
UC San Diego
Technical Reports

Title
Application Scheduling over Supercomputers: A Proposal

Permalink
https://escholarship.org/uc/item/2ck8x77z

Authors
Cirne, Walfredo
Berman, Francine

Publication Date
1999-10-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ck8x77z
https://escholarship.org
http://www.cdlib.org/

$SSOLFDWLRQ�6FKHGXOLQJ
RYHU�6XSHUFRPSXWHUV�
$�3URSRVDO

:DOIUHGR�&LUQH�DQG�)UDQ�%HUPDQ

University of California San Diego

Department of Computer Science and Engineering

2

1. Introduction
Performance is a very important aspect of computer systems. This has been

true since the very birth of modern computers, where they were seen as calculators
whose reason d’être was their ability to perform calculations faster than the human
being. Performance is important to all areas of Computer Science, from Algorithms
to Data Bases, from Operating Systems to Cryptography. Today, performance re-
mains a major concern for both industry and academia.

Among the factors that affect performance, scheduling1 is of fundamental
importance. The execution time of an application strongly depends on the ordering
of the pieces of work that form the application, which resources carry out each
piece, and when such resources do so.

Scheduling has been traditionally done by the operating system [Bunt 76].
This is because the operating system controls the resources of interest to most ap-
plications (processors, memory, disks, etc). One salient characteristic of traditional
scheduling is that the operating system receives requests from multiple users, and
thus has to arbitrate among such users. This scenario leads to complex schedul-
ers, that implement some arbitration scheme (e.g., real-time priorities, Unix priori-
ties, ticket-based allocation) while trying to optimize for some system-wide per-
formance goal (e.g., utilization, throughput). We call this kind of scheduler (i.e., one
that control resources and arbitrate requests to such resources) a resource sched-
uler.

1.1. Metacomputing

High-speed networks enable the use of resources that are geographically
distributed and even under control of many institutions, in what has been called
metacomputing or grid computing [Foster 99b]. Metacomputing is a recent area.
Therefore much of its early efforts went into building basic services to allow an ap-
plication to run across widely distributed resources and administrative boundaries.
Many of these services, such as communication [Bhat 98] [Fagg 97] [Foster 97],
job submission [Czajkowski 98] [Karpovich 96], security [Ferrari 98] [Foster 98],

1 By scheduling we mean “the assignment of work to resources within a specified time frame” [Berman

99].

3

and naming [Fitzgerald 97], are now in place. Of course, some additional services
need to be developed to ease the task of building metacomputing applications
(e.g., code distribution and automatic compilation across multiple platforms). Nev-
ertheless, it is possible today to build fully functional metacomputing applications.

The research focus in metacomputing is thus currently shifting from being
able to run an application to making it perform well. The metacomputer is much
more heterogeneous and dynamic than the traditional parallel computation envi-
ronment, in which applications run over dedicated partitions of very similar, if not
identical, processors. Consequently, it is much harder to achieve good and con-
sistent performance in the metacomputing scenario.

1.2. Metacomputing Scheduling

In the metacomputing scenario, having a single entity scheduling for the
whole system raises severe technical and administrative problems. From the tech-
nical standpoint, if such a scheduler is centralized, it creates a bottleneck in terms
of availability and performance. On the other hand, if this scheduler is distributed,
keeping consistent state over wide-area networks has proven to be a problem [Ba-
baoglu 97] [Previato 97]. The administrative problem is that such a scheduler would
require multiple administrative domains to accept scheduling decisions from a sin-
gle source, which would represent a lost of domain autonomy.

The only alternative is to have multiple schedulers in the metacomputer.
Groups of resources are therefore independently controlled by different resource
schedulers. Each of these schedulers independently arbitrates how multiple users
access the resources it controls. Therefore, in order to use resources controlled by
multiple schedulers, one needs to select the resources of interest, determine what
piece of work is to be assigned to each to them, and then craft requests to their re-
source schedulers to have each piece of work carried out. This is the job of the ap-
plication scheduler. Figure 1.1 depicts the relationship between the different kinds
of schedulers in the metacomputing environment.

4

Figure 1.1 – The Schedulers Involved in Metacomputing Scheduling

Note that application schedulers do not control any resource. They get ac-
cess to resources by submitting requests to the appropriate resource schedulers.
This implies that application schedulers do not have to arbitrate among different
users. Their goal is solely to improve the performance of the applications they
serve. They can even limit themselves to schedule a single application. By target-
ing a single application (or a class of similar applications), application schedulers
can rely on the application’s structure and characteristics to come up with good
schedules.

As an example of application schedulers, let’s look at AppLeS (Applications-
Level Schedulers) [Berman 96]. AppLeS are the application schedulers developed

...

Application
Scheduler

Application
Scheduler

Resource
Scheduler

...

...

Resource
Scheduler

Resource
Scheduler

...

5

by Fran Berman’s group at UCSD and Rich Wolski’s group at University of Ten-
nessee [Berman 96] [Berman 97] [Cirne 99b] [Spring 98] [Su 99]. Figure 1.1 shows
the general structure of an AppLeS. An AppLeS starts by obtaining information
about the environment. The Network Weather Service (NWS) plays a fundamental
role in this phase. After this, the AppLeS uses heuristics to select sets of resources
to be evaluated. The planner then generates a schedule for each of these sets of
resources. The control is then transferred to the performance estimator, which uses
a performance model to evaluate the possible schedules. The coordinator finished
the process by filtering unfeasible schedulers and commanding the implementation
of the best remaining schedule via the actuator.

Figure 1.2 – The Structure of an AppLeS (from [Berman 96])

6

1.3. Challenges in Metacomputing Scheduling

Application scheduling is a key technology for obtaining good application
performance out of metacomputing environments. Since it is not feasible to have all
resources under the control of a single scheduler, one has to (i) select the re-
sources to use, (ii) partition the work across the selected resources, and (iii) submit
requests to the appropriated resource schedulers to have the selected resources
carry out the work assigned to them.

Obtaining Information about Resource Schedulers

In order for the application scheduler to make good decisions, it needs to
know how long a resource scheduler is going to take to process a given request.
Obtaining such information is a major challenge because resource schedulers were
not designed with this need in mind. This problem has been circumvented by
monitoring systems that probe resource schedulers and forecast their availability,
such as NWS [Wolski 98] [Wolski 99a], Komodo [Ranganathan 96], and Remos
[Lowekamp 98]. The application scheduler is then able to figure out the execution
time of a given request by combining resources’ availability with applications’
benchmarks, as in [Andersen 98], [Berman 96], [Casanova 96], [Shao 97], [Spring
98], [Su 99] and [Weissman 95].

The great advantage of this approach is that it enables application schedul-
ing over unmodified, off-the-self resource schedulers. However, it seems that some
resource schedulers are easier to forecast than others. For example, good results
have been obtained on forecasting the behavior of the Unix time-sharing scheduler
[Dinda 99] [Wolski 99b]. On the other hand, no one has been able to build moni-
toring systems for space-shared distributed-memory parallel computers. The efforts
towards this end [Downey 97c] [Gibbons 97] [Smith 98] [Smith 99] have not deliv-
ered techniques that are accurate enough for application scheduling over such ma-
chines.

Easing the Development of Application Schedulers

Another important challenge in metacomputing scheduling is the very proc-
ess of building application schedulers. Application schedulers are currently closely
coupled to the applications they schedule. They are usually based on detailed
performance models of the applications. Many of the proposed scheduling strate-
gies rely on the application’s characteristics. While this makes for really good
schedulers, it also makes building an application scheduler an effort-intensive and

7

non-trivial task. In order for application schedulers to be widely deployed, much re-
search is needed to ease the process of building them.

Bushel of AppLeS

Finally, the effect multiple application schedulers have on each other and on
the system as whole, an issue that has been named the Bushel of AppLeS problem
[Berman 97], is not clearly understood. This is indeed a very important issue be-
cause there is theoretical evidence that systems in which resource allocation is
performed by many independent entities can exhibit performance degradation
[Mitzenmacher 97] and even chaotic behavior [Hogg 91]. Sadly, it has been very
difficult to investigate the Bushel of AppLeS question under realistic scenarios be-
cause application scheduling is only in its infancy. There aren’t that many applica-
tion schedulers in production use for any emergent behavior to have appeared in
current systems.

8

2. Establishing The Focus
There is certainly a lot of research to be done in Metacomputing Scheduling.

In order to achieve solid results, however, one has to focus on a well-defined set of
issues. In our case, we plan to focus in investigating how resource schedul-
ers can better support application scheduling.

The resource schedulers in current use were designed under the implicit as-
sumption that they were the only schedulers in the system. This may make it diffi-
cult to use them as part of a metacomputing scheduling solution, in which multiple
schedulers must co-exist. For example, most resource schedulers do not provide a
priori information on how long a given request is going to take, which is a vital in-
formation for application schedulers. We would like to investigate the benefits of
considering the metacomputing scenario in the design of resource schedulers. Our
hope is that such an endeavor would result in a better infrastructure in which to
build application schedulers.

Note that this goal requires something to be said about the Bushel of Ap-
pLeS problem. Introducing a new resource scheduler requires one to argue that it
is going to promote the performance of the resources it controls. Since such a new
scheduler would be designed to better support application scheduling, one would
have to show that having many application schedulers in the system would not be
a problem in and of itself.

2.1. Defining the Resource Model

Different kinds of resources require different resource scheduling ap-
proaches. For instance, the algorithms used for interactive, batch, and real-time
scheduling vary quite a bit, as do the interfaces to submit requests to such re-
sources. Establishing the focus of our research includes choosing what kind of re-
source we will be dealing with.

We intend to target distributed-memory parallel sup ercomputers 1. They
are particularly interesting as a target for this research because monitoring systems
have failed to produce accurate enough predictions of their behavior. And without
information on how requests are going to be processed, application scheduling is

1 In this text, we use “supercomputer” as shorten for “distributed-memory parallel supercomputer”.

9

virtually impossible. Moreover, supercomputers are the fastest machines today
available and therefore they would be a very important resource to be effectively
added to the metacomputing environment.

Another reason to pick supercomputers is that we have preliminary evidence
that application scheduling benefits from information that can be provided by the
supercomputer scheduler. In fact, the PTomo AppLes [Cirne 99b] strongly relies on
information (namely, which requests are going to start running immediately) pro-
vided by a supercomputer scheduler (namely, the Maui scheduler) to improve the
application’s performance. Although successful, such an AppLeS is limited in the
requests it can generate. Since Maui provides information only about requests that
start running immediately, the PTomo AppLeS can only produce such requests.
We intend to design an interface that allows an application scheduler to obtain
enough information to craft an arbitrary request to a supercomputer.

2.2. Characterizing Supercomputers

Since we are going to concentrate on supercomputers, it is important to
characterize them in some detail. Such machines are composed of many proces-
sors, each with its own memory. Some supercomputers implement distributed
shared-memory schemes (e.g., SGI Origin 2000). But this is only for the conven-
ience of the application developer. Under the hood, shared-memory is imple-
mented using message-passing (possibly followed by remapping memory pages to
be local).

The processors are interconnected by very fast internal networking. Never-
theless, processes can be very large nowadays and thus context-switching a proc-
ess from one processor to another has a considerable cost. This makes traditional
time-sharing scheduling inadequate for these machines.

Applications receive a dedicated partition to run for a pre-established
amount of time. Having a dedicated partition greatly simplifies work distribution
concerns. It reduces work distribution to balancing the load across the processors.
Although this often is a hard task by itself, it is surely easier then work distribution
in a dynamically-changing non-dedicated heterogeneous environment.

Granting dedicated partitions imply that applications have to wait when there
aren’t resources available to make up the partition they ask for. Requests that can-
not run immediately are queued until enough resources become available. Since

10

applications are not preempted, determining effective queue disciplines is the ma-
jor focus in supercomputing scheduling [Feitelson 97a].

Therefore, in order to estimate the turn-around time of a request, one needs
to predict the waiting time and the execution time for such a request. Since the ap-
plication runs in a dedicated partition, the prediction of execution time can often be
determined by benchmarking. However, queue waiting times have proven to be
hard to predict. Indeed, the lack of good queue time predictions has been the major
impediment in using supercomputers in the metacomputing environment.

2.3. Reassessing the Challenges

Focusing on supercomputers to investigate how resource schedulers can
support application scheduling has two main advantages. First, it establishes a re-
search arena that is narrow enough to allow for an extensive investigation. Second,
it is something useful by itself, due to the current difficulties with queue time predic-
tions. However, we also need to consider how singling supercomputers out affect
our study.

Obtaining Information about Resource Schedulers

A key aspect in supporting application scheduling consists of enhancing the
predictability of the resource scheduler. In order to keep our model as simple as
possible, we are not assuming that some gang-scheduling scheme is available.
Therefore, we cannot use preemption, what makes it harder to implement a pre-
dictable schedule. However, the previous work we have done in the Computational
Co-op suggests that, even when preemption is not an option, it is possible to be
enough predictable to support application scheduling [Cirne 99a].

Bushel of AppLeS

The Bushel of AppLeS problem seems to be more critical when parallel ap-
plications are involved because they are not “work-conservative” across partition
sizes. That is, for most parallel applications, the amount of computational work they
require varies depending on the size of the partition. In fact, since speed-up is often
sublinear, the computational work generally grows with the partition size. This rep-
resents a potential problem because if each application scheduler individually
chooses a large cluster size, the amount of work for the system as a whole in-
creases, which is likely to affect everybody’s performance.

11

3. Related Work
Any research effort should start with a comprehensive survey of the litera-

ture. Towards this end, we have identified four areas that are strongly related to our
research agenda. They are application scheduling, systems with independent deci-
sion-makers, supercomputing scheduling, and predictability in resource scheduling.

Application Scheduling

There has been a great deal of interest in application scheduling in recent
years. As with any evolving area, there seems to be reasonable agreement on
some aspects of application scheduling, but not on others. Perhaps the point that is
most commonly agreed upon is that application scheduling demands good infor-
mation about the system. In particular, using the last measured value of the system
state doesn’t seem to be enough [Berman 96] [Casanova 96] [Lowekamp 98]
[Ranganathan 96] [Shao 97] [Spring 98] [Su 99] [Weissman 95] [Weissman 98]
[Zhu 98]. This observation is the main motivation behind monitoring systems [Wol-
ski 98] [Wolski 99a] [Ranganathan 96] [Lowekamp 98].

Although sometimes it is possible to formulate a scheduling problem in a
way that can be solved in polynomial time (e.g., [Amoroso 98]), most instances of
scheduling are NP-Hard problems. Therefore, most application schedulers use
heuristics to navigate through the space of possible schedules. The main compo-
nents of such heuristics are (i) how two schedules are compared, and (ii) how the
space of schedules is traversed.

Most application schedulers use a performance model to compare two pos-
sible schedules [Amoroso 98] [Andersen 98] [Berman 96] [Casanova 96] [Ranga-
nathan 96] [Shao 97] [Su 99] [Weissman 95]. Others have devised a mechanism to
rank schedules without actually estimating the application’s performance
[Lowekamp 98] [Zhu 98]. Since application schedulers that rely on performance
models provide an estimate on the application’s execution time, they can be more
easily used as a component of another application scheduler. This ability makes for
compositional and scalable solutions and hence is important for large systems
[Weissman 98]. On the other hand, performance models are hard to build. It might
be that ranking-based application schedulers are easier to deploy because they
don’t require detailed knowledge about the application structure.

12

There are situations in which the space of possible schedules is small. For
example, selecting the best server from among a small number of possibilities. In
these cases, application schedulers can simply perform an exhaustive search [An-
dersen 98] [Casanova 96] [Ranganathan 96] [Su 99] [Zhu 98]. When the number of
possible schedules is non-trivial, heuristics are used to search such space. Some-
times a polynomial-time optimal solution for part of the problem is used as a com-
ponent of the heuristic. For example, there are application schedulers that heuristi-
cally select the resources to be used, and then perform the work distribution via
time balancing [Berman 96] [Shao 97] [Weissman 95].

Systems with Independent Decision-Makers

The Bushel of AppLeS phenomenon can be seen as a particular case of
systems in which multiple independent agents make decisions: In the Bushel of
AppLes problem, such decisions are limited to be scheduling decisions. Due to the
relatively little literature on the Bushel of AppLeS problem per se, we have decided
to investigate the more general area of systems with independent decision-makers.

An area in which systems with independent decision-makers are common-
place is economics. Therefore we expect some of the economics literature to be
useful in dealing with the Bushel of AppLeS problem. For example, economic
regulations can be seen as mechanisms to control systemic problems by reducing
the freedom of the decision-makers [Bos 94].

As a matter of fact, there has been research on how economic principles
can be used to provide innovative solutions for computer science problems
[Clearwater 96] [Cheng 98] [Harty 96] [Mullen 96] [Stonebraker 96] [Tucker 96]
[Waldspurger 92]. Of particular interest to us are those papers that, assuming the
agents to implement a particular strategy, address emergent characteristics of the
system as a whole, such as convergence and stability [Walsh 98] [Walsh 99].
Computational markets seem to be a natural scenario to explore the stability and
performance of systems with multiple independent decision-makers.

Although small, there is some literature on the Bushel of AppLeS problem.
Some fundamental work has already been done by [Hogg 91] and [Mitzenmacher
97]. They highlight the importance of diversity for the stability and performance of
systems with independent decision-makers. Intuitively, when all decision-makers
employ very similar strategies, there is a greater the chance for “herd behavior” to
happen. Diverse systems are in general more robust, a fact that is starting to be
explored in computer science (e.g., [Forrest 97]).

13

Supercomputer Schedulers

There are a handful of supercomputer schedulers currently in use, including
Easy [Lifka 95], PBS [Henderson 95], Maui [Maui 99], and LSF [Platform 99]. Un-
fortunately, details about their scheduling algorithms are often not available. Even
worse, most of these schedulers radically change their behavior depending on their
configuration, which makes characterizing them a very complex task. There are
also numerous simulation-based studies on queue disciplines for supercomputer
schedulers. For a nice survey on the area, we refer the reader to [Feitelson 97a].

From our research perspective, the most interesting results are those that
deal with:

i) The predictability of supercomputer schedulers [Downey 97c] [Feitelson
98] [Gibbons 97] [Smith 98] [Smith 99],

ii) The impact the accuracy of the requests has on scheduling [Feitelson
98] [Zotkin 99], and

iii) Modeling supercomputers’ workloads [Downey 97b] [Downey 99] [Feitel-
son 97b] [Jann 97].

Predictability in Resource Scheduling

Within the operating systems community, there has been considerable effort
to make resource scheduling more predictable [Fong 95] [Stoica 96] [Waldspurger
94] [Waldspurger 95]. However, many of these efforts primarily aim to provide a
fine level of control on how the resources are shared among their users. Predict-
ability comes from the fine-grained implementation of the policy that determines
how resources are to be shared.

In a smaller scale, some researchers have started exploring the predictabil-
ity of resource scheduling as a way to enable multiple schedulers to coexist
[Chapin 95] [Cirne 99a] [Harty 96]. These results are naturally more metacomput-
ing oriented. The focus here is on where to draw the line dividing the responsibility
of resource and application schedulers, and what interface should one export to the
other. Predictability appears as a requisite for application scheduling.

Very closely related to the work we intend to do, there has been consider-
able interest in enhancing supercomputer schedulers to provide reservations
[Foster 99a]. These efforts address the need for resource schedulers to be predict-
able in the metacomputing environment. However, reservation is not a complete
solution. One also needs information that empower application schedulers in dis-

14

covering which reservation ask for. A trial-and-error strategy (as suggested in
[Foster 99a]) would likely result in slow and poor application scheduling.

15

4. An Initial Solution
In order to provide some evidence that our research agenda is promising,

we have been exploring how supercomputer schedulers can be made more meta-
computing-friendly. This effort has started with the identification of resource sched-
uler features that benefit the performance of application schedulers. We then built
S3 (Space-Shared Scheduler) to provide such features, and an AppLeS to use
them. S3 implements a strategy called conservative backfilling [Feitelson 98] and
provides unique support for application schedulers that target supercomputers.

4.1. Design Goals

A resource scheduler with good support for application scheduling still has
to perform well according to its traditional metrics, otherwise no administrator will
install it. Therefore, our design has to reconcile promoting resource performance
with supporting application scheduling.

Supporting Application Scheduling

It seems that application scheduling depends on two closely related proper-
ties of the underlying environment: (i) the predictability of requests’ service times,
and (ii) the availability of information useful for application scheduling.

With unpredictable requests, any application schedule can go wrong. This
comes with no surprises. Application schedulers rely upon the expected service
time of the requests that form the schedule. When real service times largely differ
from the expected ones, the schedule can perform poorly. The more predictable
the requests, the better the application schedule. In particular, there has to be a
minimum of predictability in the system for application schedulers to do any good.

But, in general, predictability is not enough by itself. Additionally, application
schedulers need a good way to search large spaces of possible schedules. For ex-
ample, consider the original AppLeS, which targets Jacobi 2D applications running
over independent workstations [Berman 96]. Jacobi 2D is a data-parallel applica-
tion in which each workstation is assigned a partition (strip) of the data set. The
AppLeS decides on the size of each partition. It does so by using predictions of
CPU and network availability to model the performance of each workstation. More
precisely, the performance of each workstation is estimated by an equation whose

16

free variable is the size of the partition allocated to that workstation. Good perform-
ance is achieved when all workstations finish simultaneously. To accomplish this,
the AppLeS equates all equations and solves the resulting system in order deter-
mine the size of the partition to be allocated to each workstation. The aspect we
highlight here is that the Jacobi 2D AppLeS depends upon a particular kind of in-
formation (namely, predictions of CPU and network availability) to schedule the ap-
plication without exhaustively evaluating of all possible schedules.

There is a close relation between request predictability and information that
is useful for application scheduling. Such kind of information embeds predictions.
To continue with the same example, CPU and network availability can be used (to-
gether with benchmark data) to estimate how long a given processor would take to
process a certain area. On the other hand, predictions of this kind by themselves
are not enough for producing a good schedule in a reasonable amount of time.

Keeping Good Resource Performance

Of course, supporting application scheduling should not be the sole goal of
resource schedulers. Resource-related metrics are, if not more, at least as impor-
tant. For example, by releasing applications in a first-come-first-served (FCFS) ba-
sis, one can make resource scheduling very predictable, but with a huge penalty in
the machine’s utilization and throughput.

4.2. Fixing the Target Environment

Even though distributed-memory parallel computers share many com-
monalities, they can still differ in some aspects. Likewise, not all parallel applica-
tions present the same characteristics; nor do all schedulers provide the same
functionality. It is therefore important to clearly state what features a machine is as-
sumed to have, what parallel applications are allowed to do, and which functionality
S3 supports.

Supercomputer Characteristics

S3 assumes the supercomputer to:

i) Not have a topological constraint in processor allocation. That is, any
subset of processors can make up an allocable partition.

ii) Be homogeneous (i.e., be formed of identical processors).

Nevertheless, a heterogeneous supercomputer could be targeted by a
two-level scheduling architecture based on S3. The heterogeneous

17

supercomputer could be divided into homogeneous pieces, each inde-
pendently controlled by an instance of S3. A submission interface for the
whole system could be provided by a generic application scheduler. Of
course, regular application-specific AppLeS could also be used.

Parallel Application Model

As with current supercomputer schedulers, applications request a certain
number of processors for a given amount of time from S3. Applications that run be-
yond the time they’ve requested are killed. There are two basic implications of this
requirement:

i) Applications have to be able to produce an upper-bound of their execu-
tion time. There is incentive in providing good estimates. A tighter upper-
bound will likely make the application to start executing sooner.

ii) Applications cannot change the size of their partition in the middle of the
execution. As a matter of fact, it would be relatively simple to allow appli-
cations to release processors. But since most of the programming infra-
structure currently used (e.g. MPI 1.1 [MPI 95]) do not support changes
in the partition size, we will not implement releasing part of the proces-
sors initially.

S3 Functionality

S3 exports a complete interface to promote the use of a supercomputer in
the metacomputing environment. There are calls for submission, reservation, can-
cellation, and status inquiry (see details in the next Section). However, currently no
provision is made for priorities. All applications are treated equally.

4.3. S3 – Space-Shared Scheduler

The heart of S3 is the conservative backfilling algorithm [Feitelson 98]. Con-
servative backfilling uses an allocation list that keeps, for any given time, which
processors are already committed to which applications. The allocation list can be
implemented as a linked list whose nodes represent time frames in which all proc-
essors in system are allocated in the same way. Arriving applications are put in the
first “slot” they fit. For example, Figure 4.1 depicts the submission of five requests
in the following order: A, B, C, D, and E. Note that C is placed before B because, at
time t1, the available resources cannot fulfill B, but they are enough for C.

18

Figure 4.1 – Allocation list after the submission of five requests

Whenever an application finishes using less time than it allocated, conser-
vative backfilling traverses the queue (in submission order) and “promotes” the first
application that fits in the just-made-available slot. Of course, this may create an-
other available slot that is backfilled in the same way. The process stops only when
no more backfilling can be done. For example, Figure 4.2 shows what happens
when A finishes at t2: B is backfilled to start immediately after C, D “follows” B, and
E can finish before B starts and thus is backfilled all the way to start running imme-
diately.

Figure 4.2 – Allocation list after the backfilling initiated by A finishing at t2

The reasons for selecting conservative backfilling for S3 are:

i) First and foremost, conservative backfilling makes it possible to export
the system’s availability list. Such a list contains the number of free
processors per time frame. For example: [(from 0, to 10, 15 processors),
(from 10, to 50, 80 processors), (from 50, to 210, 0 processors), (from
210, to 300, 30 processors), (from 301, to ∞, 128 processors)].

Time

P
rocessors

A
 B

C

D

E

t t
 1 2

Time

P
rocessors

 B

C

D
E

t t
 1 2

19

ii) Previous research has shown conservative backfilling to be a good
scheduler. More precisely, [Feitelson 98] compared conservative back-
filling against the widely used Easy scheduler [Lifka 95]. While both
schedulers are comparable in terms of utilization, conservative backfill-
ing provides guarantees on the start time of jobs, whereas Easy doesn’t.

iii) At least Maui and PBS can be configured to use conservative backfilling,
which makes it practical.

iv) Conservative backfilling is naturally reservation-ready. In fact, it implicitly
creates a reservation for each application submitted to the system.
That’s a key feature because reservations are also very important to
support metacomputing.

The idea is that application schedulers can use the availability list as the ba-
sis of their decision. For example, an application scheduler can gather the avail-
ability lists from multiple supercomputers in order to select the one that first finish
the application. Going further, the application scheduler can consider partitioning
the application and co-allocating its pieces across multiple supercomputers. Like
any information that supports application scheduling, the availability list informs the
application scheduler about what is going to happen to a given request.

4.4. Gas – Generic AppLeS for Supercomputers

The availability list can be used even when only one supercomputer is avail-
able. Applications are usually able to run over partitions of different sizes. Large
partitions generally give better execution time than small ones, but requests for
large partitions might wait longer in queue. Therefore, the request that will deliver
the best turn-around time depends upon the current load of the supercomputer.
And this is exactly the kind of decision the availability list is to enable the applica-
tion scheduler to make.

We have built an AppLes for this scenario, and named it Gas (Generic Ap-
pLeS for Supercomputers). Gas’ goal is to improve the application's turn-around
time by tailoring the request to be sent to the supercomputer. In other words, by
properly choosing the partition size and the maximum execution time based on the
availability list, Gas seeks to reduce the application’s turn-around time.

Gas uses a very straightforward strategy. All it needs is a performance
model of how much time the application will take to execute over partitions of dif-

20

ferent sizes. It traverses the availability list evaluating possible requests and then
picks the best. The algorithm is:

��*DV�SVHXGR�FRGH

IRU�HDFK�WLPH�IUDPH�I�LQ�WKH�DYDLODELOLW\�OLVW

OHW�I� ��V��H��Q���ZKHUH�V�LV�WKH�VWDUW�RI�WKH�WLPH�IUDPH�

����������������������������������H�LV�LWV�HQG��DQG

����������������������������������Q�LV�WKH�QXPEHU�RI�SURFHVVRUV�DYDLODEOH

��ZDON�RQ�WKH�DYDLODELOLW\�OLVW�WR�GHWHUPLQH�G��WKH�ODVW�PRPHQW�XQWLO

��ZKLFK�ZH�FDQ�DOORFDWH�Q�SURFHVVRUV��VWDUWLQJ�IURP�V

OHW�G� �H

OHW�J�EH�WKH�WLPH�IUDPH�VXFFHHGLQJ�I

OHW�J� ��VJ��HJ��QH�

ZKLOH�QH�≥�Q

OHW�G� �HJ

OHW�J�EH�WKH�WLPH�IUDPH�VXFFHHGLQJ�J

�

LI�WKH�DSSOLFDWLRQ�FDQ�UXQ�RQ�Q�SURFHVVRUV�LQ�WLPH��G���V�

FRQVLGHU�WKLV�UHTXHVW�D�FDQGLGDWH

FKRRVH�WKH�FDQGLGDWH�UHTXHVW�ZLWK�WKH�OHDVW�WXUQ�DURXQG�WLPH

Figure 4.3 – Gas pseudo-code

For example, assume that Gas is scheduling an application that can run
over 10, 20, or 30 processors. It needs 5 units of time when using 10 processor, 3
with 20 processors, and 2 with 30 processors. Assume that the availability list is
[(from 0, to 1, 5 processors), (from 1, to 5, 10 processors), (from 5, to 6, 0 proces-
sors), (from 6, to 7, 10 processors), (from 7, to 11, 20 processors), (from 11, to ∞,

40 processors)], as graphically shown by Figure 4.4. In this case, Gas finds three
candidate schedules: (A) 10 processors starting at 6 and finishing at 11 (Figure
4.5), (B) 20 processors starting at 7 and finishing at 10 (Figure 4.6), and (C) 30
processors, starting at 12 and finishing at 14 (Figure 4.7). Since B is expected to
finish earlier, Gas submits to S3 a request asking for 20 processors and 3 units of
time.

21

Figure 4.4 – Gas example: allocation list

Figure 4.5 – Gas example: schedule A

Figure 4.6 – Gas example: schedule B

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0

Free
Processors

Free
Processors

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0
A

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0

B

22

Figure 4.7 – Gas example: schedule C

Note that Gas does not use any sophisticated scheme to estimate the exe-
cution time of the applications that are in the queue. It schedules as if all the appli-
cations in the queue would take all the time they’ve requested. Nevertheless, it
does much better than the traditional, non-adaptive approach (as we show in the
next Section). This is not to say, however, that it cannot be improved by using
some execution time forecast technique. This is something to be explored.

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0

C

23

5. Initial Results
We have implemented both S3 and Gas. However, their evaluation in a pro-

duction environment would involve replacing the resource scheduler of some
supercomputer, a hard-to-sell proposition, especially when the goal is to evaluate a
new idea. We have addressed this difficulty by running S3 and Gas in event-driven
simulations. Hopefully the good results thereby obtained are going to help to sell
the installation of S3 in a production supercomputer.

5.1. The Experimental Set-up

We are not simulating S3 and Gas per se. In fact, we are using the real S3

and Gas. We simulate the components surrounding our schedulers: the users and
the supercomputer. More precisely, we generate the requests that are to be fulfilled
by S3 and Gas, and simulate the supercomputer on which S3 “executes” applica-
tions. Figure 5.1 portrays the simulation scenario.

Figure 5.1 – Simulation environment used for the evaluation of S3 and Gas.
The users and the supercomputer are simulated. S3 and Gas are the real code.

For our purposes, simulating a supercomputer is a straightforward task. All
we need is the execution time of each application. When S3 starts an application in

...

Gas
S 3

24

the supercomputer, the simulator uses its execution time to calculate when it fin-
ishes. When the simulation time reaches the moment an application finishes, the
simulator informs S3 that the application is done (and hence that the processors it
occupied are now free).

Unfortunately, simulating the request stream generated by the users is not
that easy. In fact, it is a very hard task [Chapin 99] [Downey 99]. With this in mind,
we’ve opted to use the submission log of real supercomputers in our simulations. In
particular, we use the following submission logs: San Diego Supercomputer Center
(SDSC) SP2, 128 nodes, January to April 1999; Cornell Theory Center (CTC) SP2,
430 nodes, July 1996 to May 1997; Swedish Royal Institute of Technology (KTH)
SP2, 100 nodes, October 1996 to August 1997.

Of course we cannot use any log “as is” because they do not contain the
applications’ speed-up behavior. We circumvent this problem by replacing applica-
tions in the log by applications with known speed-up behavior. This preserves the
inter-arrival time of the original workload. Moreover, we search for applications
whose consumed CPU time is as close as possible to the applications we introduce
into the workload. The idea is to alter the aggregated load as little as possible.

Now, how do we figure out the speed-up function of the applications we in-
troduce into the workload? We are using NAS benchmarks for our substitute appli-
cations. The good thing about NAS benchmarks is the availability of their execution
times over a variety of supercomputers and partition sizes. Such data is publically

available at KWWS���VFLHQFH�QDV�QDVD�JRY�6RIWZDUH�13%�. Moreover, since they

are used to evaluate performance, they are representative of real workloads. Fi-
nally, some of the NAS benchmarks are constrained with respect to the number of
processors they can use. For some, such a number has to be a perfect square. For
others, it has to be a power-of-two. This represents another real-world constraint
for Gas.

For the record, we are using five NAS benchmarks: MG, LU, SP, BT, and
EP. MG and LU require a power-of-two partition size and thus are the most con-
strained applications. SP and BT require perfect-square partition size. There are no
restrictions for EP. It can run over any number of processors. For each benchmark,
there are two predefined inputs, called B and C. C inputs are greater than B ones
and thus NAS benchmarks take longer to run with an input of type C. Further de-

tails can be found in KWWS���VFLHQFH�QDV�QDVD�JRY�6RIWZDUH�13%�.

25

5.2. AppLeS Power

First, let’s see how Gas compares to submitting requests directly to S3,
which is the current modus operandi. In order to increase the number of scenarios,
we split the three workloads into one-month workloads, getting therefore 22 differ-
ent workloads. For each workload, we introduced one NAS benchmark. The sub-
stitution of one application in a month-long log does not significantly affect its ag-
gregated load. The benchmarks are randomly chosen from the following distribu-
tion: 1/3 requires power-of-two partition sizes (MG and LU), 1/3 requires perfect-
square partition sizes (SP and BT), and 1/3 are not restricted (EP). The class of the
input (B or C) is randomly chosen from a uniform distribution.

We then compared the turn-around time of the introduced NAS benchmark
when Gas generates the request against the one obtained with a randomly picked
static value for the number of processors. Taking care to always select a different
application to replace, we repeated this experiment more than 200 times for each
one-month workload. In total, we conducted this experiment 4579 times.

The results are very encouraging. They show the potential of the AppLeS
approach in reducing the application turn-around time, which is a key performance
metric from the user standpoint. The following statistics summarize the turn-around
time of the 4579 experiments we conducted:

Turn-Around Time
(One AppLeS in the System)

Gas Static
mean 2739.90 15174.25
standard deviation 7261.54 30955.29
median 136 935
minimum 2 2
maximum 84369 256658

Table 5.1 – Turn-around time of Gas and static requests.
One Gas request in the system.

Not only does Gas show an amazing improvement of the mean turn-around
time; it also reduced its variance. We conjecture this is because Gas was able to
adapt to the current state of the supercomputer and thus deliver a more consistent
turn-around time.

26

However, we also need to point out that Gas does worse than static 4.6% of
the time. We believe this is because it doesn’t know (or try to predict) the execution
times of the applications already in the queue. It uses only the total time they’ve re-
quested. Nevertheless, even such a simple approach does very well on average
and most of the time. Moreover, the best static request represents an improvement
of 17.6 times over the corresponding Gas, while the best Gas request improves
over static by 43794 times!

Of course, these statistics simply summarize the results. In order to provide
a more complete description of such results, below we present the distribution of
improvements attained by Gas. The improvement factor denotes how many times
the Gas improved on static (or the other way around, when the value is negative).

Figure 5.2 – The improvement factor obtained by Gas.
One Gas request in the system.

Separating the Results by Supercomputer

A natural question to ask is whether the performance improvements were
similar across the three different workloads. We therefore separated the experi-
ments based on which submission log was used. The statistics summarizing the

Gas Performance Improvement
(One AppLeS in the System)

0

100

200

300

400

500

600

700

800

900

1000

-1
6 -8 -4 -2 -1 1 2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

27

turn-around time and the distribution of the improvement obtained by Gas on each
supercomputer are:

Turn-Around Time
(One AppLeS in the System; SDSC workload)

Gas Static
mean 4808.39 39722.34
standard deviation 9920.45 52527.31

median 431 15793
minimum 2 2
maximum 79743 256658

Table 5.2 – Turn-around time of Gas and static requests. Simulation based on the
SDSC workload. One Gas request in the system.

Figure 5.3 – The improvement factor obtained by Gas. Simulation based on the
SDSC workload. One Gas request in the system.

Gas Performance Improvement
(One AppLeS in the System; SDSC workload)

0

20

40

60

80

100

120

140

160

-1
6 -8 -4 -2 -1 1 2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

28

Turn-Around Time
(One AppLeS in the System; CTC workload)

Gas Static
mean 869.48 5164.76
standard deviation 2877.85 11833.55

median 44 255
minimum 2 2
maximum 34379 98405

Table 5.3 – Turn-around time of Gas and static requests. Simulation based on the
CTC workload. One Gas request in the system.

Figure 5.4 – The improvement factor obtained by Gas. Simulation based on the
CTC workload. One Gas request in the system.

Gas Performance Improvement
(One AppLes in the System; CTC workload)

0

50

100

150

200

250

300

350

400

-8 -4 -2 -1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

29

Turn-Around Time
(One AppLeS in the System; KTH workload)

Gas Static
mean 3668.02 13935.20
standard deviation 8372.64 23943.78

median 252 3059
minimum 3 3
maximum 84369 189060

Table 5.4 – Turn-around time of Gas and static requests. Simulation based on the
KTH workload. One Gas request in the system.

Figure 5.5 – The improvement factor obtained by Gas. Simulation based on the
KTH workload. One Gas request in the system.

Gas Performance Improvement
(One AppLeS in the System; KTH workload)

0

50

100

150

200

250

300

350

400

450

-8 -4 -2 -1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

30

As can be seen, the application’s turn-around time vary substantially from
one supercomputer to another (for both Gas and static requests). We believe this is
due to the differences in the capabilities of the supercomputers and the aggregated
load submitted to each of them.

However, even under these different conditions, Gas was always able to
significantly improve the application’s turn-around time. Also, Gas reduced the
variance of the turn-around times across all three supercomputers. Finally, the dis-
tributions of improvements are all of similar shape. These observations suggest
that Gas can deliver good application performance in a variety of conditions.

Separating the Results by Benchmark

Another question that immediately follows from these results is whether the
restrictions on the application’s partition size impacts on the performance that Gas
can deliver. In order to investigate this issue, we have separated the experiments
in which the NAS benchmark requires power-of-two number of nodes (LU and
MG)…

31

Turn-Around Time
(One AppLeS in the System; LU and MG Benchs)

Gas Static
mean 3222.74 15552.51
standard deviation 7930.61 31704.97
median 136 704

minimum 2 2
maximum 78945 256658

Table 5.5 – Turn-around time of Gas and static requests for LU and MG NAS
benchmarks. One Gas request in the system.

Figure 5.6 – The improvement factor obtained by Gas for LU and MG
NAS benchmarks. One Gas request in the system.

Gas Performance Improvement
(One AppLeS in the System; LU and MG Benchmarks)

0

50

100

150

200

250

300

350

-8 -4 -2 -1 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

32

… those that require prefect-square nodes (SP and BT) …

Turn-Around Time
(One AppLeS in the System; SP and BT Benchs)

Gas Static
mean 3988.52 15056.68
standard deviation 8859.51 30170.12

median 352 1347
minimum 26 44
maximum 84369 245020

Table 5.6 – Turn-around time of Gas and static requests for SP and BT NAS
benchmarks. One Gas request in the system.

Figure 5.7 – The improvement factor obtained by Gas for SP and BT
NAS benchmarks. One Gas request in the system.

Gas Performance Improvement
(One AppLeS in the System; SP and BT Benchmarks)

0

50

100

150

200

250

300

350

-16 -8 -4 -2 -1 1 2 4 8 16 32 64 128 256 512 1024 2048

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

33

… and those benchmarks that have no restrictions on the number of nodes
(EP):

Turn-Around Time
(One AppLeS in the System; EP Bench)

Gas Static
mean 1081.02 14922.92
standard deviation 3729.27 30983.44

median 47 706
minimum 2 7
maximum 47803 242621

Table 5.7 – Turn-around time of Gas and static requests for EP NAS benchmarks.
One Gas request in the system.

Figure 5.8 – The improvement factor obtained by Gas for EP
NAS benchmarks. One Gas request in the system.

Gas Performance Improvement
(One AppLeS in the System; EP Benchmarks)

0

50

100

150

200

250

300

-4 -2 -1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

34

As one would expect, Gas does a better job for unrestricted applications
than for restricted ones. However, it still works well with restricted applications,
which suggest that, in this environment, the AppLeS approach is useful even when
the application poses restrictions to the scheduler.

5.3. The Bushel of AppLeS

Of course, there is the question of how multiple AppLeS affect each other
and the system as a whole. There are two basic concerns about a system in which
many entities make decisions independently. First, is the system as a whole stable,
or does it oscillate in some thrashing cycle? Second, what is the impact of multiple
AppLeS on the performance attained by each of them?

In this environment, the stability of the system is not a problem. That’s be-
cause each Gas makes only one decision. There is no chance for feedback be-
havior. However, the performance impact of having multiple AppLeS in the system
is definitely an issue. We expect the improvements to individual application per-
formance to be smaller if many applications have their requests crafted by AppLeS
because the system as whole becomes more efficient, and thus it is harder for Gas
to find a good slot in the availability list. That is, the competition for resources be-
comes tougher with multiple application schedulers.

However, investigating this hypothesis is an experimental challenge be-
cause we need to replace applications in the original workloads with application of
known speed-up behavior to be able to use Gas. The problem is that the more ap-
plications we replace, the more we alter the original workloads, and thus the less
realistic they become.

Although we cannot avoid this problem within our current experimental set-
up, we can gauge how much a replacement affects a workload. This is done by
comparing the altered workload’s total requested CPU time against the original
workload’s total requested CPU. More precisely, we get the load ratio by dividing
the altered workload’s total requested CPU time by the original workload’s one. We
use this value to determine the “grain of salt” with which we should look at a par-
ticular simulation.

35

Using the same parameters as before1, we have replaced up to 50% of the
original workloads with NAS benchmarks. Table 5.8 presents the load ratio of the
obtained workloads. The KTH workload was more amendable to have application
replacement. It just happens that the KTH workload had more applications whose
requests were similar to the NAS benchmarks ones.

Load Ratio
replacement SDSC CTC KTH

5% 0.9456 0.9592 0.9801
10% 0.9063 0.9164 0.9537

15% 0.8660 0.8749 0.9263
20% 0.8217 0.8306 0.9075
25% 0.7868 0.7758 0.8903
30% 0.7568 0.7465 0.8785
35% 0.7239 0.7083 0.8572
40% 0.7130 0.7130 0.8425
45% 0.6937 0.6976 0.8328

50% 0.6649 0.6883 0.8201

Table 5.8 – Load ratio of replacing different percentages of the
total applications in the SDSC, CTC, and KTH workloads

Gas performed better than static in all 30 scenarios represented in Table
5.8. Tables 5.9, 5.10, and 5.11 show the mean turn-around time for both Gas and
static for all these scenarios. Although not as good as before, the results still show
substantial performance improvement in all cases. Unfortunately, the scenarios
with low load ratio are less realistic and thus the simulations involving them should
be considered with caution.

1 Benchmarks are distributed in the following way: 1/3 require power-of-two nodes (MG and LU), 1/3 re-

quire perfect square nodes (SP and BT), and 1/3 are not restricted (EP). Inputs (B or C) are uniformly
distributed.

36

 Mean Turn-Around Time
(Bushel of AppLes; SDSC workload)
replacement Gas Static

5% 5586.05 16828.81
10% 6420.48 14662.31

15% 6265.74 14247.19
20% 6197.55 17724.67
25% 7021.05 17212.81
30% 6952.22 17282.07
35% 7716.13 15543.10
40% 7558.03 15810.28

45% 7151.94 15462.95
50% 7182.95 13403.38

Table 5.9 – Mean Turn-Around Time for Gas and static requests when replacing
different percentages of the total applications in the SDSC workload

Mean Turn-Around Time
(Bushel of AppLes; CTC workload)
replacement Gas Static

5% 1386.92 2405.83
10% 1489.86 2426.74
15% 1526.67 2505.07
20% 1766.67 2660.16
25% 1916.97 2661.39

30% 1847.66 2583.77
35% 1918.92 2517.71
40% 2009.95 2597.10
45% 1959.91 2601.63
50% 2052.23 2579.12

Table 5.10 – Mean Turn-Around Time for Gas and static requests when replacing
different percentages of the total applications in the CTC workload

37

Mean Turn-Around Time
(Bushel of AppLes; KTH workload)
replacement Gas Static

5% 4457.15 8078.23
10% 4388.35 8030.74

15% 4459.20 8303.79
20% 4576.61 8689.26
25% 4500.23 8410.98
30% 4642.08 8250.78
35% 4863.60 7939.14
40% 4540.10 7864.41

45% 4586.62 7424.85
50% 4307.59 7482.15

Table 5.11 – Mean Turn-Around Time for Gas and static requests when replacing
different percentages of the total applications in the KTH workload

Taking a closer look

Looking at the mean turn-around time conveys an overview of the results.
However, statistics can be misleading and thus it is important to take a closer look
at the performance improvement obtained by Gas.

We here show detailed data of one scenario for each supercomputer. Since
scenarios with low load ratio are less realistic, let’s establish the “acceptable” load
ratio to be 0.8. This gives us a maximum of 20% replacement for SDSC and CTC,
and 50% for KTH. Various statistics summarizing the turn-around time and the dis-
tribution of the improvement obtained by Gas under these conditions follow:

38

Turn-Around Time
(20% of AppLeS in the System; SDSC workload)

Gas Static
mean 6197.55 17724.67
standard deviation 11694.15 33401.58

median 789 2961
minimum 7 58
maximum 134825 259442

Table 5.12 – Turn-around time of Gas and static requests. Simulation based on the
SDSC workload. 20% of the requests in the system are generated by Gas.

Figure 5.9 – The improvement factor obtained by Gas. Simulation based on the
SDSC workload. 20% of the requests in the system are generated by Gas.

Gas Performance Improvement
(20% of AppLeS in the System; SDSC workload)

0

100

200

300

400

500

600

700

-1
02

4
-5

12
-2

56
-1

28 -6
4

-3
2

-1
6 -8 -4 -2 -1 1 2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

39

Turn-Around Time
(20% of AppLeS in the System; CTC workload)

Gas Static
mean 1766.67 2660.16
standard deviation 4901.55 6057.09

median 143 431
minimum 2 58
maximum 70847 75313

Table 5.13 – Turn-around time of Gas and static requests. Simulation based on the
CTC workload. 20% of the requests in the system are generated by Gas.

Figure 5.10 – The improvement factor obtained by Gas. Simulation based on the
CTC workload. 20% of the requests in the system are generated by Gas.

Gas Performance Improvement
(20% of AppLeS in the System; CTC workload)

0

500

1000

1500

2000

2500

3000

3500

4000

-128 -64 -32 -16 -8 -4 -2 -1 1 2 4 8 16 32 64 128 256 512 1024 2048

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

40

Turn-around Time
(50% of AppLeS in the System; KTH workload)

AppLes Static
mean 4307.59 7482.15
standard deviation 8482.43 13756.20

median 698 2336
minimum 3 3
maximum 81768 208049

Table 5.14 – Turn-around time of Gas and static requests. Simulation based on the
KTH workload. 50% of the requests in the system are generated by Gas.

Figure 5.11 – The improvement factor obtained by Gas. Simulation based on the
KTH workload. 50% of the requests in the system are generated by Gas.

Gas Performance Improvement
(50% of AppLeS in the System; KTH workload)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-4
09

6
-2

04
8

-1
02

4
-5

12
-2

56
-1

28 -6
4

-3
2

-1
6 -8 -4 -2 -1 1 2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Improvement Factor

N
um

be
r

of
 A

pp
lic

at
io

ns

41

Note that the number of times Gas does worse than static (and also by how
much) is greater than the previous, one-AppLes-in-the-system case. We believe
that this is because multiple instances of Gas make the system as whole more effi-
cient, and thus the cases where the static was “lucky” (e.g., the application arrives
and runs immediately) appear to lose, because it is harder to be lucky in a more ef-
ficient environment.

The Influence of Restrictions

In order to evaluate whether the number-of-processors restrictions of certain
NAS benchmarks play a different role when multiple instances of Gas are in the
system, we reran the simulations over these 30 scenarios with two different re-
placement parameters, therefore generating 60 new scenarios. First, we introduced
into the workload only benchmarks that place no restriction (i.e., EP). Second, we
introduced only benchmarks that have restrictions (i.e., SP, BT, LU, and MG)2.

The results showed no surprises. They were similar to those obtained in the
one-AppLeS-in-the-system case. Gas was able to deliver a better performance im-
provement for unrestricted applications. But even for restricted applications, Gas
managed to substantially improve their performance compared to static. In fact,
Gas achieved better performance than static for all 60 scenarios.

Tables 5.15, 5.16, and 5.17 show the mean turn-around time for Gas and
static request, as well as the load ratio of the modified workloads. Again, the results
for workloads with low load ratio should be taken with caution. For example, for all
three original workloads, the mean turn-around time for static requests decreases
with the growth of the percentage of NAS benchmarks in the workload. However,
we don’t think this is a real phenomenon. Instead, we attribute it to the fact that the
overall load decreases in inverse proportion to the percentage of NAS benchmarks
in the workload (as can be seen via the load ratios). The turn-around time therefore
declines because the system as a whole is less loaded.

2 In this case, the benchmarks were uniformly distributed.

42

Mean Turn-Around Time and Load Ratio
(Bushel of AppLes; SDSC workload)

Unrestricted Restricted
Turn-Around Time Turn-Around TimeReplace-

ment Gas Static
Load
Ratio Gas Static

Load
Ratio

5% 2116.27 7412.32 0.9731 7506.35 18697.95 0.9370
10% 2859.34 8169.34 0.9429 8179.76 18076.80 0.8812

15% 3235.89 9858.24 0.9094 8883.49 19422.11 0.8350
20% 4231.36 11073.22 0.8763 9987.68 20302.63 0.7934
25% 4072.27 11435.42 0.8342 9256.60 18001.05 0.7379
30% 4709.02 11299.93 0.8103 9509.98 17093.03 0.7067
35% 4480.59 11442.08 0.7939 9119.92 15758.79 0.6477
40% 4613.76 11783.23 0.7611 8969.71 14095.55 0.6188

45% 4699.68 10814.17 0.7448 8910.98 12971.04 0.5817
50% 4346.42 10864.12 0.7302 8271.05 11348.15 0.5490

Table 5.15 – Load Ratio and Mean Turn-Around Time for replacing
different percentages of the total applications in the SDSC workload

by restricted and unrestricted NAS benchmarks

43

Mean Turn-Around Time and Load Ratio
(Bushel of AppLes; CTC workload)
Unrestricted Restricted

Turn-Around Time Turn-Around TimeReplace-
ment Gas Static

Load
Ratio Gas Static

Load
Ratio

5% 659.40 1356.38 0.9882 2008.83 3037.53 0.9592
10% 686.44 1376.04 0.9738 2114.45 3169.64 0.9164

15% 709.16 1430.28 0.9587 2176.52 3240.86 0.8749
20% 904.06 1584.78 0.9420 2435.71 3316.11 0.8306
25% 1011.53 1646.98 0.9068 2383.49 3089.23 0.7758
30% 1140.63 1711.19 0.8648 2303.54 2898.63 0.7465
35% 1155.27 1791.02 0.8363 2049.54 2715.09 0.7083
40% 1391.84 1944.87 0.8306 2268.68 2934.85 0.7130

45% 1643.25 2320.77 0.8095 2312.17 2894.31 0.6976
50% 1642.72 2360.01 0.7858 2291.15 2937.44 0.6883

Table 5.16 – Load Ratio and Mean Turn-Around Time for replacing
different percentages of the total applications in the CTC workload

by restricted and unrestricted NAS benchmarks

44

Mean Turn-Around Time and Load Ratio
(Bushel of AppLes; KTH workload)
Unrestricted Restricted

Turn-Around Time Turn-Around TimeReplace-
ment Gas Static

Load
Ratio Gas Static

Load
Ratio

5% 1702.86 6852.41 0.9801 5966.57 8479.06 0.9690
10% 1955.42 7552.06 0.9537 5863.45 8298.82 0.9389

15% 2075.39 7914.31 0.9263 6017.33 8936.67 0.9083
20% 2151.62 7351.20 0.9075 6163.20 8829.82 0.8785
25% 2342.17 7395.70 0.8903 5997.08 8292.42 0.8496
30% 2360.50 7200.26 0.8785 5697.56 8104.84 0.7965
35% 2472.68 7276.24 0.8572 5323.97 7713.79 0.7753
40% 2470.89 7055.69 0.8425 4511.77 6619.57 0.7227

45% 2551.17 7084.53 0.8328 3924.95 5686.92 0.6830
50% 2691.49 6547.67 0.8201 3774.14 5330.33 0.6575

Table 5.17 – Load Ratio and Mean Turn-Around Time for replacing
different percentages of the total applications in the KTH workload

by restricted and unrestricted NAS benchmarks

45

6. Future Work
This is one of first efforts on designing resource schedulers for the meta-

computing environment. As one would expect, there are many issues that need
further research.

We here identify a number of these research opportunities, and propose a
subset of them to be the core of this project. We then elaborate on how we intend
to approach the selected research topics. In particular, much detail is given on how
we plan to address our proposed next topic.

6.1. Research Opportunities

The good initial results of S3 and Gas set the stage for a number of interest-
ing investigations:

Bushel of AppLeS

The Bushel of AppLeS phenomenon that appears when multiple instances
of Gas are in the system needs to be investigated further. We have already ap-
proached this issue, but our current experimental procedure has limitations. The
source of our limitations is the need to replace applications in logged workloads. It
degrades the workload in direct proportion to the percentage of replaced applica-
tions. Since Gas can work only with replaced applications, this precludes us from
examining what happens when most applications are AppLeSized.

A major challenge here is the derivation of workloads that are both realistic
and contain speed-up information about most of the applications. A major modeling
effort is clearly necessary. Previous work suggests that diversity plays an important
role in systems with multiple decision-makers [Hogg 91] [Mitzenmacher 97]. This
calls for the increased sophistication of the model (in order to expose application
diversity) and makes the modeling effort even more challenging.

Accuracy of the Performance Model

Part of the application diversity comes from the variability in the accuracy of
the estimates of applications’ execution times. Some applications are more deter-
ministic and simpler to estimate than others, and thus can be represented by more
accurate performance models. Moreover, different users are probably putting dif-
ferent amounts of effort in building their application’s performance model.

46

Not only is this relevant for modeling workloads to study the Bushel of Ap-
pLeS problem; the accuracy of the performance model is crucial for the AppLes per
se. For example, Gas requires a performance model in order to schedule an appli-
cation. It is therefore important to determine the minimum accuracy of a perform-
ance model for it to be useful for Gas. This will enable us to determine whether
automatically generated performance models (such as those in [Kapadia 99] and
[Smith 98]) are accurate enough to be used by Gas.

Bushel of AppLes over Multiple Supercomputers

Although we are currently focusing on one supercomputer, the whole moti-
vation behind metacomputing-friendly resource schedulers is to empower users to
efficiently use multiple resources, including multiple supercomputers.

In such environment, a simple application scheduling scheme seems very
attractive: Submit the application to all possible resources. Although this is a good
idea from the user’s viewpoint, if everybody does it, the aggregated load over all
supercomputers rises, and thus the performance degrades. Consequently, unless
we make the option of submitting to all possible resources unattractive, a Bushel of
AppLeS effect is very likely to degrade the performance of an environment formed
by multiple supercomputers.

A natural way to address this issue is to “charge” for submissions, extending
the widely applied policy of accounting utilization to assure users don’t exceed their
granted CPU time. The goal would be to determine how much CPU time should be
granted and how requests should be charged in order to make it in the users’ best
interest not to submit to all possible resources.

Coallocation

Another important issue is whether the resource scheduler can provide
some additional service to ease coallocation across multiple supercomputers. Res-
ervations and availability lists make possible for the AppLeS to come up with the
requests to be sent to multiple supercomputers in order to coallocate a set of re-
sources. However, the backfilling of these requests would happen independently
from one another, probably breaking the coallocation apart.

There is the naive solution of marking requests as non-backfillable, but not
benefiting from backfilling would probably hurt the application’s turn-around time.
Such a naive solution might render coallocation uncompetitive compared with using
a single supercomputer (where backfilling can be used with no problem).

47

Maybe there is a way to enhance the interface provided by the resource
scheduler to better support coallocation. Two ideas currently come to mind. First,
the AppLeS can inform the resource scheduler which time slots are most interest-
ing. Second, the backfilling can be conditional (i.e., you don’t lose your original time
slot). The idea behind conditional backfilling is that you get two (or maybe more)
allocation slots, but you can use only one. The AppLeS would have to release the
slots that the application is not going to use.

Priorities

The introduction of priorities into conservative backfilling (while preserving
the features that make it a friendly substratum for application scheduling) is another
important topic for future research. Priorities are a requirement of many
supercomputer administrators. If properly decoupled from accounting, they can en-
able both administrators to implement local scheduling policies, and users to ex-
press the relative importance of their applications.

Execution-Time Predictions

As mentioned before, Gas acts as if the applications in the system would
use all the time they’ve asked for. Maybe we can do better by using some predic-
tion scheme. This probably would include a better understanding of how the num-
ber of nodes of a request affects how the request is backfilled.

6.2. Establishing the Project Goals

We envision our research as setting up the basis for a production-quality
supercomputer-based metacomputing environment. We therefore propose to ad-
dress the most critical problems that need to be solved to turn this vision into real-
ity. More precisely we propose to extend the results presented here to:

i) Readdress the Bushel of AppLeS question in the environment formed by
one S3 and multiple instances of Gas. That is, model the supercomputer
submission stream to be able to investigate the Bushel of AppLeS ques-
tion more comprehensively.

ii) Develop a cost scheme that discourages submitting to all possible re-
sources. This can be seen as dealing with the Bushel of AppLeS ques-
tion in the environment formed by multiple instances of both S3 and Gas.
Of course, Gas has to be extended to deal with multiple super-

48

computers. We intend to do so by adding resource selection to Gas,
which is a natural extension of the current algorithm.

iii) Deploy S3 and Gas over a real system. This would enable us to run
some real-life experiments to complement our simulation-based results.
Since S3 and Gas are already running, this step would consist of imple-
menting user and administrative interfaces, as well as enabling S3 to
control real resources. We intend to use the LoadLeveler API [Skovira
96] as the mechanism S3 will use to control resources. This would make
it automatically SP2-ready.

We plan to deploy S3 and Gas at first over the Circus Cluster located at
UCSD’s Parallel Computation Lab. Larger resources will be targeted if
we have the opportunity.

6.3. The Next Step

Our next step (bullet i) in the last Subsection) starts by modeling the
supercomputer submission stream with enough detail to investigate the Bushel of
AppLeS question in the environment formed by one S3 and multiple instances of
Gas. The salient features we need to have in such a model are:

i) Applications’ interarrival time.

Previous studies maintain that the application’s interarrival time follows a
uniform-log distribution [Downey 97b] [Feitelson 95]. Our own observa-
tions suggest the same. We can also use the interarrival time of existent
logs. Therefore, we don’t expect to encounter much trouble with this
component of the model.

ii) Applications’ speed-up behavior.

Downey has developed a model that accurately captures the speed-up
behavior of parallel applications with only two parameters [Downey 97a].
However, it is not known how these parameters are distributed in a real
submission stream (although Downey has some conjectures about this
[Downey 97b]).

We intend to find realistic distributions for Downey’s parameters by trying
to fit his model to applications taken from logged workloads. Unfortu-
nately, most workloads do not have enough information to allow for this
(namely, they miss the application name and parameters).

49

If we cannot solve the problem this way, we plan to conduct a survey
among NPACI users to gather the information needed to construct a re-
alistic model for the speed-up behavior.

iii) Possible applications’ partition sizes.

We don’t know of any study characterizing this aspect of a
supercomputer submission stream. We intend to model it by observing
existing logs. Unfortunately, we suffer from the same problem of lack of
information in most currently available logs. Again, the back-up plan is to
base modeling this facet of the submission stream on a survey with
NPACI users.

iv) Accuracy and completeness of the performance model.

Although there are works that take this feature of the submission stream
into consideration [Feitelson 98] [Zotkin 99], they simply assume it to be
uniformly distributed. We believe this to be an oversimplifying assump-
tion. Observations of the accuracy of the requests in existing submission
streams show it to be far from uniformly distributed.

The performance model may also be incomplete, in the sense that it
might not cover all possible partition sizes a particular application can
use.

We intend to use the accuracy of automatically generated performance
models as the basis for this aspect of our submission stream model.
That’s because we believe that most users won’t want to spend much
effort in building refined performance models of their applications.
Therefore, automatically generated performance models are likely to be
deployed with most instances of Gas.

With the submission stream model completed and validated, we can then
use it to drive simulations involving multiple instances of Gas running over S3 and
therefore address the Bushel of AppLeS problem in this environment.

50

References
[Amoroso 98] Alessandro Amoroso, Keith Marzullo, and Aleta Ricciardi. Wide-

Area Nile: A Case Study of a Wide-Area Data-Parallel Application.
ICDCS’98 – International Conference on Distributed Computing
Systems. May 1998.

[Andersen 98] D. Andresen, Tao Yang, O. Ibarra, and O. Egecioglu. Adaptive par-
titioning and scheduling for enhancing WWW application perform-
ance. Journal of Parallel and Distributed Computing, vol.49, (no.1),
Academic Press, 25 Feb. 1998. p.57-85.

[Babaoglu 97] O. Babaoglu, A. Bartoli, G. Dini. Enriched View Synchrony: a Pro-
gramming Paradigm for Partitionable Asynchronous Distributed
Systems. IEEE Transactions on Computers, vol.46, (no.6), IEEE,
June 1997.

[Berman 96] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and
Gary Shao. Application-Level Scheduling on Distributed Heteroge-
neous Networks. Supercomputing’96.

KWWS���ZZZ�FVH�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO

[Berman 97] Fran Berman and Rich Wolski. The AppLeS Project: A Status Re-
port. In Proceedings of the 8th NEC Research Symposium, Berlin,
Germany, May 1997.

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO

[Berman 99] Fran Berman. High-Performance Schedulers. In [Foster 99b]. 1999.

[Bhat 98] Prashant Bhat, Viktor Prasanna, and C. S. Raghavendra. Adaptive
Communication Algorithms for Distributed Heterogeneous Systems.
Seventh IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC’98). Chicago, Illinois, USA. July 1998.

[Bos 94] Dieter Bos. Pricing and Price Regulation: An Economic Theory for
Public Enterprise and Public Utilities. Elsevier Science, 1994.

[Bunt 76] R. B. Bunt. Scheduling Techniques for Operating Systems. Com-
puter. October 1976.

51

[Casanova 96] Henri Casanova and Jack Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems. Supercomputing’96,
1996.

KWWS���ZZZ�QHWOLE�RUJ�XWN�SHRSOH�-DFN'RQJDUUD�SDSHUV�KWPO

[Chapin 95] Steve Chapin. Distributed Scheduling Support in the Presence of
Autonomy. Proceedings of the 4th Heterogeneous Computing
Workshop, pp. 22-29, Santa Barbara, CA, April 1995.

KWWS���ZZZ�FV�YLUJLQLD�HGX�aFKDSLQ�SDSHUV�KFZ���SV

[Chapin 99] Steve Chapin, Walfredo Cirne, Dror Feitelson, James Jones, Scott
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David
Talby. Benchmarks and Standards for the Evaluation of Parallel
Job Schedulers. In Job Scheduling Strategies for Parallel Process-
ing, D. Feitelson and L. Rudolph (Eds.) Springer-Verlag, Lecture
Notes in Computer Science, vol. 1659, pp. 66-89, 1999.

KWWS���ZZZ�FVH�XFVG�HGX�XVHUV�ZDOIUHGR�UHVXPH�KWPO�SXEOLFDWLRQV

[Cheng 98] John Cheng and Michael Wellman. The WALRAS algorithm: A
Convergent Distributed Implementation of General Equilibrium Out-
comes. Computational Economics, 12:1-24, 1998.

KWWS���DL�HHFV�XPLFK�HGX�SHRSOH�ZHOOPDQ�3XEOLFDWLRQV�KWPO�023

[Cirne 99a] Walfredo Cirne and Keith Marzullo. The Computational Co-op:
Gathering Clusters into a Metacomputer. In Proceeding of
IPPS/SPDP'99, April 1999.

KWWS���ZZZ�FVH�XFVG�HGX�XVHUV�ZDOIUHGR�UHVXPH�KWPO�SXEOLFDWLRQV

[Cirne 99b] Walfredo Cirne, Jaime Frey, Shava Smallen, Francine Berman,
Rich Wolski, Steve Young, Mark Ellisman, Mei-Hui Su, and Carl
Kesselman. Combining Workstations and Supercomputers to Sup-
port Metacomputing Applications: The Parallel Tomography Experi-
ence. UCSD/CSE Tech Report CS99-620, April 1999.

KWWS���ZZZ�FVH�XFVG�HGX�XVHUV�ZDOIUHGR�UHVXPH�KWPO�SXEOLFDWLRQV

[Clearwater 96] Scott Clearwater (editor). Market-Based Control: A Paradigm for
Distributed Resource Allocation. World Scientific. 1996.

[Czajkowski 98] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis, S. Martin, W.
Smith, and S. Tuecke. A Resource Management Architecture for

52

Metacomputing Systems. IPPS/SPDP’98 Workshop on Job Sched-
uling Strategies for Parallel Processing, 1998.

KWWS���ZZZ�IS�JOREXV�RUJ�GRFXPHQWDWLRQ�SDSHUV�KWPO

[Dinda 99] P. Dinda, D. O'Hallaron. An Evaluation of Linear Models for Host
Load Prediction. Proceedings of the 8th IEEE Symposium on High-
Performance Distributed Computing (HPDC-8), Redondo Beach,
CA, August 1999.

KWWS���ZZZ�FV�FPX�HGX�DIV�FV�XVU�SGLQGD�KWPO�SDSHUV�KWPO

[Downey 97a] Allen B. Downey. A model for speedup of parallel programs. U.C.
Berkeley Technical Report CSD-97-933.

KWWS���ZZZ�VGVF�HGX�aGRZQH\�PRGHO�

[Downey 97b] Allen B. Downey. A parallel workload model and its implications for
processor allocation. 6th IEEE International Symposium on High
Performance Distributed Computing (HPDC’97).

KWWS���ZZZ�VGVF�HGX�aGRZQH\�DOORFDWLRQ�

[Downey 97c] Allen B. Downey. Predicting queue times on space-sharing parallel
computers. 11th International Parallel Processing Symposium, Ge-
neva (IPPS’97), Switzerland, April 1997.

KWWS���ZZZ�VGVF�HGX�aGRZQH\�SUHGLFWLQJ�

[Downey 99] A. B. Downey and D. G. Feitelson. The elusive goal of workload
characterization. Perf. Eval. Rev. 26(4), pp. 14-29, Mar 1999.

KWWS���ZZZ�FV�KXML�DF�LO�aIHLW�SXE�KWPO

[Fagg 97] Graham Fagg, Keith Moore, Jack Dongarra, and Al Geist. Scalable
Networked Information Processing Environment (SNIPE).
Supercomputing ’97. San Jose, CA, USA. 1997.

KWWS���ZZZ�VXSHUFRPS�RUJ�VF���SURFHHGLQJV�7(&+�0225(�,1'(;

�+70

[Feitelson 95] D. G. Feitelson and B. Nitzberg. Job characteristics of a production
parallel scientific workload on the NASA Ames iPSC/860. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (Eds.), Lecture Notes in Computer Science Vol. 949,
pp. 337-360, Springer-Verlag, 1995.

KWWS���ZZZ�FV�KXML�DF�LO�aIHLW�SXE�KWPO

53

[Feitelson 97a] D. G. Feitelson, L. Rudolph, U. Schweigelshohn, K. Sevcik, and P.
Wong. Theory and Practice in Parallel Job Scheduling. 3rd Work-
shop on Job Scheduling Strategies for Parallel Processing,
Springer-Verlag Lecture Notes in Computer Science, vol. 1291, pp.
1-34, April 1997.

KWWS���ZZZ�FV�KXML�DF�LO�aIHLW�SDUVFKHG�SDUVFKHG���KWPO

[Feitelson 97b] D. G. Feitelson. Packing schemes for gang scheduling. In Job
Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science vol. 1162, D. G. Feitelson and L. Rudolph (eds.),
pp. 89-110, Springer-Verlag, 1996.

KWWS���ZZZ�FV�KXML�DF�LO�aIHLW�SXE�KWPO

[Feitelson 98] D. G. Feitelson and A. Mu’alem Weil. Utilization and predictability in
scheduling the IBM SP2 with backfilling. In 12th Intl. Parallel Proc-
essing Symp., pp. 542-546, Apr 1998.

KWWS���ZZZ�FV�KXML�DF�LO�aIHLW�SXE�KWPO

[Ferrari 98] Adam Ferrari et al. A Flexible Security System for Metacomputing
Environments. Technical Report CS-98-36, Department of Com-
puter Science, University of Virginia.

KWWS���ZZZ�FV�YLUJLQLD�HGX�aOHJLRQ�SDSHUV�KWPO

[Fitzgerald 97] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
S. Tuecke. A Directory Service for Configuring High-Performance
Distributed Computations. 6th IEEE Symposium on High-
Performance Distributed Computing, pg. 365-375, 1997.

KWWS���ZZZ�IS�JOREXV�RUJ�GRFXPHQWDWLRQ�SDSHUV�KWPO

[Fong 95] Liana Fong and Mark Squillante. Time-Function Scheduling: A
General Apporach to Controllable Resource Management. Techni-
cal Report RC 20155 (89194), IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY 10598, August 1995.

KWWS���GRPLQR�ZDWVRQ�LEP�FRP�OLEUDU\�F\EHUGLJ�QVI�D����F�E����F

��I��������������EH���D��D���G�I�I�D���������������D"2S

HQ'RFXPHQW

54

[Forrest 97] Stephanie Forrest et al. Building Diverse Computer Systems. Pro-
ceeding of the 6th Workshop on Hot Topics in Operating Systems,
pp. 67-72. 1997.

IWS���IWS�FV�XQP�HGX�SXE�IRUUHVW�KRWRV����SV

[Foster 97] I. Foster, J. Geisler, C. Kesselman, S. Tuecke. Managing Multiple
Communication Methods in High-Performance Networked Com-
puting Systems. Journal of Parallel and Distributed Computing,
40:35-48, 1997.

KWWS���ZZZ�IS�JOREXV�RUJ�GRFXPHQWDWLRQ�SDSHUV�KWPO

[Foster 98] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Archi-
tecture for Computational Grids. Proc. 5th ACM Conference on
Computer and Communications Security Conference, pg. 83-92,
1998.

KWWS���ZZZ�IS�JOREXV�RUJ�GRFXPHQWDWLRQ�SDSHUV�KWPO

[Foster 99a] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy. A
Distributed Resource Management Architecture that Supports Ad-
vance Reservations and Co-Allocation. Submitted for publication.

KWWS���ZZZ�IS�JOREXV�RUJ�GRFXPHQWDWLRQ�SDSHUV�KWPO

[Foster 99b] Ian Foster and Carl Kesselman (editors). The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers. July
1998.

[Gibbons 97] Richard Gibbons. A Historical Application Profiler for Use by Paral-
lel Schedulers. Lecture Notes in Computer Science, vol. 1297, 58-
75, Springer-Verlag, 1997.

[Harty 96] Kieran Harty and David Cheriton. A Market Approach to Operating
System Memory Allocation. In [Clearwater 96], 1996.

IWS���IWS�GVJ�VWDQIRUG�HGX�SXE�SDSHUV�PHPPDUNHW�SV�=

[Henderson 95] Robert L. Henderson. Job Scheduling Under the Portable Batch
System. In Job Scheduling Strategies for Parallel Processing, D. G.
Feitelson and L. Rudolph (Eds.), Lecture Notes in Computer Sci-
ence Vol. 949, pp. 337-360, Springer-Verlag, 1995.

[Hogg 91] Tad Hogg and Bernardo Huberman. Controlling Chaos in Distrib-
uted Systems. IEEE Transactions on Systems, Man, and Cyber-
netics, vol. 21, no. 6, November/December 1991.

55

[Jann 97] Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Jo-
seph Skovira, and Joseph Riordan. Modeling of Workload in MPPs.
In Job Scheduling Strategies for Parallel Processing, Springer-
Verlag, Lecture Notes in Computer Science Vol. 1291, D. G. Feitel-
son and L. Rudolph (eds.), 1997.

[Karpovich 96] John F. Karpovich. Support for Object Placement in Wide Area
Heterogeneous Distributed Systems. UVa CS Technical Report
CS-96-03. January 1996.

KWWS���ZZZ�FV�YLUJLQLD�HGX�aOHJLRQ�SDSHUV�KWPO

[Kapadia 99] Nirav Kapadia, José Fortes, and Carla Brodley. Predictive Applica-
tion-Performance Modeling in a Computational Grid Environment.
Eighth IEEE Symposium on High-Performance Distributed Com-
puting, July 1999.

[Lifka 95] David Lifka. The ANL/IBM SP Scheduling System. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and L.
Rudolph (Eds.), Springer-Verlag, Lecture Notes in Computer Sci-
ence Vol. 949, 1995.

KWWS���ZZZ�WF�FRUQHOO�HGX�8VHU'RF�63�%DWFK�ZKDW�KWPO

[Lowekamp 98] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste,
and J. Subhlok. A Resource Query Interface for Network-Aware
Applications. Seventh IEEE Symposium on High-Performance Dis-
tributed Computing, July 1998.

KWWS���ZZZ�FV�FPX�HGX�aFPFO�UHPXODF�SDSHUV�KWPO

[Maui 99] Maui High Performance Computing Center. The Maui Scheduler
Web Page.

KWWS���ZDLOHD�PKSFF�HGX�PDXL�

[Mitzenmacher 97] Michael Mitzenmacher. How Useful is Old Information? PODC 97.
1997.

KWWS���ZZZ�UHVHDUFK�GLJLWDO�FRP�65&�SHUVRQDO�PLFKDHOP�:25.�SDS

HUV�KWPO

[Mullen 96] Tracy Mullen and Michael Wellman. Market-based negotiation for
digital library services. Second USENIX Workshop on Electronic
Commerce. November 1996.

IWS���IWS�HHFV�XPLFK�HGX�SHRSOH�ZHOOPDQ�XVHQL[���SV�=

56

[MPI 95] MPI Forum. MPI: A Message-Passing Interface Standard. June
1995.

KWWS���ZZZ�PSL�IRUXP�RUJ�GRFV�PSL����SV

[Platform 99] Platform Computing Corp. Load Sharing Facility Web Page.

KWWS���ZZZ�SODWIRUP�FRP�SODWIRUP�SODWIRUP�QVI�ZHESDJH�/6)"2SHQ

'RFXPHQW

[Previato 97] Fabio Previato, Michael Ogg, and Aleta Ricciardi. Experience with
Distributed Replicated Objects: The Nile Project. European Re-
search Seminar in Advanced Distributed Systems Zinal, Switzer-
land, 17-21 March 1997.

KWWS���ZZZ�QLOH�XWH[DV�HGX�1LOH�FRQIHUHQFHV�SDSHUV�

[Ranganathan 96] M. Ranganathan, A. Acharya, and J. Saltz. Distributed Resource
Monitor for Mobile Objects. IWOOOS’96.

KWWS���ZZZ�FV�XPG�HGX�XVHUV�DFKD�SXEOLFDWLRQV�KWPO

[Shao 97] Gary Shao, Rich Wolski, and Fran Berman. Predicting the Cost of
Redistribution in Scheduling. In Proceedings of the 8th SIAM Con-
ference on Parallel Processing for Scientific Computing, 1997.

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO

[Skovira 96] Joseph Skovira, Waiman Chan, and Honbo Zhou, IBM, and David
Lifka. The EASY-LoadLeveler API project. 2nd Workshop on Job
Scheduling Strategies for Parallel Processing, Springer-Verlag
Lecture Notes in Computer Science, vol. 1162, pp. 41-47, April
1996.

KWWS���ZZZ�WF�FRUQHOO�HGX�8VHU'RF�63�%DWFK�ZKDW�KWPO

[Smith 98] W. Smith, I. Foster, and V. Taylor. Predicting Application Run
Times Using Historical Information. Lecture Notes in Computer Sci-
ence, 1459:122-142, Spring-Verlag, 1998.

KWWS���ZZZ�IS�PFV�DQO�JRY�aZVPLWK�SDSHUV�KWPO

[Smith 99] W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to
Estimate Queue Wait Times and Improve Scheduler Performance.
In Proceedings of the IPPS/SPDP’99 Workshop on Job Scheduling
Strategies for Parallel Processing, 1999.

KWWS���ZZZ�IS�PFV�DQO�JRY�aZVPLWK�SDSHUV�KWPO

57

[Spring 98] Neil Spring and Rich Wolski. Application Level Scheduling of Gene
Sequence Comparison on Metacomputers. 12th ACM International
Conference on Supercomputing, Melbourne, Australia, July, 1998.

KWWS���ZZZ�FVH�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO

[Su 99] Alan Su, Francine Berman, Richard Wolski, and Michelle Strout.
Using AppLeS to Schedule Simple SARA on the Computational
Grid. In International Journal of High Performance Computing Ap-
plications, vol. 13, 1999.l

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO

[Stoica 96] Ion Stoica et al. A Proportional Share Resource Allocation for Real-
Time, Time-Shared Systems. 17th Real-Time Systems Symposium,
Washington DC, p. 288-299, December 1996.

KWWS���ZZZ�FV�RGX�HGX�aVWRLFD�SXEV�KWPO

[Stonebraker 96] Michael Stonebraker et al. Mariposa: A Wide-Area Distributed Da-
tabase System. VLDB Journal 5, 1, p. 48-63, January 1996.

KWWS���HSRFK�FV�EHUNHOH\�HGX������PDULSRVD�SDSHUV�KWPO

[Tucker 96] Paul Tucker and Fran Berman. On Market Mechanisms as a Soft-
ware Technique. UCSD Technical Report #CS96-513.

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO�0LVFHOODQH

RXV

[Waldspurger 92] Carl Waldspurger et al. Spawn: A Distributed Computational Econ-
omy. IEEE Transactions on Software Engineering, vol. 18, no. 2,
pp. 103-17. February 1992.

KWWS���ZZZ�UHVHDUFK�GLJLWDO�FRP�65&�SHUVRQDO�FDZ�SDSHUV�KWPO

[Waldspurger 94] Carl Waldspurger and William Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the
First Symposium on Operating Systems Design and Implementa-
tion (OSDI ’94), pages 1-11, Monterey, California, November 1994.

KWWS���ZZZ�UHVHDUFK�GLJLWDO�FRP�65&�SHUVRQDO�FDZ�SDSHUV�KWPO

[Waldspurger 95] Carl Waldspurger and William Weihl. Stride Scheduling: Determi-
nistic Proportional-Share Resource Mangement. Technical Memo-
randum MIT/LCS/TM-528, MIT Laboratory for Computer Science,
June 1995.

KWWS���ZZZ�UHVHDUFK�GLJLWDO�FRP�65&�SHUVRQDO�FDZ�SDSHUV�KWPO

58

[Walsh 98] William Walsh and Michael Wellman. A market protocol for decen-
tralized task allocation. Extended version of a paper in Proceedgins
of the Third International Conference on Multiagent Systems, July
1998.

KWWS���DL�HHFV�XPLFK�HGX�SHRSOH�ZHOOPDQ�3XEOLFDWLRQV�KWPO

[Walsh 99] William Walsh and Michael Wellman. Efficiency and equilibrium in
task allocation economies with hierarchical dependencies. In Six-
teenth International Joint Conference on Artificial Intelligence,
pages 520-526, August 1999.

KWWS���DL�HHFV�XPLFK�HGX�SHRSOH�ZHOOPDQ�3XEOLFDWLRQV�KWPO

[Weissman 95] Jon Weissman and Andrew Grimshaw. A Framework for Partition-
ing Parallel Computations in Heterogeneous Environments.
Concurrency: Practice and Experience, Vol. 7, No. 5, August 1995.

KWWS���ULQJHU�FV�XWVD�HGX�IDFXOW\�ZHLVVPDQ�KWPO�SXE�KWPO

[Weissman 98] Jon Weissman. Gallop: The Benefits of Wide-Area Computing for
Parallel Processing. Journal of Parallel and Distributed Computing,
Vol. 54(2), November 1998.

KWWS���ULQJHU�FV�XWVD�HGX�IDFXOW\�ZHLVVPDQ�KWPO�SXE�KWPO

[Wolski 98] Rich Wolski. Dynamically Forecasting Network Performance Using
the Network Weather Service. In Journal of Cluster Computing,
1998.

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO�1:6

[Wolski 99a] Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting Service
for Metacomputing. To appear in the Journal of Future Generation
Computing Systems, 1999.

KWWS���ZZZ�FV�XFVG�HGX�JURXSV�KSFO�DSSOHV�KHWSXEV�KWPO�1:6

[Wolski 99b] R. Wolski, N. Spring and J. Hayes. Predicting the CPU Availability
of Time-shared Unix Systems on the Computational Grid. 8th Inter-
national Symposium on High Performance Distributed Computing
(HPDC’99), Redondo Beach, California, USA, 3-6 Aug 1999.

KWWS���ZZZ�FVH�XFVG�HGX�aULFK�SXEOLFDWLRQV�KWPO

59

[Zhu 98] Huican Zhu et 0al. Adaptive Load Sharing for Clustered Digital Li-
brary Servers. Seventh IEEE International Symposium on High
Performance Distributed Computing, Chicago, Illinois, July, 1998.

KWWS���ZZZ�DOH[DQGULD�XFVE�HGX�a]KHQJ�SXEOLFDWLRQV�KWPO

[Zotkin 99] D. Zotkin and P. Keleher. Sloppiness as a Virtue: Job-Length Esti-
mation and Performance in Backfilling Schedulers. 8th International
Symposium on High Performance Distributed Computing
(HPDC’99), Redondo Beach, California, USA, 3-6 Aug 1999.

