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Spatial Heterogeneity of the Respiratory Health Impacts of
Wildfire Smoke PM2.5 in California
V. Do1, C. Chen2 , T. Benmarhnia2,3 , and J. A. Casey1,4

1Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY,
USA, 2Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA, 3Irset Institut de Recherche en Santé,
Environnement et Travail, UMR‐S 1085, Inserm, University of Rennes, EHESP, Rennes, France, 4Department of
Epidemiology, University of Washington, Seattle, WA, USA

Abstract Wildfire smoke fine particles (PM2.5) are a growing public health threat as wildfire events become
more common and intense under climate change, especially in the Western United States. Studies assessing the
association between wildfire PM2.5 exposure and health typically summarize the effects over the study area.
However, health responses to wildfire PM2.5 may vary spatially. We evaluated spatially‐varying respiratory
acute care utilization risks associated with short‐term exposure to wildfire PM2.5 and explored community
characteristics possibly driving spatial heterogeneity. Using ensemble‐modeled daily wildfire PM2.5, we
defined a wildfire smoke day to have wildfire‐specific PM2.5 concentration ≥15 μg/m3. We included daily
respiratory emergency department visits and unplanned hospitalizations in 1,396 California ZIP Code
Tabulation Areas (ZCTAs) and 15 census‐derived community characteristics. Employing a case‐crossover
design and conditional logistic regression, we observed increased odds of respiratory acute care utilization on
wildfire smoke days at the state level (odds ratio [OR]= 1.06, 95% confidence interval [CI]: 1.05, 1.07). Across
air basins, ORs ranged from 0.88 to 1.57, with the highest effect estimate in San Diego. A within‐community
matching design and spatial Bayesian hierarchical model also revealed spatial heterogeneity in ZCTA‐level rate
differences. For example, communities with a higher percentage of Black or Pacific Islander residents had
stronger wildfire PM2.5‐outcome relationships, while more air conditioning and tree canopy attenuated
associations. We found an important heterogeneity in wildfire smoke‐related health impacts across air basins,
counties, and ZCTAs, and we identified characteristics of vulnerable communities, providing evidence to guide
policy development and resource allocation.

Plain Language Summary Wildfire smoke is a growing public health threat, one becoming more
pressing as climate change progresses. People are exposed to different levels of wildfire smoke. People also
have different abilities to protect themselves from smoke exposure based on their job, housing quality, or other
factors. In addition, people have different physiological responses to smoke. Therefore, the relationship between
wildfire smoke and health could vary across the state of California. We conducted a study using modeled daily
wildfire smoke fine particle concentrations and daily respiratory acute care utilizations 2006–2019 in California.
We estimated area‐specific wildfire smoke and acute care utilization associations at state, air basin, county, and
ZIP Code Tabulation Areas levels. We found different associations across the state, with the strongest
association in San Diego air basin. San Francisco Bay air basin had the highest number of acute care utilizations
attributable to wildfire smoke due to their large population. We identified several community characteristics that
may have explained the observed spatial differences, including higher proportions of Black and Pacific Islander
populations and less community affluence. Our findings support the allocation of scarce resources to areas and
communities more vulnerable to wildfire smoke to improve population health in a changing climate.

1. Introduction
Wildfire PM2.5 is a growing threat to public health. Drier conditions and warmer temperatures in the Western
United States (US) contribute to wildfire events that are more common, intense, and expansive in scope
(Abatzoglou, 2013; Littell et al., 2009; Mueller et al., 2020; Westerling et al., 2006). The resulting wildfire PM2.5

has increased overall trends in ambient air pollution, counteracting policy efforts to improve air quality (Burke
et al., 2023; Ford et al., 2018). Wildfire PM2.5 can infiltrate the lungs and precipitate respiratory events through
inflammation and oxidative stress (Xing et al., 2016). In previous epidemiological studies, exposure to wildfire
smoke has been linked to a variety of adverse health effects, particularly for respiratory conditions (Aguilera
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et al., 2020, 2021; Gould et al., 2024; Kondo et al., 2019; Reid & Maestas, 2019). Recent toxicologic and
epidemiologic studies found that wildfire PM2.5 can have a higher adverse health impact on the pulmonary system
than PM2.5 from other sources (Aguilera et al., 2021; Kim et al., 2018;Wegesser et al., 2009), and disregarding the
differential dose‐response of wildfire PM2.5 led to an underestimation of PM2.5 related health burden (Darling
et al., 2023), which warrants independent studies of wildfire PM2.5 health impacts.

Wildfire PM2.5 concentrations vary across space and time, and so do the corresponding health effects. Proximity
to wildfires, wind direction, and social factors determine levels of wildfire PM2.5 exposure (Casey et al., 2024;
Reid & Maestas, 2019). For example, in the past few years, several cities experienced the worst 24‐hr average
PM2.5 levels recorded on Earth because of nearby wildfires (Masters, 2018; Osaka, 2022). Additional spatially‐
varying factors including meteorologic and topographic conditions such as the Santa Ana winds (Gershunov
et al., 2021) may shape the spatial distribution of wildfire PM2.5 and health outcomes (Leibel et al., 2020).
Furthermore, the toxicity of wildfire PM2.5 could change across space as the PM2.5 ages when traveling (O'Dell
et al., 2020). Few studies have accounted for the spatial dependence in wildfire PM2.5 exposure on health and
those that did focused on a single wildfire event affecting a small geographical area (i.e., San Diego air basin)
(Aguilera et al., 2020) or only accounted for spatial autocorrelation among areas closely located (Reid
et al., 2016). Evaluating how health effects related to wildfire PM2.5 are distributed across larger geographical
areas involving more wildfire events could inform future mitigation efforts to target specific areas and shape
regulations to better prepare for wildfire PM2.5‐related health burden.

Community characteristics like socioeconomic status and racial/ethnic composition can drive spatial differences in
the health impacts of wildfire PM2.5 through both exposure disparities and differential response. For example, due
to historical discriminatory practices, disparities in housing quality exist such that communities of color tend to
have lower‐quality, substandard housing (Hernández&Swope, 2019; Jacobs, 2011). Givenwildfire PM2.5's ability
to easily infiltrate the home (Mendoza et al., 2021), communities of color may be more exposed to wildfire PM2.5.
Differences in community characteristics could also lead to spatially varying physiological response and behav-
ioral adaptations toward wildfire PM2.5. Lower‐income communities have more constraining choices to protect
themselves fromwildfire PM2.5 (Burke et al., 2022).Minoritized groups with worse baseline health conditions due
to social marginalization and systemic racismwill likely have worse health responses to wildfire PM2.5 (Berberian
et al., 2022; Smith et al., 2022). Moreover, the effects of wildfire PM2.5 may be worse in communities that already
experience a disproportionately high burden of other environmental exposures due to the potential synergistic
effects of compound exposures (C. Chen et al., 2024). Taken together, there is a need for further research on
community characteristics as drivers of the spatially varying health effects of wildfire PM2.5 (Marlier et al., 2023).

Here, we aimed to investigate the spatially‐varying relationship between wildfire PM2.5 exposure and respiratory
acute care utilizations and to examine whether various community characteristics explained the observed spatial
heterogeneity in impact of wildfire PM2.5 on respiratory acute care utilization.We used ZIP Code Tabulation Area
(ZCTA)‐level ensemble‐modeled daily wildfire PM2.5 concentrations and daily respiratory acute care utilizations
in California from 2006 to 2019 to estimate spatially‐varying health effects across four spatial units: state, air basin,
county, and ZCTA. We also examined community vulnerability factors of such health effects at the ZCTA level.

2. Materials and Methods
2.1. Data Sources and Study Population

We restricted all analyses to 1,396 ZCTAs in California satisfying two criteria: (a) having a population ≥1,000 in
the 2010 US Decennial census for statistical power consideration (Bureau, 2021a); and (b) having at least one
wildfire smoke day during the study period (2006–2019). The second criterion was a requirement for this study
because unexposed ZCTAs do not contribute information to the case‐crossover or within‐community matched
designs (Mittleman & Mostofsky, 2014; Schwarz et al., 2021). We chose ZCTA as the main spatial unit in our
analyses because of the spatial resolution of health outcome.

2.1.1. Wildfire Smoke Day

We utilized a previously developed time‐series data set for daily wildfire‐specific PM2.5 concentration at the
ZCTA level (Aguilera et al., 2023) to identify smoke days. Briefly, Aguilera et al. (2023) first generated the
ZCTA‐specific daily PM2.5 concentrations (all sources) from a stacked ensemble model using several data‐
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adaptive algorithms and many predictors (e.g., air monitor data, satellite‐derived aerosol properties, meteoro-
logical conditions, and land‐use information). Then, they identified ZCTA‐days exposed to smoke plumes using
validated NOAA Hazard Mapping Systems products. Next, they applied a chained random forest algorithm to
impute counterfactual non‐wildfire PM2.5 concentrations in ZCTA‐days with wildfire smoke (expected PM2.5

concentrations in the absence of the smoke) (Aguilera et al., 2023). The wildfire‐specific PM2.5 is the difference
between the estimated daily PM2.5 concentrations from the ensemble model and the imputed non‐wildfire smoke
PM2.5 concentrations in each ZCTA. For each ZCTA, we defined a wildfire smoke day as a day with wildfire‐
specific PM2.5 concentration ≥15 μg/m3, a threshold based on the World Health Organization guideline for
24‐hr PM2.5 (Organization, 2021).

2.1.2. Health Outcomes

We used the Patient Discharge Data and Emergency Department Data collected by the California Department of
Health Care Access and Information (CA.gov, 2023). This data set contains all acute care utilizations that are not
prearranged in the general population of California, including unscheduled hospitalizations and emergency
department visits. Emergency department visits that led to hospitalizations were recorded as unscheduled hos-
pitalizations only. For each ZIP code, we identified daily respiratory acute care utilizations with primary diag-
nosis codes recorded as diseases of the respiratory system (see the list of included International Classification of
Diseases codes in supplementary Text S1 in Supporting Information S1). The ZIP code was based on the patients'
residential address at the time of the visit. Since the US Census Bureau created ZCTAs to represent populated
areas of the ZIP code service area, with the latter being a sum of service routes by the United States Postal Service,
we treated them as the same in analysis and used ZCTA in the remainder of this manuscript.

2.1.3. Community Characteristics

To explore whether the effects of wildfire smoke days varied by community characteristics, we used 15 ZCTA‐
level variables. Communities of color have a greater risk for wildfire‐related health outcomes possibly due to
disproportionate cumulative environmental burden and systemic discrimination (Berberian et al., 2022), so we
obtained the proportions of self‐reported race/ethnicity (separate proportions of white, Black, Asian, American
Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Hispanic residents) from the 2010 US
Decennial Census. We also collected population density from the same data source (2010 Census, 2023). Addi-
tional variables were obtained from the Public Health Alliance of Southern California Healthy Places Index report
version 3.0 (Healthy Places Index, 2023; Maizlish et al., 2019), which are mostly based on averages of the
AmericanCommunity Survey data from2015 to 2019. Included variables are the proportion of employment among
those ages 20 to 64, the proportion of 25 and older with a bachelor's degree or higher, the proportion of insured
among those aged 18–64, the proportion of the population with an income that is greater than 200% of the federal
poverty level, per capita income in the US. dollars, the percentage of households with access to an automobile, and
the population‐weighted percentage of area with tree canopy. We also obtained the ZCTA‐level percentage of
households with access to central air conditioning (A/C) from the California Residential Appliance Saturation
Study survey (KEMA Inc, 2010) because air conditioning access may buffer against air pollution exposure (Liang
et al., 2021). Table S2 in Supporting Information S1 provided detailed descriptions and sources for each variable of
community characteristics. All variables other than race/ethnicity and population density were coded such that a
higher value corresponds to a higher proportion of economically advantaged subpopulations.

2.2. Statistical Analyses

We estimated the health impacts of wildfire PM2.5 concentrations on respiratory acute care utilizations at four
geographical levels: state, air basin, county, and ZCTAs. The California Air Resources Board designates 15 air
basins, geographies with distinct meteorological conditions to regionally distribute resources to address emis-
sions. Each air basin contains between one and 11 counties (California Air Resources Board, 2023). We assigned
ZCTAs to a county and an air basin based on the location of their population‐weighted centroids. Counties and air
basins with no ZCTAs that had a population ≥1,000 and experienced a wildfire smoke day were excluded from
analyses (Figure 1). In meta‐regression to investigate the influence of community characteristics on ZCTA‐
specific effect estimates, we further excluded 100 ZCTAs without complete community characteristics data.
All analyses were conducted in R version 4.1.0 (R Core Team, 2021) and the analytic code is publicly available
(C. Chen, 2024).
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2.2.1. Case‐Crossover Design for Health Analyses at State‐, Air Basin‐, and County‐Level

We implemented the time‐stratified case‐crossover design to evaluate the effects of wildfire PM2.5 on daily
respiratory acute care utilization at the state level, air basin level, and county level (Maclure, 1991; Mittle-
man, 2005). In the time‐stratified case‐crossover design, we matched each day when an acute care utilization
occurred (case) to other days of the same weekday during other weeks of the same month in the same ZCTA
(controls). Prior work suggests this method of selecting control periods to result in an unbiased effect estimate
(Janes et al., 2005; Sullivan et al., 2005). This study design compares exposures of a case to themselves at
different times and accounts for individual‐level confounders (e.g., age, race/ethnicity and sex) and temporal
trends of the exposure (Maclure, 1991; Mostofsky et al., 2018). For state‐level analysis, we ran a weighted
conditional logistic regression to account for the matching procedure and included matched case and control sets
from all 1,396 ZCTAs to estimate the odds ratio (OR) of exposure to wildfire smoke and respiratory acute care
utilizations, with weight equal to the number of acute care utilizations in the case day. For air basin‐level and
county‐level analyses, we ran the same conditional logistic regressions using only the matched sets in ZCTAs
where population‐weighted centroids fall within the corresponding air basin or county. These stratified analyses
assume that wildfire smoke has the same effect across all ZCTAs within the same air basin or county. We used the
“survival” package for conditional logistic regression (Therneau et al., 2023).

To incorporate the total acute care utilization counts during wildfire smoke days and provide estimates of the
health burden, we calculated the population attributable number of acute care utilizations due to wildfire PM2.5

during the study period at the county, air basin, and state levels. For each geographical area, we calculated the
population attributable number as the product of area‐specific attributable fraction (one minus the inverse of area‐
specific OR) (Lash et al., 2021) and the area‐specific total number of acute care utilizations among all wildfire
smoke days during the study period.

2.2.2. Within‐CommunityMatched Design CoupledWith Spatial BayesianHierarchicalModel for ZCTA‐
Level Health Analyses

To explore finer scale spatially varying effects, we used a previously developed within‐community matched
design to estimate the ZCTA‐specific effect of wildfire PM2.5 on the risk of daily respiratory acute care utilization
(C. Chen et al., 2024). Specifically, we identified matched controls for each day exposed to wildfire smoke as non‐
wildfire smoke days of the same year and ZCTA, and within the window of 30 calendar days before or after the

Figure 1. Flowchart of the California study population and exclusion criteria (black boxes) and method utilized in each set of
analyses (blue boxes). *For analysis of air conditioning prevalence, we further excluded 274 ZIP Code Tabulation Areas
(1122 in meta‐regression) due to data missingness.
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wildfire smoke day. We excluded days in the 3 calendar days before or after any wildfire smoke day from the
controls to avoid spillover effects from other wildfire days. To estimate rate differences, we calculated the dif-
ference between the acute care utilization rate on the exposed case day and the weighted averages of acute care
utilization rates among non‐exposed control days. Acute care utilization rates on exposed case days were the
count of acute care utilizations divided by ZCTA population size from the 2010 US Decennial Census. Weighted
averages for non‐exposed control days were weighted acute care utilization rates based on inverse temporal
distance to exposed day (i.e., one divided by number of days to the matched exposed day). We used the average
rate difference of all exposed days within a ZCTA to represent the ZCTA‐specific rate difference and scaled the
rate difference to per 100,000 person‐day.

Since ZCTAs closer together might exhibit similar effects from a wildfire smoke day compared to ZCTAs
farther away, we used a spatial Bayesian hierarchical model (BHM) to leverage this spatial autocorrelation and
increase the precision of our rate difference estimates (Schwarz et al., 2021). We included a covariance
structure to leverage this spatial autocorrelation across ZCTAs and used an empirical semivariogram to identify
the shape and starting values of the covariance structure (spherical shape and 2, 16, and 8 for sill, nugget, and
range parameters respectively) (Bivand et al., 2013). We also used flat priors to introduce minimal prior in-
formation into the Bayesian model: inverse gamma distribution with scale and shape equal to 0.001 for the sill
and nugget parameters, and uniform distribution from 0.001 to 6 for the range parameter. We used 10,000
Monte Carlo Markov chain samples with 75% burn‐in to estimate the ZCTA‐specific rate differences after
spatial pooling. Additionally, we calculated the signal‐to‐noise ratio to present the precision of the estimates,
which is the ratio between the mean of the rate differences in the recovered samples and the corresponding
standard deviation. The signal‐to‐noise ratio allows us to have a mappable measure of statistical precision and
values higher than 2 are considered precise. We used the “spBayes” package in R for the spatial BMH (Finley
et al., 2015).

2.2.3. Effect Modification by Community Characteristics at the ZCTA Level

We used meta‐regression to evaluate potential effect modification by community characteristics on the effect of a
wildfire smoke day on acute care utilization at the ZCTA level. For each community characteristic, which was
selected a priori, we ran a meta‐regression of the pooled ZCTA‐specific rate difference on the community
characteristic. To preserve statistical power, we excluded 100 ZCTAs without complete data for 14 community
characteristics other than A/C prevalence, and we excluded 274 ZCTAs for meta‐regression of the A/C preva-
lence. Our estimates are reported as rate difference per interquartile range increase of the community charac-
teristic. We used the “meta” package for meta‐regression (Balduzzi et al., 2019).

2.3. Sensitivity Analyses

Since atmospheric aridity might affect the probability of wildfire occurrence and ambient temperature is a known
risk factor for respiratory acute care utilization, we conducted sensitivity analyses for the state‐level case‐
crossover analyses by including two forms of daily ambient temperature as a linear term or a natural cubic
function with six degrees of freedom. We calculated daily ambient temperature at the population‐weighted
centroid of each ZCTA based on an existing 4 km × 4 km temperature surface (Daly et al., 2008). We also
evaluated lagged effect of wildfire smoke on acute care utilization for an individual lag of one day and over a pre‐
defined 7‐day lag period in a case‐crossover analysis. For the 7‐day lag period analysis, we employed a distributed
lag nonlinear model while constraining the effect of the exposure to follow a natural cubic spline function with
two internal knots over the lag period as done in other studies (Doubleday et al., 2020).

To evaluate the robustness of the within‐community matched design and spatial BHM, we conducted a sensitivity
analysis using informative priors employed in previous studies for the sill and nugget in the spatial BHM, which
are inverse gamma distributions (2 for shape and 1/starting value for scale) (C. Chen et al., 2024). This sensitivity
analysis tested the robustness of the spatial BHM toward prior specification and the informative priors used here
give more weight to our interpretation of the empirical semivariogram while the flat priors in main analysis were
more data‐driven. We also used community‐level socioeconomic information from the Healthy Places Index
report version 2.0 in the meta‐regression, which is based on averages of 2011–2015, earlier than the averages of
2015–2019 in the main analysis (Delaney et al., 2018).
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3. Results
3.1. Characteristics of ZCTAs, Wildfire Smoke Days, and Respiratory Acute Care Utilizations

Our study spanned 2006–2019 and included 1,396 California ZCTAs (99.1% of California population) that had a
population ≥1,000 people and experienced at least one wildfire smoke day (wildfire PM2.5 concentrations
≥15 μg/m3). In total, we observed 40,065 wildfire smoke ZCTA‐days in the 1,396 ZCTAs (0.6% of all ZCTA‐
days) during the study period. The median number of ZCTA wildfire smoke days was 17 (first and third quartiles:
6 and 43), with higher exposure in Central Valley and Northern California (Figure 2). Most of the wildfire smoke
days occurred between June and November (96.7%), with more wildfire smoke days in 2007, 2008, 2017 and
2018 (Figure S1 in Supporting Information S1). We observed 18,049,797 non‐scheduled respiratory acute care
utilizations in the study area between 2006 and 2019, with 75,175 occurring on wildfire smoke days.

3.2. Spatial Heterogeneity of Wildfire Smoke Day Effects

We first conducted a state‐level analysis that did not consider spatial heterogeneity and observed increased odds
of respiratory acute care utilizations on wildfire smoke days (OR = 1.06, 95% confidence interval (CI): 1.05,
1.07), corresponding to 4,122 (95% CI: 3491, 4747) counts of acute care utilizations attributed to wildfire smoke
between 2006 and 2019 (Table S1 in Supporting Information S1). We then conducted three analyses considering
spatial heterogeneity for air basins, counties, and ZCTAs.

In our air basin‐level analysis, the median OR point estimate was 1.09 (minimum and maximum: 0.88, 1.57)
across the 15 air basins (Table S1 in Supporting Information S1). We observed higher point estimates in San
Diego as well as Great Basin Valley, and lower point estimates in Salton Sea and North Central Coast (Figure 3).
After incorporating total acute care utilization counts during wildfire smoke days, air basins with the highest acute

Figure 2. Spatial distribution of total ZCTA‐level wildfire days in septiles between 2006 and 2019 among 1,396 ZIP Code
Tabulation Areas included in the study. We considered wildfire days to be days with wildfire PM2.5 concentrations
≥15 μg/m3.
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health burden were the San Francisco Bay and Sacramento Valley, with 1,616 (95% CI: 1,325, 1,901) and 798
(95% CI: 490, 1099) counts of acute care utilizations attributed to wildfire smoke between 2006 and 2019,
respectively (Figure S2 and Table S1 in Supporting Information S1).

For our county‐level analysis, the median point estimate for ORs was 1.06 (minimum and maximum: 0.45, 1.57)
across 57 counties (Table S1 in Supporting Information S1). The direction of point estimates for air basins was
similar to those in their respective counties with a few exceptions (Kings County in the San Joaquin air basin,
Plumas County in Mountain Counties air basin) (Figure 4). San Diego County and Los Angeles County expe-
rienced the highest acute care utilizations attributed to wildfire smoke between 2006 and 2019 (Figure S3 in
Supporting Information S1).

In the third analysis, we used a within‐community matched design coupled with a spatial BHM to assess spatial
heterogeneity at the ZCTA level. We observed the median point estimates for rate differences was − 0.07
(minimum and maximum: − 19.87, 29.61) across 1,396 ZCTAs after accounting for spatial autocorrelation. We
observed more spatial heterogeneity in the ZCTA‐level point estimates than across air basin or county. Precise,
higher values were observed in coastal metropolitan areas of San Diego, Mojave Desert, and Great Basin Valleys,
while precise, lower values observed in the Salton Sea, North Coast and Central Coast (Figure 5).

3.3. Effect Modification of Wildfire Smoke Day Effects by Community Characteristics

We evaluated effect modification by community characteristics as measured by 14 variables in 1,296 ZCTAs
with rate difference and complete community characteristics (Figure 1). We included the spatial distribution of
community characteristics among 1,296 California ZCTAs with complete data on these characteristics except
for A/C prevalence, of which only 1,122 ZCTAs have data (Figure S4 in Supporting Information S1). We found
that a higher proportion of Black residents and Pacific Islander residents was associated with higher rate
differences for respiratory acute care utilizations between wildfire smoke days and non‐wildfire smoke days.
ZCTAs with a higher proportion of white residents and Asian residents were associated with lower rate dif-
ferences (Figure 6). Communities with a higher proportion of economically advantaged subpopulations were
associated with lower rate differences for respiratory acute care utilizations between wildfire and non‐wildfire
smoke days. Effect modification was more pronounced for proportions of automobile ownership, tree canopy,
and A/C prevalence (Figure 6).

Figure 3. The air basin specific effect estimates (odds ratio) of wildfire smoke day on same‐day respiratory acute care utilization, 2006–2019. Left: spatial distribution of
the point estimates; Right: point estimates and 95% confidence intervals. We employed conditional logistic regressions in a time‐stratified case‐crossover design,
matching on ZIP Code Tabulation Area, day of week, month, and year.
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3.4. Sensitivity Analyses

At the state level, adding daily ambient temperature as a potential confounder in the evaluation of wildfire smoke
day effect did not meaningfully change effect estimates, regardless of the form of temperature in the model (linear
or nonlinear) (Figure S5 in Supporting Information S1). Effect estimates were similar for the same‐day wildfire
smoke and previous day wildfire smoke when included in separate models (Figure S5 in Supporting Informa-
tion S1).When considering lagged exposures up to 7 days, we observed that effect estimates of individual exposure
on lags 0–1 were stronger compared to effect estimates of exposure on lags 2–6 (Figure S6 in Supporting Infor-
mation S1).A priori, we focused on the average of same‐day and previous‐two‐day exposures on respiratory health,
and this period appears to be most salient for respiratory related acute care utilization. Our ZCTA‐specific effect
estimates were also robust to the choice of priors in spatial BHM (Figure S7 in Supporting Information S1). The
effectmodification results did not changemeaningfullywhen utilizing ZCTA‐level sociodemographic information
from earlier years (2011–2015) among 1,235 ZCTAs (Figure S7 in Supporting Information S1).

4. Discussion
It is imperative to determine areas that experience the worse health outcomes after wildfire PM2.5 exposure to
reduce their associated burden. In our study, we found that wildfire smoke days (i.e., days with wildfire
PM2.5 ≥ 15 μg/m3) were associated with increased same‐day respiratory acute care utilizations in a statewide
California model. However, the amplitude of this relationship differed spatially across air basins, counties, and

Figure 4. The county specific effect estimates (odds ratio) of wildfire smoke day on same‐day respiratory acute care utilization. Top: spatial distribution of the effect
estimates; Bottom: point estimates and 95% confidence intervals. We employed conditional logistic regressions in a time‐stratified case‐crossover design, matching on
ZIP Code Tabulation Area (ZCTA), day of week, month and year. Note: the Alpine county (gray) was excluded from analysis because the ZCTAs within this county
have a population <1,000).
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Figure 5. The ZIP Code Tabulation Area specific effect estimates (rate difference) of wildfire smoke day on same‐day respiratory acute care utilization: (a) spatial
distribution of the effect estimates and (b) signal‐to‐noise ratio with absolute value larger than two, representing higher precision of estimates.

Figure 6. Effect modification of community characteristics on the effect of wildfire smoke (i.e., days with wildfire
PM2.5 ≥ 15 μg/m3) on same‐day respiratory acute care utilization rate among 1,296 CA ZIP Code Tabulation Areas
(ZCTAs). Race/ethnicity data was obtained from the 2010 US Decennial Census and socioeconomic information was
obtained from the Healthy Place Index 3.0, and air conditioning was obtained from the California Residential Appliance
Saturation Study survey. *We included 1,122 ZCTAs for % air conditioning meta‐regression because of data missingness.

GeoHealth 10.1029/2023GH000997

DO ET AL. 9 of 13



ZCTAs. Additionally, we found that the impact of wildfire smoke days was worse for ZCTAs with higher
proportions of Black and Pacific Islander residents and less pronounced in more affluent areas with buffering
resources like tree canopy and A/C. Taken together, our study found that the health consequences of wildfire
PM2.5 exposure vary across space and community characteristics, providing valuable evidence to guide the
development of effective policies and the allocation of resources.

Identifying areas experiencing the worse health effects is crucial for resource allocation, public health response,
and preparedness directives. In California, we observed higher health impacts from wildfire PM2.5 in certain air
basins including San Diego, Great Basin Valleys, and Lake Tahoe. As air basins were created to originally manage
and control non‐wildfire pollution emissions, wildfire PM2.5 and its health impacts may still differ within these air
basins. As climate change progresses, an estimated 82 million individuals in the Western US are predicted to
experience some wildfire smoke waves (at least two consecutive days with >98th quantile of wildfire‐specific
PM2.5) by the middle of the 21st century (Liu et al., 2016), making wildfire an increasingly important source of
total PM2.5. Prior work found that PM2.5‐related health burdens are under‐estimated when wildfire PM2.5 is not
explicitly considered in health impact assessments (Darling et al., 2023). Thus, it is critical to revisit air pollution
problems with an eye to wildfire PM2.5 and to consider spatial differences in these exposures and effects.

When considering community characteristics, we found that the effects of wildfire PM2.5 were worse for his-
torically marginalized racial groups and less‐resourced communities. These community characteristics may also
be key drivers of the observed spatial heterogeneity of health effects. Prior work evaluating health disparities in
the context of wildfire smoke observed that socially and economically disadvantaged subgroups faced worse
health effects (H. Chen et al., 2021; Reid et al., 2016, 2023). In our study, we identified Black and Pacific Islander
residents as minoritized racial groups experiencing worse consequences at the same level of exposure. Structural
racism has given rise to disparities in environmental exposures, quality of housing stock, access to economic and
material resources, and baseline health (Bailey et al., 2017). Such racially patterned disparities may worsen the
health effects of exposure to wildfire PM2.5. We also found that ZCTAs with greater material resources had a
dampened health response to wildfire PM2.5 exposure. Access to resources such as A/C, automobiles, and
healthcare services may indicate greater wealth, which has been linked to improved capacity to mitigate and cope
with wildfire PM2.5 exposure (Burke et al., 2022; deSouza & Kinney, 2021). However, uncertainties remain in the
mechanisms behind such vulnerability due to the ecological nature of this study. Other factors such as population
behavior adaptation toward wildfire smoke and the intersectionality of social characteristics, such as educational
attainment and disability status, at the individual level could also contribute to the observed spatial heterogeneity
(Bowleg, 2012; Burke et al., 2022; Jackson, 2017; Josey et al., 2023). Our findings contribute to prior research
focused on examining vulnerability to wildfire PM2.5 across subgroups (Vargo et al., 2023). Additionally, current
air quality management plans can make an effort to protect the most vulnerable. For example, clean air centers in
California may be expanded to serve additional communities of color and economically disadvantaged areas (Bay
Area Air Quality Management District, 2021; US EPA, 2021).

This study had a few limitations. First, the modeled wildfire‐specific PM2.5 (Aguilera et al., 2023) may under-
estimate extreme exposure values given the training sample. However, our use of a binary exposure definition
dichotomized at ≥15 μg/m3 would correctly classify extreme values as wildfire smoke days. The binary definition
meant that we assumed health risks were the same for any exposure level exceeding the threshold, and thus we
could not capture any exposure‐response relationships that may occur particularly at the higher wildfire PM2.5

values (Heft‐Neal et al., 2023). Second, we utilized spatial units based on administrative borders, which may not
be the most relevant unit to assess spatial heterogeneity in the effect of wildfire PM2.5 exposure. In addition, these
units are of irregular shapes and sizes, with uneven population densities across them. However, we centered our
exposure estimates to the population‐weighted centroids of ZCTAs to improve the spatial alignment of health
outcome and exposure. Another limitation is that we assigned wildfire PM2.5 exposure at individuals' residential
ZCTAs but people may move across ZCTAs, which can result in exposure misclassification. However, for days
with high wildfire PM2.5, individuals who can stay home would likely remain at indoors and reduce the possibility
of exposure misclassification.

With the increasing severity of wildfires, it is crucial to improve our understanding of wildfire PM2.5‐related health
impacts.We have a few recommendations for future research endeavors in the area. First, we only evaluated spatial
variation in the health impacts of wildfire PM2.5 in California, and future studies should extend to other US states
and countries. Such consideration could facilitate early identification of vulnerable areas and populations, and it
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can guide subsequent targeted intervention efforts. Second, given the heterogeneity that we and others have
observed by community characteristics, future studies should identify the most salient characteristics that modify
the relationship betweenwildfire PM2.5 and health.We tested how community characteristics in isolationmodified
the effect of wildfire PM2.5 on health but these characteristics likely act synergistically, and future studies should
endeavor to identify the combination of characteristics that leads to the highest vulnerability. Third, we evaluated
short‐term exposure and acute outcomes, but climate changewill likely lead to increases in repeatedwildfire PM2.5

exposure. Thus, it is crucial to improve our understanding of the health impacts of cumulative and long‐term
wildfire PM2.5 exposure. Fourth, research may benefit from incorporating human mobility patterns (e.g., cell
phone location data), which may reduce wildfire smoke exposure misclassification. Last, we summarized ZCTA
community characteristics using a combination of Decennial Census Survey data and American Community
Survey‐based Healthy Places Index data, which may miss important sub‐populations. For example, although the
2010 Census enumerated people in emergency and transitional shelters (Bureau, 2021b), those experiencing
homelessness—likely a highly vulnerable group (Ramin&Svoboda, 2009)—may still bemissed.We encourage an
inclusive future research agenda that prioritizes potentially vulnerable and understudied populations.

Most previous wildfire epidemiological studies assume that the effect of wildfire PM2.5 is consistent across
geographies and populations. Our results suggest that instead, spatial heterogeneity exists in the relationship
between short‐term wildfire PM2.5 exposure and respiratory acute care utilizations in California. We identified
several community characteristics that may have explained the differences observed; these included higher
proportions of Black and Pacific Islander populations and more affluent community. Allocating scarce resources
based on differential response to wildfire PM2.5 could help reduce health disparities.
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