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Abstract
Online data sources offer tremendous promise to demography and other social sciences,
but researchers worry that the group of people who are represented in online data sets
can be different from the general population. We show that by sampling and anony-
mously interviewing people who are online, researchers can learn about both people
who are online and people who are offline. Our approach is based on the insight that
people everywhere are connected through in-person social networks, such as kin,
friendship, and contact networks. We illustrate how this insight can be used to derive
an estimator for tracking the digital divide in access to the Internet, an increasingly
important dimension of population inequality in the modern world. We conducted a
large-scale empirical test of our approach, using an online sample to estimate Internet
adoption in five countries (n ≈ 15,000). Our test embedded a randomized experiment
whose results can help design future studies. Our approach could be adapted to many
other settings, offering one way to overcome some of the major challenges facing
demographers in the information age.

Keywords Networks . Sampling . Digital demography. Digital divide . Survey research

Introduction

Online data sources offer tremendous promise to demography and other social sciences
(Cesare et al. 2018; Lazer et al. 2009; Zagheni andWeber 2012), but researchers oftenworry
that the group of people who are represented in online data sets can be different from the
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general population. In this study, we develop a strategy for addressing this challenge: we
show that by sampling and anonymously interviewing people who are online, researchers
can learn about both people who are online and people who are offline.

Asking survey respondents to report about others is an idea that has independently
arisen in many substantive areas (see, e.g., Bernard et al. 1991; Hill and Trussell 1977;
Marsden 2005; Sirken 1970). In demography, the approach can be traced back to
Brass’s innovative development of census and survey questions that ask respondents
about their parents, spouses, or siblings (Brass 1975). Our approach can be seen as an
extension of this previous work to research in which the goal is to learn about everyone
in a population but respondents are sampled and interviewed only online. Thus, our
study is an illustration of one way to overcome many challenges that face the sampling
and survey research community in the information age.

We illustrate our methodology by developing a new way to study the digital divide in
access to the Internet around theworld. Scholars use the term digital divide to refer to the fact
that access to the Internet is highly unequal: billions of people around the world have never
been online (Hjort and Poulsen 2019; World Bank 2016); people in poor countries use the
Internet much less than people in wealthy countries (World Bank 2016); and even within
countries that enjoy high levels of Internet adoption, research suggests that access to the
Internet can differ considerably by age, gender, income, and race (Friemel 2016; Haight et al.
2014; Van Deursen and Van Dijk 2014; Vigdor et al. 2014). Thus, the digital divide is an
important dimension of population inequality in the modern world.

The digital divide is important because research has revealed that access to the Internet
may affect health and well-being through a wide range of different mechanisms. For
example, scholars have found that increasing Internet adoption may lead to job creation
(Hjort and Poulsen 2019), improvements in education (Kho et al. 2018), increases in
international trade (Clarke and Wallsten 2006), increases in social capital (Bauernschuster
et al. 2014), political mobilization (Manacorda and Tesei 2016), reduced sleep (Billari et al.
2018), and changes in fertility (Billari et al. 2019). TheWorld Bank devoted its 2016World
Development Report to the digital dividends that may result from increasing access to the
Internet in the developing world (World Bank 2016).

Reliable estimates of Internet adoption are typically based on methodologically
rigorous household surveys or censuses (e.g., Cohen and Adams 2011; ICF 2004).
However, this rigor comes at a price: these surveys can be very costly and typically take
months to design and implement (e.g., Greenwell and Salentine 2018; ICF 2018;
Parsons et al. 2014; Rojas 2015). These limitations are especially problematic because
Internet adoption appears to be changing on a much faster time scale than many
conventional indicators of social and economic well-being (Perrin and Duggan 2015;
World Bank 2016).

The difficulty of obtaining up-to-date estimates of Internet adoption is unfortunate
because researchers need to be able to measure the digital divide to understand its implica-
tions for inequality and opportunity; and policymakers whowant to implement and evaluate
strategies formaking Internet accessmorewidely available rely on being able tomeasure the
level and rate of change in the number of people who have access to the Internet.1

1 For example, the proportion of people using the Internet in each country is one of the key indicators for the
United Nations Sustainable Development Goals; see SDG indicator 17.8.1 (https://www.sdgdata.gov.
au/goals/partnerships-for-the-goals/17.8.1).
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To help address this challenge, we used our methodology to develop an alternative
approach to estimating Internet adoption that is dramatically faster and less expensive than
conventional surveys: we interviewed a sample of Facebook users and asked them whether
members of their offline personal networks use the Internet. Our approach is based on the
insight that Internet users are connected to many other people through in-person social
networks such as kin, friendship, and contact networks. By interviewing a sample of
Facebook users and anonymously asking about the members of these offline social net-
works, we can learn about both people who are online and people who are not.

Methods

People everywhere are connected to one another through kinship, friendship, professional
activities, and interpersonal interactions. Our strategy for obtaining fast and inexpensive
estimates of Internet adoption is based on asking people sampled online to report about
Internet adoption among other people they are connected to in these everyday, offline
personal networks. The challenge is to determine how to turn people’s anonymous reports
about their personal network members into estimates of Internet adoption.We used a formal
framework called network reporting to understand which quantities we need to estimate to
accomplish our goal (Feehan 2015; Feehan and Salganik 2016a). (A detailed derivation can
be found in section A of the online appendix.)

Figure 1 illustrates the general setup with an example. Panel a of Fig. 1 shows six people
connected in a social network. The network relation is symmetric, meaning that whenever
person A is connected to person B, person B is also connected to person A. We distinguish
between nodes that can potentially be sampled and interviewed—the frame population—
and other nodes. For example, a frame population might be cell phone users; the users of a
specific app, such as Facebook; or people who live at addresses that can be reached by postal
mail. In Fig. 1, nodes 2 and 3 are in the frame population.

Panel b of Fig. 1 shows the reporting network that is generated when both nodes 2
and 3 are interviewed about the people they are connected to in the social network. The
reporting network is different from the social network: the social network has an
undirected edge A – B when A and B are socially connected; the reporting network,
on the other hand, has a directed edge A → B whenever A reports about B. When
reporting is accurate, the social network and the reporting network will have structural
similarities, but this need not be true in general. The reporting network is a useful
formalism that can help researchers develop estimators, understand possible sources of
reporting errors, and derive self-consistency checks.

Panel c of Fig. 1 shows a rearrangement of panel b that is helpful for deriving
estimators from a reporting network. On the left side of panel c is the set of nodes that
makes reports (the frame population), and on the right side is the set of nodes that can
be reported about (the universe).2 Drawn this way, every report must connect a node on
the left side to a node on the right side. Thus, the total number of reports that leaves the
left side must equal the total number of reports that arrives at the right side. Mathe-
matically, this means that when everyone in the frame population is interviewed, we
have the following identity:

2 A particular node can appear in both sides if it is in the frame population and in the universe.
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(1)

The denominator of Eq. (1) is a quantity called the visibility of Internet users, which is the
number of times that the average Internet user would be reported in a census of the frame
population. Intuitively, Eq. (1) divides by the visibility to adjust for the fact that the average
Internet user would be reported multiple times in a census of the frame population.

Instrument Design

In principle, people can be asked to report about any type of personal network
relationship that is symmetric. Thus, the specific type of personal network that
respondents are asked to report about—the tie definition—is a study design
parameter that researchers are free to vary (Feehan et al. 2016). To explore the
impact of this study design parameter, we embedded a randomized experiment
in our survey. In our experiment, survey respondents were randomly assigned to
report about one of two tie definitions: the meal tie definition and the conver-
sational contact tie definition (Table 1). We chose these two tie definitions for
two reasons. First, previous research led us to believe that respondents can
plausibly report the number of people that they interacted with in the previous
day, avoiding the need to indirectly estimate personal network sizes. Second,
researchers have had success using versions of these tie definitions in previous
studies (Feehan et al. 2016; Mossong et al. 2008).

Each survey interview took place in two phases. In the first phase, survey respon-
dents were asked to report the size of their personal networks: for example, “How many
people did you share food or drink with yesterday?” (Table 1). In the second phase, the
goal was to obtain information about Internet use among the members of each
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Fig. 1 Network reporting setup: asking people on Facebook to report about their offline personal networks
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respondent’s personal network. Ideally, the respondent would provide information
about every person in her network one by one. However, this approach seemed likely
to produce unacceptable levels of respondent fatigue (Eckman et al. 2014; Tourangeau
et al. 2015). Therefore, in the second phase of the interview, respondents were asked for
information about the three members of their personal networks who came to mind first
(Fig. S6, online appendix). We call these people for whom we obtain additional
information detailed alters.3 Additional details and our survey instrument are included
in section D of the online appendix.

Estimators

The identity in Eq. (1) would hold if we had obtained a census of monthly active
Facebook users. In practice, we have a sample and not a census; therefore, we construct
an estimator for the number of Internet users by developing sample-based estimators
for the numerator and the denominator of Eq. (1). We now describe these two
components in more detail.

Given information about respondents’ network sizes and the detailed alters’ Internet
use, the numerator of 1 (yF,H) can be estimated from our sample with

yF̂;H ¼ ∑i∈swi
di
ri
oi; ð2Þ

where s is the sample of Facebook users; wi is the expansion weight for i ∈ s; di is the
network size (degree) of i ∈ s; ri is the number of detailed alters from i ∈ s (ri ∈{1, 2,
3}); and oi is the number of detailed alters reported to be online.

We calculate wi by approximating our design as a simple random sample, post-
stratified by age and gender. (Section D of the online appendix has more information on
our weighting.) To use information about the ri detailed alters to make inferences about
the di people in the respondent’s network, the estimator in Eq. (2) makes the additional
assumption that the detailed alters are a simple random sample of respondents’ personal
networks. Thus, di / ri can be seen as a weight that accounts for sampling ri of the di
personal network members. Previous work on egocentric survey research suggests that
instead of being a simple random sample, network members who come to mind first
may be more likely to come from the same social context and may be more likely to be

3 We did not ask for any sensitive or personally identifying information about these three detailed alters.

Table 1 The two networks about which respondents were surveyeda

Meal Network Conversational Contact Network

How many people did you share food or drink with
yesterday? These people could be family members,
neighbors, or other people. Please include all food or
drink taken at any location, including at home, at
work, at a cafe, or in a restaurant.

How many people did you have conversational
contact with yesterday? By conversational contact, we
mean anyone you spoke with face to face for at least
three words.

a In our survey experiment, respondents were randomly assigned to report about one of these two networks.
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strongly connected to the respondent (Marsden 2005). Therefore, we develop two ways
to assess this assumption. First, we introduce internal consistency checks that can detect
systematic biases that would emerge if detailed alters are very different from other
personal network members. Second, we introduce a sensitivity framework that enables
us to formally assess the impact that different magnitudes of selection bias among the
detailed alters would have on our estimates (online appendix, section C).

The denominator of Eq. (1) (vH ;F ) is a quantity called the visibility of Internet users,
which is defined as the number of times that the average Internet user would be reported in a
census of active Facebook users. Many different strategies could be used to estimate or
approximate the visibility of Internet users. Here, we adopt a simple approach: we use the
average number of times that a Facebook user shares a meal with another Facebook user to
approximate the visibility of Internet users. Mathematically, this assumption can be written

dH ;F ¼ d F;F : ð3Þ

The condition in Eq. (3) requires that two quantities be equal: (1) the rate at which
someone who is on the Internet shares a meal with someone who is on Facebook (dH ;F )
and (2) the rate at which someone who is on Facebook shares a meal with someone who
is also on Facebook (dF;F ). This assumption would hold if, for example, people who are
on the Internet do not pay attention to whether another Internet user is on Facebook
when deciding to share a meal. This assumption could be violated if, for example,
people frequently organize sharing a meal using Facebookwithout inviting other people.
We explore how violating this condition affects estimates as part of a sensitivity analysis
in section C of the online appendix; in section F of the online appendix, we develop a
simple model that motivates this condition; and in the Conclusion, we discuss how
additional data collection could remove the need for this condition altogether.

Given the condition in Eq. (3), we can estimate vH ;F with an estimator for dF;F, the
average number of meals that someone on Facebook reports sharing with someone else
on Facebook. To estimate dF;F , we use

d̂F;F ¼
∑i∈swi

di
ri
fi

∑i∈swi
; ð4Þ

where the new quantity, fi, is the number of Facebook users that respondent i reports
among her detailed alters.

Putting Eq. (2) and Eq. (4) together, we have

N ̂H ¼ yF̂;H

d̂F;F

¼
∑i∈swi

di
ri
oi

∑i∈swi
di
ri
fi
� ∑i∈swi: ð5Þ

Section A of the online appendix has a detailed derivation of the estimator and a
precise description of all the conditions on which it relies; section E describes an
alternate approach to producing estimates using data we collected; and section C has a
framework for sensitivity analysis that can be used to understand how estimates are
affected by violations of these conditions.
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Results

We used Facebook’s survey infrastructure to obtain a simple random sample of people
who actively use Facebook in five countries around the world: Brazil (n = 3,761),
Colombia (n = 4,157), Great Britain (n = 781), Indonesia (n = 2,794), and the United
States (n = 4,288).4 We chose these countries because they span a breadth of expected
levels of Internet adoption and economic development. The sample contains slightly
more female than male respondents in all countries except for Indonesia, and age
distributions are typical of monthly active Facebook users in these countries.

Figure 2 shows the age and gender distribution of survey respondents for each tie
definition.5 All estimates are weighted to account for the sample design and to be
representative of the universe of monthly active Facebook users in each country.
Estimates of sampling uncertainty are based on the rescaled bootstrap method
(Feehan and Salganik 2016b; Rao and Wu 1988; Rao et al. 1992).

Figure 3 shows the distribution of personal network sizes reported by respondents
from each country and for each tie definition.6 The average size of meal networks was
smaller than conversational contact networks in all countries (Table S2, online appen-
dix). The average reported size of the meal network varied from about 4 (Great Britain)
to about 8 (Indonesia). The average reported size of the conversational contact network
varied from about 11 (Colombia and Indonesia) to about 13 (Brazil, Great Britain, and
the United States). For both networks, Fig. 3 suggests that there may be heaping in
reported network sizes that are multiples of 5 and 10; this heaping is more evident in the
reported number of conversational contacts than for meals, suggesting that reports
about the meal network may be more accurate.

Internal Consistency Checks

To more formally assess the accuracy of reports about each network, we developed
internal consistency checks (Bernard et al. 2010; Brewer et al. 2000; Feehan et al.
2016) using the information about the age group and gender of each detailed alter from
respondents’ reports. The idea is to find reported quantities that can be estimated from
the data in two ways. To the extent that these independent estimates of the same
quantity agree, the reported network connections are internally consistent. For example,
using survey responses from only men, we could estimate the number of connections
between men and women; similarly, using survey responses from only women, we
could estimate the number of connections between women and men. By definition,
these two quantities are equal; thus, under perfect conditions in which our survey does
not suffer from any reporting errors or selection biases, we would expect these two
independent estimates to agree (up to sampling noise).

4 We considered users to be active if they have logged onto Facebook in the 30 days before the survey; we also
restricted responses to people over 15 years old.
5 To ensure that the survey instrument and methods worked well, we started with a smaller sample in Great
Britain (which is why there are fewer respondents in that country).
6 Recall that respondents were randomly assigned to report either about meal networks or about conversational
contact networks; thus, Fig. 3 as well as Figs. 2, 4, 5, and 6 show results broken down by tie definition.
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We devised internal consistency checks based on reported connections to and from
each of six age-sex groups, by country and by tie definition. For each age-sex group α,
we estimated the average number of connections from Facebook users in age-sex group
α to Facebook users not in α dFα ;F−α

� �
. We also estimated the average number of

connections from Facebook users not in age-sex group α to Facebook users who are in
age-sex group α dF−α ;Fα

� �
. We then defined the average normalized difference Δα to be
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Δα ¼ K dF̂−α ;Fα−dF̂α ;F–αÞ;
�

ð6Þ

where K is a scaling factor intended to ease comparison of different countries and age-
sex groups (online appendix, section B). In the absence of any reporting error, selection
biases, or sampling variation, we would expect Δα = 0. On the other hand, if there is
homophilic selection bias in the respondents’ choice of detailed alters or if members of
group α are especially conspicuous, then we would expect Δα> 0. Similarly, if there is
heterophilic selection bias in respondents’ choice of detailed alters or if members of a
group are especially inconspicuous, then we would expect Δα < 0.

Figure 4 shows the average normalized difference (Δα) for internal consistency
checks based on reported connections to and from each of six age-sex groups, by
country and by tie definition. Several notable features emerge from Fig. 4. First, for
many of the internal consistency checks, the averaged normalized differences are close
to 0 or have confidence intervals that contain 0. Second, Fig. 4 suggests that reports
based on the meal network are, on average, more internally consistent than reports
based on conversational contact (confirmed in section G of the online appendix). Third,
there appears to be no universal pattern that describes deviations in internal consistency
checks that are not close to 0. Taking the example of Indonesia, the average normalized
differences for younger age groups suggest that young women may be relatively
conspicuous or that young women are relatively homophilous.7 On the other hand,
young men are relatively inconspicuous or relatively heterophilous. In Brazil and
Colombia, similar patterns appear for the conversational contact network. In Great
Britain and the United States, however, most of the internal consistency checks suggest
that reports are internally consistent.

Comparing Tie Definition Accuracy

Figure 5 directly compares the difference in internal consistency results for the con-
versational contact and meal networks. The figure shows the estimated sampling
distribution of TAE, the total absolute error difference between the internal consistency
checks for the conversational contact network and the internal consistency checks for
the meal network:

TAE ¼ ∑α Δα;cc

�� ��− Δα;meal

�� ��� �
; ð7Þ

where |Δα, cc| and |Δα, meal| are the absolute internal consistency check statistics based on
group α for the conversational contact and meal networks (i.e., the absolute value of
Eq. (6)). Thus, TAE is a summary of how well the internal consistency checks perform
across all age-sex groups for the conversational contact network minus the meal

7 Conspicuousness and homophilic reporting are not distinguishable from the data. In this discussion, we
focus on conspicuousness; however, instead of Indonesian women being conspicuous, it could also be the case
that Indonesian women have homophilic selection biases in choosing their detailed alters (i.e., they tend to
report other women at a higher rate than would be expected from simple random sampling of their network
members).
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network. Because values of |Δα| close to 0 indicate more internally consistent reports, a
positive TAE suggests that the meal network is more internally consistent; conversely, a
negative TAE suggests that the conversational contact network is more internally
consistent. For all countries except for Indonesia, the majority of the mass of the
estimated distribution is greater than 0, suggesting that the meal network reports are
more internally consistent than conversational contact network reports (Table S3).

Estimates of Internet Adoption

Figure 6 shows estimated Internet adoption for each country in our sample, using each
tie definition.8 Two findings emerge from Fig. 6. First, estimated Internet adoption rates
are very similar for the conversational contact and for the meal networks; in all
countries, the confidence intervals for estimates from the two tie definitions overlap.
Second, the countries can be divided into three groups according to estimated adoption
rates: the United States and Great Britain have the highest rates of Internet adoption
(above 75%); Brazil and Colombia have estimated Internet adoption rates between 50%

8 For this study, we say that a person has adopted the Internet if she used the Internet on a computer or a cell
phone in the last 30 days; section D of the online appendix shows our survey instrument.
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and 75%; and Indonesia has estimated adoption rates below 50%. This ordering is
consistent with what would be predicted if economic factors such as GDP per capita
were the main driver of Internet adoption.

Ideally, we would evaluate our estimator by comparing it with gold standard
measurements of Internet adoption in each of the five countries. Unfortunately, no
such gold standard exists. Therefore, to further assess the plausibility of the estimates
presented in Fig. 6, we compared our results with existing Internet adoption estimates
for Great Britain, the United States, and Brazil, the countries where high-quality
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except for Indonesia, the meal network is more internally consistent than the conversational contact network
(Table S3, online appendix).
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alternative estimates were available.9 The results show that the fast and inexpensive
network reporting estimates are within the range of other estimates in the United States,
similar to or slightly lower than other estimates in Great Britain, and somewhat higher
than the other estimate for Brazil.

Summary and Discussion

We found that estimates of Internet adoption from the two different networks were very
similar (Fig. 6). We could not validate our estimates by comparing them with gold-
standard measurements of Internet adoption rates because such a gold standard was not
available. However, a comparison with high-quality alternative estimates in the United
States, Great Britain, and Brazil showed that the network reporting estimates are
consistent with other sources of estimates in the United States, slightly higher than
the other estimate for Brazil, and consistent or slightly lower than other estimates from
Great Britain (Fig. 6). Thus, we conclude that our fast and inexpensive strategy for
obtaining approximate estimates of Internet adoption is promising.

We also found that in all five countries, reports from the stronger network tie (meals)
produced information about fewer people than the weaker network tie (conversational
contact). However, reports from the stronger network tie produced, on average, more
accurate information than reports from the weaker tie in all countries except for
Indonesia (Fig. 5). These findings are consistent with a hypothesized trade-off between
the quantity and quality of information produced by network reports; previous work
found support for this theory in network reports about interactions in the 12 months
before the interview (Feehan et al. 2016). We found that this tie strength trade-off may
operate even when reports are about interactions that took place the day before the
interview. Future research could compare different time windows to see whether the
hypothesized trade-off between the quantity and quality of information operates across
time within a fixed type of network tie. We hope that a deeper understanding of the
relationship between reporting accuracy and the different dimensions of network tie
definitions will accumulate over time, leading to useful guidance about how to design
studies like ours.

The internal consistency checks suggest that people’s reports about their network
members can suffer from reporting errors and that these reporting errors vary by the
individual being reported (Fig. 4). One possible mechanism for this result could be
differential salience of interactions; another possible mechanism could be homophilic
selection of the detailed alters. This phenomenon is important to understand for
measurement and scientifically interesting in its own right; future research could
explore different study designs to try to distinguish between the salience of different
demographic groups on the one hand and selection bias among the detailed alters on the
other. More generally, the internal consistency checks provide a way to evaluate the

9 Our comparisons come from a Pew Research Center report (Pew Research Center 2018), which is based on a
national phone survey in the United States; an Ofcom Survey in the United Kingdom (Ofcom 2016); estimates
reported by the International Telecommunications Union (ITU 2018); and a household survey conducted by
NIC.br in Brazil (NIC.br. 2016). The ITU estimate for the United States has all people over age 3 in the
denominator, and the NIC estimate for Brazil has all people over age 10 in the denominator. All other
estimates are for adults.
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quality of reporting from different survey designs, enabling researchers to experiment
with new designs each time data are collected. Over time, this process may help
discover tie definitions that minimize reporting error (Feehan et al. 2016).

Conclusion

We showed that a sample of people who are online can be used to estimate character-
istics of a population that is not entirely online. Our approach is based on the idea that
people who are sampled online can be asked to provide anonymous reports about other
people to whom they are connected through different kinds of personal networks. We
illustrated our approach by estimating Internet adoption in five countries. Our study
included a survey experiment that can help inform future efforts to use online samples
to estimate population characteristics.

Our results suggest several possible avenues for future work. In this study, we
focused on simple design-based estimators. A natural next step would be to start to
build more complex models using these data. These models could exploit the relation-
ships that are embedded in the internal consistency checks as a kind of constraint,
estimating adjustments to ensure that reports are internally consistent. Such a model
could potentially improve the accuracy of the resulting estimates. Another next step
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would be to use our approach to produce estimates of Internet adoption by age and
gender. Finally, future work could explore the possibility of an even simpler estimator
based on asking each respondent about aggregate connections to people who use the
Internet (e.g., “How many of your network members use the internet?”; Bernard et al.
2010). This approach would forgo the ability to conduct internal consistency checks
and to produce estimates by age and gender, but it would be even simpler and shorter
than the approach we used here.

We view our method as a complement to other promising approaches to producing
population-level estimates using online samples. For example, one stream of research
has focused on using changes over time among members of the online sample to
estimate population changes; this approach can be useful for studying topics such as
migration (e.g., Zagheni and Weber 2012). A second stream of research has used
models that relate people in the online sample to the general population using covariate
information observed in both sources (e.g., Fatehkia et al. 2018; Goel et al. 2015). We
expect that sampling and interviewing people about members of their offline networks
will be especially promising in situations where few or no people in the group being
studied can be expected to be in the online sample, but we also expect that there will be
situations in which these alternatives are more appropriate than network reporting. As
the field of digital demography emerges, it will be important to deepen our understand-
ing of the trade-offs between these approaches and to continue to develop new methods
for producing population estimates from an online sample.

We also see our approach as a complement rather than a replacement for conven-
tional surveys. The ideal situation would combine frequent inexpensive estimates, such
as the ones described here, with less frequent conventional surveys. For example, a
conventional probability sample of the general population in a country could be used to
empirically estimate the average number of meals shared between an Internet user and a
Facebook user; with direct estimates of that quantity, the need for a key assumption in
our estimator could be completely removed. More generally, a conventional probability
sample survey can be used both to assess the accuracy of the fast and inexpensive
estimates and to try to measure and relax some of the assumptions required by the
faster, less expensive strategy.
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