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Abstract

Robust estimation of the number, location, and activity of multiple correlated brain sources 

has long been a challenging task in electromagnetic brain imaging from M/EEG data, one 

that is significantly impacted by interference from spontaneous brain activity, sensor noise, and 

other sources of artifacts. Recently, we introduced the Champagne algorithm, a novel Bayesian 

inference algorithm that has shown tremendous success in M/EEG source reconstruction. Inherent 

to Champagne and most other related Bayesian reconstruction algorithms is the assumption that 

the noise covariance in sensor data can be estimated from “baseline” or “control” measurements. 

However, in many scenarios, such baseline data is not available, or is unreliable, and it is 

unclear how best to estimate the noise covariance. In this technical note, we propose several 

robust methods to estimate the contributions to sensors from noise arising from outside the brain 

without the need for additional baseline measurements. The incorporation of these methods for 
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diagonal noise covariance estimation improves the robust reconstruction of complex brain source 

activity under high levels of noise and interference, while maintaining the performance features of 

Champagne. Specifically, we show that the resulting algorithm, Champagne with noise learning, 

is quite robust to initialization and is computationally efficient. In simulations, performance of the 

proposed noise learning algorithm is consistently superior to Champagne without noise learning. 

We also demonstrate that, even without the use of any baseline data, Champagne with noise 

learning is able to reconstruct complex brain activity with just a few trials or even a single 

trial, demonstrating significant improvements in source reconstruction for electromagnetic brain 

imaging.

Keywords

Electromagnetic brain mapping; Robust noise estimation; Bayesian inference; Inverse problem; 
Magnetoencephalography

1. Introduction

Electromagnetic brain imaging is the process of measuring and spatio-temporal 

reconstruction of brain activity from non-invasive sensor recordings of magnetic fields and 

electric potentials. In order to transform these sensor recordings into brain activity, both the 

forward and inverse models must be solved. The forward model combines source, volume 

conductor, and measurement models to estimate a mixing matrix called the leadfield that 

describes a linear relationship between sources and the measurements. Solving the inverse 

problem is the process of devising inverse algorithms to estimate the parameters of brain 

activity from sensor data and the leadfield matrix.

Most inverse algorithms can be viewed in a Bayesian framework (Sekihara and Nagarajan, 

2015; Wipf and Nagarajan, 2009). This perspective is useful because at a high level, 

the prior distribution, implicitly or explicitly imposed, can be used to differentiate and 

compare the various source localization methods. Recently, we developed Champagne, 

a novel tomographic source reconstruction algorithm derived in an empirical Bayesian 

fashion with incorporation of deep theoretical ideas about sparse-source recovery from 

noisy, constrained measurements. Champagne improves upon existing methods of source 

reconstruction in terms of reconstruction accuracy, robustness, and computational efficiency 

(Wipf et al., 2010). Experiments with preliminary simulated and real data, presented in 

Owen et al. (2012), show that compared to other commonly-used source localization 

algorithms, Champagne is more robust to interference from correlated sources and noisy 

data.

Inherent to Champagne is the availability of “baseline” data to estimate the statistics of the 

“brain noise”. However, in many MEG and EEG experimental scenarios, “baseline” data 

is not available or is unreliable. For example, in certain paradigms, there are artifacts that 

are only present in the ”active” time-period and absent in the baseline or control period, 

such as during experiments with speaking or other muscle movements. Also, in experiments 

involved event-related desynchronization, the signal amplitude decreases relative to the 

baseline levels. In such situations, it is unclear how noise estimation should be accomplished 
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for algorithms such as Champagne. This predicament also applies to other Bayesian source 

reconstruction methods such as Saketini (Zumer et al., 2007), NSEFALoc (Zumer et al., 

2008) and LowSNR-BSI (Hashemi and Haufe, 2018).

In this technical note, we propose robust methods to estimate the contributions to 

sensors from noise without the need for additional ’baseline” or “control” measurements. 

Importantly, the proposed methods preserve the robust reconstruction performance features 

of the sparse source reconstruction algorithm Champagne. Our novel robust noise estimation 

algorithms partition contributions to the sensor data from brain activity sources and noise 

related activity, with corresponding Gaussian variance parameters for both brain sources 

and noise that are estimated from data. Variance parameters are estimated using empirical 

Bayesian inference, i.e. maximizing the marginal likelihood of the data.

The resulting inference algorithms are quite robust to the prior initialization variance, to 

different noise modalities, to the reconstruction of highly correlated multiple sources, and 

to the effect of high levels of interference and noise. In simulations, performance of the 

proposed noise learning algorithms are consistently superior to original Champagne without 

noise learning. Without baseline data, the novel noise learning algorithms are robust to 

correlated brain activity present in real data sets and are able to reconstruct complex brain 

activity with few trials or even a single trial, demonstrating significant improvements in 

electromagnetic brain imaging.

Section 2 describes the original Champagne algorithm and Champagne algorithm with noise 

learning in detail. Section 3 describes the tested simulation configurations, performance 

evaluation metrics, and analyzed real datasets. Section 4 describes performance results in 

simulated and real data, followed by brief discussion in Section 5.

2. Methods

This section first briefly reviews the probabilistic generative model for electromagnetic 

brain imaging used by the Champagne algorithm, the original Champagne algorithm 

which provides the necessary update rules for brain sources time course and voxel 

variance estimates with the statistics of the background activity estimated from ’baseline” 

or ”control” measurements. Following this, we propose robust methods to estimate the 

contributions to sensors from noise arising from outside the brain without the need 

for additional baseline measurements. In summary, the Champagne algorithm with noise 

learning initializes the voxel variances and diagonal noise covariance and updates them until 

the marginal likelihood converges, and after convergence outputs the brain source activity 

time-courses.

2.1. Probabilistic generative model for electromagnetic brain imaging

We assume that MEG or EEG data have been collected for induced or spontaneous 

brain activity paradigms, with separate time-windows for induced or spontaneous source 

activity and for background interference including biological, environmental sources, and 

sensor noise. We define the following parameters: y(t) ∈ (ℝ)M×1, is the output data of 

sensors at time t, M is the number of channels measured. L = [L1, …, LN] is the leadfield 
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matrix from the forward model. N is the number of voxels under consideration and 

Ln = [l . n
1 , ⋯, l . n

dc ] ∈ (ℝ)M × dc is the leadfield matrix for n-th voxel. The k-th column of Ln 

represents the signal vector that would be observed at the scalp given a unit current source 

or dipole at the nth voxel with a fixed orientation in the k-th direction. The voxel dimension 

dc is usually set to 3. Multiple methods based on the physical properties of the brain and 

Maxwell’s equations are available for the computation of each Ln (Hallez et al., 2007). For 

convenience, we also define L = [l1., …, lM . ]⊤, where lm⋅ denotes the m-th row vector of L. 

s(t) = [s1
T (t), …, sN

T (t)]T  is the unknown brain activity. sn(t) = [sN
1 (t), ⋯, sn

dc(t)]
⊤

∈ (ℝ)dc × 1 is 

the n-th voxel intensity at time t-which we assume it with dc orientations. The generative 

probabilistic model for the sensor data at time point t can be written as:

y(t) = Ls(t) + ε(t) =
n = 1

N

Lnsn(t) + ε(t), (1)

with prior distributions s(t) ∼ N(s(t)0, α) and ε(t) ∼ N(0, Λ) Where Λ = diag(λ1, λ2, ⋯, λM) 

and α is defined as dcN × dcN block diagonal matrix expressed as

α =

α1Idc × dc 0 ⋯ 0
0 α2Idc × dc ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ αNIdc × dc

, (2)

αnIdc × dc is a prior variance dc × dc matrix of sn(t) and Idc×dc is a dc × dc identity For 

simplicity, we define matrix Y = [y(1), …, y(T )] and S = [s(1), …, s(T)] as the entire sensor 

and source time series, where T is the number of time points. The prior distribution p(S|α) is 

then defined as

p(S ∣ α) =
t = 1

T

N(s(t) ∣ 0, α) =
t = 1

T

n = 1

N

N sn(t) 0, αnIdc × dc , (3)

Our goal is to jointly estimate the posterior mean sn, the parameters α and Λ.

2.2. The original Champagne algorithm

We provide a brief overview of the original Champagne algorithm, detailed derivations can 

be found in Wipf et al. (2010) and Owen et al. (2009). Important to note that, in the original 

Champagne algorithm, the noise covariance Λ is learnt from available baseline or control 

measurements (Wipf et al., 2010). In contrast, here we describe update rules for estimation 

of a diagonal noise covariance, without baseline measurements.
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Brain source activity is estimated from the posterior distribution of the voxel activity p(S|Y). 

The voxel variance hyperparameters are estimated by maximizing a bound on the marginal 

likelihood p(Y|α). Although there are multiple ways to derive update rules for α (Wipf and 

Nagarajan, 2009), in Champagne we utilize a convex bounding (Jordan et al., 1999) on 

the logarithm of marginal likelihood (model evidence), which results in fast and convergent 

update rules (Hashemi et al., 2020). For a detailed derivation of the original Champagne, we 

refer to our previous paper (Wipf et al., 2010). Table 1 lists the sources level updates and the 

cost function used in Champagne.

2.3. Diagonal noise covariance estimation (Λ)

The diagonal noise covariance can be defined with two different structures: homoscedastic 

and heteroscedastic (Black et al., 2012; Colman, 2015). Homoscedastic noise assumes the 

noise variance is the same for all sensors. In contrast, heteroscedastic noise assumes the 

noise variance differs between sensors. In this paper, we assume the noise covariance 

is heteroscedastic, as homoscedastic noise can be easily handled by computing a scalar 

average of the diagonal elements of the heteroscedastic covariance matrix and multiplying 

by an M × M identity matrix. We introduce three ways to derive the update rules for 

the noise covariance Λ: marginal likelihood maximization, expectation-maximization, and 

convex-bounding of the marginal likelihood.

2.3.1. Learning diagonal noise covariance using marginal likelihood 
maximization—The diagonal noise covariance Λ can be directly estimated by setting the 

derivative of the cost function with respect to Λ to zero with fixed α, more details is shown 

in Appendix A, the update rule for λm is expressed as:

λm = 1
T

t = 1

T

(ym(t) − lm ⋅ s(t))2 + lm ⋅ Γ−1lm ⋅
⊤ , (4)

where Γ = α−1 + L⊤Λ−1L. An alternative derivation of the diagonal noise covariance using 

the Expectation Maximization (EM) algorithm is shown in Appendix B which results in 

identical update rules.

2.3.2. Learning diagonal noise covariance by maximizing convex bound of 
marginal likelihood—Another way to estimate the diagonal noise covariance is using an 

auxiliary cost function which is based on maximizing a convex bounding function of the 

marginal likelihood. This method has the following advantages: first, the convex bounding 

approach is guaranteed to reduce the cost function at each iteration; second, it shows higher 

computation efficiency and faster convergence compared to EM-based estimation; third, 

noise learning and voxel variance learning can be easily unified to produce one simple 

generative model. Diagonal noise covariance update rules can be derived through convex 

bounding of the cost function, more details is shown in Appendix C, the update rules are:
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λm =
1
T t = 1

T
ym(t) − lm ⋅ s(t) 2

qm
(5)

qm = Σy
−1)mm . (6)

where q = [q1, q2, ⋯, qM]⊤ is an auxiliary variable, em is a M × 1 vector and the element 

in m-th row is 1, the others are 0. With convex-bounding (CB) based update rules for 

noise, it is possible to efficiently estimate the voxel and noise covariance simultaneously by 

lead-field augmentation, as described in Appendix D.

2.4. Summary

In summary, as is shown in Table 1, the Champagne algorithm with noise learning does 

not need the input of noise covariance Λ, it first initializes the voxel variances and noise 

covariance with random values, then updates the voxel variances (the same as the original 

Champagne) and the noise covariance using EM or CB. Each iteration of this Champagne 

algorithm with noise learning theoretically guarantees to reduce (or leave unchanged) the 

cost function of the data. Finally, the Champagne algorithm with noise learning outputs the 

brain activity time courses.

3. Performance evaluation of simulated and real data

3.1. Benchmarks for comparison

We implemented two variants of Champagne with noise learning - 1) using marginal 

likelihood maximization or expectation maximization (EM) and 2) using convex bounding 

(CB) which are referred to as EM_NL and CB_NL respectively. For simplicity, this paper 

does not show the performance results of noise-learning with homoscedastic noise as its 

performance is often comparable to the use of heteroscedastic noise. We compare these 

two variants of Champagne with noise learning with three different benchmarks. A first 

benchmark we use is the original Champagne with different fixed levels of noise estimated 

by noise subspace decomposition of the sample data covariance. We refer to this algorithm 

as Champagne with Noise_Sub. A second benchmark is the original Champagne where 

we use available baseline data (in simulations) to learn a low-rank non-diagonal noise 

covariance using the Variational Bayes Factor Analysis algorithm (VBFA) (Nagarajan et al., 

2007). This benchmark would represent an upper bound on the performance of Champagne 

with noise learning when baseline data is available. For real data, we also include sLORETA 

as a third benchmark algorithm for comparison.

3.2. Simulation configurations

We generate data by simulating dipole sources with fixed orientation. Damped sinusoidal 

time courses with frequencies sampled randomly between 1 and 75 Hz are created as voxel 

source time activity and then projected to the sensors using the leadfield matrix generated 

by the forward model. We assume 271 MEG sensors and a single-shell spherical model 
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(Hallez et al., 2007) as implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) at the 

default spatial resolution of 8196 voxels at approximately 5 mm spacing. The time period 

is set as 480 samples with source activities of interest and noise activity. To evaluate the 

robustness of the proposed noise learning methods, we randomly choose noise activity with 

real brain noise consisting of actual resting-state sensor recordings collected from ten human 

subjects presumed to have only spontaneous brain activity and sensor noise. Signal-to-noise 

ratio (SNR) and correlations between voxel time courses are varied to examine algorithm 

performance. SNR and time course correlation are defined in a standard fashion (Cai et al., 

2018; Owen et al., 2012).

We examined performance for reconstruction of 5 random seeded dipolar sources with an 

SNR of 3 dB (real brain noise) and inter-source correlation coefficient of 0.99. The ratio of 

noise covariance to sample data covariance for all algorithms was increased from 0.05% to 

10%.

We increased the number of seeded dipolar sources to evaluate the algorithm performance 

as a function of the number of sources. For these simulations, inter-source correlation 

coefficient was fixed at 0.99 and SNR was fixed at 3 dB. The number of seeded dipolar 

sources was increased from 3 to 15 with a step of 2.

We also evaluated algorithm performance as a function of SNR. Reconstruction performance 

was evaluated for 5 randomly seeded dipolar sources with an inter-source correlation 

coefficient of 0.99. Simulations were performed at SNRs from −10 dB to 20 dB in steps 

of 5 dB.

For Champagne with Noise_Sub, the noise covariance Λ is assumed to be fixed as a scalar 

value multiplied by an identity matrix, and computed as a percentage of the norm of the 

sample data covariance.

3.3. Real datasets

Real MEG data was acquired in the Biomagnetic Imaging Laboratory at University of 

California, San Francisco (UCSF) with an Omega 2000 whole-head MEG system from CTF 

Inc. (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The leadfield for each subject 

was calculated in NUTMEG (Dalal et al., 2004) using a single-sphere head model (two 

spherical orientation leadfields) and an 8 mm voxel grid. Each column was normalized to 

have a norm of unity. The data were digitally filtered from 1 to 70 Hz to remove artifacts and 

DC offset.

Three real MEG data sets were used to evaluate the application of the algorithms: 1. 

Somatosensory Evoked Fields (SEF); 2. Auditory Evoked Fields (AEF); 3. Resting state 

data. The first two data sets have been reported in our prior publications using the 

Champagne algorithm, and details about these datasets can be found in Wipf et al. (2010) 

and Owen et al. (2012). In order to evaluate the robustness of our novel algorithms for noisy 

data, we collected SEF and AEF data from five subjects (around 250 trials per subject for 

SEF, 120 trials per subject for AEF). We tested reconstruction with the number of trials 

limited to 1, 2, 12 and 63 for both SEF and AEF. Each reconstruction was performed 30 
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times with the specific trials themselves chosen as a random subset of all available trials. 

For resting state data analysis, six subjects were instructed simply to keep their eyes closed 

and their thoughts clear. We collected 4 trials per subject, each trial of 1-min length with 

a sampling rate of 1.2 kHz. We randomly chose 10 seconds or equivalently 12,000 time 

samples for brain source reconstruction from each subject.

3.4. Quantifying algorithm performance

To evaluate the performance of localization results, we use free-response receiver operator 

characteristics (FROC) which shows the probability for detection of a true source in an 

image versus the expected value of the number of false positive detections per image (Cai et 

al., 2018; Darvas et al., 2004; Owen et al., 2012; Sekihara, 2016). Based on the FROC, we 

compute an A′ metric (Cai et al., 2019; Snodgrass and Corwin, 1988) which is an estimate 

of the area under the FROC curve for each simulation. If the area under the FROC curve 

is large, then the hit rate is higher compared to the false positive rate. The A′ metric is 

computed as follows:

A′ = HR − FR
2 + 1

2 . (7)

Hit rate (HR) is calculated by dividing the number of hits for dipolar sources by the true 

number of dipolar sources. The false rate (FR) is defined by dividing the number of potential 

false positive voxels by the total number of false voxels for each simulation. The details of 

the A′ metric calculation can be referred to in our previous paper (Cai et al., 2019). We 

then calculate the correlation coefficient between the seed and estimated source time courses 

for each hit, which is used to determine the accuracy of the time course reconstructions 

and denoted as R. Finally, we combine these two metrics that capture both the accuracy of 

the location and time courses of the algorithms into a single metric called the Aggregate 

Performance (AP) (Cai et al., 2019; 2018; Owen et al., 2012):

AP = 1
2(A′ + HRR) . (8)

The AP ranges from 0 to 1, with higher numbers reflecting better performance (Cai et al., 

2018; Darvas et al., 2004; Owen et al., 2012; Sekihara, 2016). To calculate the mean and 

variance of AP, the results were averaged with 50 simulations at each configuration.

3.5. Algorithm initialization

The initialization for the algorithms are as follows. For Champagne with Noise_Sub, the 

noise covariance Λ is assumed to be fixed as a scalar value multiplied by an identity 

matrix, and the scalar value was computed as a percentage of the norm of the sample 

data covariance. A range of percentages from 0.05% to 10% are utilized. For both variants 

of Champagne with noise learning, the initialization for noise covariance is set to the 

equivalent Noise_Sub covariance matrix. Initialization of hyperparameters for brain source 

activity α is performed by computing the Minimum-Norm Estimation (MNE) (Sekihara and 

Nagarajan, 2015) to estimate voxel variances. For the benchmark algorithm sLORETA used 
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in real datasets, we use the default setting in NUTMEG software where the regularization 

parameter is equal to the maximum eigenvalue of the sensor data covariance (Dalal et al., 

2004). In real data sets, since we do not know the details of the noise, ground truth is defined 

as the brain activity estimated from all available trials for each subject.

4. Results

4.1. Simulation results

In Fig. 1, five random dipolar sources are seeded with inter-source correlation coefficient of 

0.99. The SNR is set as 3 dB with real brain noise. The ratio of noise covariance to sample 

data covariance for all algorithms are increased from 0.05% to 10%. As shown, EM_NL 

and CB_NL show similar aggregate performance results, which consistently outperform 

the Champagne algorithms without noise learning and are close to original Chamapagne 

with true non-diagonal noise. In contrast, increasing the ratio decreases the performance of 

Champagne with Noise_Sub.

Fig. 2 (A) plots aggregate performance results of varying the number of seeded dipolar 

sources and SNR. Results of all algorithms in response to increasing number of seeded 

dipolar sources are presented in Fig. 2(A). Here, the inter-source correlation coefficient 

is fixed at 0.99 and SNR is fixed at 3 dB. All algorithms have the same trend, showing 

decreasing performance as number of sources increases. In general, the performance of 

EM_NL and CB_NL are similar and close to original Champagne with true non-diagonal 

noise covariance setting. In addition, EM_NL and CB_NL consistently show better 

performance results than original Champagne with Noise_Sub. When increasing the ratio 

of noise subspace covariance to data covariance, the performance of Champagne with 

Noise_Sub decreases. Champagne with Noise_Sub (0.1%) produces the best performance 

among all noise subspace covariance settings and Champagne with Noise_Sub (10%) 

produces the worst performance.

Performance results versus SNR for all algorithms are plotted in Fig. 2 (B). Reconstruction 

performance is evaluated for five randomly seeded dipolar sources with an inter-source 

correlation coefficient of 0.99. Again, all algorithms have the same trend, with increasing 

performance as the SNR increases. EM_NL and CB_NL perform similar to original 

Champagne with true non-diagonal noise covariance setting and consistently produce more 

accurate results than Champagne with Noise_Sub. Champagne with Noise_Sub (0.1%) 

produces the best performance among all non-noise learning algorithms and Champagne 

with Noise_Sub (10%) shows the worst performance.

In summary, from the results of our computer simulations, we can conclude that EM_NL 

and CB_NL consistently show similar and closer performance to original Champagne 

with true non-diagonal noise, which outperform Champagne with Noise_Sub (0.1% to 

10%). Incorrect noise covariance estimation for traditional Champagne generates poor 

performance, as expected. Since EM_NL and CB_NL show similar performance, for 

simplicity, in the next section for real data sets, we only present the performance of CB_NL.
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4.2. Results of real datasets

4.2.1. Somatosensory evoked field paradigm—Fig. 3 shows localization results of 

the somatosensory evoked field response due to somatosensory stimuli presented to one 

representative subject’s right index finger. A peak should be typically seen ~ 50 ms after 

stimulation in the contralateral (in this case, the left) somatosensory cortical area for the 

hand, i.e., dorsal region of the postcentral gyrus (hand knob). To evaluate algorithmic 

robustness, we randomly choose several subsets of trials for reconstruction. Since for 

SEF data sets, there is only one dominant brain source, we present another widely used 

benchmark for comparison-sLORETA. As is shown, Champagne with CB_NL is able to 

localize activation to the correct area of the somatosensory cortex with focal reconstructions 

under even a few trials or a single trial. Champagne with Noise_Sub (10%) is able to 

produce reasonable results when the number of trials is equal or larger than 12, otherwise, 

localization with Champagne with Noise_Sub is biased towards the edge of the head and 

contains several false areas of brain activity. sLORETA is able to localize diffuse brain 

activity at the somatosensory cortex with 12 and 63 trials; otherwise, the activity is falsely 

localized.

Fig. 4 shows five individuals and averaged aggregate performance results of Champagne 

with Noise_Sub (0.1% to 10%), sLORETA, and Champagne with CB_NL for sensory 

evoked field localization versus number of trials. Error bars depict standard errors. Trials 

are randomly chosen from around 250 trials from each subject and the number of trials is 

increased from 1 to 63. Each condition is tested 30 times for each subject. Ground truth is 

defined as the brain activity estimated from around 250 trials per subject. The same strategy 

is used as for simulations to obtain the aggregate performance for each test. In general, 

increasing the number of trials increases the performance of all algorithms. Champagne 

with CB_NL consistently produces better results than Champagne with Noise_Sub and 

sLORETA.

4.2.2. Auditory evoked field paradigm—Fig. 5 shows Auditory evoked field (AEF) 

localization results versus number of trials from a single representative subject using 

Champagne with Noise_Sub, sLORETA, and Champagne with CB_NL. The power at each 

voxel around the M100 peak is plotted for each algorithm. Again, Champagne with CB_NL 

is able to localize the expected bilateral brain activation with focal reconstructions under 

even a few trials or even a single trial. The limited number of trials does not influence the 

reconstruction results. Specifically, the activities localize to Heschl’s gyrus in the temporal 

lobe, which is the characteristic location of the primary auditory cortex.

Champagne with Noise_Sub (10%) is able to localize the bilateral auditory activity when the 

number of trials is larger than 12 and Champagne with Noise_Sub (1%) is able to localize 

the bilateral auditory activity with the number of trials is 63; otherwise, localization by 

Champagne with Noise_Sub is biased towards the edge of the head and produces several 

areas of pseudo brain activity. Inaccurate noise covariance estimation further degrades 

the performance of Champagne with Noise_Sub. sLORETA is unable to localize bilateral 

auditory activity in all conditions.

Cai et al. Page 10

Neuroimage. Author manuscript; available in PMC 2021 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 shows aggregate performance results from five subjects for Champagne with 

Noise_Sub (0.1% to 10%), sLORETA, and Champagne with CB_NL, for Auditory Evoked 

Field localization as a function of the number of trials used for localization; the error bars 

show standard error. Trials are randomly chosen from around 120 trials from each subject 

and the number of trials is increased from 1 to 63. Each condition is tested 30 times for 

each subject. Again, the ground truth is defined as the brain activity estimated from around 

120 trials per subject. In general, increasing the number of trials increases the performance 

of all algorithms. Champagne with CB_NL consistently produces more accurate results than 

Champagne with Noise_Sub and sLORETA.

4.2.3. Resting state data—The localization results for resting state data analysis from 

six subjects are shown in Fig. 7. For resting state analysis, there is no clear baseline data for 

background noise covariance estimation. As is seen, Champagne with CB_NL can localize 

all subjects’ brain activity near the midline occipital lobe or posterior cingulate gyrus during 

rest. For resting state analysis, even though there is no pre-stimulus data for background 

noise estimation, Champagne with CB_NL is able to learn the underlying noise and still 

recovers reasonable activity.

In summary, from the reconstructed results of our real data sets, Champagne with noise 

learning consistently produces better results than Champagne with Noise_Sub (0.1–10%) 

and sLORETA. Champagne with CB_NL is able to localize brain activity accurately with 

a few trials or even a single trial, while Champagne with Noise_Sub (0.1–10%) fails 

to localize when the number of trials is less than 12. Even though pre-stimulus data 

is unavailable for resting state analysis, Champagne with CB_NL is able to learn the 

underlying noise and still recover reasonable activity.

5. Discussion

This paper derives several robust ways to estimate contributions to sensors from noise 

without the need for additional “baseline” or “control” data, while preserving robust 

reconstruction of complex brain source activity and performance features of the sparse 

source reconstruction algorithm Champagne. The underlying data estimation portion of the 

algorithms are based on a principled cost function which maximizes the marginal likelihood 

or a convex lower bound on the marginal likelihood of the data, resulting in fast and 

convergent update rules.

In our novel algorithms, we further optimize the cost function using several robust 

algorithms to learn the noise. Noise learning is accomplished by making assumptions 

about the structure of the noise followed by Bayesian inference to derive update rules for 

noise estimation. Scalar covariance matrix can be used for the modeling of homoscedastic 

noise, while diagonal covariance matrix can be used to model heteroscedastic noise. In 

our novel noise estimation algorithms, we employ the following strategies for updating 

the noise covariance: Marginal Likelihood (ML) maximization, expectation maximization 

(EM), and convex bounding (CB) based Bayesian inference. The new algorithms readily 

handle a variety of configurations of dipolar brain sources under high noise and interference 

conditions without the need for additional ”baseline” or ’control ” measurements – a 
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situation that commonly arises in resting state data analysis. Computationally, it can be 

shown that augmenting the voxel leadfield matrix with an identity matrix corresponding to 

sensor noise can be used to simultaneously update the voxel and noise covariances using 

convex-bounding methods efficiently.

The novel algorithms display significant theoretical and empirical advantages over the 

existing benchmark Champagne algorithm when the noise covariance cannot be accurately 

determined in advance. Simulations were developed to explore noise learning algorithmic 

performance for complex source configurations with highly correlated time-courses, 

multiple dipolar sources, and high levels of noise and interference. These simulations 

demonstrated that noise-learning Champagne algorithms outperform traditional Champagne 

with an incorrect noise covariance as they show higher AP scores. Furthermore, noise

learning Champagne’s performance demonstrates that noise learning is robust even when the 

algorithms are initialized to incorrect noise values.

In general, it is difficult to evaluate localization algorithm performance with real data 

since the ground truth is unknown. For this reason, we chose real data sets that have 

well-established patterns of brain activity (SEF and AEF). We also demonstrate that even 

though pre-stimulus data for resting state analysis does not exist, our novel algorithm 

is able to learn the underlying noise and still recover reasonable activity. Performance 

on these real data sets demonstrates that Champagne with noise learning is superior in 

localizing real brain activity when compared to Champagne with Noise_Sub and sLORETA. 

The sLORETA algorithm implemented in this paper was regularized with the default 

setting of the maximum eigenvalue of the lead-field matrix, which we have found to be a 

robust regularization setting for this algorithm. Estimating the regularization using Bayesian 

minimum-norm estimation method and noise updates proposed here also has the potential to 

improve the performance of sLORETA and allied minimum-norm algorithms.

Since brain activity has a very low signal-to-noise ratio compared to background activity, 

many trials are often required for reconstruction of evoked fields. Using our novel noise

learning algorithm, we are able to robustly localize brain activity with a few trials or even 

with a single trial in our SEF and AEF datasets, which is a revolutionary improvement in 

electromagnetic brain imaging. In fact, data collection times may be dramatically reduced 

up to ten-fold, which is particularly important in studies involving children with autism, 

patients with dementia, or any other subjects who have difficulty tolerating long periods of 

data collection.

We now discuss related work on noise covariance estimation for electromagnetic imaging. 

Cross-validation and likelihood estimation methods have been proposed by Engemann et al. 
with the availability of separate baseline data for noise covariance estimation (Engemann et 

al., 2015; Engemann and Gramfort, 2015). More complex spatiotemporal noise covariance 

structures have also been estimated from separate baseline measurements (Ahn and Jun, 

0000; Bijma et al., 2003; Huizenga et al., 2002; Plis et al., 2006). Joint estimation of brain 

source activity and noise covariance have been previously proposed for Type-1 penalized 

likelihood methods. Massias et al. (2018) proposed a Smoothed Generalized Concomitant 

Lasso (SGCL) algorithm, which examined mixed-norm optimization for MEG imaging. This 
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model includes a single scalar parameter for noise, independent of the multiple noise levels 

present in heterogeneous data. Subsequently, Quentin et al. extended the SGCL framework 

to a Concomitant Lasso with Repetitions (CLaR) estimator (Bertrand et al., 2019) that can 

cope with more complex noise structure estimated from non-averaged measurements. In 

contrast to these Type-I likelihood estimation methods, the present Champagne algorithm 

with noise learning uses Type-II likelihood estimation methods. We have previously 

shown that Type-I likelihood methods which make use of non-factorial, lead-field and 

noise-dependent priors can be shown to have a dual with Type-II likelihood methods with 

comparable performance (Wipf et al., 2011). However, in general, in our previous papers 

(Cai et al., 2019), performance of Type-II likelihood estimation methods yields superior 

results to Type-I methods with factorial priors. Formal comparisons of the performance of 

noise learning updates on Type-I vs Type-II estimation methods are interesting explorations 

for future work.

Here, we assume noise is independent between different sensors in order to make estimating 

source variance and diagonal noise covariance simultaneously a tractable problem. In 

the future, if baseline data is available and can be used to estimate the gain matrix of 

interference and noise, adding other noise structures into the forward model, such as low

rank Toeplitz noise, is hoped to improve the learning of dependent or correlated sensor 

noise and to further improve the estimation of brain electromagnetic activity in noisy 

environments. In addition, the application of methods in this paper can also be derived 

by augmenting the leadfield matrix with an identity matrix, see Appendix D, which will 

be further detailed and tested as part of our future work. Extending the current Gaussian 

noise priors to more realistic non-Gaussian priors may also significantly improve the results, 

which will also be part of our work in the future. Using a noise covariance model based 

on a single Kronecker product of spatial and temporal covariance in the spatiotemporal 

analysis of MEG data has been demonstrated to provide improvement in the results over 

that of the commonly used diagonal noise covariance model (Ahn and Jun, 0000; Bijma et 

al., 2003; Huizenga et al., 2002; Plis et al., 2006), which will be a potential extension for 

Champagne algorithm to improve the accuracy of brain source activity and noise estimation. 

In practice, the measured sensor noise due to non-brain sources that are highly correlated 

across sensors will have non-trivial off-diagonal elements. However, here we consider only 

a diagonal noise covariance to limit the number of noise parameters. We have found that 

assuming a non-diagonal noise covariance quite often results in solutions where all brain 

source activity is estimated to be zero and the noise covariance is estimated to be equal to 

the data covariance, perhaps due to spar-sity priors on brain sources. Therefore, we relegate 

robust estimation of non-diagonal noise covariance to future work.
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Appendix A.: Learning noise covariance using marginal likelihood 

maximization

The first and direct way to estimate the noise covariance Λ is setting the derivative of the 

cost function with respect to Λ to zero and fixing α,

∂
∂Λ ℱ = ∂

∂Λ log Σy + ∂
∂Λ

1
T

t = 1

⊤

y⊤(t)Σy
−1y(t) . (A.1)

Using Σy = Λ + LαL⊤ with thse following matrix lemma,

Λ + LαL⊤ =
Λ α−1 + L⊤Λ−1L

α−1 , (A.2)

1
T Σt = 1

T
y⊤(t)Σy

−1y(t) from the second term in the right-hand side of Eq. (A.1) can be 

computed as

1
T

t = 1

T

y⊤(t)Σy
−1y(t) = 1

T
t = 1

T

(y(t) − Ls(t))⊤Λ−1(y(t) − Ls(t))

+s⊤(t)α−1s(t) .

(A.3)

Since Λ = diag(λ1, λ2, ⋯, λM), the update rule for λm is expressed as:

λm = 1
T

t = 1

T

(y(t) − Ls(t))(y(t) − Ls(t))⊤
mm + lm ⋅ Γ−1lm ⋅

⊤

= 1
T

t = 1

T

(ym(t) − lm ⋅ s(t))2 + lm ⋅ Γ−1lm ⋅
⊤

(A.4)

where Γ = α−1 + L⊤Λ−1L. An alternative derivation of noise covariance using the 

Expectation Maximization algorithm is shown below, which results in identical update rules.
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Appendix B.: Leaning noise covariance using Expectation Maximization 

(EM) algorithm

The second way to estimate the noise covariance Λ is using EM algorithm (Moon, 1996) 

with the following cost function (Wipf and Nagarajan, 2009) expressed as

ℱEM(Λ) = T
2 log α−1 − 1

2Es
t = 1

T

s⊤(t)α−1s(t) + T
2 log Λ

− 1
2Es

t = 1

T

(y(t) − Ls(t))⊤Λ−1(y(t) − Ls(t)) + C .

(B.1)

where C expresses terms that do not contain Λ. Setting the derivative of the cost function 

Eq. (B.1) with respect to λm to zero generates the update rule for noise covariance as 

follows

λm = 1
T Es

t = 1

T

(y(t) − Ls(t))(y(t) − Ls(t))⊤

mm

= 1
T

t = 1

T

(ym(t) − lm ⋅ s(t))2 + lm ⋅ Γ−1lm ⋅
⊤ .

(B.2)

The EM update rule for noise covariance in the above equation is the same as the update rule 

derived by direct maximizing marginal likelihood.

Appendix C.: Learning noise covariance using convex bounding approach

The third way to estimate the noise covariance is using an auxiliary cost function (Wipf and 

Nagarajan, 2009) which is based on the convex bounding approach (Jordan et al., 1999). 

Noise covariance update rules can be derived through convex bounding of the marginal 

likelihood,

ℱCB(Λ) = 1
T

t = 1

T

(y(t) − Ls(t))⊤Λ−1(y(t) − Ls(t)]

+q⊤Λ − q0,

(C.1)
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where q = [q1, q2, ⋯, qM]⊤ is an auxiliary variable, and q0 is a scalar term. For the nth sensor, 

the convex bounding update rule for noise variance of the m-th sensor is obtained by setting 

the derivatives of ℱCB(Λ) with respect to λm to zero, resulting in

λm =
1
T t = 1

T
(ym(t) − lm ⋅ s(t))2

qm
. (C.2)

The update rule for q is equivalent to finding a hyperplane q⊤Λ − q0 that forms a closest 

upper bound of log Σy . Such a hyperplane is found as the plane that is tangential to log Σy
(Sekihara and Nagarajan, 2015). Therefore, the updated value qm is given by

qm = Σy
−1

mm . (C.3)

where em is a M × 1 vector which is the leadfiled matrix for m-th sensor’s noise, where the 

element in m-th row is 1, the others are 0.

Appendix D.: Estimating brain sources and noise covariance 

simultaneously using convex-bounding based approach

We can estimate brain source activity and noise variance simultaneously with slight 

modifications to the generative model. We assume that each sensor measurement is the 

summation of whole brain activity and one noise source. The leadfield matrix for the noise 

activity is assumed as an M × M identity matrix I = [e1, …, eM]. The generative model can 

then be rewritten as,

y(t) = L I s(t)
ε(t) (D.1)

where

F = [L1, …, LN, e1, ⋯, eM]
= [F1, …, FN + M], (D.2)

and

x(t) = [s1
⊤(t), …, sN

⊤ (t), ε1(t), ⋯, εM(t)]⊤

= [x1
⊤(t), ⋯, xN + M

⊤ (t)]⊤,
(D.3)

are the augmented leadfield matrix Fk and the time courses for the brain activity and noise 

xk(t), (k = 1, ⋯, N for sources, k = N + 1, ⋯, N + M for noise). We also define the 

augmented prior hyperparameters v for source and noise activity as
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v = diag[α1Idc × dc, ⋯, αNIdc × dc, λ1, ⋯, λM]
= diag[v1Idc × dc, ⋯, vNIdc × dc, vN + 1, ⋯, vN + M] . (D.4)

Utilizing the convex bounding on the marginal likelihood results in fast convergence 

properties in the following update rules:

xk(t) = vkFk
TΣy

−1y(t), (D.5)

vk =
1
T t = 1

T
xk

T(t)xk(t)
gk

(D.6)

gk = tr(Fk
TΣy

−1Fk), (D.7)

where, gk is an auxiliary variable. Σy = FvFT  is the model data covariance matrix. In 

summary, the augmentation algorithm simultaneously estimates brain sources and noise 

activity xn(t) by iterating between Eqs. (D.5)–(D.7).
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Fig. 1. 
Aggregate performance in simulations for different noise levels for Champagne with true 

non-diagonal noise, Noise_Sub and for the noise learning algorithms proposed here. Five 

random dipolar sources are seeded with inter-source correlation coefficient of 0.99. The 

SNR is set to 3 dB with real brain noise. Results are averaged with 50 simulations at each 

data point and the error bars show the standard error.
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Fig. 2. 
Simulation results of aggregate performance versus (A) number of seeded dipolar sources; 

(B) signal-to-noise ratio. The results are averaged with 50 simulations at each data point and 

the error bars show the standard error.
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Fig. 3. 
Sensory Evoked Field localization results versus number of trials using Champagne with 

Noise_Sub (0.1% to 10%), sLORETA, and Champagne with CB_NL.
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Fig. 4. 
Aggregate performance results versus number of trials for SEF for five subjects using 

Champagne with Noise_Sub (0.1% to 10%), sLORETA, and Champagne with CB_NL.
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Fig. 5. 
Auditory evoked field (AEF) localization results versus number of trials from one 

representative subject using Champagne with Noise_Sub (0.1% to 10%), sLORETA, and 

Champagne with CB_NL.
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Fig. 6. 
Aggregate performance results versus number of trials for AEF from five subjects using 

Champagne with Noise_Sub (0.1% to 10%), sLORETA, and Champagne with CB_NL.
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Fig. 7. 
Localization results of spontaneous brain activity for six subjects using Champagne with 

CB_NL.
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Table 1

The Champagne Algorithm with Noise Learning

Input: Sensor data y(t), (t = 1, …, T), leadfield matrix L

Output: Brain source activity s(t), (t = 1, …, T)

 1: Set random initial values to αn, (n = 1, …, N) and noise variances

 λm, (m = 1, …, M)

 repeat

  2: Source time-course updates Wipf et al. (2010); Owen et al. (2009)

   sn t = αnLn
⊤Σy

−1y t

αn =
1
T Σt = 1

T
sn⊤(t)sn(t)

zn
zn = tr(Ln

⊤Σy
−1Ln)

  3: Diagonal noise covariance updates
   Marginal likelihood maximization updates (EM_NL):

    λm = 1
T Σt = 1

T
ym t − lm:s t 2 + lm:Γ−1lm:

⊤

     OR

    Convex bounding updates (CB_NL):

     λm =
1
T t = 1

T
(ym t − lm:sm t 2

qm
qm = em⊤Σy

−1em
until The following cost function converges

   ℱ = log Σy + 1
T ∑t = 1

T y⊤ t Σy
−1y t

4: Output time course s(t)
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