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Towards polydisperse flows with
MFIX-Exa
In the presence of large size disparities, single-grid neighbor search algorithms lead to
inflated neighbor lists that significantly degrade the performance of Lagrangian particle
solvers. If Eulerian–Lagrangian (EL) frameworks are to remain performant when sim-
ulating realistic systems, improved neighbor detection approaches must be adopted. To
this end, we consider the application of a multi-grid neighbor search (MGNS) algorithm
in the MFIX-Exa software package, an exascale EL solver built upon the AMReX library.
Details regarding the implementation and verification of MGNS are provided along with
speedup curves for a bidisperse mixing layer. MGNS is shown to yield up to 15× speedup
on CPU and 6× speedup on GPU for the problems considered here. The MFIX-Exa
software is then validated for a variety of polydisperse flows. Finally, a brief discussion
is given for how dynamic MGNS may be completed, with application to spatially varying
particle size distributions.
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1 Introduction
Many natural and industrial systems involve dynamic and heterogeneous particle-laden flows. Consequently, great effort has been

devoted to the development of computational tools for the simulation of multi-phase flows. The Eulerian–Lagrangian (EL; commonly
referred to as CFD-DEM) method has been established as a valuable intermediate description for particle-laden flows. More specifically,
discrete particles are tracked in space and time while the fluid phase is described by continuum equations on a grid that is comparable or
larger than the particle diameter—i.e., models are required for the inter-phase heat, mass, and momentum transfer. While EL methods
require few closures and have shown good predictive capabilities, they become computationally expensive when one seeks to simulate
large scale systems that may involve tens of millions or even billions of particles. Furthermore, many realistic granular solids exhibit
significant polydispersity, which is known to dramatically reduce the performance of Lagrangian solvers [1–4]. Therefore, high-fidelity
EL codes that can utilize exascale computing resources and efficiently handle polydisperse solids are of great importance.

The MFIX-Exa software (https://mfix.netl.doe.gov) is an exascale enabled EL solver that is built on the AMReX library [5]
(https://amrex-codes.github.io/amrex/). Preliminary benchmarking of MFIX-Exa is provided in [6] while comprehensive descriptions of
the numerical methods may be found in [7] and [8] for cold and reacting flows, respectively. The interested reader is referred to the
aforementioned works for details regarding the governing equations and numerics employed by MFIX-Exa. While significant effort was
devoted to the verification and benchmarking of MFIX-Exa, those prior works focused on single-sized (monodisperse) particles and did
not consider performance or accuracy with polydisperse solids.

The present study details the implementation of a multi-grid neighbor search (MGNS) algorithm within the AMReX library; which is
then utilized by MFIX-Exa to improve computational efficiency when simulating polydisperse solids. The MGNS algorithm described
here most similarly parallels that proposed by [4] and supports both CPU and GPU computations through the AMReX backend. In § 2
the single-grid neighbor search (SGNS) and multi-grid neighbor search (MGNS) algorithms are discussed. Verification of MGNS is
provided in § 3 followed by validation studies in § 4. Performance metrics with MGNS are provided in § 5 and potential future work to
develop a dynamic MGNS, with application to clustering and segregated flows, is considered in § 6.

2 Neighbor Search Algorithms
The present study employs a ‘soft-sphere’ collision model where multi-bodied and enduring collisions are resolved. To compute the

pair-wise collision forces and torques, for each particle a neighbor list is created that contains the number of nearest neighbors and the
neighboring particle’s local index in memory. As a result, particle-particle interactions are identified efficiently by looping over each
particle and only testing for collisions (i.e., an overlap) with particles contained within its neighbor list. § 2.1–2.2 provide overviews for
the SGNS and MGNS algorithms, respectively.

2.1 Single-Grid Neighbor Search. When constructing a neighbor list, most EL solvers utilize a single computational grid that is
∼ 3𝑅𝑝 to 6𝑅𝑝 in length, where 𝑅𝑝 is the particle radius. For polydisperse solids, the grid size is constrained by the largest particle
radius, 𝑅𝑝,max, to avoid missing neighbors/collisions. Once particles are mapped to their 𝑖 𝑗 𝑘 cell on the grid, the 27 surrounding cells
(3 × 3 × 3) are searched to determine which nearby particles are close enough to be considered a neighbor: | |r𝑖 𝑗 | | ≤ D, where D is a
chosen separation distance, often taken to be 3𝑅𝑝,max. A cursory pseudo-code outlining the SG approach is given in Algorithm 1. The
DenseBins function stores the local particle index in the 𝑖 𝑗 𝑘 cell it resides, found from mapping particle positions X𝑝 to the grid by
way of the BinMapper functor. Subsequent loops over all particles are completed to count each neighbor and populate the neighbor list;
the neighbor list population loop is omitted since it employs the same structure as the first loop for counting neighbors.

Using a single grid size and single separation distance D for polydisperse flows causes the performance to deteriorate as the particle
size ratio 𝜆𝑖 = 𝑅𝑝,max/𝑅𝑝,𝑖 and the solids volume fraction 𝜙 increase [9,10]. Specifically, if one considers a bidisperse mixture, it
becomes immediately clear that the large grid and D, which are constrained by 𝑅𝑝,max, lead to many small particles in each cell, thereby
artificially inflating the size of the neighbor list.

2.2 Multi-Grid Neighbor Search. In contrast to SGNS, MGNS allows for the use of multiple grids and multiple separation
distances. The MGNS approach essentially splits the particle size distribution (PSD) into discrete bins (referred to as particle ‘types’). A
grid of size ℎ𝑙 is defined for each type and a separation distance is defined for each type interaction D𝑙𝑚 = (3/2)

(︁
𝑅𝑝,𝑙 + 𝑅𝑝,𝑚

)︁
, where

𝑙 and 𝑚 denote the type index. Particle neighbors of the same type, such as 𝑙 − 𝑙, may be found on the 𝑙 grid in the same manner as the
SGNS algorithm. Particle neighbors of a different type, such as 𝑙 − 𝑚, must be found by searching on the grid for the other type. For
the mixed type 𝑙 −𝑚 case, we map the smaller particles onto the larger grid. This choice is motivated by computational efficiency since
large particles on a small grid will need to search more than the 27 surrounding cells and the number of particles in each cell (offsets)
may be large, leading to noticeable slow down.

Algorithm 2 provides cursory pseudo-code for the MGNS approach that parallels the SGNS approach in Algorithm 1. One of the
key differences between Algorithm 2 and Algorithm 1 is that the BinMapper functor accepts a new integer particle type input, from
PartData, so that it may map the particle to the correct grid. Additionally, a loop from the current particle type to the max particle type
is added for the mixed 𝑙 − 𝑚 collisions and the separation distance D is a symmetric matrix of size 𝑁type × 𝑁type.

The MGNS approach requires the number of types and the discrete size associated with each type to be specified. However, the
selection of the bin sizes and number of bins impacts the computational efficiency of the MGNS algorithm and are fundamentally tied to
the PSD [3,11]. Well established guidelines for dynamically setting bin sizes and bin counts to their ideal values are not readily available
in the literature. To this end, it is worth noting that [3,11] provide valuable insight on the formulation of an optimization problem for
the bin size and count in their MGNS algorithm and suggest that the particle per cell count on each grid should be equal. However, the
present algorithm has notable departures from that given in [3] and evaluation of the analytical expression in [3] requires the particle data
to be sorted by size, which is costly for large simulations. In § 6 we provide some basic estimates for the impact of the bin size/count
on MGNS and motivate the potential for dynamic MGNS algorithm. However, development of such an algorithm will be the subject of
future work.

3 Verification
MFIX-Exa employs a three-level regression suite to test code accuracy during development [7]. Here, the SG algorithm is assumed

to be accurate and used as a benchmark to verify that the MG algorithm does not miss collisions. Output from a set of canonical
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bidisperse simulations discussed in § 2.1 are analyzed for consistency. Namely, the {𝑖; 𝑗 ; Ftot = Fn + Ft} was written for each collision
pair identified within an MFIX-Exa particle iteration. The output files were written in a block format where one block contains all the
colliding pairs and their forces in one iteration. At each iteration, the block obtained with SG and MG were compared via a simple 𝑁2

search algorithm to ensure that each collision pair in the SG block also resides in the MG block and that the collision was not already
identified as a match (no double counting).

It should be noted that the neighbor list itself cannot be directly compared between the two algorithms for two reasons. First, the
MGNS approach serves to reduce the neighbor list size by introducing more length scale criteria for determining if a particle is a valid
neighbor. Therefore, the neighbor list with MGNS should be smaller than the neighbor list with SGNS and the extent of the reduction
should scale with solids volume fraction and 𝜆. Second, the MGNS approach may yield different ordering of particle indices within the
neighbor list due to the modified loop structure; this is also why an 𝑁2 search algorithm was necessary for comparing colliding pairs.

4 Validation
Again we rely on previous validation studies for the MFIX-Exa code as a whole, as this work focuses on the implementation of

a new neighbor list algorithm. However, it is notable that all of the previous comparisons to experimental data have only considered
monodisperse particles. Therefore, we add to MFIX-Exa’s growing validation set by including two cases with bi- and tridisperse mixtures.
It is assumed that statistical errors due to the particles are the largest source of numerical error in this work. Each simulation reported
is repeated multiple times with slight differences, e.g., different random initial particle configuration, and the spread of the realizations
is measured with an error bar signifying a 95% confidence interval from a t-test.

4.1 Bidisperse Fluidized Bed. It is natural to begin with the bench-scale fluidized bed of Goldschmidt et al. [12]. This fluidized
bed is the most commonly referenced experiment for bidisperse mixtures because it was one of the first experiments set up specifically
to generate validation data for the CFD-DEM numerical method. The two particle types are 2.5 mm and 1.5 mm glass beads. The
properties of the bed and material (as modeled) are listed in Table 1. A few adjustments and simplifications have been made. First, the
actual height of the test section was 70 cm is extended here to be an integer number of the bed width. The measured density of the
two particles differed slightly in mean value. However, because they were very close with overlapping error bars, a single value is used
here within the measurement error of both particles. The measured sphericity was reported to be approximately one and is therefore not
considered here.

Although several conditions are considered in the original work of Goldschmidt [12], we focus on two here: (small particle) solids
mass fractions of 𝑥1 = 0.25 and 𝑥1 = 0.75 with an inlet superficial gas velocity of 𝑈𝑔 = 1.15 m/s. These conditions are of interest
because very different results are obtained by simply changing the ratio of small-to-large particles. The particles are initialized in a
statistically homogeneous (randomly distributed) array which is facilitated by a low particle volume fraction, approximately 20%. The
number of large and small particles for the 𝑥1 = 0.25 condition are: 𝑁2 = 28000 and 𝑁2 = 18000 and for the 𝑥1 = 0.75 condition are:
𝑁2 = 6000 and 𝑁1 = 83000. The particles are allowed to settle for a 𝑡 ≈ 2 s initialization period into a packed bed. The inflow velocity
is set to 0.8 which is insufficient to fluidize either particle or the mixtures. From the period 𝑡 = 1.8 - 2.0 s the inlet velocity is abruptly
and linearly increased to the desired value of 𝑈 = 1.15 m/s. The spring constant, 𝑘𝑛 = 2290 N/m is set to give large-large, large-small
and small-small particle collision durations of 𝜏𝑐𝑜𝑙𝑙 = 0.21, 0.13 and 0.10 ms, respectively. The smallest of the three is used to set the
solids timestep, 𝑑𝑡𝑠 = min(𝜏𝑐𝑜𝑙𝑙)/20 = 5 × 10−6𝑠. The gas-phase is treated as an incompressible fluid with the properties of air at STP:
𝜌𝑔 = 1.2 kg/m3 and 𝜇𝑔 = 1.8× 10−5 kg/m-s. The fluid timestep is adjusted automatically by a Courant limit of 0.9. The Gidaspow [13]
drag model is used to couple the phases.

Each condition is simulated for 60 s after the 2 s initialization period, which is neglected from analysis, and repeated five times. Each
replicate uses a different seed in the random number generator used to generate the initial particle arrays, thereby creating a statistically
unique condition. The quantity of interest is a segregation index, 𝑠, based on the average height of the two particles which could be
measured by digital image analysis techniques. Following [12], the segregation index is defined by:

𝑠 =
𝑆 − 1

𝑆max − 1
, (1)

where 𝑆 = 𝑦1/𝑦2 is the ratio of the mean elevation of the small-to-large particles and

𝑆max =
2 − 𝑥1
1 − 𝑥1

, (2)

is the theoretical maximum degree of segregation. The simulation results are compared with the (digitized) experimental data in Fig. 1.
The expected results are observed: with the small particle mass fraction is low, 𝑥1 = 0.25, strong segregation is observed, but when the
small particle mass fraction is high, 𝑥1 = 0.75, essentially no segregation is observed. This is because the operating condition is set
between the minimum fluidization of the two particle types; the measured minimum fluidization velocities were 𝑈𝑚 𝑓 = 0.80 ± 0.02 m/s
and 𝑈𝑚 𝑓 = 1.25 ± 0.01 m/s for the small and large particles, respectively. Therefore, when there are fewer small particles, they tend
to collect at the top of the bed and form a fluidized layer. On the other hand, the large particles collect at the bottom and form an
under-fluidized or defluidized layer. However, when the large particles are relatively few, as in 𝑥1 = 0.75, the small particles remain
fluidized, transporting the large particles with them. This is an important behavior in the operation of industrial fluidized beds with
difficult to fluidize material such as biomass [14]. It is a little surprising that the comparison is so good without adjusting or calibrating
the drag model in any way, i.e., these are predictive results although the expected outcome was known to the authors. Finally, we note
that the MGNS algorithm did not provide a speed up in this case due to the low particle size ratio, 𝜆 < 2.

4.2 Tridisperse Chute Flow. The second verification problem also looks at a segregation mechanism. Now, instead of being
fluidized by a flowing gas-phase, the source of agitation is provided by gravity driven flow, down a rough inclined chute. The bench-
scale experiment of Bhattacharya and McCarthy [15] is used to validate the results of granular (no gas phase) MFIX-Exa simulations.
The experiment is enclosed at in a box with a length of 𝐿𝑥 = 1.2 m, a depth of 𝐿𝑥 = 0.15 m and modeled with a height of 𝐿𝑦 = 1.6 m.
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Twenty equally spaced bins line the bottom of the test section to collect particles. The bin height is equal to the bin length of 60 mm. A
0.6 m long ramp is hinged at the back of the test section. The ramp can be set at two different inclinations, 𝜃 = 30 and 45 degrees from
the horizontal. In the experiment, the elevation of the ramp, measuring from the floor to the hinge, can be set at three different levels. In
this case, we are interested in comparing the tridisperse mixture at both ramp inclinations, for which the ramp height is 1.05 m. Sitting
0.1 m above the ramp (hinge) is the hopper holding the particle mixture. In the experiment the hopper contains a converging section and
a larger upper cross-section. For simplicity, the model considers the hopper to have uniform cross-section equal to the discharge region
of the experiment, which is a square 0.15 × 0.15 m2 opening.

The particles are polystyrene beads with diameters of 𝑑3 = 14, 𝑑2 = 7 and 𝑑1 = 6 mm and densities of 𝜌3 = 1170, 𝜌2 = 1148 and
𝜌1 = 952 kg/m3, for the large, medium, and small particles, respectively. The ramp, the collection bin dividers, and the hopper gate
are modeled with “wall” particles having diameter and density 𝑑𝑤 = 5 mm and 𝜌𝑤 = 1000 kg/m3. The remainder of the walls, e.g.,
domain boundaries and the hopper upright, is modeled as an embedded boundary (EB). All particle-particle (including wall particles)
and particle-wall collisions are given the same contact properties: 𝑒𝑝𝑝 = 𝑒𝑝𝑤 = 0.7 and 𝜇𝑝𝑝 = 𝜇𝑝𝑤 = 0.4. The spring constant is set to
𝑘𝑛 = 35 kN/m. The largest collision duration is between two large particles, 𝜏3,3 ≈ 5 × 10−4 s. The shortest actual collision duration is
between a small and wall particle, 𝜏1,𝑤 ≈ 1.1 × 10−4 s. However, the timestep calculation routine does not know that the wall particles
will not collide with one another and 𝜏𝑤,𝑤 ≈ 9.7 × 10−5 s is used to set the solids timestep, 𝑑𝑡𝑠 = 𝜏𝑤,𝑤/20.

The tridisperse mixture is generated randomly and uniformly in the hopper section and allowed to settle for 𝑡0 = 1 s. After the settling
period, the wall particles defining the hopper gate are given a velocity of 𝑢𝑤 = −0.3 m/s. This allows the hopper to fully open in 0.5 s.
All other wall particles have velocity and angular momentum of zero. As the simulation progresses, the gate begins to open, particles
fall from the hopper, onto the ramp, slide down and fall from the ramp, and collect in the bins at the bottom of the test section. The
top row of Fig. 2 depicts this evolution for the 𝜃 = 30◦ inclination angle. Each of the two ramp angles is repeated ten times, each with
a different randomized particle configuration in the hopper. The mass fraction of each particle size in each of the bins is collected and
averaged to produce error bars (𝑡-test 95%-confidence interval). The simulation results are compared to the experimental data in Fig. 2.
For the lower angle of 30◦, the simulation predicts that all particles travel slightly farther than observed experimentally. The higher angle
of 45◦ shows excellent agreement.

Although the simulation results compare favorably to the experimental data, in neither instance are we able to see substantial evidence
of segregation. To explore this further, we move away from the experimental geometry into a periodic configuration so that the material
can flow continuously. The wall-particle defined chute is the same (length and width) and the depth walls are still defined by EBs. For
simplicity in this case, the chute is laid flat and the gravity vector is rotated. The same tridisperse mixture is considered as shown in
Fig. 2 with double the number of each particle type to fully cover the ramp in several layers of material. Inclination angles from 𝜃 = 21◦
to 35◦ are studied. Exploratory studies considered a wider range, however, this was determined to be the primary region of interest
because a) below 21◦ the material does not readily flow down the chute, i.e., we have reached the angle of repose of the mixture and
b) as 𝜃 → 35◦ the mixture stops segregating. To quantify this later behavior, we consider a simple metric: 𝑦̄3/𝑦̄2 and 𝑦̄2/𝑦̄1, where
𝑦̄𝑖 is the mean height of each particle type. The two ratios are provided in Fig. 3 for the inclination angles under consideration. Each
case is simulated for 20 s which is sufficient to reach a fully developed mean elevations, although the mean streamwise velocity is still
slightly increasing in some cases. The mean particle elevation ratios are taken at the end time, 𝑡 = 20 s. Each case is repeated five times
to compute error bars, again arising from unique initial particle configurations. Figure 3 shows that the segregation strength, higher
𝑦̄𝑖+1/𝑦̄𝑖 values, is strongest at the lowest inclination angles. Beyond approximately 30◦, both mean height ratios quickly decay to unity,
indicating a well mixed state.

In interpreting these results, two points of further consideration are given. First, although the strongest segregation behavior occurs
at 21◦, this condition is very near the critical inclination angle for flow. Additionally, the mean particle velocity is quite low. Therefore,
when considering an application where segregation is the desired result, practical considerations such as time or physical size limitations
may result in a larger optimal angle of inclination. Second, in applications where uniformity is desired, Fig. 3 may be misleading at
higher angles. Although the end state is well mixed, all cases up to and including 𝜃 = 35◦ went through a transient state where the
large particles noticeably segregated. It is assumed that the initial segregation and then re-homogenization is a consequence of the
acceleration of the mixture down the chute. At low speeds, the particles are able to segregate. However, as the mean velocity and
granular temperature (agitation) continues to increase, the particles relax back into a well-mixed state. Therefore, a segregated mixture
may be delivered even at high inclination angles if the chute length is too short.

Unlike the fluidized bed in § 4.1, the size ratio of the tridisperse material is at least two, 𝜆 ≥ 2. Therefore, the time-to-solution of
both the experimental setup and infinite chute was improved with the MGNS algorithm. Two bins with a refinement ratio of two were
applied in all cases. To quantify the speedup, the first replicate of the infinite chute flow was repeated with the SGNS algorithm for
all inclination angles. The speedup is given by the ratio of the average time-per-step of the SGNS simulation relative to the MGNS
simulation. Figure 3 shows a speedup of approximately two for most cases. The performance is slightly better at lower inclination angles,
which is likely a consequence of the denser packing of the granular layer. A more detailed assessment of the MGNS performance is the
topic of the following section § 5.

5 Performance
To demonstrate the impact of polydispersity on the SGNS algorithm and test the speedup of the MGNS algorithm, we consider a

granular, triply-periodic domain with edge length 𝐿 = 0.0128 m. Large particles are seeded in a top and bottom layer while small
particles are placed in the middle layer. The size of the small particles are varied to give specific 𝜆 = 𝑅𝑝,max/𝑅𝑝,min while large
particles are held fixed at 𝑅𝑝 ,max = 200 µm. In each simulation, the solids volume fractions are adjusted to reach specific particle
counts, but are generally in the range of 𝜙 ∈ [0.2 0.5]. All particles are initialized in a hexagonal close-packed (HCP) lattice. The
bidisperse solids mixture is given an initial granular temperature of 𝑇0 = 0.25 m2/s2. The particles disperse through scattering into a
random configuration from the HCP structure as the simulations evolve in time. The initial and final states for an example configuration
in Fig. 4.

The simulations are carried out on OLCF’s Summit, first considering the CPU (IBM POWER9 processors). As the size ratio 𝜆

increases, time-per-step begins to increase as shown in Fig. 5. Slowdown is computed in relation to a monodisperse simulation with the
same particle count, where an average time per iteration is employed since the solids time step is a function of the particle size. The
total time taken by the solids integrator is primarily associated with (∼ 80%) evolving the particle states (computing forces/torques and
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particle update) and neighbor list construction (completed every 25 solids time steps in the present study). The ratio of time spent by
the particle evolution (Evolve) and neighbor list (NL) routines remains relatively constant and of O(1) for all the 𝜆 considered here; see
Fig. 6. Since the overall time spent by the solids solver increases with 𝜆, from Fig. 5, the time spent evolving particles and making the
neighbor list must be growing at similar rates. Since the size of the neighbor list strongly impacts the computational overhead of the
force/torque computations in evolve, these results are consistent with an inflation of the neighbor list.

Now the canonical problem is simulated with the new MGNS algorithm. The performance (speedup) is assessed as the ratio of
SGNS timing results to MGNS timing results. Figure. 7 shows that the the MGNS algorithm is capable of producing dramatic speedup
on the CPU. As expected, the speedup with MGNS is greatest with large size ratios 𝜆 and large particle counts, since the reduction
in the neighbor list is greatest for dense flows. Additionally, simulations were also carried out on a GPU (Nvidia Tesla V100) up to
𝑁𝑝 = 2 × 105 particles. The GPU results are provided in Fig. 8. The GPU results highlight a potential pitfall of the MGNS algorithm:
the neighbor list is not significantly compressed if the size discrepancy between two types is not large enough. In other words, the
additional overhead of the MGNS algorithm causes a performance degradation for 𝜆 < 4 and increasing with decreasing particle count.

6 Future Work: Dynamic Multi-Grid
In § 5, impressive speedup curves were generated from simulations of scattering in a bidisperse mixture with an initial granular

temperature 𝑇0. It should be noted though that the selection of bin counts and sizes is trivial for the simple bidisperse case considered.
However in true polydisperse conditions, the degree of speedup with the MGNS algorithm is inherently a function of the PSD, the number
of types, and sizes of the particle type bins. Therefore, the observed trends in Figs. 7–8 are not guaranteed. In fact, the slowdown
observed in Fig. 8 for 𝜆 < 4 may be present and possibly enhanced for large 𝜆 if the nature of the PSD prevents the neighbor list size
from being appreciably compressed.

Robust application of the MGNS algorithm to a general polydisperse flow, which involves local clustering and/or segregation, will
likely require dynamic use of multiple grids when constructing the neighbor list; thereby making the number of particle types and the
bins sizes locally computed quantities that are not known at run time. Under such a paradigm, dynamic MGNS becomes analogous to
traditional adaptive mesh refinement (AMR). However, unlike traditional AMR, straightforward indicators for MGNS mesh refinement
are not readily available. Additionally, efficient means for optimizing the number of types and bin locations, which would be time and
processor/GPU specific, are not readily available.

While beyond the scope of the present work, it is worth noting that algorithms based upon linked-lists may alternatively be considered
[16]. Such approaches reduce cell size sensitivity and may improve performance when adaptive meshing is employed.

As a first effort towards defining simple indicators for dynamic MGNS, we estimate the ratio of neighbor counts obtained with SGNS
and MGNS in the bidisperse mixture (see Appendix A for more details)

𝑁𝑆𝐺

𝑁𝑀𝐺
=

(︁
𝑁𝑝,1 + 𝑁𝑝,2

)︁ (︂
𝜙1 + 𝜙2𝜆

3
2

)︂(︃
𝑁𝑝,1𝜙1 + 𝑁𝑝,2𝜙2 + 2𝑁𝑝,2𝜙1

(︂
𝜆2+1
2𝜆2

)︂3
)︃ . (3)

For large 𝑁𝑆𝐺/𝑁𝑀𝐺 the MG algorithm is expected to provide appreciable speedup through the compression of the neighbor list while
for small 𝑁𝑆𝐺/𝑁𝑀𝐺 the MG algorithm is expected to introduce uncompensated overhead. Recasting Figs. 7–8 in terms of Eq. (3), and
adding additional GPU simulations (black diamonds), shows the expected trend; see Figs. 9–10. If we place a threshold of 2× speedup
on CPU and 1.5× speedup on GPU, one would require 𝑁𝑆𝐺/𝑁𝑀𝐺 > 4 on CPU and 𝑁𝑆𝐺/𝑁𝑀𝐺 > 10 on GPU. While Eq. (3) provides
a crude estimate, we may approximate the chute flow in § 4.2 as a bidisperse mixture and apply Eq. (3) in conjunction with Fig. 9. By
approximating the solids volume fractions, 𝜙1 ≈ 𝜙2 ≈ 0.5, and summing together the two smaller particle counts, 𝑁𝑝,2 = 15791, we
have 𝜆2 = 2, 𝑁𝑝,1 = 237, to obtain 𝑁𝑆𝐺/𝑁𝑀𝐺 ≈ 5, which is consistent with a speedup of 2 in Fig. 9

Despite the simplifications made in deriving Eq. (3), it does provide a litmus test for dynamic MGNS that depends on low order
statistics 𝑁𝑝,𝑙 , 𝜆, 𝜙𝑙 and thus is efficient to evaluate. However, truly dynamic MGNS will inherently involve an optimization problem
like that presented in [3] for the bin counts and sizes, given a local PSD. To this end, a generalized form of Eq. (3) may be derived and
used as a criteria to solve an optimization problem like in [3] for redefining the bins. An algorithm along these lines will be the subject
of future work.

7 Conclusions
The MFIX-Exa software targets high-fidelity EL simulations of pilot- and industrial-scale unit operations. Most realistic particle-laden

flows exhibit significant polydispersity and broad particle size distributions. However, prior studies with MFIX-Exa have been confined
to monodisperse solids. We consider here the performance and accuracy of the MFIX-Exa code for a variety of polydisperse flows.

It is well established that single-grid neighbor search (SGNS) algorithms significantly degrade the performance of Lagrangian solvers
as the particle size ratio becomes large, due to artificial inflation of the neighbor list. To alleviate this computational bottleneck, we have
implemented a multi-grid neighbor search (MGNS) algorithm into the AMReX library. The application code MFIX-Exa, specifically its
EL model, was used to study the new MGNS algorithm. However, it should be noted that any previous or newly developed particle-based
physics codes utilizing the AMReX framework have access to this new capability.

In this work, the MGNS algorithm was verified by bit-wise comparisons of collisions, forces and torques against the SGNS algorithm.
Although MFIX-Exa has been previously validated on a number of problems [6,7,17], none of them had previously considered bi-, tri-, or
polydisperse solids. Therefore, two benchmark cases were provided to extend the validation database of the code. The classic bidisperse
fluidized bed of Goldshcmidt et al. [12] showed excellent agreement between simulation and experiment. Secondly, the granular chute
flow experiment of Bhattacharya and McCarthy [15] was modeled, specifically the tridisperse mixture. The simulation results compared
reasonably with the experiment and the problem was extended into an infinite-chute flow regime using periodic boundaries to investigate
the relationship between the inclination angle and the segregation behavior. The performance of the MGNS algorithm was assessed on
CPU and GPU for a bidisperse mixing layer. It is found that MGNS can provide significant speedup (up to 15× on CPU and 6× on
GPU) for the cases considered here. Best performance is observed for large size ratios, 𝜆, and large workloads, i.e., high 𝑁𝑝-count per
processor.
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Finally, future work to conceptualize dynamic MGNS is outlined, with application to clustered and segregated flows where the particle
size distribution varies rapidly in space and time. Dynamic MGNS would require local specification of the number of grids and size
of the grids for constructing the neighbor list. To this end, a neighbor count ratio is defined as a quick litmus test for the benefit of
an additional grid. However, future work will be required to incorporate a generalized neighbor count ratio in conjunction with an
optimization of local bin sizes and counts.

Appendix A: Neighbor Count Estimates
Consider a bidisperse mixture characterized by 𝑅𝑝,1 = 𝑅𝑝,max and 𝑅𝑝,2 < 𝑅𝑝,1 with corresponding solids volume fractions 𝜙1 and

𝜙2.
The SG algorithm utilizes D = 3𝑅𝑝,max as a cutoff distance for determining if a particle is a valid neighbor. Therefore, a characteristic

volume may be defined in terms of the max particle volume 𝑉𝑝,max = 4/3𝜋𝑅3
𝑝,max as

𝑉𝑛 =
4
3
𝜋

(︁
3𝑅𝑝,max

)︁3
= 27𝑉𝑝,max. (1)

Assuming spatial homogeneity, the number of neighbors of type 𝑙 (𝑁𝑛,𝑙) and total number of neighbors for a particle (𝑁𝑛,tot) within 𝑉𝑛
are given by

𝑁𝑛,𝑙 =
𝑉𝑛

𝑉𝑝,𝑙
𝜙𝑖 = 27𝜙𝑙𝜆3

𝑙
, (2)

𝑁𝑛,tot = 27
(︂
𝜙1 + 𝜙2𝜆

3
2

)︂
, (3)

where 𝜆𝑙 = 𝑅𝑝,max/𝑅𝑝,𝑙 . The overall neighbor count with SG is then estimated as

𝑁𝑆𝐺 ≈
1
2
𝑁𝑝,tot𝑁𝑛,tot =

27
2

(︁
𝑁𝑝,1 + 𝑁𝑝,2

)︁ (︂
𝜙1 + 𝜙2𝜆

3
2

)︂
, (4)

where the factor of 1/2 corrects for double counting of neighbors.
If the bin locations with MGNS coincide with the two particle sizes, one will obtain D𝑙𝑚 = 3/2

(︁
𝑅𝑝,𝑙 + 𝑅𝑝,𝑚

)︁
as a cutoff distance

for an 𝑙 −𝑚 pair. For 𝑀 different types of particles, one has
∑︁𝑀
𝑖=1 𝑖 = 𝑀 (𝑀 + 1)/2 pairs. The bidisperse mixture in question has 𝑀 = 2

and 3 collision pairs {1 − 1, 1 − 2, 2 − 2}. We may then define three characteristic volumes as

𝑉𝑛,𝑙𝑚 = 27𝑉𝑝,max𝐹
3
𝑙𝑚

, (5)

𝐹𝑙𝑚 = 1,
𝜆2 + 1
2𝜆2

,
1
𝜆2

. (6)

The number of neighbors for each collision type within 𝑉𝑛,𝑙𝑚 is then given by

𝑁𝑛,11 =
𝑉𝑛,11
𝑉𝑝,1

𝜙1 = 27𝜙1, (7)

𝑁𝑛,22 =
𝑉𝑛,22
𝑉𝑝,2

𝜙2 = 27𝜙2, (8)

𝑁𝑛,21 =
𝑉𝑛,21
𝑉𝑝,1

𝜙1 = 27𝜙1

(︃
𝜆2 + 1
2𝜆2

)︃3
. (9)

The overall neighbor count with MGNS is then estimated as

𝑁𝑀𝐺 =
27
2

(︄
𝑁𝑝,1𝜙1 + 𝑁𝑝,2𝜙2 + 2𝑁𝑝,2𝜙1

(︃
𝜆2 + 1
2𝜆2

)︃3
)︄
, (10)

where the 2 on the third term on the RHS corrects for the fact that double counting has not occurred for the mixed 1− 2 type collisions.
Finally, the ratio of the neighbor counts with SG and MG is given by

𝑁𝑆𝐺

𝑁𝑀𝐺
=

(︁
𝑁𝑝,1 + 𝑁𝑝,2

)︁ (︂
𝜙1 + 𝜙2𝜆

3
2

)︂(︃
𝑁𝑝,1𝜙1 + 𝑁𝑝,2𝜙2 + 2𝑁𝑝,2𝜙1

(︂
𝜆2+1
2𝜆2

)︂3
)︃ . (11)
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Algorithm 1 : SGbuild()
DenseBins(𝑁𝑝 , *PartData, 𝑁bin, BinMapper)
for n ≤ 𝑁𝑝 do

ip / jp / kp← BinMapper(n)
for i=ip-1; i ≤ ip+1; ++i do

for j=jp-1; j ≤ jp+1; ++j do
for k=kp-1; k ≤ kp+1; ++k do

for p=offset[ĳk]; p ≤ offset[ĳk+1]; ++p do
if | |𝑟𝑖 𝑗 | | ≤ D then

count += 1
end if

end for
end for

end for
end for
NbrCnt[i] = count

end for

NbrList← resize from NbrCnt

REPEAT & POPULATE NbrList

Algorithm 2 : MGbuild()
DenseBins(𝑁𝑝 , *particle, 𝑁𝑏𝑖𝑛, BinMapper)
for n ≤ 𝑁𝑝 do

for type=type_i; type<n_type; ++type do
ip / jp / kp← BinMapper(n,type)
for i=ip-1; i ≤ ip+1; ++i do

for j=jp-1; j ≤ jp+1; ++j do
for k=kp-1; k ≤ kp+1; ++k do

for p=offset[ĳk]; p ≤ offset[ĳk+1]; ++p do
if | |𝑟𝑖 𝑗 | | ≤ D[type_i][type_j] then

count += 1
end if

end for
end for

end for
end for

end for
NbrCnt[i] = count

end for

NbrList← resize from NbrCnt

REPEAT & POPULATE NbrList
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Table 1 Properties of the Goldschmidt fluidized bed.

property value units
bed width, 𝐿𝑥 15 cm
bed height, 𝐿𝑦 75 cm
bed depth, 𝐿𝑧 15 mm
inlet velocity, 𝑈𝑔 1.15 m/s
(large) particle diameter, 𝑑2 2.49 mm
(small) particle diameter, 𝑑1 1.52 mm
particle density, 𝜌𝑝 2525 kg/m3

restitution coefficients, 𝑒 0.97 -
wall friction coefficient, 𝜇𝑝𝑤 0.10 -
particle friction coefficient, 𝜇𝑝𝑝 0.15 -
normal spring constant, 𝑘𝑛 2290 N/m

Fig. 1 MFIX-Exa simulation results compared to the original data of [12]. The experimental data has two measurements
given by blue squares and red circles. The EL simulations were run five times, given by the grey curves, which are averaged
to give mean and error bars (t -test 95%-confidence interval) at 1 s intervals.
Journal of Fluids Engineering PREPRINT FOR REVIEW / 9



Fig. 2 Granular flow of a tridisperse mixture down an inclined chute after [15]. Top row depicts the hopper discharge and
chute flow of the θ = 30◦ case. Middle and bottom rows show the mass fraction of each particle type for Inclination angles of
θ = 30◦ and 45◦, respectively. Simulation results (red) for the small, medium and large particles (left to right) are compared
to the (digitized) experimental results (black).
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Fig. 3 Segregation of the Bhattacharya and McCarthy [15] material down an infinite (periodic) chute of varying inclination
angles; filled regions around markers denote 95% confidence intervals. Speedup of the polydisperse algorithm for each
case on CPU is also shown.

Fig. 4 Initial (left) and final (right) particle configurations of the performance test problem for a size ratio of λ = 4 and
particle count of Np = 50K.
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Fig. 5 Slowdown of bidisperse simulations on CPU with varying size ratio and particle count.

Fig. 6 Comparison of time associated with evolving particles states (Evolve) and neighbor list (NL) construction for SGNS
algorithm on CPU.

12 / PREPRINT FOR REVIEW Transactions of the ASME



Fig. 7 Speedup of bidisperse simulations on CPU with varying size ratio and particle count.

Fig. 8 Speedup of bidisperse simulations on GPU with varying size ratio and particle count.
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Fig. 9 Speedup of polydisperse simulations on CPU with varying NSG/NMG .

Fig. 10 Speedup of polydisperse simulations on GPU with varying NSG/NMG .

14 / PREPRINT FOR REVIEW Transactions of the ASME



List of Figures
1 MFIX-Exa simulation results compared to the original data of [12]. The experimental data has two measurements given

by blue squares and red circles. The EL simulations were run five times, given by the grey curves, which are averaged
to give mean and error bars (𝑡-test 95%-confidence interval) at 1 s intervals. . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Granular flow of a tridisperse mixture down an inclined chute after [15]. Top row depicts the hopper discharge and chute
flow of the 𝜃 = 30◦ case. Middle and bottom rows show the mass fraction of each particle type for Inclination angles
of 𝜃 = 30◦ and 45◦, respectively. Simulation results (red) for the small, medium and large particles (left to right) are
compared to the (digitized) experimental results (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Segregation of the Bhattacharya and McCarthy [15] material down an infinite (periodic) chute of varying inclination
angles; filled regions around markers denote 95% confidence intervals. Speedup of the polydisperse algorithm for each
case on CPU is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Initial (left) and final (right) particle configurations of the performance test problem for a size ratio of 𝜆 = 4 and particle
count of 𝑁𝑝 = 50K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Slowdown of bidisperse simulations on CPU with varying size ratio and particle count. . . . . . . . . . . . . . . . . . . 12
6 Comparison of time associated with evolving particles states (Evolve) and neighbor list (NL) construction for SGNS

algorithm on CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Speedup of bidisperse simulations on CPU with varying size ratio and particle count. . . . . . . . . . . . . . . . . . . . 13
8 Speedup of bidisperse simulations on GPU with varying size ratio and particle count. . . . . . . . . . . . . . . . . . . . 13
9 Speedup of polydisperse simulations on CPU with varying 𝑁𝑆𝐺/𝑁𝑀𝐺 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10 Speedup of polydisperse simulations on GPU with varying 𝑁𝑆𝐺/𝑁𝑀𝐺 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

List of Tables
1 Properties of the Goldschmidt fluidized bed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Journal of Fluids Engineering PREPRINT FOR REVIEW / 15


	1 Introduction
	2 Neighbor Search Algorithms
	2.1 Single-Grid Neighbor Search
	2.2 Multi-Grid Neighbor Search

	3 Verification
	4 Validation
	4.1 Bidisperse Fluidized Bed
	4.2 Tridisperse Chute Flow

	5 Performance
	6 Future Work: Dynamic Multi-Grid
	7 Conclusions
	Appendices
	Appendix A: Neighbor Count Estimates
	Acknowledgment
	Funding Data
	References
	List of Figures
	List of Tables



