a result of a loss of 
ion balance within the central nervous system (CNS), which leads 
to neuromuscular paralysis (Andersen, Jensen, Meldrum Robertson, 
& Overgaard, 2018; Andersen & Overgaard, 2019). CCRT after pro-
longed or severe cold stress is thought to be related to the ability of 
insects to restore the ion balance in the hemolymph, and for insects 
that are acclimated to or tolerant of the cold, there is not a significant 
depolarization of muscles, resulting in a quick recovery of the depo-
larization via the CNS. For insects that are acclimated to warm tem-
peratures or sensitive to the cold, there is more depolarization and 

Comparison Fixed factor β ± SE z p-Value

Whittier–Quail 
Ridge

Low acclimation 0.44 ± 0.09 4.87 <.0001

Whittier–Castle 
Rock

Low acclimation 0.38 ± 0.09 4.24 <.001

Whittier–Mt 
Diablo

Low acclimation 0.42 ± 0.09 4.70 <.0001

Whittier–Yosemite Low acclimation 0.49 ± 0.13 3.62 .0246

Stebbins–Quail 
Ridge

Low acclimation 0.38 ± 0.09 4.24 <.001

Stebbins–Castle 
Rock

Low acclimation 0.32 ± 0.09 3.59 .029

Stebbins–Mt 
Diablo

Low acclimation 0.36 ± 0.09 4.08 <.01

Berkeley–Palomar High acclimation 0.46 ± 0.09 5.25 <.0001

Whittier–Palomar High acclimation 0.37 ± 0.09 4.16 <.001

Stebbins–Castle 
Rock

High acclimation 0.35 ± 0.09 3.88 <.001

Stebbins–Palomar High acclimation 0.54 ± 0.09 6.10 <.0001

Quail 
Ridge–Palomar

High acclimation 0.39 ± 0.09 4.46 <.001

Mt 
Diablo–Palomar

High acclimation 0.32 ± 0.09 3.66 .023

Berkeley Low/high acclimation −1.52 ± 0.09 −17.03 <.0001

Whittier Low/high acclimation −1.23 ± 0.09 −13.86 <.0001

Stebbins Low/high acclimation −1.47 ± 0.09 −16.22 <.0001

Quail Ridge Low/high acclimation −1.70 ± 0.09 −19.55 <.0001

Castle Rock Low/high acclimation −1.45 ± 0.09 −16.43 <.0001

Mt Diablo Low/high acclimation −1.61 ± 0.09 −18.47 <.0001

Yosemite Low/high acclimation −1.68 ± 0.14 −12.29 <.0001

Palomar Low/high acclimation −1.04 ± 0.09 −11.89 <.0001

Notes: Population and acclimation temperature were included as fixed factors, the replicates were 
included as random factors and differences are given as β ± SE standard error. Only pairs that were 
significantly different are shown.

TA B L E  2   Post hoc contrasts within and 
between populations of Prenolepis imparis 
chill-coma recovery time after acclimation 
to 10°C (low acclimation) and 27°C (high 
acclimation)
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loss of muscle function; consequently, the recovery is delayed from 
slower muscle function restoration (Andersen & Overgaard, 2019).

Chill-coma recovery is correlated with collection altitude. 
Altitudinal clines for thermal tolerance have previously been 

described (Bishop, Robertson, Rensburg, & Parr, 2017; Castañeda 
et al., 2005; David et al., 2003; Hoffmann, Anderson, & Hallas, 
2002), and thermal minima have been shown to vary more across 
environmental gradients than thermal maxima (Addo-Bediako, 

F I G U R E  4   Modeled thermal tolerance 
after a high-temperature acclimation (s) 
in relation to modeled low-temperature 
acclimation (s), altitude (m), mass (mg), 
and acclimation capacity (s). (a) Chill-
coma recovery time (CCRT) after 27°C 
acclimation with respect to CCRT after 
10°C acclimation. (b) CCRT with respect 
to altitude. (c) CCRT with respect to mass. 
(d) CCRT with respect to acclimation 
capacitycold. (e) Knockdown after 27°C 
acclimation with respect to knockdown 
after 10°C acclimation. (f) Knockdown 
time with respect to altitude. (g) 
Knockdown time with respect to mass. 
(h) Knockdown time with respect to 
acclimation capacitywarm
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Chown, & Gaston, 2000; Araújo et al., 2013). Temperature shifts as-
sociated with increasing latitude are the prevailing factors assumed 
to be the major selective force behind these clines. Our data show 
an inverse relationship between acclimation capacitycold and eleva-
tion, suggesting thermal adaptation and underlying genetic variation 
(Bahrndorff et al., 2009; Calosi, Bilton, Spicer, Votier, & Atfield, 2010; 
Hoffmann et al., 2003; Schilthuizen & Kellermann, 2014; Sørensen, 
Dahlgaard, & Loeschcke, 2001). Previous studies have shown lower 
thermal limits reveal important ecological variation (Andersen et al., 
2015; Bishop et al., 2017), and at least for one species of ant, max-
imum temperature of the warmest month and precipitation during 
the warmest quarter predicted the range boundary (Nguyen et al., 
2019). Although we do not have enough statistical power to test for 
correlations between the acclimation capacitycold and environmental 
data, our environmental data suggest a lower mean temperature at 
higher elevation.

We report here differences in CCRT as indicators of tolerance. 
This trait is complex (Sinclair et al., 2015), and future studies might 
revisit plasticity in these CCRT values with other measures of ther-
mal tolerance such as chill-coma temperature (CTmin), lethal tem-
perature (LTe50), or lethal time at low temperature (Lti50; Andersen 
et al., 2015). Though these traits have been shown to vary among 
insects, these additional measurements could be used to verify the 
conclusions presented here.

4.2 | Knockdown trials

We found evidence for some intraspecific variation in tolerance at 
the upper thermal limit, similar to previous studies (Hoffmann et al., 
2002; Sarup, Sørensen, Dimitrov, Barker, & Loeschcke, 2006). This 
pattern was different by the acclimation temperature and did not 
seem to be related to either altitude or body size. Although some 
studies have noted that upper thermal limits varied with altitude 
(Hoffmann et al., 2003), other studies have found no altitudinal vari-
ation in this trait (Arthur, Weeks, & Sgrò, 2008; Sarup et al., 2009; 

Slatyer, Nash, & Hoffmann, 2016). Previous estimates of heat re-
sistance in arthropods suggest that upper thermal limits are evo-
lutionarily constrained (Araújo et al., 2013; Deutsch et al., 2008; 
García-Robledo, Kuprewicz, Staines, Erwin, & Kress, 2016; Gilchrist 
& Huey, 1999; Hoffmann et al., 2013) with acclimation conferring 
small plastic changes (Gunderson & Stillman, 2015; Kingsolver & 
Huey, 1998; Overgaard et al., 2011), and other times a heat-accli-
mation response has been unpredictable (Schou et al., 2017). Bishop 
et al. (2017) found more pronounced differences in tolerances in 
lower thermal limits when compared to upper thermal limits simi-
lar to this study and suggest this could be due to more pronounced 
differences in lower temperatures compared to differences found 
in higher temperatures. Detection of an adaptive basis of tempera-
ture tolerance could also depend on methods used, and recent stud-
ies recommend using thermal death time (TDT) curves as a more 
complete and reliable measurement of heat tolerance (Castañeda, 
Rezende, & Santos, 2015; Jørgensen, Malte, & Overgaard, 2019). The 
difference in detecting more population differences in chill-coma re-
covery versus fewer differences during knockdown time might rep-
resent a constraint that exists between the two types of plasticity. 
A cold-specialized insect may need to physiologically extend their 
tolerance to the cold more often than it is necessary to adjust to the 
heat in addition to an evolutionary constraint in upper thermal limits.

We did not find evidence for an evolutionary trade-off be-
tween basal thermal tolerance and plasticity in the context of 
knockdown time. Our data suggest a positive relationship; popu-
lations that had higher thermal tolerance also had greater acclima-
tion capacity. This relationship has been observed in other species 
such as Deronectes beetles (Calosi et al., 2008), which could be 
driven by differences in gill density (Verberk, Calosi, Spicer, Kehl, 
& Bilton, 2018).

Acclimation to the heat increased the time it took to knock-
down in six of the eight populations (Table 3). A pattern of low 
acclimation capacity to the heat has also been found in other stud-
ies, which further supports the idea that acclimation and adapta-
tion to high temperatures are more challenging than acclimation 

Comparison Fixed factor β ± SE z p-Value

Berkeley–Whittier Low acclimation −0.72 ± 0.21 −3.46 .04

Berkeley–Yosemite Low acclimation −0.83 ± 0.21 −3.94 <.001

Berkeley–Palomar Low acclimation −0.79 ± 0.21 −3.76 .02

Berkeley–Yosemite High acclimation −0.93 ± 0.21 −4.46 <.0001

Berkeley Low/high acclimation −0.89 ± 0.21 −4.23 <.001

Stebbins Low/high acclimation −0.88 ± 0.20 −4.18 <.001

Quail Ridge Low/high acclimation −1.01 ± 0.21 −4.84 <.0001

Castle Rock Low/high acclimation −1.42 ± 0.21 −6.79 <.0001

Mt Diablo Low/high acclimation −1.10 ± 0.21 −5.26 <.0001

Yosemite Low/high acclimation −0.99 ± 0.21 −4.73 <.0001

Notes: Population and acclimation temperature were included as fixed factors, the replicates were 
included as random factors, and differences are given as β ± SE standard error. Only pairs that were 
significantly different are shown.

TA B L E  3   Post hoc contrasts within 
and between populations of Prenolepis 
imparis knockdown time after acclimation 
to 10°C (low acclimation) and 27°C (high 
acclimation)
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and adaptation to low temperatures (Addo-Bediako et al., 2000; 
García-Robledo et al., 2016; Gunderson & Stillman, 2015; van 
Heerwaarden et al., 2016; Kingsolver & Huey, 1998; Overgaard 
et al., 2011; Stillman, 2003). This short-term plasticity has been 
shown to be an important adaptive mechanisms to cope with ex-
treme temperatures (Chidawanyika & Terblanche, 2011; Kellett 
et al., 2005; Mitchell, Sgrò, & Hoffmann, 2011), though the poten-
tial of phenotypic plasticity to completely buffer individuals from 
heat stress is limited.

5  | CONCLUSIONS

It is still unclear how thermal tolerance of the P. imparis workers 
correlates with overall fitness of the colony or the queen, and how 
this relationship between tolerance and activity plays out in natu-
ral settings. Given their low tolerance of high temperatures, these 
ants will need to behaviorally thermoregulate in order to survive 
climate warming (Sunday et al., 2014) by exploiting their small size 
to take advantage of thermal heterogeneity in the environment. 
Hemmings and Andrew (2017) found that ants in environments 
that exceed their thermal tolerance could maintain lower body 
temperatures than the surrounding temperatures, suggesting that 
they are using unknown behavioral or physiological methods to 
achieve homeostasis.

The localized patterns of plasticity in populations of P. imparis 
could be due to microclimate differences or genetic differences or 
maternal effects. Our experimental design does not allow us to dis-
tinguish the processes behind the patterns. The importance of these 
factors could be resolved using a common garden experiment, in 
which multiple generations are reared under controlled lab condi-
tions (Hoffmann & Sgrò, 2017; Kawecki & Ebert, 2004). By doing 
this, we will better be able to understand the role of environmen-
tal effects of genetic variation. Tolerance to stressful temperatures 
in ectotherms, especially resistance to cold extremes, is strongly 
affected by environmental variation (Ørsted, Hoffmann, Rohde, 
Sørensen, & Kristensen, 2018; Schou et al., 2017).

Here, we have shown that individuals from different populations 
of the winter ant show varying levels of thermal tolerance at both 
upper and lower thermal temperatures, and most populations dis-
play less tolerance and reduced plasticity to the high temperatures. 
This is particularly concerning in the context of climate change. 
Historically, winter ants might have been able to avoid extensive ex-
posure to the heat by remaining below ground during the times of 
hottest temperature. In a warmer future climate, however, they may 
have to spend even more time belowground, limiting their ability to 
forage, and thus, to persist. Our study may provide insight into evo-
lution and creation of biodiversity by revealing physiological vari-
ance both within and between populations. As evidenced above, it 
is paramount to consider variation within species when attempting 
to understand how species distributions are affected by thermal 
extremes.
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