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Rotation of the cosmic microwave background polarization from weak gravitational

lensing

Liang Dai
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Dated: August 26, 2018)

When a cosmic microwave background (CMB) photon travels from the surface of last scatter
through spacetime metric perturbations, the polarization vector may rotate about its direction of
propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing
deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric
perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections
to the CMB polarization power spectra as well as the temperature-polarization cross-correlations
due to non-scalar perturbations are modified. The rotation does not affect lensing by linear scalar
perturbations, but needs to be included when calculations go to higher orders. We present complete
results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations,
taking into account both deflection of the photon trajectory and rotation of the polarization. For
the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely
cancel those induced by the curl component of deflection.

PACS numbers: 98.80.-k, 98.62.Sb

Weak gravitational lensing of the cosmic microwave
background (CMB) allows us to probe cosmic structures
along the line of sight. Most generally, metric perturba-
tions affects a photon in three ways: the photon energy is
shifted; its direction of propagation is deflected; and its
plane of polarization is re-oriented. Considerable atten-
tion has been focused in the literature on the deflection,
mostly by scalar metric perturbations (density perturba-
tions) [1, 2], an effect that has now been observed [3–7].
In particular, deflection induces B modes in the CMB po-
larization [8, 9], which have recently been detected [10].
Lensing by vector or tensor metric perturbations—that
may arise, for example, from cosmic strings [11] or from
inflationary gravitational waves [12–15]—have also been
studied.

Metric perturbations will also rotate the plane of polar-
ization of a photon. In a perturbed spacetime, the polar-
ization vector is parallel-transported along the geodesic,
while the reference basis vectors with respect to which a
local observer measures the orientation of the polariza-
tion are not. The mismatch results in an observed polar-
ization state that deviates from what one would other-
wise observe in flat spacetime. Skrotsky first considered
this effect in the context of gravitomagnetic drag due to
massive rotating bodies [16]. Later work extended that
study to weak gravitational fields generated by other lo-
calized masses [17].

However, rotation of polarization has not been prop-
erly included in the context of weak lensing of CMB po-
larization by general non-localized lenses. The effect oc-
curs for vector/tensor linear metric perturbations; it van-
ishes for scalar perturbations at linear order, but should
appear at nonlinear orders. Previously, rotation of po-
larized radiation from the CMB or from quasars by pri-
mordial vector perturbations has been considered [18].

Nevertheless, the important implications of the combi-
nation of this effect with those of the lensing deflection
have not been appreciated. In this Letter, we system-
atically consider this effect from the most general linear
metric perturbations, and find that the rotation angle
of the polarization is the same as that for the rotation
of the image, thus implying full correlation between the
rotation of the polarization and the curl part of the de-
flection field. Including the rotation, we present complete
analytical results for the weak lensing of the CMB tem-
perature and polarization power spectra. We will demon-
strate, with weak lensing by gravitational waves, that in-
terference between curl deflection and rotation consider-
ably reduces the B-mode power converted from intrinsic
E-mode power as found previously [14, 19, 20], making
the gradient part and the curl part of the deflection field
equally efficient at generating lensing B-mode polariza-
tions.
A Friedmann-Robertson-Walker Universe perturbed

by the most general linear metric perturbations is de-
scribed by the following metric,

ds2 = a2(τ)
[

−(1 + 2A(~x, τ))dτ2 + 2Bi(~x, τ)dτdx
i

+(δij + hij(~x, τ)) dx
idxj

]

, (1)

where τ is the conformal time and ~x is the comoving
position, and A, Bi, and hij parameterize perturbations.
Consider a photon, characterized by its four-

momentum pµ and the polarization vector ǫµ, that prop-
agates from the source location to the observer at the
origin. Given that the photon is seen by the observer
in direction ni (measured with respect to spatial tetrads
eµ(i)o, i = 1, 2, 3 at observer’s location) in the sky, its tra-

jectory is solved from the geodesic equation dpµ/dλ =
−Γµαβp

αpβ , with respect to the affine parameter λ. As
the photon travels along the null geodesic, ǫµ is parallel-
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transported,

dǫµ/dλ = −Γµαβp
αǫβ. (2)

At a given location in spacetime, an observer mea-
sures photon polarization by projecting ǫµ onto the
screen-projected plane perpendicular to both the four-
momentum pµ and the observer’s four-velocity [21]. The
polarization can then be expanded using local tetrads
with components ǫ(ν) = eµ(ν)ǫµ, which determine the ori-

entation of polarization. A set of local tetrads eµ(ν), for

ν = 0, 1, 2, 3, need to be specified at every spacetime
point, since the comparison of the directions of vectors at
separated locations is non-trivial in a general perturbed
spacetime. Up to linear order in metric perturbations,
an irrotational choice can be made,

eµ(0) = a−1
{

1−A,~0
}

, eµ(i) = a−1
{

Bi, δ
j
i − hji/2

}

,(3)

which reduces to the natural choice eµ(ν) = a−1δµν in the

absence of perturbations. The rotation of polarization
due to lensing can be then defined as the unique rota-
tion about the line of sight that takes the observed com-
ponents ǫ(i)o, for i = 1, 2, 3, to what they would be in
the absence of perturbations. Note that the latter would
simply be ǫ(i)s for i = 1, 2, 3, at source location, since
without perturbations local tetrads would be identical
everywhere.

Under the Born approximation, the rotation angle ψ
for polarization is obtained by integrating along the un-

perturbed line of sight,

ψ(n̂) = (1/2)εijkn
k

∫ χs

0

dχ
(

∂iBj − nl∂ihjl
)

. (4)

Here εijk is the antisymmetric Levi-Civita tensor in three
dimensions, and the comoving radial distance χ from
the observer parameterizes the line of sight. Note that
a non-zero ψ is not a coordinate artifact. In fact, a
gauge transformation modifies Eq. (4) by only bound-
ary terms. Those correspond to Lorentz transformations
of the source frame and the observer frame, since Eq. (3)
defines different tetrads in different gauges.

Unlike Faraday rotation, the rotation due to metric
perturbations is achromatic. Scalar metric perturba-
tions, namely the potential A, the gradient part of Bi,
and the trace part and the longitudinal part of hij ,
do not contribute to ψ at linear order. On the con-
trary, vector perturbations—the divergence-free part of
Bi or the transverse vector parts of hij , as well as ten-
sor perturbations—the transverse-tensor parts of hij , do
induce rotation at this order.

Non-uniform deflection of the photon direction θi(n̂)
by gravitational lensing leads to distortions in the ob-
served image of distant objects. The deflection angle

θi(n̂) is given by [22]

θi(n̂) = Πij

{

1

2
nk(ho)

j
k −Bjo −

∫ χs

0

dχ

[(

1−
χ

χe

)

(

∂jA+ nk∂jBk −
1

2
nknl∂jhkl

)

−
Bj − nkhjk

χe

]}

, (5)

where Πij = δij − ninj. The deflection angle is conven-
tionally decomposed into a gradient potential φ(n̂) and a
curl potential Ω(n̂) through θi = ∇iφ−εi

jknj∇kΩ, where
∇i is the angular gradient on the two-dimensional sky. In
particular, the curl potential, related to the antisymmet-
ric part of the shear tensor ∇iθj , describes rotation of
the image [23]. Using Eqs. (4) and (5), we find that the
rotation angle ψ for polarization is related to the angular
Laplacian of the curl potential,

ψ(n̂) = (1/2)εij
knj∇kθ

i(n) = −(1/2)∇2Ω(n̂), (6)

for general linear metric perturbations. The rotation of
the photon polarization and the rotation of a lensed im-
age are distinct physical phenomena; while the former is
meaningful for an individual light ray, the latter applies
to a small but extended object on the sky. However,
Eq. (6) establishes that the two rotations are quantita-
tively identified with each other, given that the rotation
angle of lensed image is also ψI = −(1/2)∇2Ω [13, 24].
This reflects the universal influence of metric perturba-
tions on a bundle of light rays along the geodesic.
A statistically isotropic lens field between a source sur-

face at certain redshift and the observer is characterized
by angular (cross-)power spectra for deflection potentials
φ, Ω, and the rotation ψ. Without other physical mech-
nisms (e.g. Faraday rotation in a magnetic field) to rotate
the polarization, ψ and Ω are maximally correlated as in
Eq. (6), and the (cross-)power spectra are related by

CψψJ = [J(J + 1)/2]CΩψ
J = [J(J + 1)/2]

2
CΩΩ
J , (7)

where J describes the angular scale of the lens. On the
other hand, the gradient potential φ, which is a true
scalar, does not correlate with the pseudo-scalars Ω and
ψ if the stochastic lens foreground preserves parity.
The effects of weak lensing on the full-sky CMB (cross-

)power spectra of both temperature and polarization
have been presented in Ref. [2] for a gradient deflection
field, and in Ref. [14] for both gradient and curl deflection
potentials. However, in addition to deflection, rotation of
polarization mixes the spin-2 Stokes parameters through

Q(n̂)± iU(n̂) −→ e∓2iψ(n̂) [Q(n̂)± iU(n̂)] , (8)

and therefore modifies the E-/B-mode multipoles. The
mixing takes a form of the direction-dependent cosmic
birefringence originally considered for new physics cou-
pled to electromagnetism [25]. Here, we account for how
rotation of the polarization affects E-/B-mode power
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spectra, and therefore for the first time present complete
results for the lensed CMB power spectra from general
linear metric perturbations.
We denote the unlensed CMB power spectra by CXYℓ

for X,Y = Θ, E,B, and those after lensing by C̃XYℓ with
the tilde mark. The lensed power spectra are obtained by

averaging over all lens realizations, and therefore preserve
statistical isotropy and parity if the lens field does so.
The corrections δCXYℓ = C̃XYℓ −CXYℓ , up to linear order
in lens power spectra, are (the results presented below
have corrected sign mistakes in Ref. [14], as pointed out
in Refs. [19, 20])

δCΘΘ
ℓ = −ℓ(ℓ+ 1)RCΘΘ

ℓ +
1

2ℓ+ 1

∑

ℓ′J

[

CφφJ

(

Fφℓℓ′J

)2

P+
ℓℓ′JC

ΘΘ
ℓ′ + CΩΩ

J

(

FΩ
ℓℓ′J

)2
P−
ℓℓ′JC

ΘΘ
ℓ′

]

, (9)

δCΘE
ℓ = −

(

ℓ2 + ℓ− 2
)

RCΘE
ℓ −

1

2ℓ+ 1

∑

ℓ′J

[

CφφJ Fφℓℓ′JG
φ
ℓℓ′JP

+
ℓℓ′JC

ΘE
ℓ′ + CΩΩ

J FΩ
ℓℓ′JG

Ω
ℓℓ′JP

−
ℓℓ′JC

ΘE
ℓ′

]

+
2

2ℓ+ 1

∑

ℓ′J

2

J(J + 1)
CΩψ
J FΩ

ℓℓ′JH
ψ
ℓℓ′JP

−
ℓℓ′JC

ΘE
ℓ′ , (10)

δCEEℓ = −
(

ℓ2 + ℓ− 4
)

RCEEℓ − 4SCEEℓ

+
1

2ℓ+ 1

∑

ℓ′J

[

CφφJ

(

Gφℓℓ′J

)2
(

P+
ℓℓ′JC

EE
ℓ′ + P−

ℓℓ′JC
BB
ℓ′

)

+ CΩΩ
J

(

GΩ
ℓℓ′J

)2 (
P−
ℓℓ′JC

EE
ℓ′ + P+

ℓℓ′JC
BB
ℓ′

)

]

+
4

2ℓ+ 1

∑

ℓ′J

[

4

J2(J + 1)2
CψψJ

(

Hψ
ℓℓ′J

)2

−
2

J(J + 1)
CΩψ
J GΩ

ℓℓ′JH
ψ
ℓℓ′J

]

(

P−
ℓℓ′JC

EE
ℓ′ + P+

ℓℓ′JC
BB
ℓ′

)

, (11)

δCBBℓ = −
(

ℓ2 + ℓ− 4
)

RCBBℓ − 4SCBBℓ

+
1

2ℓ+ 1

∑

ℓ′J

[

CφφJ

(

Gφℓℓ′J

)2
(

P−
ℓℓ′JC

EE
ℓ′ + P+

ℓℓ′JC
BB
ℓ′

)

+ CΩΩ
J

(

GΩ
ℓℓ′J

)2 (
P+
ℓℓ′JC

EE
ℓ′ + P−

ℓℓ′JC
BB
ℓ′

)

]

+
4

2ℓ+ 1

∑

ℓ′J

[

4

J2(J + 1)2
CψψJ

(

Hψ
ℓℓ′J

)2

−
2

J(J + 1)
CΩψ
J GΩ

ℓℓ′JH
ψ
ℓℓ′J

]

(

P+
ℓℓ′JC

EE
ℓ′ + P−

ℓℓ′JC
BB
ℓ′

)

, (12)

where we define the mean square deflection angle R =
∑

J [J(J + 1)(2J + 1)/(8π)](CφφJ + CΩΩ
J ), and the mean

square rotation angle S =
∑

J [(2J + 1)/(4π)]CψψJ . The
five lensing kernels involved are given explicitly by

Fφℓℓ′J = FΩ
ℓℓ′J = −

√

J(J + 1)ℓ′(ℓ′ + 1)

√

Πℓℓ′J
4π

(

ℓ J ℓ′

0 −1 1

)

, (13)

G
φ/Ω
ℓℓ′J =

√

J(J + 1)

2

√

Πℓℓ′J
4π

[
√

(ℓ′ + 2)(ℓ′ − 1)

2

(

ℓ J ℓ′

2 −1 −1

)

±

√

(ℓ′ + 3)(ℓ′ − 2)

2

(

ℓ J ℓ′

2 1 −3

)

]

, (14)

Hψ
ℓℓ′J =

J(J + 1)

2

√

Πℓℓ′J
4π

(

ℓ J ℓ′

2 0 −2

)

, (15)

where we have introduced the short-hand notation
Πℓ1ℓ2··· ≡ (2ℓ1 + 1)(2ℓ2 + 1) · · · . These results consis-
tently satisfy power conservation; i.e., lensing conserves
both

∑

ℓ(2ℓ + 1)CΘΘ
ℓ and

∑

ℓ(2ℓ + 1)
[

CEEℓ + CBBℓ
]

for
arbitrary intrinsic CMB power spectra and arbitrary lens
power spectra, because deflection and rotation both re-

distribute power but do not create anisotropies.

Parity conservation imposes a selection rule on ℓ+ ℓ′+
J = even or odd through P±

ℓℓ′J = (1+(−1)ℓ+ℓ
′+J)/2. For

example, lensing can generate B-mode power (on scale
ℓ) from E-mode power (on scale ℓ′) through curl-type
deflection Ω (on scale J); since E-mode polarization is
parity-even, while B-mode polarization and Ω are parity-



4

1e-10

1e-09

1e-08

1e-07

0 500 1000 1500 2000 2500 3000

ℓ(
ℓ
+

1)
C
B
B

ℓ
/
(2
π
)
[(
µ
K
)2
]

ℓ

FIG. 1: (color online). Lensing B-mode power spectrum from
inflationary gravitational waves with r = 0.13. We compare
contributions from deflection (dashed), from rotation (dash-
dotted), as well as the full result including deflection-rotation
cross-correlation (solid).
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FIG. 2: (color online). We artificially set CΩΩ

J = C
φφ

J and
compare the efficiencies with which lensing converts E mode
into B mode by φ only (red, thin dashed), by Ω without ψ
(blue dash-dotted), and by Ω with ψ (blue, thick dashed).

odd, the coupling exists only if ℓ+ ℓ′ + J = even.

Rotation of polarization modifies previous lensing re-
sults through the rotation-angle power spectrum and its
cross-correlation with the curl deflection. Therefore, In
Eqs. (9)–(12), terms either proportional to S or involv-

ing CψψJ and CΩψ
J are new. In particular, the new effects

modify the prediction for B-mode power converted from
E-mode power by lensing.

Although the results derived above are entirely appli-
cable to general metric perturbations, we illustrate for a

FIG. 3: (color online). An unlensed polarization map with
only E modes (left) is deflected by a curl potential Ω, which
is chosen to give uniform ψ. The black circle illustrates that
pixels are shifted along the tangential direction (clockwise)
of concentric circles. Deflection generates a map with an ap-
parent B-mode component (middle), but the B modes are
reduced once rotation is included (right).

stochastic background of gravitational waves from infla-
tion. Assuming the WMAP+BAO+H0 best-fit cosmol-
ogy [26], we consider a scale-invariant primordial tensor
power spectrum with tensor-to-scalar ratio r = 0.13. In
Fig. 1 where the power spectrum for the lensing-induced
CMB polarization B modes is plotted, it can be seen that
the effects of deflection and rotation cancel each other due
to cross-correlation, yielding a prediction for these polar-
ization B modes that is ∼ 4 times smaller than what one
would anticipate from deflection alone [19, 20]. In Fig. 2,

we artificially set CΩΩ
J = CφφJ (CψψJ and CΩψ then fol-

low from Eq. (7)). If the rotation ψ is neglected, we find
agreement with Ref. [20] that Ω is more efficient than φ
at converting E modes into B modes. It is striking, how-
ever, that including the rotation coherently with Ω yields
exactly the same B-mode power as induced by φ, as is ev-
ident from the coincidence of the two dashed curves in
the plot.

Why should deflection and rotation cancel instead of
enhance each other in B-mode generation? Fig. 3 pro-
vides a heuristic picture, where we start with a polariza-
tion map of concentric patterns with only E-mode (left
panel). A curl potential, which we choose to give uniform
ψ via Eq. (6), shifts pixels in the tangential direction
along concentric circles, and therefore induces a B-mode
component (middle panel). The curl deflection therefore
effectively “rotates” the sky about the origin, but keeps
the polarization orientation fixed. However, the gravi-
tational field also rotates the polarizations (right panel),
in particular with an angle ψ exactly equal to the rota-
tion angle of the patch. This to large extent undoes the
spurious B-mode generated by deflection. If ψ were to
rotate polarizations in the opposite way the sky rotates,
this cancellation would not occur.

Lensing B modes from Ω and from ψ should not be re-
garded as separate signatures, since metric perturbations
always generate Ω and ψ simultaneously and coherently.
Therefore, our results can be better interpreted as neces-
sary corrections to the previous (incomplete) results for
curl-deflection of polarizations. Reconstruction schemes
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for Ω, previously developed to either monitor systemat-
ics [13] or to constrain primordial vector/tensor pertur-
bations [27], have left out the contribution from rotation.
Methods to measure direction-dependent ψ [25], on the
other hand, cannot be directly applied to the case of lens-
ing, because correlation with Ω is not included. Recon-
struction schemes should combine the effects from Ω and
that from ψ.
We emphasize that the leading lensing signature that

is pursued by current observations, i.e. that from linear
scalar perturbations due to large-scale structure, is un-
affected by our more general results. Still, beyond linear
order in perturbation theory, weak lensing by large-scale
structure is expected to rotate the polarization. Large-
scale vorticity flow can contribute a signal by generating
a vector mode in the metric. Moreover, rotation can ap-
pear at second order in potential perturbations, since it
is related to the image rotation which arises from lens-
lens coupling [13, 28–30]. Rotation will thus need to be
included when the weak lensing of polarization has to be
studied at second order in scalar perturbations.
Our discussion may apply to other observations in cos-

mology and astrophysics, e.g. future 21-cm surveys or
strongly lensed quasars, where lensing distortions to the
observed photon polarization might need to be studied.
The author would like to thank Marc Kamionkowski,

Aditya Rotti, Christopher Hirata for useful discussions
and comments. This work is supported by the William
Gardner Fellowship, and by the National Science Foun-
dation under Grant No. PHYS-1066293.
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