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 Choroidal melanoma is the most common primary in-
traocular cancer in adults. Despite successful local ocular thera-
pies at least 50% of all patients with choroidal melanoma will
die from metastasis within 15-25 years of disease onset [1-4].
Recently, cytogenetic and molecular testing for metastatic risk
has become an increasing part of the management of patients
with choroidal melanoma. Loss of one copy of chromosome 3
has been reported in approximately 50% of choroidal mela-
nomas. Monosomy 3 of the tumor tissue is the strongest known
predictor of metastatic death. Longitudinal reports have indi-
cated that of the patients with monosomy 3, 50-70% identi-
fied at the time of ocular treatment will develop metastasis
within five years [3,5-8]. Accurate identification of patients
with a poor prognosis may allow for the detection of metasta-
sis at an earlier stage and will help select those for whom clini-
cal trials for metastatic therapies may be best suited.

Chromosome 3 status of choroidal melanoma may be de-
termined through a combination of surgical and analytic tech-
niques. Tumor material may be obtained from an enucleated
globe, as well as in vivo with fine needle aspiration biopsy
(FNAB) at the time of plaque brachytherapy. This latter tech-
nique has been shown to be a feasible method to obtain mate-

rial for prognostic testing [9-13]. Intraoperative FNAB en-
ables patients with smaller tumors who undergo globe-con-
serving surgery to benefit from prognostic testing. Centromeric
probing of chromosome 3 by fluorescent in-situ hybridization
(FISH) is the most common method for detecting monosomy
3 and is feasible in material obtained from FNAB. Chromo-
some 3 status may also be determined by genome-wide stud-
ies including conventional karyotype analysis [8,14-17], com-
parative genomic hybridization (CGH) [4,18-22],
microsatellite analysis [4,23-26], and more recently, single
nucleotide polyphormism (SNP) high-density genome-wide
array mapping techniques [27]. These latter techniques, which
provide more comprehensive genome-wide data, have been
described in enucleated specimens but little has been reported
in specimens obtained in vivo from FNAB of smaller choroi-
dal melanomas.

Using a combination of FISH analysis and genome-wide
high-density chromosomal mapping by SNP array, we com-
pared the abilities of these methods to detect monosomy 3
and other chromosomal aberrations in choroidal melanoma
specimens obtained via intraoperative transscleral FNAB.

METHODS
Fine needle aspiration biopsy specimens:  Fifty-nine patients
(59 eyes) who had a clinical diagnosis of choroidal melanoma
were treated at the Jules Stein Eye Institute between April 2006
and May 2007. Two of the 59 patients required enucleation
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and 57 patients were treated with iodine-125 plaque
brachytherapy. Tumors ranged in height from 2.0-12.7 mm
with a mean tumor height of 4.6 mm. Each eye was biopsied
by fine needle aspiration either immediately prior to iodine-
125 plaque placement or immediately after enucleation.

All studies were approved by the Institutional Review
Board of the University of California, Los Angeles (UCLA)
and work was in compliance with the Health Insurance Port-
ability and Accountability Act of 1996 (HIPAA). Prior to treat-
ment, evaluation of each patient included comprehensive oph-
thalmic examination, ultrasonography, photography, optical
coherence tomography, and fluorescein angiography. All pa-
tients had systemic evaluation, usually by an oncologist at the
Jonsson Comprehensive Cancer Center at UCLA, and were
offered psychologic support by a clinical psychologist or so-
cial worker with particular expertise in choroidal melanoma.

Intraoperative transscleral FNAB and iodine-125 plaque
brachytherapy were performed by a single surgeon (TAY). The
extent of the choroidal melanoma was confirmed with indi-
rect ophthalmoscopy. Following localization of the melanoma
with transillumination, FNAB was performed with a 30-gauge
needle via a tangential transscleral approach [13]. The first
aspirate of the biopsy was immediately passed off to the ocu-
lar pathologist (BJG), who was present in the operating room.
This was immediately smeared on glass slides in the operat-
ing room, fixed in ethanol, stained with hematoxylin and eosin,
then evaluated for cytologic evidence of melanoma [28]. Two
pooled aspirates were obtained for FISH processing. Addi-
tional aspirates were obtained and pooled for nucleic acid sta-
bilization in RNAprotect cell reagent (Qiagen, Valencia, CA).
Residual material in the needles was immediately rinsed into

RNAprotect cell reagent. A range of five to nine aspirates was
obtained from each patient with a mean of seven aspirates.
Indirect binocular ophthalmoscopy was performed following
the biopsy. Samples insufficient for an immediate cytologic
diagnosis were later tested by immunohistochemistry for
HMB-45 [29]. The plaque was sutured in place upon receipt
of a preliminary cytologic diagnosis, and optimal plaque po-
sition was confirmed with intraoperative ultrasonography.

Interphase fluorescence in-situ hybridization:  For FISH
analysis, we used a directly labeled centromeric probe to as-
sess the status of chromosome 3. This probe was hybridized
to fixed cultured cells following the manufacturer’s protocol
(Abbott-Vysis, Downers Grove, Illinois). Briefly, cells were
fixed in a 3:1 solution of methanol:glacial acetic acid, placed
on slides and stored at -20 °C until hybridization. Slides were
denatured in 70% formamide at 70 °C for 2 to 4 min, dehy-
drated in a 70%, 85%, 100% ethanol series, and air-dried. A
Spectrum Orange conjugated probe (Abbott-Vysis, Des
Plaines, IL) specific for chromosome 3 was used for inter-
phase FISH. Hybridization was performed overnight at 37 °C
in a humidified chamber and the nuclei counterstained with
0.2 mM diamino-2-phenylindole dihydrochloride (DAPI) in
90% glycerol/10% PBS, pH 8.0. Hybridization signals were
manually counted in non-overlapping nuclei of cells under a
fluorescence microscope (Zeiss Axiophot, Zeiss, Jena, Ger-
many) equipped with a triple filter (DAPI/FITC/Texas-Red)
[13].

Isolation of DNA for microarray analysis:  Pooled aspi-
rates stabilized in RNA protect cell reagent were pelleted and
DNA and RNA were simultaneously isolated from the same
sample using an AllPrep DNA/RNA Mini Kit (Qiagen) as per
manufacturer’s instructions. Isolated DNA was quantitated
using a NanoDrop ND-1000 (NanoDrop, Wilmington, DE).
No DNA samples were subjected to whole genome amplifica-
tion techniques. RNA was stored for future analyses, and the
data were not generated for inclusion in this report.

Single nucleotide polymorphism analysis:  DNA copy
number was assessed using 500k NSPI Mapping Arrays
(Affymetrix, Santa Clara, CA). Probe preparation, hybridiza-
tion, and reading were performed by the UCLA DNA
Microarray Core (Los Angeles, CA), according to the stan-
dard 96-well protocol published by Affymetrix. Copy number
variation was computed using CNAT v4.0.1 software from
Affymetrix.

Statistical analysis:  Chromosome aberration frequency
analysis was performed using Fisher’s exact test. Chromosomal
aberration clustering for each biopsy was performed using (1-
Pearson correlation matrix) as input of average linkage hier-
archical clustering to arrive at a dendrogram (clustering tree).

RESULTS
Comparison of sample recoveries for chromosome 3 fluores-
cence in-situ hybridization assay and mapping array analy-
sis:  Of the 59 patients who underwent FNAB, FISH results
were obtained in 38 (64%) of the cases. Parallel, pooled aspi-
rates (range; 2-4) from each patient were processed for simul-
taneous isolation of DNA and RNA, and the nucleic acid re-
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Figure 1. Monosomy 3 ratios by fluorescence in-situ hybridization
in fine needle aspiration specimens.  The scatter plot shows the dis-
tribution of scoring for the 15 samples determined to be monosomy
3 by fluorescence in-situ hybridization (FISH). The vertical axis rep-
resents sample heterogeneity with respect to monosomy 3. The 20%
level is the threshold below which FISH and single nucleotide poly-
morphism (SNP) mapping array results diverge. Boxed data points
indicate monosomy 3 by FISH which is inconsistent with mapping
array.
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coveries were determined. Where DNA recoveries exceeded
350 ng, samples were determined to be adequate for mapping
array analysis. Of the 59 patients who underwent FNAB, 49
(83%) of the cases yielded adequate DNA, ranging 380-3040
ng. Six of these 49 failed to generate adequate probe for
microarray due to melanin coprecipitation. Mapping array data
were successfully obtained in the remaining 43 cases (73%)
of the total cases. Mapping arrays not only provided data in
all 38 cases where FISH data were obtained, but also pro-
vided data in five patients in whom FISH data were not ob-
tained.

Comparison of findings of chromosome 3 fluorescence
in-situ hybridization assay and mapping array analysis:  Of
the 38 cases where FISH results were obtained, monosomy 3
was reported in 15 (39%) of these cases, as shown in Figure 1.
Normal signal pattern (disomy 3) was reported in the remain-
der. Of the 43 cases where SNP mapping array results were
obtained, 18 (42%) of the cases demonstrated either mono-
somy 3 or significant aberrations in chromosome 3. In 13 cases,

FISH and high-density mapping results were in agreement.
In one case where FISH yielded insufficient material

(MEL20-06-022), SNP mapping array resulted in a finding of
monosomy 3. There were six discrepancies between data re-
ported by FISH and by SNP mapping array: Two were cases
of monosomy 3 by FISH, which had disomy 3 by SNP, and
four were cases of disomy 3 by FISH, which had chromo-
some aberration or monosomy 3 by SNP.

Two cases of monosomy 3 by fluorescent in situ hybrid-
ization with disomy 3 by single nucleotide polymorphism:
MEL20-06-004 was found to have monosomy 3 by FISH with
a count of 39 nuclei out of 300 nuclei reporting a single cen-
tromeric signal. MEL20-07-068 was reported as monosomy 3
with 18 of 113 nuclei reporting a single centromeric signal.
Mapping arrays reported disomy 3 in both cases (Figure 1).

Four cases of disomy 3 by fluorescent in situ hybridiza-
tion which had chromosome 3 aberration or monosomy 3 by
single nucleotide polymorphism:  Two samples, MEL20-06-
013 and MEL20-06-038, were reported by FISH to be normal
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Figure 2. Chromosomal aberration determined by high-density genome single nucleotide polymorphism mapping array in fine needle aspira-
tion specimens.  Summary of accumulated chromosomal gain and loss data from GeneChip 500k NspI mapping arrays for 43 biopsies is
demonstrated. Array data were processed using CNAT v4.0.1. Sample organization into a dendrogram used (1-Pearson correlation matrix) as
input of average linkage hierarchical clustering. Red boxes denote whole or partial loss; green boxes denote a whole or partial gain; green
boxes labeled 2X denote a two-copy gain.
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signal pattern yet were found by SNP mapping array to have
significant aberrations in chromosome 3. MEL20-06-013 was
shown by SNP mapping array to have lost the majority of the
p-arm of one copy of chromosome 3. This result was con-
firmed by reprobing the FISH slide with a cocktail of CEP-3
Spectrum Orange and a BAC probe (RP11584A6) spanning
the microphthalmia transcription factor (MITF) locus at 3p12.
The majority of cell nuclei showed two centromeric signals
and a single MITF signal (data not shown). MEL20-06-038
was shown by mapping array to have lost a 3q and gained a
3p, which may be explained by isochromosome formation of
3p. The configuration of the aberrations in chromosome 3
detected in each of these two samples is consistent with the
centromere data provided by FISH. Therefore, FISH was tech-
nically not in conflict, but it was inadequate to detect signifi-
cant chromosome 3 aberrations in these cases. Finally, two
cases reported as disomy 3 by FISH, (MEL20-07-058 and
MEL20-07-61), were found to have monosomy 3 by mapping
array.

Other chromosomal aberrations detected by single nucle-
otide polymorphism mapping array analysis:  Beyond chro-
mosome 3 analysis, we found mapping arrays were able to
detect additional genomic aberrations in choroidal melanoma
that occurred with a high frequency and were consistent with
aberrations reported by other cytogenetic means. Figure 2 sum-
marizes the chromosomal aberration found in each biopsy for
which SNP mapping array data were reported. The biopsies
were sorted using (1-Pearson correlation) clustering. Seven
of the 43 biopsies had no detectable chromosomal aberrations
and were excluded from the cluster analysis. The cluster analy-
sis revealed two distinct sets of chromosomal aberrations based
on monosomy 3 or chromosome 6p gain. MEL20-06-038 was
found to be the sole outlier, having what appeared to be isoch-
romosome 3p formation.

The frequency and extent of chromosomal gain and loss
are shown in Figure 3 and reveal instabilities in chromosomes
1, 3, 6, 8, and 9. Of particular note were recurring double gains
in both the telomeric region of 6p and the entire arm of 8q.
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Figure 3. Frequency and extent of chromosomal gains and losses by high-density genome single nucleotide polymorphism mapping array in
fine needle aspiration specimens.  Graphical alignment of chromosomal gain and loss data from GeneChip 500k NspI mapping arrays is
shown. Losses are to the left of each ideogram and are denoted in red. Gains are to the right and are denoted in green. Wide green bars labeled
2X denote regions of two-copy gain. Only those chromosomes that demonstrated instability in three or more tumors are depicted.
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Chromosome 1p loss occurred in six cases, but always in
association with either monosomy 3 or 6p gain. Chromosome
8q gain or double-gain occurred in 20 (47%) of the cases, but
always in association with either monosomy 3 or 6p single- or
double-gain. The combination of 8p loss and concomitant 8q
gain or double gain occurred in nine (21%) of the cases and
was strongly associated with monosomy 3 (Fisher’s exact test,
p=0.008).

DISCUSSION
 High-density SNP mapping array provided a more robust and
sensitive determination of monosomy 3 than FISH in prog-
nostic testing of choroidal melanoma tissue obtained by FNAB.
High-density mapping revealed five additional patients whose
tumors contained a high degree of chromosome 3 aberration
or monosomy 3 not detected by FISH. In addition, high-den-
sity SNP mapping array provided a wealth of detailed genome-
wide information with respect to chromosomal gains and
losses. These findings revealed a dichotomy of patients who
had monosomy 3 and those with gains in 6p; these two groups
were mutually exclusive. Finally, each of the eight cases that
showed a loss of the entire 8p arm also had a gain of the entire
8q arm, suggesting that 8q isochromosome formation may be
an important and common instability in choroidal melanoma.

We have demonstrated that the use of intraoperative
transscleral FNAB to establish a molecular karyotype by means
of high-density chromosome mapping with SNP is feasible in
patients with choroidal melanoma. With this method, our yield
for information on chromosome 3 status was 73%. This is com-
parable to Shields et al., who reported a yield of 75% using
microsatellite analysis to determine chromosome 3 status in
transscleral FNABs [11]. Furthermore, our data are consistent
with the findings reported by Parrella et al in which
microsatellite analysis of material obtained from enucleated
choroidal melanoma resulted in similar results with patients
segregating into two mutually exclusive groups: those with
monsomy 3 and those with gains in chromosome 6p; both
groups demonstrated aberrations in chromosome 8 [26]. Ad-
ditionally, gains in the long arm of chromosome 9 have also
been reported by Magauran et al [30]. We have shown that
our high-resolution data indicate consistent large-scale gains
and losses often encompassing entire chromosome arms.

Heterogeneity is a known characteristic of all solid tu-
mors including choroidal melanoma. Sampling a tumor with
any biopsy technique may reveal information that does not
reflect the entire tumor composition or may miss a small clone
of highly malignant cells. Although Sandinha et al [31] and
Maat et al [32], using different specimen preparations and tech-
niques, reported intra-tumor differences with respect to mono-
somy 3, Meir et al [33] did not report any heterogeneity in the
two areas per tumor sampled in a study evaluating correlative
histologic factors with monosomy 3. Our method of FNAB
involved multiple aspirates from variable sites within the tu-
mor: pooled aspirates for FISH, as well as two or more pooled
aspirates for DNA and RNA analyses. Perhaps this may have
reduced inconsistent data, which could arise from heteroge-
neity. Yet, we did have two samples for which the FISH aspi-

rates may have contained either a different clonal region of
the tumor or a non-tumor tissue. We observed a wide range of
cell number and sample heterogeneity by FISH with respect
to monosomy 3. Relatively homogenous samples were found
to have good agreement with SNP mapping array data. How-
ever, below the 20% threshold the results became divergent.
We believe that this is a limitation of FISH, rather than high-
density SNP mapping array. In contrast to previous reports of
tumor heterogeneity which refer to FISH or microsatellite
analyses, we found that the incorporation of high-resolution
genome-wide SNP array resulted in tumors of two distinct lin-
eages-the monosomy 3 genotypic pattern or the chromosome
6p gain pattern.

As we continue to follow the metastatic outcome of our
patients, the mortality associated with specific chromosomal
aberrations will be elucidated. At a genome-wide level, our
data suggest a finite level of genetic complexity within chor-
oidal melanomas. The ability to narrowly define specific chro-
mosomal aberration sets between tumor groups with SNP
mapping may allow us to more accurately prognosticate on
the morbidity and mortality of our patients than with conven-
tional FISH testing for monosomy 3 alone.

In summary, we report that high-density SNP mapping
arrays of choroidal melanoma FNAB material are feasible and
provide more complete information regarding genome-wide
variations than FISH testing for monosomy 3 alone. In addi-
tion, patient chromosomal aberrations in this cohort were
aligned into two discrete groups-monosomy 3 and chromo-
some 6p gains-which were mutually exclusive. Continued in-
vestigation of the impact of these findings on genomic ex-
pression and ultimately choroidal melanoma phenotype is
needed to better understand the molecular biology of this form
of cancer.
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