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Most previous studies investigating the neural correlates of reading have presented
text using serial visual presentation (SVP), which may not fully reflect the underlying
processes of natural reading. In the present study, eye movements and BOLD data were
collected while subjects either read normal paragraphs naturally or moved their eyes
through “paragraphs” of pseudo-text (pronounceable pseudowords or consonant letter
strings) in two pseudo-reading conditions. Eye movement data established that subjects
were reading and scanning the stimuli normally. A conjunction fMRI analysis across
natural- and pseudo-reading showed that a common eye-movement network including
frontal eye fields (FEF), supplementary eye fields (SEF), and intraparietal sulci was
activated, consistent with previous studies using simpler eye movement tasks. In addition,
natural reading versus pseudo-reading showed different patterns of brain activation:
normal reading produced activation in a well-established language network that included
superior temporal gyrus/sulcus, middle temporal gyrus (MTG), angular gyrus (AG), inferior
frontal gyrus, and middle frontal gyrus, whereas pseudo-reading produced activation in an
attentional network that included anterior/posterior cingulate and parietal cortex. These
results are consistent with results found in previous single-saccade eye movement tasks
and SVP reading studies, suggesting that component processes of eye-movement control
and language processing observed in past fMRI research generalize to natural reading.
The results also suggest that combining eyetracking and fMRI is a suitable method for
investigating the component processes of natural reading in fMRI research.

Keywords: reading, eye movements, fMRI, pseudo-reading, attention

INTRODUCTION
Understanding the neural architecture of reading is one of the
central issues in cognitive neuroscience (Reichle et al., 2011).
Although a variety of neural aspects of reading have been under-
stood via functional neuroimaging, most of these findings have
been obtained from paradigms in which single words are pre-
sented to readers with a secondary meta-linguistic task for each
word, such as lexical decision, semantic categorization, and covert
or overt naming (for a comprehensive review, see Price, 2012).
Even in those cases involving sentence or paragraph reading
rather than single-word reading, the words have typically been
presented one at a time in serial visual presentation (SVP, e.g.,
Martin-Loeches et al., 2008; Fedorenko et al., 2011; Pallier et al.,
2011), with participants often asked to do a secondary task such
as probe matching.

In contrast to single-word and SVP reading, during natural
reading the eyes move through text in a series of rapid move-
ments (saccades) and brief static periods (fixations), with mean
fixation durations of 200–250 ms and mean saccade lengths of
7–9 characters (for reviews, see Rayner, 1998, 2009). The pat-
tern of eye movements during reading is substantially correlated
with linguistic factors, implying that readers’ eye movements
during reading reflect online cognitive processes (Rayner, 1998,
2009; Henderson, 2013). It has previously been shown that both

behavioral and imaging data related to sentence processing dif-
fer for SVP and whole-sentence reading (Lee and Newman,
2010). The importance of eye movements in natural reading was
recently highlighted by an eyetracking study reported by Schotter
et al. (2014), showing that sentence comprehension is negatively
affected when regressive eye movements are not available during
reading.

In the majority of fMRI studies that have presented an entire
sentence or passage at once (e.g., Ferstl and von Cramon, 2001;
Bohrn et al., 2013; Altmann et al., 2014; Hsu et al., 2015), eye
movements have not been monitored, so it has not been possi-
ble to investigate questions concerning the integration of language
comprehension and eye movement control during natural read-
ing. In a recent study, Hillen et al. (2013) examined how neural
activation is elicited by eye movements in text by asking sub-
jects to move their eyes through sentences in an fMRI study. The
authors compared fMRI activation for normal sentences, scram-
bled sentences, nonword sentences, and pseudo-text made up of
Landolt rings (circle-like shapes). Hillen et al. found activation
of a common gaze network across these conditions that included
bilateral frontal eye fields (FEF), supplementary eye field (SEF),
and right intraparietal sulcus (rIPS), the same areas reported in
other fMRI studies using simple eye movement tasks like the pro-
and anti-saccade tasks (Paus et al., 1993; Sweeney et al., 1996;
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Everling and Munoz, 2000; Ford et al., 2005; Ettinger et al., 2008,
for a recent review, see Jamadar et al., 2013). Although the Hillen
et al. study suggests that sequential reading-like tasks activate the
same eye movement network that has been observed in simpler
saccadic oculomotor tasks, subjects were not actually engaged
in natural reading. Instead, subjects were asked to detect char-
acters that looked like a “left-opened o” (Landolt C) that were
embedded in the real and pseudoword texts. These instructions
might cause subjects to use relatively different (e.g., more con-
trolled) scanning strategies than those used in natural reading. In
a related study, Richlan et al. (2014) compared reading materi-
als (words or pronounceable nonwords) to non-reading materials
(lines or Hebrew characters) using a fixation-related fMRI anal-
ysis method. However, in that study, the items were presented in
arrays and did not comprise connected text, so the task was quite
different than natural reading.

Given the importance of eye movements in natural reading,
it is surprising that the neurocognitive basis of natural reading
in which readers actively move their eyes through units of text
(e.g., sentences or paragraphs) is largely unknown. In the cur-
rent study, we pursued three goals. The first two were related to
the nature of the eye movement control network during read-
ing. First, we investigated the general characteristics of the eye
movement network when participants sequentially move their
eyes through text and text-like stimuli. In their study, Hillen et al.
(2013) reported evidence for a gaze control network that was
common across reading and pseudo-reading conditions, though
subjects were engaged in a search task. In the current study, we
examined the nature of the eye-movement network common to
natural reading and sequential pseudo-reading tasks that did not
include a search or other secondary task. Our second goal was to
investigate how activation in the eye movement network differs in
natural reading and pseudo-reading by directly comparing these
conditions. Our third goal was to investigate the language pro-
cessing network in normal reading. Previous studies have shown
that SVP reading produces a distinct pattern of neural activa-
tion compared with pseudo-reading involving nonword strings
or false fonts (Noppeney and Price, 2004; Fedorenko et al., 2011,
2012; Hillen et al., 2013). It is not currently known whether this
pattern generalizes to natural reading in which subjects actively
control their eye movements and therefore control the timing and
order of text encoding and analysis.

In sum, the present study was designed to investigate the
nature of the networks activated when participants read natu-
rally via eye movements, compared to pseudo-reading controls.
We simultaneously recorded eye movements and BOLD activity
while subjects read passages of text or moved their eyes through
similarly arranged pseudo-text made up of pronounceable pseu-
dowords or consonant strings. Because we were interested in
natural reading, in the reading condition subjects simply read
naturally with no secondary task. To facilitate natural reading,
we presented full paragraphs rather than sentences, and the
paragraphs were connected across trials in coherent passages.

METHODS
SUBJECTS
Thirty-three subjects (12 male) participated in this study. Two of
them did not finish the experiment. Therefore, 31 participants’

data were included in the analysis. They were all right-handed
native speakers of English, aged 18–35 years (Mean Age: 21.48).
Thirty subjects were students from the University of South
Carolina and three were recruited from the community in
Columbia, South Carolina. All subjects gave informed consent
and were screened for MRI safety, following the ethics proto-
col approved by the Institutional Review Board of the University
of South Carolina. All subjects reported normal or corrected-to-
normal vision and were given $10 per hour for participation in
the study.

MATERIALS
The experiment consisted of three conditions: Normal Text
(NT), Pseudoword Text (PW), and Consonant String Text (CS).
In the NT condition, 22 paragraphs were selected from two
sources, The Emperor’s New Clothes by Hans Christian Andersen
(11 paragraphs), and a Nelson-Denny Practice Test (11 para-
graphs). Paragraphs consisted of 49 to 66 words. In the PW
condition, 22 paragraphs were created with pseudowords that
were generated from the ARC Nonword Database (available at
http://www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.htm). The
pseudowords were in accordance with the phonotactic rules of
English so that they were pronounceable. The CS condition
included 22 paragraphs with consonant-string nonwords that
were created using randomly chosen consonants. Text was pre-
sented in Courier New font (monospaced) with 4.3 characters
subtending 1◦ of visual angle. All nonword stimuli were matched
to the words used in the NT condition with respect to the num-
ber of lines, the number of words, word length, and the position
of punctuation.

APPARATUS
Stimuli were presented using an Avotec Silent Vision 6011 pro-
jector in its native resolution (1024 × 768) and a refresh rate of
60 Hz. Eye-movements were monitored via a SR Research Eyelink
1000 long-range MRI eyetracker with a sampling rate of 1000 Hz.
Viewing was binocular and eye-movements were recorded from
the right eye.

PROCEDURE
In the scanner, a thirteen-point calibration procedure was admin-
istrated before each of the two functional runs to correctly
map eye position to screen coordinates. Eye movements were
recorded throughout the runs to ensure that natural reading
eye-movements were executed during in the NT condition and
that scanning eye movements were executed in the PW and CS
conditions.

Each functional run consisted of 11 normal text paragraphs
(the NT condition), 11 pseudoword paragraphs (the PW condi-
tion), and 11 consonant string paragraphs (the CS condition),
as well as 11 filler trials containing pictures not relevant to the
current study. Each trial was presented for 12 s preceded by a
fixation cross for 6 s. Within each run, normal texts, pseudo
texts and filler trials were presented in a random order for each
participant. Participants therefore saw 22 trials in each condi-
tion over the two runs. Each functional run lasted about 14 min.
Participants were asked to read paragraphs silently as if they were
reading a novel when a text paragraph was presented, and to
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move their eyes “as if they were reading” in the PW and CS
conditions.

MRI DATA ACQUISITION
MR data were collected on a Siemens Medical Systems 3T Trio.
A 3D T1-weighted “MPRAGE” RF-spoiled rapid flash scan in
the sagittal plane, and a T2/PD-weighted multi-slice axial 2D
dual Fast Turbo spin-echo scan in the axial plane was used. The
multi-echo whole brain T1 scans had 1 mm isotropic voxel size
and sufficient field of view to cover from the top of the head to
the neck with the following protocol parameters: TR = 2530 ms,
TE1 = 1.74 ms, TE2 = 3.6 ms, TE3 = 5.46 ms, TE4 = 7.32 ms,
flip angle = 7◦. All functional runs were acquired using gradient
echo, echo-planar images with the following protocol parameters:
TR = 1850 ms, TE = 30 ms, flip angle = 75◦. Volumes consisted
of thirty-four 3 mm slices with transversal orientation. Each vol-
ume covered the whole brain with FOV = 208 mm and 64 × 64
matrix, resulting in 3.3 × 3.3 × 3 mm voxel size.

MRI ANALYSIS
The AFNI software package (Cox, 1996) was used for image
analysis. Within-subject analysis involved slice timing correc-
tion, spatial co-registration (Cox and Jesmanowicz, 1999) and
registration of functional images to the anatomy (Saad et al.,
2009). Voxel-wise multiple linear regression was performed with
the program 3dREMLfit, using reference functions representing
each condition convolved with a standard hemodynamic response
function. Reference functions representing the six motion param-
eters were included as covariates of no interest. In addition, the
signal extracted from CSF and white matter was also included as
noise covariates of no interest. General linear tests were conducted
to obtain contrasts between conditions of interest.

The individual statistical maps and the anatomical scans
were projected into standard stereotaxic space (Talairach and
Tournoux, 1988) and smoothed with a Gaussian filter of 5 mm
FWHM. In a random effects analysis, group maps were created
by comparing activations against a constant value of 0. The group
maps were thresholded at voxelwise p < 0.01 and corrected for
multiple comparisons by removing clusters with below-threshold
size to achieve a mapwise corrected p < 0.05. Using the 3dClust-
Sim program with 10000 iterations, the cluster threshold was
determined through Monte Carlo simulations that estimate the
chance probability of spatially contiguous voxels exceeding the
voxelwise p threshold, i.e., of false positive noise clusters. The
smoothness of the data was estimated with the AFNI program
3dFWHMx using regression residuals as input. The analysis was
restricted to a mask that excluded areas outside the brain, as well
as deep white matter areas and the ventricles.

RESULT
EYE-MOVEMENTS RESULTS
Table 1 shows basic eye-movement data for each condition. Data
during track losses were eliminated and fixations meeting the
following criteria were excluded from this analysis: A fixation
made before or after a blink and fixation durations less than
50 ms or greater than 1500 ms. In total, 12.5% of fixations (11.3%
for the NT condition, 13.5% for the PW condition, and 13%

Table 1 | Summary eye movement data.

NT PW CS

Fixation duration (ms) Mean 218 261 261

Standard deviation 25 45 41

Saccade amplitude (deg) Mean 2.86◦ 2.51◦ 2.42◦

Standard deviation 0.47◦ 0.72◦ 0.68◦

FFD (ms) Mean 222 267 269

Standard deviation 28 54 49

SFD (ms) Mean 223 271 274

Standard deviation 29 58 52

GZD (ms) Mean 252 340 338

Standard deviation 39 111 88

RegProp (%) Mean 10.3 9.4 8.8

Standard deviation 0.04 0.03 0.28

Mean fixation duration and saccade amplitude for each condition as a function

of condition averaged over subjects. NT, Normal Text; PW, Pseudoword Text;

CS, Consonant String Text; FFD, First Fixation Duration; SFD, Single Fixation

Duration; GZD, Gaze Duration; RegProp, Proportion of inter-word regression.

for the CS condition) were excluded from analysis. As seen in
Table 1, mean fixation duration was statistically different across
the three conditions, F(2, 62) = 56.67, p < 0.001, in that the NT
condition had shorter fixation durations than the average of the
PW and CS conditions, F(1, 31) = 62.58, p < 0.001. There was
no difference in mean fixation duration between the PW and
the CS condition, F(1, 31) = 0.004, p = 0.948. The pattern of
results for mean fixation duration was also found in the first-
pass reading time measures [first fixation duration (FFD), single
fixation duration (SFD), and gaze duration (GD)], [F(2, 62) =
42.92, p < 0.0001 for FFD; F(2, 62) = 39.17, p < 0.0001 for SFD;
F(2, 62) = 33.79, p < 0.0001 for GD], with those for the NT con-
dition shorter relative to the average of the PW and the CS
conditions, [F(1, 31) = 49.3, p < 0.0001 for FFD, F(1, 31) = 47.16,
p < 0.0001 for SFD, F(1, 31) = 39.72, p < 0.0001 for GD], and
no difference between the PW and the CS conditions, Fs < 1,
ns. Saccadic amplitude also differed across the three conditions,
F(2, 62) = 19.91, p < 0.001, with the NT condition producing
greater saccadic amplitude than the average of the two non-
word text conditions, F(1, 31) = 19.92, p < 0.001, and the PW
condition producing greater saccadic amplitude compared with
the CS condition, F(1, 31) = 19.63, p < 0.0001. The proportion
of regressions (RegProp) also differed across the three condi-
tions, F(2, 62) = 6.92, p < 0.005, with the NT condition produc-
ing more regressions than the average of the PW and the CS
conditions, F(1, 31) = 8.01, p < 0.01, and a marginal difference
between the PW and CS conditions, F(1, 31) = 4.0, p = 0.054.
This general pattern of results in eye movements was similar to
that reported in an analogous fMRI study (Henderson et al., 2014)
and those obtained outside the scanner comparing natural and
false-font texts (e.g., Henderson and Luke, 2012, 2014; Luke and
Henderson, 2013).
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fMRI RESULTS
The fMRI results are displayed on inflated brain surfaces using
caret5 (Van Essen et al., 2001). The complete lists of activated
areas per contrast are provided in Tables 2–6.

Normal text—fixation
Areas activated during natural reading of normal text are shown
in Figure 1A and Table 2. These included cortical and subcor-
tical areas associated with the eye-movement control network:
bilateral FEF, SEF, bilateral IPS, bilateral superior colliculus (SC),
and bilateral thalamus. Areas related to language processing were

also strongly activated including bilateral middle temporal gyrus
(MTG), bilateral superior temporal gyrus/sulcus (STG/STS),
bilateral inferior frontal gyrus (IFG), and angular gyrus (AG). In
addition, areas involved in visual processing were activated: bilat-
eral cuneus, bilateral lingual gyrus, bilateral occipital pole, and
left fusiform gyrus (FG).

Pseudowords—fixation
Areas activated during pseudo-reading of pseudowords are shown
in Figure 1B and Table 3. Activation was seen in bilateral FEF,
SEF, and IPS, as well as left STS and bilateral IFG. Visual activation

Table 2 | Talairach coordinates, volume of the cluster (µl), maximum z-score, and the label of anatomical structure for the normal text (NT)

condition > fixation analysis, L, left hemisphere; R, right hemisphere.

Volume Max x y z Anatomical structures

248373 7.601 4 −70 −18 R/L Cerebellum, R/L Cuneus, R/L Lingual Gyrus

7.492 −52 7 −9 L Superior Temporal Gyrus

7.279 22 −25 0 R Ventral Diencephalon

7.177 −19 −91 −3 L Occipital Pole

6.864 −25 −19 −3 L Superior Colliculus, L Ventral Diencephalon, L Thalamus, L Putamen, L Caudate

6.66 −58 −31 2 L Superior Temporal Gyrus/Sulcus, L Middle Temporal Gyrus, L Fusiform Gyrus

6.392 −40 −1 50 L Middle Frontal Gyrus, L Precentral Gyrus, Lateral Frontal Eye Field

5.604 10 4 14 R Superior Colliculus, R Caudate, R Thalamus, R Putamen

5.424 28 −94 0 R Occipital Pole

4.47 −40 40 −6 L Pars Orbitalis, L Pars Triangularis

25866 6.655 49 −31 2 R Superior Temporal Gyrus/Sulcus, R Middle Temporal Gyrus

15363 6.397 −1 1 59 Supplementary Eye Field, L/R Superior Frontal Gyrus

5.426 −4 40 50 L/R Superior Frontal Gyrus

10503 5.355 52 28 5 R Parstriangularis, R Middle Frontal Gyrus, R Precentral Sulcus

1377 4.627 −25 −55 44 L Intraprietal Sulcus

1215 3.844 31 −67 26 R Intraprietal Sulcus

1188 3.629 −4 −28 56 L/R paracentral Gyrus/Sulcus

Table 3 | Talairach coordinates, volume of the cluster (µl), maximum z-score, and the label of anatomical structure for the pseudoword text

(PW) condition > fixation analysis, L, left hemisphere; R, right hemisphere.

Volume Max x y z Anatomical structures

121203 7.01 −37 −82 −6 L Middle Occipital Gyrus

6.561 7 −76 5 R/L Cuneus

5.717 31 −58 −21 R Cerebellum

4.801 −25 −55 41 L Intraparietal Sulcus

4.49 −13 −55 −27 L Cerebellum

24462 5.664 −43 1 35 L Precentral Sulcus, L Frontal Eye Field

4.18 −40 40 2 L Inferior Frontal Gyrus, L Orbital Gyrus

9693 5.444 −1 1 59 Supplementary Eye Field, L/R Superior Frontal Gyrus

6534 4.784 43 1 26 R Precentral Sulcus/Gyrus, R Middle Frontal Gyrus, R Lateral Frontal Eye Field

4887 5.804 −19 −22 0 L Ventral Diencephalon, L Thalamus

4374 4.713 −49 −37 8 L Posterior Superior Temporal Sulcus

4347 4.736 28 −61 32 R Intraprietal Sulcus

3024 4.151 13 13 5 R/L Caudate, R/L Putamen, R/L Pallidum

2997 4.177 4 −19 −27 Brain-stem

2538 4.47 43 −37 41 R Postcentrral Sulcus

1998 3.741 40 22 2 R Inferior Frontal Gyrus

1026 5.484 22 −22 0 R Ventral Diencephalon, R Thalamus
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Table 4 | Talairach coordinates, volume of the cluster (µl), maximum z-score, and the label of anatomical structure for the consonant string

text (CS) condition > fixation analysis, L, left hemisphere; R, right hemisphere.

Volume Max x y z Anatomical structures

114831 7.062 −19 −91 −6 L Occipital Pole, L Middle Occipital Gyrus

6.656 7 −70 8 R Cuneus, R Occipital Pole

6.291 −40 −64 −18 L Fusiform Gyrus, L Cerebellum

5.654 34 −58 −21 R Cerebellum, R Fusiform Gyrus,R Inferior Occipital Gyrus

4.511 −25 −70 35 L Intraparietal Sulcus, L Superior Parietal Gyrus

23409 6.428 −46 −1 44 L Precentral Gyrus, L Frontal Eye Field, L Inferior Frontal Gyrus, L Middle Frontal Gyrus

8343 4.883 40 1 29 R Precentral Sulcus/Gyrus, R Frontal Eye Field, R Middle Frontal Gyrus

5265 4.931 −46 −37 8 L Posterior Superior Temporal Sulcus

5076 5.781 −1 1 59 Supplementary Eye Field, L/R Superior Frontal Gyrus

2430 4.296 −4 −31 56 L/R Paracentral Sulcus/Gyrus

1863 3.861 49 −31 47 R Postcentral Gyrus

1863 4.491 −25 −55 44 L Intraparietal Sulcus, L Superior Parietal Gyrus

1701 3.968 −34 34 8 L Orbital Gyrus

1242 4.032 46 −22 56 R Postcentral Gyrus

1107 4.09 −10 −22 −27 Brain-stem

945 4.453 13 13 35 R Anterior Cingulate

918 3.66 43 52 0 R Orbital Gyrus, R Middle Frontal Gyrus

918 5.313 22 −22 0 R Ventral Diencephalon, R Thalamus

was also observed in bilateral cuneus and left occipital cor-
tex. Subcortical activation was seen in caudate, putamen, and
pallidum.

Consonant strings—fixation
Areas activated during pseudo-reading of consonant strings are
shown in Figure 1C and Table 4. Activation was seen in bilateral
FEF, SEF, and IPS, left posterior STS (LpSTS), bilateral IFG, mid-
dle frontal gyrus (MFG), bilateral orbital gyrus, occipital cortex,
and FG.

Conjunction of normal text, pseudowords, and consonant strings
A conjunction analysis of the NT, PW, and CS conditions was
conducted to examine the common eye-movement network.
Activation in this contrast would also be expected for areas
involved in processing character strings (e.g., orthographic and
potentially phonological processing) related to the presence of
alphabetic characters. Figure 2 shows the results. Activation was
observed in bilateral FEF, SEF, and IPS. Activation was also
observed in LpSTS, left IFG, left precentral gyrus, and left MFG
(premotor area, BA6).

Normal text vs. average of pseudowords and consonant strings
The NT condition was compared to the two nonword condi-
tions to examine normal reading versus pseudo-reading. The
PW and CS conditions produced similar patterns of activa-
tion against fixation baseline (see Figures 1B,C), so these con-
ditions were averaged for this comparison. Activated areas
are shown in Figure 3 and Table 5. Areas producing greater
activation in the NT condition were left MFG including
lateral FEF, bilateral SFG including pre-SMA, bilateral STS
and anterior STG, bilateral MTG, bilateral AG, bilateral IFG
(pars triangularis), bilateral cuneus, and bilateral precuneus.

Subcortical activation was seen in caudate, thalamus, and ventral
diencephalon.

Greater activation was produced in the average of the
two nonword conditions in bilateral SFG, bilateral anterior
and posterior cingulate, bilateral supramarginal gyrus, bilat-
eral transverse temporal gyrus/sulcus, bilateral MFG/MFS, bilat-
eral postcentral gyrus/sulcus, bilateral hippocampus, bilateral
parieto-occipital sulcus, bilateral insula, bilateral IFG (pars
opercularis), bilateral superior parietal lobule and IPS, right
subcentral gyrus/sulcus, right superior occipital gyrus, right mid-
dle occipital gyrus, right orbital sulcus, and right precentral
sulcus.

Pseudowords vs. consonant strings
Figure 4 and Table 6 show the results of a PW versus CS con-
trast. Activation was greater in the PW condition in left IPS, right
inferior temporal gyrus (ITG), right FG, and right caudate. No
regions produced more activation in the CS condition.

DISCUSSION
This study was designed to investigate the neural correlates of
natural reading. Subjects read passages of text presented in para-
graph form while both eye movements and the BOLD signal
were recorded. The natural reading condition was compared to
two pseudo-reading conditions in which words were replaced
by either pronounceable pseudowords or consonant strings. In
the latter two conditions subjects were asked to move their eyes
through the text “as if they were reading” (Vitu et al., 1995; Rayner
and Fischer, 1996; Nuthmann and Engbert, 2009; Reichle et al.,
2010; Henderson and Luke, 2012, 2014; Luke and Henderson,
2013). Three specific questions were addressed: the nature of
the common eye-movement control network in these sequen-
tial scanning tasks, the nature of the eye movement network in
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Table 5 | Talairach coordinates, volume of the cluster (µl), maximum z-score, and the label of anatomical structure for the normal text vs. the

nonword texts analysis, L, left hemisphere; R, right hemisphere.

Volume Max x y z Anatomical structures

NORMAL TEXT > NONWORD TEXTS

130653 7.682 −52 7 −9 L Anterior Superior Temporal Gyrus, L Middle Temporal Gyrus, L Inferior Frontal Gyrus (Pars Triangularis)/
Sulcus, L Middle Frontal Gyrus

6.669 −52 −31 2 L Posterior Superior Temporal Sulcus, L Angular Gyrus

6.563 −7 −28 2 L/R Thalamus, L/R Superior Colliculus, L/R Ventral Diencephalon, L Fusiform Gyrus

5.844 10 7 14 R/L Caudate, R/L Thalamus, R/L Ventral Diencephalon

66825 7.276 16 −67 −24 R Cerebellum

5.168 −1 −70 11 L/R Cuneus, R Occipital Pole, L Cerebellum

35775 6.985 46 7 −15 R Anterior Superior Temporal Gyrus, R Middle Temporal Gyrus

6.573 58 −37 2 R Middle Temporal Gyrus, R Angular Gyrus, R Superior Temporal Sulcus

17145 5.935 −7 43 50 L/R Superior Frontal Gyrus

5.218 −4 10 62 L Superior Frontal Gyrus,
L Pre-Supplementary Motor Area

5589 4.715 −4 −58 32 L/R Precuneus, R Subparietal Sulcus

5481 5.567 −40 −1 50 L Middle Frontal Gyrus, L Lateral Frontal Eye Field

4077 5.589 52 28 5 R Inferior Frontal Gyrus (Pars Triangularis)

NONWORD TEXTS > NORMAL TEXT

51705 −5.929 40 −37 41 R Postcentral Sulcus/Gyrus, R Supramarginal Gyrus,
R Superior Parietal Gyrus, R Intraparietal Sulcus

−5.363 46 1 2 R Inferior Frontal Gyrus (Pars Opercularis),
R Subcentral Gyrus/Sulcus,
R Transverse Temporal Gyrus/Sulcus, R Insula

−5.259 13 −67 41 R Superior Parietal Gyrus, R Parieto-Occipital sulcus,
R Superior Occipital Gyrus

35937 −7.399 −4 31 14 L/R Anterior Cingulate Gyrus/Sulcus,
L/R Superior Frontal Gyrus

−5.436 −34 55 14 L Middle Frontal Gyrus/Sulcus

−5.922 −40 −37 38 L Postcentral Sulcus/Gyrus, L Supramarginal Gyrus

−5.817 −37 −22 5 L Transverse Temporal Gyrus/Sulcus, L Insula

−5.767 −34 13 5 L Anterior Insula,
L Inferior Frontal Gyrus (Pars Opercularis)

−5.137 −19 −64 23 L Parieto-occipital sulcus

9882 −5.466 40 52 11 R Middle Frontal Gyrus/Sulcus

7047 −5.753 −1 −22 26 L/R Posterior Cingulate Gyrus

4725 −4.779 34 −79 0 R Middle Occipital Gyrus

2916 −5.069 31 −40 0 R Hippocampus

945 −3.733 −46 −58 −33 L Cerebellum

945 −4.995 25 34 −6 R Orbital Sulcus

945 −4.796 −28 −43 0 L Hippocampus

945 −3.471 7 −4 65 R Superior Frontal Gyrus

918 −3.634 25 −13 47 R Precentral Sulcus

natural reading, and the nature of the language network in natural
reading.

COMMON EYE MOVEMENT CONTROL NETWORK
A common eye movement control network was revealed across
the three conditions. As can be seen in Figure 2, bilateral
FEF, bilateral IPS, and SEF were activated when sequential and
complex eye movements were executed during these task. The
observed areas are consistent with those that have been pro-
posed as the core eye movement control network, as observed
in single-saccade eye movement tasks (Pierrot-Deseilligny et al.,

2004; McDowell et al., 2008; Müri and Nyffeler, 2008; Jamadar
et al., 2013). These results are also consistent with those of Hillen
et al. (2013) in which subjects searched text and pseudo-text for
Landolt C targets. The results suggest that this core eye movement
control network is functional in single-saccade eye-movements
tasks, sequential search tasks, and in natural reading.

The activated regions reported here were very similar to those
reported by Hillen et al. (2013) in their conjunction analysis
across five conditions to identify the common gaze control net-
work. However, the network reported by Hillen et al. did not
include the left IPS, whereas the current results showed bilateral
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Table 6 | Talairach coordinates, volume of the cluster (µl), maximum

z-score, and the label of anatomical structure for the pseudo text vs.

the consonant string text analysis, L, left hemisphere; R, right

hemisphere.

Volume Max x y z Anatomical structures

PSEUDOWORD TEXT > CONSONANT STRING TEXT

1215 3.95 −34 −43 41 L Intraparietal Sulcus

1080 3.861 46 −49 −9 R Inferior Temporal Gyrus,
R Fusiform Gyrus

1026 4.107 7 7 8 R Caudate

CONSONANT STRING TEXT > PSEUDOWORD TEXT

None

IPS activation. Although both Hillen et al. and the present
study measured BOLD responses with sequential oculomotor
paradigms rather than the SVP paradigm, Hillen et al. employed
a secondary search task, which was not used in the present study.
This difference between the two studies might explain why slightly
different patterns of activation were observed in the eye move-
ment control network. Note that simple eye-movement tasks
usually generate activation in bilateral IPS (see Jamadar et al.,
2013), implying that the IPS in both hemispheres is involved in
saccade control and/or attentional processes. Hillen et al. did not
discuss why activation in the left IPS was not obtained in the con-
junction analysis in their paper, but did discuss the right IPS acti-
vation with respect to attentional processes (Culham et al., 2006)
and planning of movements (Barthélémy and Boulinguez, 2002).
Activation of the IPS in eye movement control might be asso-
ciated either with saccadic movement, attentional processes, or
saccade-related attentional processes. As Pierrot-Deseilligny et al.
(2004) pointed out, it is relatively difficult to separate activation
by saccades from activation by attentional processes, because they
typically co-occur. Indeed, covert attention and eye movement
control are tightly linked in reading (Henderson and Ferreira,
1990), and this link forms the basis of several current compu-
tational models of reading, (e.g., Reichle et al., 1998; Engbert
et al., 2005). Further research will be needed to differentiate the
neurobiology of these processes in natural reading.

EYE MOVEMENT CONTROL NETWORK FOR READING
The contrast analysis between normal reading and pseudo-
reading showed that lateral FEF was more activated during nor-
mal reading compared to pseudo-reading. McDowell et al. (2008)
proposed that lateral FEF is more associated with visually guided
saccadic eye movements. In addition, Jamadar et al. (2013), in
their meta-analysis, found more lateral FEF activation in pro-
saccades relative to a fixation control, supporting the idea that
lateral FEF is more involved in visually guided automatic eye
movements. Although eye movements during natural reading are
not as simple and reflexive as those in the pro-saccade task, they
are highly automatized and guided by visual information from the
upcoming word in the parafovea. This similarity might account
for the greater activation that was observed in lateral FEF in the
normal reading condition relative to the pseudo-reading condi-
tions. At the same time, the pseudo-reading conditions showed

more activation in the eye movement control network including
bilateral IPS, as well as ACC, relative to the normal reading con-
dition. These structures have been reported to be associated with
both attentional processes and eye movement control (Pierrot-
Deseilligny et al., 2004). Although, as indicated above, it is very
difficult to functionally differentiate attentional control from eye
movement control, this result may suggest that pseudo-reading
requires more attentional control and/or more fine-grained eye
movement coordination compared to normal reading, consistent
with the idea that eye movement control is more automatized in
natural reading.

OTHER REGIONS OF THE COMMON NETWORK
In addition to the eye-movement network, activation across the
three conditions was also observed in left posterior MFG and pre-
motor area, left posterior IFG, and posterior STS. These regions
are not commonly thought to be related to eye movement con-
trol, and could be associated with task-dependent processing.
For example, premotor and posterior IFG activation could be
related to covert articulation (McGuire et al., 1996; Ghosh et al.,
2008; Peeva et al., 2010; Rogalsky and Hickok, 2011). In the
two nonword reading conditions, subjects may have been able to
pronounce the nonwords in both the PW and CS conditions, acti-
vating phonological representations and phonological working
memory. Because we matched strings in length across conditions,
many of the consonant strings may have been pronounceable
because they were one- to three-letters long. For example, a
two-letter consonant string like sp can be pronounced.

The conjunction analysis also showed activation of the LpSTS
which has been suggested to be a region of multi-functionality
(Hein and Knight, 2008; Liebenthal et al., 2014). Here, the likely
role of LpSTS is also in phonological processing as part of a
dorsal/posterior pathway that represents transient phonological
representations and maps them to articulatory codes in pre-
motor and posterior inferior frontal regions (Wise et al., 2001;
Hickok and Poeppel, 2007; Desai et al., 2008; Obleser and Eisner,
2009). Note that the normal reading condition activated these
areas (left IFG/MFG and LpSTS) to a greater extent than the
pseudo-reading conditions in the contrast analysis (see Figure 3),
suggesting greater and more automatic phonological processing
in normal reading compared to pseudo reading.

LINGUISTIC AND RELATED COGNITIVE PROCESSES
Reading paragraphs for meaning requires many levels of lan-
guage representation and processing including orthographic/
phonological processing, lexical access, retrieval of lexico-
semantic information, syntactic computation, and semantic
interpretation. The language network observed in previous stud-
ies, including STG, STS, MTG, IFG, MFG, AG, and precuneus
were also more activated during normal paragraph reading com-
pared to the pseudo-reading conditions in the present study.
Regions in the lateral temporal lobe, AG, and precuneus form the
core of a semantic network observed in numerous studies that
typically use word or sentence stimuli (Binder et al., 2009). This
network was activated strongly for natural reading of text relative
to the nonword conditions in the present study, extending these
past findings to natural text reading.
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FIGURE 1 | Areas of significant activation in a whole-brain analysis of natural reading of normal text [NT condition, (A)], and “reading” pseudowords

[PW condition, (B)] and consonant strings [CS condition, (C)]. L, Left Hemisphere; R, Right Hemisphere.

FIGURE 2 | Conjunction results for the normal text (NT), pseudowords (PW), and consonant string (CS) conditions (NT – fixation n PW− fixation n

CS− fixation). L, Left Hemisphere; R, Right Hemisphere.
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FIGURE 3 | Areas activated in a whole-brain analysis of the

contrast of natural text reading (NT) versus the average of

pseudowords and consonant strings (mean of PW and CS). Hot

regions represent more activation for text whereas cool regions
reflect more activation for nonwords. L, Left Hemisphere; R, Right
Hemisphere.

FIGURE 4 | Areas activated in a whole-brain analysis of the contrast of

the pseudowords versus consonant string conditions. Hot regions
represent more activation in the pseudowords condition than in the
consonant string condition. L, Left Hemisphere; R, Right Hemisphere.

At the same time, the nonword conditions showed more acti-
vation in medial frontal/ACC, posterior cingulate cortex, and
bilateral IPS, areas associated with attentional brain networks
(for a recent review, see Petersen and Posner, 2012). The greater
attentional network activation observed here for nonwords sug-
gests that “reading” paragraphs with nonword stimuli requires
substantial attentional resources, extending findings from sev-
eral single-word studies that show a similar pattern (e.g., Price
et al., 1996; Hagoort et al., 1999; Mechelli et al., 2000; Paulesu
et al., 2000; Binder et al., 2005; Vigneau et al., 2006). In our
nonword reading conditions, readers were asked to imitate nor-
mal reading patterns with eye movements, which is a relatively
unpracticed task that requires encoding nonwords, inhibiting
neighbor words, and coordinating eye movement control. These
processes likely require more attentional resources than natural
reading. Hillen et al. (2013) also reported that a condition in
which text was replaced by Landolt rings showed more activa-
tion in the right inferior parietal lobule relative to the conditions
that used alphabetic characters, suggesting that “Landolt reading”

similarly requires more attentional resources compared to the
other conditions. In addition to the neural data, the behavioral
eye movement data in the current experiment support this idea
in that fixation durations in nonword reading were longer than
those for normal reading, indicating that more effort is neces-
sary for nonword reading than for normal reading (for similar
findings, see Henderson and Luke, 2012, 2014; Henderson et al.,
2014). Another way to state this is that natural reading is highly
automatized and therefore requires less attentional control than
does consciously executing similar sequences of eye movements.

The text vs. nonword comparison also showed activation in
bilateral IFG, both for text and for nonwords, consistent with
previous single word and sentence processing studies. The IFG
has a well-established role in language, including possible seman-
tic, syntactic, phonological, articulatory, and executive functions
(e.g., Hagoort, 2005; Grodzinsky and Santi, 2008; Friederici,
2009; Duncan, 2010; Rogalsky and Hickok, 2011). Regions of
the anterior IFG overlapping BA 47 and 45, activated more
for text, likely reflect semantic retrieval processes. The posterior
IFG, activated to a greater extent for nonwords, likely reflects
more effortful covet articulation and phonological processing.
Additionally, as argued by Duncan (2010), posterior IFG is part
of a multiple-demand network that includes posterior IFS, ante-
rior insula/frontal operculum, pre-SMA/ACC, and IPS, and is
associated with cognitive control. In the current study, nonword
reading requires more effortful processing to perform complex
saccadic coordination relative to normal reading because no lin-
guistic information is provided in foveal or parafoveal vision,
whereas sequential saccadic movements in normal reading can be
guided by linguistic information both at the fovea and parafovea.
Accordingly, readers are likely to use a less efficient control mech-
anism for eye movements in nonword reading relative to normal
reading, as indicated by the greater activation in frontoparietal
areas including PO, anterior insula, and IPS.

In summary, the present study showed that (1) activation of a
core eye-movement control network was observed when partici-
pants naturally read text paragraphs or moved their eyes through
nonword text, (2) differences in activation of the eye movement
control network in natural reading and pseudo-reading suggest
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that readers use automatized saccadic coordination during nat-
ural reading whereas they require more complex attentional and
control processes during pseudo-reading, and (3) normal reading
produced distinct patterns of neural activation in a language-
related network, extending previous findings with word and
sentence stimuli. These results indicate that presenting entire
paragraphs (or sentences) in fMRI during natural reading can
provide important data with respect to the neural understanding
of language processing and eye-movement control in reading.
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