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ABSTRACT

The applicability of a functional polynomial of third degree for the
constitutive equation of a nonlinear viscoelastic polymer has been investi-
gated. A method for the determination of the kernel functions appearing in
the one-dimensional creep formulation has been discussed. Creep measurements
of tension and compression in low density polyethylene under single step, two
step, and three step loading histories are described. The analysis of this
data has provided a basis for the determination of the creep kernel functions.
For the loading range used in the tests, the Volterra-Fréchet multiple in-
tegral expansion of the constitutive functional of low-density polyethylene
has been found to be‘adequately represented by the three term integral
representation. A number of cases of general load histories were investi-
gated. A close comparison between the experimental response to these
loading histories and the response predicted by the three terﬁ integral

representation was obtained.
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NOTATION

Stress tensor

Finite strain tensor
Infinitesimal strain tensor
Rectangular Cartesian coordinates
Deformation gradient

Dirac delta function

Heaviside step function
Relaxation functions

Creep functions

Present time

Generic times



. I. INTRODUCTION

For many physical systems or processes the output of the system is
dependent only on the present value of the input. In the majority of cases,
however, the output of the system depends upon the past history of the input,

For example, the temperature at a given instant of time in an electric

furnace is not only dependent on the current flowing in .the heating element
at that instant, but also on the past history of electric current applied.
The history dependent system of interest in this investigation is a visco-
elastic material which creeps under sustained loading or which relaxes under
sustained deformation. Such héreditary systems may be characterized by a
functional relating the history of the input to the present value of the
output.

During the early part of the Twentieth Century V. Volterra [1]* and
M. Fréchet [2] (among others), presented studies on the generél theory of
functionals. Frébhet_in particular demonstrated that every continuous

functional can be represented by a sum of multiple integrals. Volterra

used this multiple integral representation for functionals and demonstrated
how hereditary'phenomena in elasticity, electromagnetism, etc., give rise
to nonlinear constitutive equations which may be represented as sums of

multiple integrals.

*Numbers in square brackets refer to the bibliography at the end of the
text.




A rigorous treatment of the three dimensional constitutive equitions
for ‘nonlinear: viscoelastic materials was presented by Green, Rivlin and
Spencer [3]. They assumed that the stress tensor was dependent upon the
entire past histor& of displacement gradients, then - using invariance re-
quirements, results from the theory of matrix invariants, and the Weierstrass
theorem on approximation of continuous functions by polynomials - these
authors were able to show that the constitutive equation for isotropic
hereditary materials could be approximated by a multiple integral expansion.
The integrands of the various integrals contain matrix products of the strain
tensor and invariants of these matrix products.

Spencer and Rivlin [4] extended the theory of matrix polynomials and
were able to reduce the number of matrix products and the number of in-
variants that need to be consdidered in Green and Rivlin's formulation. A
lucid review of the work of Green, Rivlin and Spencer and extensions of
their theory, were presented by Pipkin [5]. He gave the explicit form of
the functional when it is expanded into terms of various powers of the time
derivative of the finite strain tensor. Pipkin also noted that for the
case of small displacements and small rotations the constitutive equation
may be written either in a relaxation form (in which the stress tensor is
expressed as a functional of the infinitesimal strain tensor) or in a
creep form (the infinitesimal strain tensor being expressed as a functional

of the stress tensor.)



The relaxation or creep functions characterizing the material behaviour
(and which are the kernels appearing in the multiple integral representation
of the constitutive equation) must be evaluated from experiments. The ex-
tensive testing program required to determine the material functions for a
particular material has not yet been undertaken aithough some studies have
been performed which have provided a limited amount of information regarding
the form of these functions.

Lifshitz [6] made use of a multiple integral representation for the
description of the constitutive equation for polyethylene. Creep tests in
tension and torsion were conducted. Each type of test used a single specimen
and after a test at a particular stress value the specimen was annealed and
another creep test was conducted on the same specimen at a different stress
value. The traces of the first, second and third order creep kernel functions
were obtained from the tension tests and the traces of two other material
functions were obtained from the torsion tests. (The trace of a function of
n arguments is obtained by setting all n arguments equal.) Neither strain
due to more than one step input stress, nor to combined tension-torsion
stress states were obtained. The forms of the second and third order creep
kernel functions for non-equal arguménts were not obtained. However,
important results regarding the type and magnitude of the nonlinearity of
polyethylene were obtained.

The results of a similar testing program using a single specimen of

polyvinyl chloride copolymer plastic were recently reported by Onaran and



Findley [7]. They conducted combined tension and torsion tests at various
stress levels, but again only single step loading was used so that only
traces of the kernel functions coyld be obtained.

Huang and Lee [8] in a theoretical study of nonlinear viscoelasticity
suggest that for short time ranges the second and'third order kernel functions
can be represented by a few terms of the power series expansion in their
arguments. This assumed form for short time ranges is supported by the
experimental results of Ward and Onat [9] who subjected a polypropylene
monofilament to a number of extensional loading steps. Their experimental
creep results could be represented with reasonable accuracy by a third order
functional. The nonlinearity of polypropylene was found to increase with
load intensity and also with time (i.e., time after initially applying the
load.) It was also demonstrated that the observed nonlinearity was due to
the physical properties of the material and not to geometric nonlinearities
introduced by finite deformations alone.

The linearized superposition principle, first advanced by Boltzmann [10],
was applied by Leaderman to approximate the constitutive equation of bakelite
[11] and was generalized to approximate the constitutive equation of
plasticized polyvinyl chloride [12]. Leaderman indicates [13] that certain
discontinuities arise when applying this generalized superposition principle
to the results of single~step creep tests and to the results of multistage
creep and recovery experiments. He suggests that the nonlinear viscoelastic
properties of textile fibers can be described only by a multiple integral

representation.



A sequence of load histories, each consisting of a series of step inputs
was carried out in a testing program reported by Findley and Khosla [15].
Four unfilled thermoplastics were tested and a Modified Superposition
Principle (due to Leaderman [14]) was applied to the experimental results.
The predicted strains gave average errors of ten percent and the modified
superposition principle was applicable when the load remained constant or
increased, but could not be used to predict the negative creep rate observed
following a decrease in stress. (A similar loading program applied to concrete
was carried out by Ross [16]). Although the results of a number of load
histories, each consisting of a series of step inputs, is necessary to
define the kernel functions in a multiple integral representation of the
constitutive equation for a nonlinear viscoelastic material, the above
investigators used them simply as a convenient way of applying a time
variable loading pattern.

One of the drawbacks of the use of Volterra-Fréchet representation of
a functional to describe constitutive relations of materials was very
graphically demonstrated by Wang and Onat [17]. The functional con-
stitutive relation of aluminum at 300° F is apparently "continuous” but
not "smooth." Even though this functional theoreticaly could be
- represented to any degree of accuracy by a Fréchet sum, Wang and Onat's
results show that an approximation using only a few terms in such a sum

does not give results which can reliably predict the material behavior.



Onat uses the suggestive terms '"weakly nonlinear' and "strongly non-
linear' to distinguish between materials such as plastics which have a
continuous and smooth constitutive relationship and materials such as steel
or aluminum (elastic-plastic materials) which have only a continuous con-
stitutive relationship.

In summary, the Volterra-Fréchet multiple integral representation for
the functional constitutive equation for the mechanical behavior of materials
with memory has been theoretically investigated by many aﬁthors and this
formulation has a sound theoretical basis. However, very few comprehensive
experimental programs have begn undertaken to adequately describe the higher
order material kernel functions in such a representation.

In this investigation an attempt will be made to determine the kernel
functions in a third order multiple integral representation of the one-
dimensional creep form of the constitutive relation. The results of input
stresses consisting of more than one step will be used to obtain values of
the kernel functions which will be used as a basis for a complete deter-
mination of these functions. The practicality of this determination will be
discussed. The appropriateness of the third order representation for the
creep law will be investigated by performing experiments in which a number
of known variable load histories are applied to specimens. The measured
response will then be compared to the response predicted by the third order
multiple integral representation based on the use of the experimentally

determined kernel functions previously obtained.



" II. THEORY

2.1 Introduction

Since this study was devoted to the problem of detérmining the one-
dimensional material functions for a viscoelastic material undergoing small

strains, and to the applicability of the multiple integral representation

of the constitutive equation in the solution of one~dimensional stress
analysis problems, the theoretical discussion of the assumed strain-stress
law could be restricted to the one-dimensional problem. From the assumption
that the stress in the X direction is the only input, a Volterra-Fréchet
multiple integral expansion could be taken as a representation of the non-
linear functional relating the strain in the X direction to the stress input.
However, a more general approach - that of viewing the one-dimensional
small strain probleﬁ as a particular case of the three-dimensional finite
strain problem - not only gives an insight into the tremendouély difficult
problem of a complete characterization of the material behavior but also
demonstrates the relationship between the kernel functions of a one-

dimensional constitutive equation and those appearing in the three-dimensional

representation. These relationships then allow the results obtained here
to be used for the determination of the kernel functions appearing in the

three dimensional stress-strain law -- providing other tests are performed.

2.2 Three-Dimensional Viscoelastic Constitutive Equations

Green and Rivlin [3] and Pipkin [5] have shown that the constitutive

equation of simple materials (i.e., materials in which the étress components
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where:

I = lé;l
?’&)="G§¢ﬁ is the stress tensor in the fixed cartesian coordinate system

x, and JCL and 3; are the coordinates of a generic particle at time
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By continuous is roughly meant that neighboring input histories (i.e., input
histories which defer only slightly for all times ‘& ) produce neighboring
output histories.

The terms in the higher order integrals may be easily written down by
considering higher order combinations of the following matrix products and

invariants:
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If the material is in a quiescent state prior to time zero, with the appli-
cation of the input commencing at time zero, then the range of integration
may be changed from (-0,t) to (o,t)

‘ For non-aging materials, that is, materials for which the form of the
response is dependent on the form of the‘input but ﬁot dependent upon the
time at whibh this form was first applied, the material functions h4; are
no longer dependent on (t,T“Tg"u"fh)‘ but are only dependent on the time
differences t-1; etc. This means, for example, that the kernel function
M4 is reduced from a function of three arguments to a functioh of the two
arguments t-1§, f-11 . Furthermore, without any loss in generality, M4
may be assumed symmetric with respect to each argument since its multiplier
][,t.,ﬂ;'(f.J/l‘z,lf(r,_) is symmetric with respect to T and 2, . It should

be noted that, in general, all of the kernel functions can not be assumed

to have such a complete symmetry with respect to their arguments.

2.3 Further Reduction in the Required Number of Kernel Functions

The Generalized Cayley-Hamilton theorem obtained by Rivlin [4] for

arbitrary 3 x 3 matrices A, B, C:
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ABC +CBA+BAC+CAB+ACB+BCA = A (1. BC-4BAC) +B(hAC-HtAkC)
+ C(HAB-HABB) +(BC+CB) A +(ActCA) i B + (AB+BA) 2 C 2.5
+ T [ARBLC- £AMBC-£.BAAC-1CHAB +5. ABC +4.CBA ]
together with the natural symmetries of the various kernel functions with
respect to their arguments provides a means for further reducing the number

of kernel functions in the third and higher order terms.

The kernel functions M7 and M9 may be taken as symmetric with respect
to all three arguments. Equation 2-5 may then be used to express either one
of the integrals over M7 or M9 in terms of the remaining third order integrals.
It should be noted that for certain particular materials all the kernel
functions may be completely symmetric with respect to all arguments. For
these cases, Rivlin's theory of matrix invariants may be used to show that

the only matrix products and invariants that need be considered in the

expansion of H: are:
E(x)
(o E(n)—r ﬂé(r;)ﬂ'fcr. ) (2.6)

A E)
[ Emy e
[ BB Em)]

2.7)

Such a drastic reduction in the number of matrix products and invariants
to be considered reduces the number of material kernel functions in the
fourth and higher order integrals, but does not reduce the number of kernel

functions in the linear, quadratic or cubic integrals.
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The number of materials functions required for the characterization

of an isotropic viscoelastic solid are:

two linear or single integral functions (functions of one variable)
four quadratic functions (functions of two variables), and

six cubic functions (functions of three variables)

It may be seen that for the third order theory there is a direct corres-
pondence between the number of required kernel functions for a viscoelastic
solid and the number of required materials constants for a Cauchy elastic
solidr(see Ref. [18]).

This direct correspondence between the number of material functions
for a viscoelastic solid and the number of constants for a Cauchy elastic
solid would continue for all higher order terms if the viscoelastic
material were of the special type that could be characterized using only
the terms of the form shown in Equation 2-6 and Equation 2-7. In the

general case, however, this would not be true.

2.4 Creep Integral Representation

The creep integral representation of the constitutive equation for a
nonlinear viscoelastic solid can be obtained from the preceding stress

relaxation formulation by rewriting Equation 2.1 as

i T t
o = Flex] (2.8)
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If we now assume that Equation 2.8 has an inverse, then it must be of the

form

o7
Ee = ¢ ‘b/'t ] (2.9)

and following exactly the same arguments used in developing a representation
for [ in Equation 2.1 it can be shown that H} may be represented by a
sum of multiple integrals given by replacing E(T) in Equation 2.2

a ~i -|T
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where

-i _fT
T = ¢ ¢ ¢ (2.11)
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The legitimacy of this representation depends (in part) upon the
assumption of continuity of the functional HI . Whereas in the stress
relaxation formulation it was necessary that neighboring strain histories
produce neighboring stress histories, the creep integral formulation requires
that neighboring stress histories produce neighbdring strain histories. An
ideal elastic-plastic material is a simple example of a material for which
this continuity condition would not apply. The difficulty experienced by
Wang and Onat [17] in attempting to apply the Volterra-Fréchet representation
to aluminum at 3000 F is probably due to such a nearly abrupt change in
behavior of the material in the vicinity of the idealized yield stress of
the aluminum.

This possible restriction of the creep integral representation is
perhaps of less importahce than the fact that measures of the deformation
appear on both sides of constitutive equation 2.10. The desired output
(the finite strain tensor [E ) is not only dependent upon the stress input,
but also on the deformation gradient matrix ¢ . For small deformations
the deformation gradient matrix essentially reduces to the identity matrix,

but no such reduction is possible for finite deformationms.

2.5 One-Dimensional Viscoelastic Constitutive Equations

As pointed out in the previous section, twelve material functions
appear in the three-dimensional third order Volterra-Fréchet expansion
of the constitutive equation for a viscoelastic material. The laborious

task of determining such a large number of material functions for a particular
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material must be accomplished in simpie stages. Firstly, one-dimensional
creep or relaxation tests may be performed. Secondly, two-dimensional test
results are required and finally, an examination of the response of the
material to three-dimensional inputs would be required.

In a one-dimensional creep test the stress history is of the form

o @) = B
G‘fj(t)= O all other (,j (2.12)

If the material is isotropic, then this stress state must produce a

deformation of the form

@ = X, (X, t)
X0 = X, (X, t) 13
x;(t) = X (Xa) t)

This follows from the fact that rotations of the coordinate system about the
X, axis or translations in the (, )Cs plane give no changes in the stress

state or the material properties.  Hence ¢ is diagonal and

T - goe™ = | KoXKeooe o o
o o o (2.14)
o) (o] o

so that Equation 2-10 reduces to



16

‘t- -
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it ..
o [ {BenmTn - Tern s 23 m) o0 dudr,

- moe

ttt ;
I [Bennm + T rnm+dte,n,5) + T, (Ge,55) + Tytnm0)
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+2Tt5,50) | T @ T@Ta dundndsg
tt tt
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tt e . .
¢ =, , 1,6 T dtde,
+—.£L {J;('T”EL) vt ’T?) 1 R (2.15b)
ttt . . -
] [Tz, 5w + T4, e T, @ dudnds,
+ - °
Eij t) =0 L= |
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The expression 2-15a is one dimensional in the sense that the strain

in the X, direction is dependent only on the past history of the stress

in the X; direction. The measured response E”ﬁﬂ due to various input

stresses Uﬂﬁﬂ will provide information for the determination of the



- 17

combinations of third order kernel functions J} contained in the braces.
For a one-dimensional relaxation test with the deformation history
specified by
x,e = X, + (X, t)
X&) = Xp |
2, ) X3 (2.16)

1

Equation 2.2 gives a representation for .Th(t) very similar to the above

results for E,&)

t
T = J [Mw + M50} E,@ dx

tt .
- +” { M3 (t,n)+ M (7, ) +Mg(tT, )+ 2M6(-l;)-cu-zz)} E“t‘c.) E, & dvdz,
‘ it
+J j / { Mg(t,-c,,n)zs)-t- 2M (t7,7,5) + M, ( tT, 7 %) + M, (47, T,5)
+ M‘z(‘tJ'l'lJ—ClJIS)‘,'Z M‘3(t,-z:JTIJTQ)} E-“(tl) E|('Tl) E“ [-c3) JT; ‘{tzdrg (2‘ 17)
tt t+

EO0 w8 o GO

However, the more common types of one dimensional relaxation tests are those
in which the X, (t) deformation history is prescribed and the two stresses
O%,(t) and Gsa(t) are maintained at zero values. For this case we

assume that the deformation
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x, ) =X, [1+ f&r]
X, = X,[1+ 3¢
X &) = XB[ 1+ j(t)_] (2,18)

is associated with the stress output

o (t) = 07@)
OJCJ'("?) =0 all other ZJJ' (2.19)

where we view f as arbitrary and 9 prescribed by the condition that

02 () = o33 ¢) = O

Then
|+ ¥ © © (2.20)
q: =
o I+9 o
o] O l+3
and
-f-"(H—f) o o
E@) = 0 ‘(i+q) O
AR (2.21)
o) o j(H-f])
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so.that we obtain
o7 &) [t { M,[Ec)+2E, &) + M, E, @ 1 dx,
of [ [ Gk o sebio] + M [EcebuifEortis]
+ M [ E e+ 2E o] E, 000 +2 Méé,,cmf:;,,(n)} dv,dt,

ttt

+ [ / / {M7 [E ; Iﬁ.)é “fta)l_i’ ‘(t;)+2é z{t.)éz () Ez 2(rs)] +M g [E Gt EZZ(I,;J[E"@E/ F,)+ZE A% E.Zz(r,g

= OB R

+Z2M lo[En(t’) +ZE22.((3)] E“f‘«)E, (m + M,,_[E“('QJE”(T;) +2Ezz(r‘) Ezzcca)] EM(T’)

+M, ‘[é“@zhz éz{ﬁg\:é,ﬂf;)'rlézz@sa !-_:,,(r.) +2 MB[E_ | ‘G,)E.,[G) E (%) 3 dgd, dz,

4+ - - . (2.22a)
and
t - -

=® _ 0= / {M,[E-,,(T.HZEZZ@.)] + M, Ezz(r.)} d,
o . ) C e .

+][ {My[EmE e+ 2E, 0 o +M [ E om0+ 2E e E 426 )

+M s[é: €+ t;u(tz)] E:Z.L(n) +2 M, E Zz(r.)éaz(q)i dvdz,
ttt
"'Jff + (2.22b)

where the arguments of the functions M': have not been written.
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In this case it is necessary to have measured values of the two "inputs"
f and 3 (from which E can be calculated) as well as the output Gn(t)
in order to obtain information regarding the form of the three dimensional
relaxation kernel functions h4£ . Theoretically, it would appear that
Equation 2.22b could be used to eliminate g (and therefore Ezz ) from
Equation 2.22a in 6rder to express cﬁjdﬂ as a functional of E“(t):
t o . tox e
o &) =j M, &) E () d, +// M, (%, E ) E (ydrdr, + -+ (2.23)
(l+'F)1 ~ot -00 -0
From this point of view, a relaxation test could also be considered as a
one-dimensional test. However, there is no simple relation between the
kernel functions FA:* in this formulation and the kernel functions Fﬂi in
the general three-dimensional relaxation formulation.

2.6 Discussion of the Problem of Determination of the One-Dimensional
- Creep Functions

For the case of infinitesimal deformations, the one-dimensional creep-

integral constitutive equation 2.15a may be written as

t tt
et) = | Kedowde + [[ K,(ete)omory drdr,
4 oo

1 e\ Pl NG (2.24)
+[[[ Kyttt ) ) ()t drdudy, + - - - - -

where the strain €&) is the change in length of the specimen at time t
divided by the original length, and the stress O7%) is the tensile force

at time t divided by the original area. The kernel functions hfi will be



21

called the one-dimensional creep functions and are related to the three
dimensional creep functions J} in the following way:
K.ty = J,(+) + J, (¢)

Kz (&,L.) =J’3({;‘)—1;,_) +J'4_(-qj:l) +J;(t,,tl) + ZJZ(‘L‘.,tz)

Ko (b, t,6) = I, (k. 6) + Tg(t, ¢, 8) + 23, (¢, 4,.t)) (2.25)

+ Tt t)+ Tyt 1) +2 0,5 (4,4, )

The lower limit of integration in Equation 2.24 is taken as zero since
the material is assumed stress free and undisturbed prior to the time zero.
The arguments of the kernel functions are t'fh t-T, , etc., since the
material is assumed to be non-aging. All of the kernel functions may be
assumed to be symmetric with respect to all arguments. The upper limits of
integration are the present time t since the future values of the input
cannot influence the present value of the output. By observing the form of
each integral we note that the value of a kernel function when any of its
arguments are negative never enters into the evaluation of the integral.

From these considerations we can see that the kernel functions are completely

determined when we have their values for the following situations:

K, &) t>o

>t, >
Kz(tutl) tl tz o (2.26)

Kttty t>t,2t,>o0




The type of input stresses o~(t) that may be used to determine the
kernel functions is arbitrary. However, the form of the representation
2.24 is particularly suited to step inputs, since for such loads we do not

have to deal with integral equations. For example, if

o(t) = 07 H@)

(2.27)
where H(t) denotes the Heaviside step function
He) = [ © t<o
! t=0 (2.28)
then Equation 2.24 directly reduces to
ed) = of K@) + ol Ky(t8) + o K (£, 8) + « - - .29)

Thus, the traces of the kernel functions may be determined relatively easily
from this convenient expression.

A number of authors have discussed methods for the experimental determinatio:
of the kernel functions (see Ward and Onat [ 9], Onaran and Findley [7] ).

Lockett [19] investigated the type and number of experiments required to

determine the kernel functions in a third order representation. Investi-
gators in the field of electrical control systems have also studied the
problem of representation and use of functionals in representing non-linear
systems. Brilliant [20], George [21], and Schetzen [22] describe the method

of finite differences as applied to a functional relationship.
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In most of these investigations the representation corresponding to
Equation 2.24 has been terminated after a finite number of terms and then
the tacit assumption is made that this finite order expansion represents the
system exactly. In this investigation, only a finite number of terms in the
representation 2.24 will be considered. However, it will always be kept in
mind that this finife order expansion only approximates the system under
investigation.

The infinite order integral representation as compared to the finite
order representation can be viewed as analogous to a Taylor series expansion
of a function (in which case the constants are determined independently of
one another) as compared to a Stone-Weierstrass polynomial approximation of

a function (in which case the constants are dependent on the order of the

polynomial and on the range of approximation). The finite order approximation

is used in this investigation and the kernel functions are found by attempting

to fit this finite order integral expansion to a wide range of inputs,

If E;Yt) is the strain output due to a stress input of +6%&) and ew®)
is the strain output due to a stress input of - 0() then from Equation 2.24
we obtain

tttt

'5(-(:) e({)-{-e(t) _//K(f.rt-g)o’(c)a’(c;)dtdf j//[ (2.302)

(=X -]
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and
+ _ t
ER) = ._eﬂ_z'__eﬂ = / K|({_—-t) c”(T) dz
)
+tt
*U/ K3 (5 te t-v) ok yote) o) dy, drdy + - - -
3 ) ) I 3 (2.30b)

[-N-X-] °
For most materials Egzt) will be approximately equal to - Ef%t) so
that ;(b) will be much smaller than €&) . We will terminate Equation

2.30a after one term and Equation 2.30b after two terms (i.e., we use a three
term truncationléf Equation 2.24) and investigate the method of determining
the creep kernel functions in this finite order approximation.

In the following sections a "measured’ output E) or €E®) does not
refer to the actual output of a real test, but rather to the above appropriate
combinations of the measured strain responses of the viscoelastic material

tested.

2.7 Determination of the Even Order Creep Function

The truncation of Equation 2.30a gives the creep integral equation

involving K, (t,,tz) .

tt .
By = [ Kbt bm)seyseodudn (2.31)

For a standard creep test under constant stress Cft the input is given by:

b]

o’(+) = oy H()
(2.32)
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For this input Equation 2.31 reduces to:

S
@) = o7 K (Lt) (2.33)

The corresponding measured output of the material tested will be denoted
by Egift). Since the constitutive equation of the material is unlikely to

be of exactly third order, this output actually will be given by:

L

2 4 é
E &) = 0f Ky(tt) +0f K(bttt) + 07 Ktbtt) + - - - o

The second order kernel function in the truncated integral formulation

may be determined by setting the "error”,
K, (tt)
€0y~ o7 Ky(t, (2.35)

equal to zero for a particular value of ot or by minimizing this erroxr with
respect to some norm over a range of input values 02 . Naturally the
value of |<z(tt)‘will depend not only upon the minimizing condition but
also upon the range of o7 over which this minimization takes place. 1In
this investigation we will use a least-squares procedure for the determination
of the kernel functions. That is, for every fixed value of t, we will
require that i(z(ﬁt)lniﬂimize the following expression:
E -5 [g0-otKkan]
- ( ¢ e (2.36)

where the summation is taken over the range of input stresses GE utilized.
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For E to be a minimum we must have

I 9E = 2 A =
TZ 3K %a: [E‘(t) % Kz(t;t)] © (2.37)

It can be seen that by determining K,(4t) to satisfy this equation for
each fixed value of t we have traced out the valué of f(l(ia)tz) when both
its arguments are equal (see Fig. 1).

To obtain values of this kernel function at other points within the
t')tz plane we must carry out a generalized creep test consisting of two

step input stresses. That is, we must apply a stress history of the form

@) = o H(t) + o H(2-T) (2.38)

where oF and 0?‘ are constants. For this input Equation (2.31) yields

(for t2T)

2z
E@) = 07 K,(&,8) + 2o7oF Ky (£,4-T) + 07" K (+-T t-T) (2.39)

where the symmetry of Kz(q)tl) with respect to its arguments has been used.
Note that if K,(t,t) is known then so is K,(t-T, t-T) . Denoting the
measured output strain of the material due to this two step input stress

loading as gﬂf (+) we can again form the sum of the squares of the errors:

2z 2
E=22 [Eijétl = 0F Ko(tt)~zet oy Kol 1) - 0 K, (47, t-7) | (2.40)
EJ

The only unknown in this expression is Kz('t,f—T) so that for each fixed

value of t, K,(t,£-T) must satisfy:

p 9B _ a'.r.[ (4)- 7 K (t,£)- 20t 1Y K (T
L

T4

= O
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which may also be written as

oiof[E,: 0 - E@-F. T2t Ko(tt-D) ] = O
ZJZ t J[Eq EL EJ § N2 ] (2.41b)

where E;&-&) is the measured output due to GEH&)-F"TH(":"T) and —é‘_(t)
is the output of Equation 2.31 due to O€l4&3 .

The summations in Equations 2.41a and 2.41b are over the sets of
inputs {cftf}} utilized in the experiments.

K, ( t,t-T ) is the value of the function K, ( t,,t, ) along a
line in the (tutl) plane which is parallel to the ( t,¥ ) line and which
intersects the t, axis at ‘t,: T (see Fig. 1). A complete determination
of Ky ( t;, t, ) would necessitate tracing out the function WK, (¢,t-T)
for all positive values of the variable T. Fortunately, the second order
creep function for many materials is sufficiently smooth so that only a
few values of T need be investigated. The non-determined values of the
function may then be obtained by interpolation or extrapolatién from the

determined values.

2.8 Determination of the 0dd Order Creep Functions

The two kernel functions in the truncated form of Equation 2.30b:

t ttt
Ew)= [ K@-De© dt + f f f Kyttt t-,t-5) oty sty ote,) de de de, (2.42)

are determined in a manner analogous to the procedure described above. A
least-squares minimization criterion is again used to determine the two

kernel functions to fit the test results of generalized creep tests.
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. Since K3(tutht5) is a function of three variables, the response of the system
to inputs consisting of three steps must be determined experimentally.
As in the case of the evaluation of K,(%,t,), single step inputs give
outputs from which K}C@tﬂﬂ may be determined. Two step inputs following

each other by a time delay T give results from which K}(t;t,é-fT) and

Fg(t,tJﬂ +-T) may be determined. That is, K, is determined along lines

3
which are parallel to the line ( t,t,t) in the (t“tkjg) space and which
intersect the (t,,t,) plane at the points (T,0) and (T,T) respectively.
Three step inputs following each other by time delays 1: and 7}_ ,
respectively, allow the determination of ’(3 along other lines parallel to
the (t,t,£) 1line and which intersect the (t.,;t,) plane at the point (ﬂ17i).
(see Fig: 2). From the relation 2.26 it may be seen that the value of
|<3(t”fh,té) is required only in the wedge-shaped region of three space

shown in Fig. 2, which has the lines (££¢) |, (£,t0) and (t,0,0) as edges.

If a sufficient number of generalized creep tests are performed, Kj(t,t,,4)

may be determined by interpolation from the traced out values.

For a standard creep test ( o@)= ci|4&J ),A Equation 2.42 reduces to

3
EQ®) = op Kit)+ ol K (t,t,t) (2.43)

Following the same procedure as before we wish to minimize the difference
between this expression and the measured output of the system é;'(t) over
the set of test inputs utilized. From

E=J[aw- ke - o’ kaen]”
A (2.44)
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we get two equations for the determination of K,®) and K;(t,t,t)

1 JE - E a’! E(t) — o &)- o (t t l C) 2.45
—Z —-—aKl = 4 i I_() Ckg ) £3K3 ) )t) (2.45a)

L. JE _ E .l . - o & - 5'3‘ (tt,t ’ O b

_ . = U: é‘(t) LKl ) ¢ K3 () ) (2.45b)

L
For a generalized creep test with input defined by Equation 2.38, Equation
2.42 gives (for £t =T )
Et) = oF K@) + o K (¢-T)

3 3 2 " (2.46)
+ 0P Ky (tt) + o7 Ky (6T £-T¢-7) + 307 7 K3t £¢-7) +3ofofl<3 (t,£-T ¢-7)

Using the notation

écj'(f) = measured response of the system due to o‘EH&).;—cfH(-t-—T)

€, @)

output of Equation 2.42 due to o7 H()

2
o K@)+ o Ky(ttt)
€/(4-T) = output of Equation 2.42 due to o H(t-T)
J J
3
= o KET) + of K (t-T,t-T, £-T)

it can be seen that the difference between the measured response and the
response given by Equation 2.46 will contain the two unknowns |<3(t1t5t-70

and K}Cq{?q}t—T). A least squares minimization criteria applied to this

"error" yields:

. 2= J— —_ 2 2
;Jg_afo-j’[é%(t)— €:&)- EJ-(J;-T) -3e7 "K Kg(tlt)i—‘r) -3aef K, (t)-l-—TJf-T)] =0 (2.472)
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and

25 otef | €g-Ew-Fm -3k -3etef Kyt ertn) = 0
' i (2.47b)

So that KJ(t,tJ{:-T) and K,(L;(:—‘Et-T) may be determined from these equations

where the summation is taken over the set of inputs utilized in the experiments.

Equations 2.46 and 2.47 may be used to evaluate K}(ﬁ,thtg) when two
or more arguments are the same. The valye of this third order kernéel function
with all three arguments different will occur explicitly in the representation

for the strain output due to a three step stress input:

o) = of Ht) + o H(£-T) + o H(¢-S)

(2.48)
For this input Equation 2.42 reduces (for T2S>T ) to
Ek) = of K@) + o] K((¢-T) + og K (¢-5)
+ o7 Kl t) + K ETHTET) + o7 K, (4-5, -5, £-5)
+307 57 K (t6-T) 4307 ep Ky (Bt b-5) + 3oz Ky (4T, 6-T, ¢-s) (2.49)

2 kN o
+3ef ot Ky tTt-7) +30g o7 Ky (¢-Tt-54-5)+3 6 o7 K, (£,2-5,¢-5)
+ 6 otoiop K,y (4 T, t- )
This expression may be written in a simpler form by noting that this response

to a three step input is built up of combinations of responses to single and

double step inputs. Let
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6}3063 denote the output of Equation 2.42 due to

o@Y = o HE®) + o7 H(£~T)

€.ox®) denote the output of Equation 2.42 due to
oy = og HE)  + of H(+-S)

GOSK&ﬂ denote the output of Equation 2.42 due to

ow)y=  ofH@E-T)+og H(t-s)

and €;@) denote the output of Equation 2.42 due to
ooty = a; H&)

Then Equation 2.49 may be written és

€@ = Eijol®) + €+ € €0~ €(tT)- € (=) +6eefk

(¢, t-T¢S)
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(2.50a)

(2.50D)

(2.50c)

(2.504)

(2.51)

If e@'jk&) is the measured response of the system then K;(m‘:;l:-"l;t-S)

may be determined by minimizing the difference between é&jk&) and E(t)

over the set of {aff?c}zg utilized in the tests. The expression for the

determination of K;(hf—ﬁ t-s) is:

Z%z 0':0/5' ojk [étJK(t) - ZCJ'Q&)— -éﬂok(t) - ZOJK&) + _é‘_('l:)
¢

+ E D+ E(t5) ~ Goojep Kg(f,‘-zf-ﬂ] = O

(2.52)

There does not appear to be any fixed criterion for the selection of

the values of . the constant stress values of, a} and GE

other than that th

should cover the range of stress values likely to be encountered in actual
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lines. Thus, at least the approximate number, if not the type, of required
tests can be determined from a decision on the number of traces of the kernel
functions desired.

The above number of loading programs are based on the assumption that
the material response is represented exactly by a‘third order multiple
integral representation. If the least squares method of the previous sections
is used to evaluate the kernel functions then the required loading programs
will depend upon the number m, of {Oig , the number M, of Z"f ”Ii ’
and the number M3 of {0263011 combinations over which the error term
is minimized., If to each positive loading history there is also associated

a similar negative loading history, then the results of approximately

.z
nZm,
2(m,+2hm2+__7:_) (2.55)

loading programs must be known in order to characterize the material functions.
Even for the simple case of h=4 |, M=M=M3=3  Equation 2.55
indicates that 102 load histories need to be investigated. To eliminate
experimental errors it would be necessary to at least duplicate each test.
Consequently, the number of tests required for a relatively fine determination
of the second and third order kernel functions is prohibitive. 1In this in-
vestigation the number of traces of kernel functions determined is necessarily

small and these traces do not extend over extremely large time ranges.
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II1. EXPERIMENTAL INVESTIGATION

3.1 Introduction

In this investigation the material functions in the one-dimensional creep
integral law were determined for low density polyethylene by carrying out a
ﬁumber of generalized creep tests. Some of the practical difficulties of
using the Volterra-Fréchet expansion for the solution of simple stress
problems and the accuracy of this formulation were evaluated by applying the
creep integral law (with its experimentally determined kernel functions) to
predidt the strain responses due to some simple variable stress inputs, and
comparing these results to the experimentally determined response. |

The creep integral formulation was used rather than the relaxation
formulation because the experimental difficulties associated with a creep
test are considerably less than those for a relaxation test. Moreover, the
one dimensional creep kernel functions obtained are related simply to the
creep functions of the three-dimensional formulation (see Section 2.4).
Additional two and three dimensional creep tests would provide additional
information for determining these kernel functions. An analogous situation

does not directly apply for the case of simple one-dimensional relaxation tests.

3.2 Material Utilized

As pointed out in the previous chapter, the number of loading programs
necessary to completely characterize the creep functions is in the order of

hundreds. For many materials the time required to carry out such a large
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number of tests may be prohibitively large. Since in this investigation
we were not concerned with any specific material, but instead were investigating
the adequacy and practicality of utilizing a functional polynomial, we sought

a "convenient" material. In the first place, this meant we desired a material

which exhibited considerable viscoelastic responsé within minutes rather than

days or weeks. In this way, the major portion 6f :the viscous response could

be examined in a féirly short time, and a considerable number of tests could
be conducted in a limited period of time. Furthermore, since the determination
of the kernel functions requires the examination of the differences of outputs
due to various stress inputs, a material which exhibited a distinct nonlinear
response within a short time was desirable. However, the magnitude of this
nonlinearity could not be so great that a third order approximation to the
constitutive law was not sufficiently accurate. It was also desired that
this nonlinearity be due to the physical behavior of the material rather
than due to finite deformation.

Fortunately, it was found that low density polyethylene (Allied Resinous
Products brand-Resinol Type A) satisfied all of the above requirements.
This material has an instantaneous Young's modulus of approximately 40,000
p.s.i., and it may be described as a "leather-like" material. The strain
due to a step input stress is, after ten minutes, approximately twice as
much as the quasi-instantaneous strain response, and the strain after 24

hours is approximately three times the instantaneous strain.
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3.3 Loading Machines and Strain Measuring Instruments

Five dead-load lever type machines were used to apply the tensile and
compressive loads (see Figs. 3 and 4). These machines had a mechanical
advantage of approximately ten to one and were al} calibrated prior to use.
The steb input loads were applied by placing weights on the loading pan, which
the single lever then transferred to the specimen as a tensile or compressive
load (see following section). The loads could not actually be applied
instantaneously since this would have caused vibration of the loading machine
and test specimen. However, it was found that by using good techniques, the
full load could be built-up in less than one second and in most cases within
one-half second. This time delay meant that the instantaneous behavior of
the material could only be estimated. Dynamic tests should be performed to
obtain a more accurate evaluation of the instantaneous response characteristicsA
of a viscoelastic material.

Extensometers to be used with a "leather-like" material such as low-
density polethylene should be of a light-lever type for which the material
is not required to mechanically activate some strain measuring device.
Unfortunately, in this investigation, it was necessary to use a mechanical
extensometer (see Figs. 5 and 6). The extensometer used had a five inch
gauge length and its end pieces were attached to the specimen at three
points. The movement of these end pieces with respect to each other was
measured by means of two Starett dial gauges placed on opposite sides of

the specimen. The movement of the plunger of each dial also activated a
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linear potentiometer. The average output of these two potentiometers was
recorded on an X-Y plotter. This plotter gave a continuous record of the
strain of the specimen. Thus for very short times a continuous plot was
obtained for the output €() . The dial readings provided a check on this
plot and were used to give a non-continuous record of the strain for large
time values when the strain rate was very shall,

The upper end of the extensometer, consisting of the dial gauges and
potentiometers, was suspended from the frame of the lever machine by springs
so that the force input to the specimen by the extensometer was almost
entirely that due to the dial activating  pressure and was negligible in
its effect on the load on the specimen.

The polyethylene tension specimens were one-half inch diameter rods,
eight inches long, threaded at each end. Small chains attached the threaded
end grips to the lever machine. These chains were used to eliminate any
bending effect and to produce as pure an axiél tension in the specimens as

possible.

3.4 Compression Testing Apparatus

Since in this investigation it was desired to examine the response of
low density polyethylene to input stresses not only of tension or compression
alone, but also to alternating stresses, an apparatus capable of applying
compression or tension was designed. The compression rig built for this
purpose (see Figs. 5 and 6) was designed for a specimen one-half inch in

diameter and three and one-half inches long, with one-half inch of threads
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on both ends. These dimensions gave a free length of two and one-half inches
with a gauge length of two inches. The bottom end of the specimen screwed
into a fixed support. The top end fitted into a one inch by three inch long
steel grip which was allowed to slide freely within a fixed outside sleeve.
This "slip-fit" was lubricated with a special friétion reducing agent. A
pan carrying constant weights was hung on a small ball bearing on the top of
this upper grip. The top grip and the constant weights were attached to the
lever arm of the loading machine by means of two wires and a small pulley.
Appropriate loads on the loading end of the lever were applied so that the
lever machine was exactly in balance under the weight of the specimen, grip
and constant weights on the specimen end of the lever machine. When the
bottom end of the specimen was attached to the fixed support, compression
could be applied simply by removing some of the variable loads., A portion
of the constant weight would then be resisted by the speéimen, Conversely
by adding weights to the variable load ' pan a tensile state of stress could
be obtained in the specimen. (see Figure 7).

During the experimental prbgram, actual experience with the compression
testing apparatus utilized indicated that it performed quite satisfactorily.
The reproducability of a particular bompressive test was almost as good as
that for any tensile test. For all of the tests performed, the results of
only one compressive test were doubtful; they differed by a factor of
approximately thirty percent from the results of two other tests for this

load history. This one test was discarded as being erroneous.
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An obvious disadvantage of this compression rig was that the short
length of the specimen meant that the length changes were measured between
points only one-quarter inch from the grips. This may have introduced an

"end effect" error into the strain measurements.

3.5 Preparation of Test Specimens and Test Procedure

The test specimens were first threaded for one-half inch at each end.
They were then heated to 120 degrees Fahrenheit for eight hours and then
allowed to cool for at least three days prior to testing. The area of each
specimen was obtained by measuring four diameters at three different cross-
sections; one cross—-section at each gauge point and one at the center of
the specimen. Average diameter was used to determine the area. No specimen
was of circular cross-section and a typical specimen had a minimum diameter
of 0.495 inches and a maximum diameter of 0.505 inches. The desired stress
was based on the original area of the specimen, and the load fo be applied
to the machine was dependent upon the specimen and also upon the calibration
factor of the machine in use. |

After inserting the specimen in the test rig and‘attaching the
extensometer to the specimen a free time of at least two hours was allowed
prior to initial loading. All of the tests were performed ina constant-
temperature huﬁidity room in which the temperature was 70 + one degree
Fahrenheit and the humidity was fifty percent.

The calibration of the linear potentiometers and X-Y plotter were

checked at frequent intervals. The potentiométers were activated by two-one
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and a half volt dry cell batteries, and a switching unit was used to switch
from one test set-up to another. The time scale of the X-Y plotter was
varied from one-half inch per second to one-fiftieth of an inch per second, -
depending upon the value of the strain rate. A stop watch was used to
continually check the time scale of the X-Y plottér, From the continuous record
of the X-Y plotter the strain response at discrete time increments was
tabulated and used as a basis for the determination of the kernel functions.

Every loading program was duplicated on at least two specimens and the
time steps (i.e., T in Equations 2.38, etc.) investigated thoroughly were
one hundred and six hundred seconds. A time step T = 1200 seconds was :also
investigated, but not so thoroughly as the others.

An attempt was also made to determine the lateral contraction of three
specimens under different streés inputs. A small differential transformer

measuring strains to five millionths was used to measure diameter changes.

3.6 Stress Input Values Used to Determine the Kernel Functions

As we were concerned primarily with the physical nonlinearity of the
material properties and not with nonlinearity introduced by the consideration
of finite strains, it was necessary that the maximum value of the strain be
kept sufficiently small. Preliminary tests indicated that, for the material
being investigated, a step input stress of + 500 p.s.i. resulted in a strain
of approximately 3.8% after two hours. Taking this as an upper limit, it
was decided to use the following range of inputs to evaluate K,&), K,(¢,t)

and K3(t)t)t) .

{o’; | 100, 200, 300, 400, 500} p.s.i.
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For inputs of the form 2.32 ( o'&)= i H®) + OJ’ H(t-T) ) the following

range of cfc} combinations were investigated.

(a) For T = 100 secs.
{cfe} | 200 -200, 300 -300, 400 -200, 200 +200,

200 +300, 300 +200 } p-s.1i.

(b) For T = 600 secs.

{a{-rﬂ 100 -100, 200 -200, 300 -300, 400 -400, -

500 -500, 200 +200, 300 +200, 400 -100,

| 400 -200, 500 -100, 400 -700 } p.s.i.
|

| (c) For T = 1200 secs.

. {Gfﬁ | 500 -500, 200 -200 } p.s.i.

For inputs of the form 2.44 ( &) = o7 H(t)+cIH(£—T)+eEH(£—s)) the

i following range of 0{6}«% combinations were investigated.
(a) T = 100, S = 200 secs.

{c’ccj-(,(] 200-200+200, 200+300-300, 400-200+200, 3oo+2oo—2oo} p.s.i.

(b) T = 600, S = 1200 secs.

{Ofajfgl 400-200-200, 400-700+300, 300+200-500, 200+200-400 } p-s.i.

(¢) T = 100, S = 1300 secs.

[crfo?af( ) 200+300-500, 500-200+200), 2oo+200—400} p.s.i.
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Actually, the sets (b) and (c) immediately above were not used directly
in the calculation of the kernel functions since sufficient data for associated
two step inputs were not gathered. The outputs of these tests were, however,
effectively used, in that these data were compared with the calculated outputs
based on the kernel functions determined from all of the other tests (see

for example, Figure 11).

3.7 Other Axial Loading Histories

By simply pouring water into a pail on the loading end of the lever
machines, and then drawing this water away, variable load histories con-
sisting of ramp loading and unloading were obtained. The actual load was
recorded directly on the X-Y plotter by means of a calibrated load cell.

A many step loading history consisting of seven step loads was also
investigated. A high positive step stress was followed at ten minute
intervals by six negative step stress inputs so that a high compressive
stress state was obtained after one hour. This loading history and the
ramp loading histories are described in Figures 24, 25 and 26.

These Variablé'load history tests were performed to be used as a basis
for checking the accuracy of a truncated Volterra-Fréchet representation.
The kernel functions previously found from the generalized creep tests
were used in the third order theory to give the "theoretical® response due

the above variable loading histories.
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1V. EXPERIMENTAL RESULTS AND EVALUATION OF KERNEL FUNCTIONS

4.1 Experimental Results

Approximately eighty-five specimens (fifty tension specimens and thirty-
five compression specimens) were subjected to creep tests involving one step,
two step or three step stress inputs. A typical X—Y recorder plot of strain
against time is shown in Figure 8. From these experimental plots the strain
at various times after loading was determined. The approximate magnitude of
the experimental errors was determined by comparing the results of duplicate
tests. In Table 1 are presented the experimentally determined strain 600
seconds aftexr initially applying the single step load. These results indicate
that the experimental strain errors were kept below five percent except in
two cases where the total strain was small. The error in strain for these
cases wasvless than 0.00006 %} Similar values were found to apply to the
results of two or three step loadings.

Figure 9 shows the creep strains obtained for single step histories
of +300 p.s.i., and +500 p.s.i. Also shown are the results for - two stép
stress histories of + 300 p.s.i. followed by an additional + 200 p.s.1i.
after 600 seconds. Also shown on this figure is the theoretical response
for these step loadings. In this and all following figures, and in all
further use in the text, ''theoretical response” refers to the response
calculated by using the three term integfal polynomial together with the
assumed kernel functions (see Sections 4;3 and 4.4) which were chosen to

very closely fit the experimentally determined values for these kernel
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functions. Figures 10 and 11 present the experimental results for other
typical loading histories. The 1oad histories shown in Figure 11-ccﬂsist of
an initial loading of +400 p.s.i. followed by an opposite loading éf 700
p.s.i. taking the.'material into an opposite state of stress of~¥.300 b.s.i.
This étress level was then reduced to zZero after an additional ten ﬁiﬁutes§
The difference between theoretical amd actual strain response during the
second load step was quite large. This was probably due té the fact that
there was a large jump of 700 p.s.i. in stress - larger than the magnitude
of any single step load actually used in the experiments to determine the
"kernel functions,

The time scales of these figures only go up to a maximum of tweﬁfy—
five minutes. The actual tests were carried on for much longer times -
in most cases two hours, and in two cases for twenty days. In these tests,
the continued creep gave values for the rate of creep which continually
decreased with time. Upon unloading, the ereep recovery curves seemed to
asymptotically approach zero, indicéting no plastic deformation of low
density polyethylene under the stress values utilized in this study.

The experimental data for these tests indicate that the material
behaviour in compression is significantly different than the corresponding
behaviour under tensile loading. This difference may be due to the fact
that we used "engineering strain" as our measure of deformation. It is
possible that by using some other deformation measure this difference in

response between tension and compreésion could be significantly reduced.
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In three creep tests at three different stress levels an attempt was

made to measure the lateral contraction of the specimen. The differential

transformer used for this purpose measured strains to five millionths, however,

the recorded lateral strains were considerably less accurate than this. It
was very difficult to obtain consistent readings on one diameter through the
duration of the test. The value of Poisson's ratio for one test ranged from
0.462 to 0.493 during a ten minute creep test. The second test gave values
ranging from 0.428 to 0.460 and values from 0.491 to 0.512 were obtained for
the third test. No consistent variations in this ratio over the duration

of the tests or for different stress levels could be observed, and these
Poisson ratio values should be taken only as an indication that low density
polyethylene behaves as a nearly incompressible material under uniaxial

stress states.

4.2 Determination of the Creep Kernel Functions

Using the averaged values of strain from duplicate creep tests,
isochronous curves similar to Figure 12 may be plotted. These curves
indicate the value of the stress and the corresponding values of the
strain for different times after initiation of the constant loading.
Figure 12 shows that low density polyethylene exhibits a non-linear
relationship between stress and strain even for low values of stress.
The instantaneous behaviour cannot be obtained accurately from static
creep tests, but Figure 12 would seem to indicate that the instantaneous

behaviour is also nonlinear. The experimental stress-strain values at



46

any fixed value of time could be fitted with any order polynomial. As indicated

in the previous chapter, we used a three term truncation of the Volterra-
Fréchet multiple integral expansion. This is equivalent to fitting the
experimental data of Figure 12 with a third order polynomial. The constants
in this "best fit" theory were determined by the method of least squares.
For single step inputs these constants represented K\&) , K,(t,t) and
Ky(t,t, t) for each fixed value of t.

For all single step loading creep tests, the maximum difference between
experimental and theoretical strain values occurred at two seconds after
loading at the 500 p.s.i. stress level.

For +500 p:s.i.,

e (2 sec) Experiment = 0.01727

EE‘(Z sec) Theory 0.01763

Difference 0.00026

Percent difference = 1.5

For -500 p.s.i.

e (2 sec) Experiment

= -0.01607

e (2 sec) Theory = -0.01646

Difference = 0.00039
Percent Difference = :2.5

A difference of approximately 0.00038 between experimental and
theoretical strains also occurred throughout the creep test at -300 p.s.i.

stress level (see Figure 7). The largest percentage differences (from 6
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percent to 7.5 percent difference) occurred during the early times in the
100 p.s.i. loading tests. These differences between the third order theory
and the experimental values are of the same order of magnitude as the probable

experimental errors. This is one justification for using only a three term

expansion. Considerably finer testing techniquesvthan were used in this

investigation would have to be employed before the use of a higher order

Volterra-Fréchet expansion for the constitutive equation would be justified.
The isochronous curves for single step inputs were, however, alsoc fitted
ﬁith a fifth order expansion. The first kernel function remained the same
% as before, but there was a one hundred percent change in the second kernel
function, and a fifty percent change in the third kernel function. The
differences between the strains predicted by this fifth order theory and
the corresponding experimental values changed sign but remained at the same
order of magnitude as those associated with the third order expansion. This
not only demonstrated that the values of the kernel functions were dependent
; on the order of the expansion used, but also indicated that the experimental
data was not sufficiently accurate to warrant a higher order expansion
representation,
4The first order creep kernel function K]Ct) is tabulated in Table II
and shown diagramatically in Figure 13. In this figure the value of K}&ﬂ

has been plotted against the logarithm of t + 1. The instantaneous value

I of K]&ﬂ could not be determined and in fact the values of all the kernel

functions for the first few seconds should be viewed as suspect, since the
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step loads were actually built up to their maximum values over the period of
one-half to one second. The plotted points in Figure 13 are the values
obtained from the experimental data, and the solid line is the value assumed
for Kuét) in further calculations. It appears from Figure 13 that ,<,G5
might be approximated by a straight line on a log t+l plot. The few
tests carried out for a number of days, however, indicated that the line in
Figure 13 would decrease in slope for higher time values. No attempt was
made to find a closed form expression for this kernel function since
numerical integration techniques were required in subsequent phases of this
investigation. For this reason, K]ﬂﬂ was left in a tabular form suitable

for numerical integration.

4.3 Approximation of the Second Order Kernel Function

The same least-squares procedure was used in the analysis of the
results of two step and three step inputs to determine values of the
second and third <order kernel functions for non-equal arguments.

The values obtained for the kernel functions from these tests, are
probably not as aCcu:'ate as fhose obtained for K,(t), K,(t,t) and K3(‘t,f)‘t)
because there were only two or three duplicate tests carried out for each
two or three step input. Furthermore, the value of the kernel functions
for non-equal arguments are dependent on the differences between different
tests. For example, the strain respbnse shown in Figure 9 due to a two

step input of 300 p.s.i. followed by 500 p.s.i. cannot be used directly to

determine K;(t¥T,t) . Equation 2.41b indicates that the appropriate strains
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due to a 300 p.s.i. and to a 200 p.s.i. input must be subtracted from this
result in order to obtain |<2(t+13 t) . Experimental errors of five percent
in each test could well give very large percentage errors in this difference.
Fortunately, the least-squares method employs a set of inputs {oﬁ G]} to
determine the kernel function so that the percentége error in the determined
function will be less than the percentage error associated with any one group
of tests within the set.

The plotted points in Figures 14, through 17, indicate the values of the
second order kernel function obtained from the experimental data. The solid
line indicates the assumed value of this kernel function.

To apply the theoretical constitutive equation to the solution of simpie
stress problems it is necessary to know‘the value of the second order kernel
function }<z(tn;tz) at all values of t, and T, . It was thus
necessary to interpolate and extrapolate from the experimentally determined
values Kz(t,‘t) , K, (t+ico,t) | Kz(-b-;-éoo, t) and KZ(-{:+/200, t)
The interpolation method applied in this case was to determine a closed form
expression for Kz(tutz) which fitted the experimentally determined values
and then this expression was used as defining this kernel function at other
time values.

An examination of the data values for K,(t,t,) indicated that this

function could be represented quite closely in the form

Kz(tutz) = f(t) (4.1)

for ‘t ;"tz
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The function foz) was chosen as a sum of exponential terms and a small
correction term involving t, was added.

The solid lines in Figures 14 to 17 indicate the assumed values of
,<z(tut2) and are given by:

-t

Koty t) = 50019 + 0002116 (1= € 7o)
21N
m‘Lo 4 __El
+0.002052 (1- € ™) +0.0031% (1 — g 7o)
- te -4 (4.3)
+0.00236 (1 — € 7%°*) + 0.0009 (I ~ € Z0 )
for tl>'tz_ where the time is in seconds.

The above expression fits all of the values of Kiftutz) obtained from
the experimental data quite closely. Since the instantaneous behavior of
the material cannot be obtained from the results of the static creep tests
used in this investigation, the above expression may well be in error for

very small values of tz

4.4 Approximation of the Third Order Kernel Function

The plotted points in Figures 18 through 23 indicate the experimentally

determined values for K (¢, t,ts) . Figures 22 and 23 indicate the
sensitivity of K,(t+¢oo, t,t) and K (t+6o0,t4600,+ ) to the sets
of ©¢ and af stress values used to determine these functions. The

values obtained for these functions certainly depends on the minimization
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criteria and the set of stress values used, but the differing values shown
in Figures 22 and 23 are probably due to errors in the test data.

As in the case for the second order kermel function it was desired to
find a closed form expression for F%(@Jtytg which could either be used for
direct integration of the third order integral fof the solution of simple
stress problems or could be used as a consistent basis for interpolation to
obtain values of K} (iq,t,)tg) to be used in a numerical integration
procedure.

The exponential behavior of K}(f,ﬁ,t) suggested the use of an
expression involving exponentials such as:

-t -ta -t

flt,t,t) = a, + b(i-e & )(1-e &)i-¢e )

' ~tnts _ t+ty _t+t, (4.9
+b(3-e’w e o~ &)

Nonlinear regression techniques were used with a many-term expansion
similar to Equation 4.4. The results of this study indicated that K}(t“t“té)
could not be approximated with any degree of accuracy by this type of
expiession. One reason for this is that the constants b,J bz etc., in
Equation 4.4 should be positive in order to give the exponential type of
increase of K;(t,t,t) . With positive values for these constants the
value of f(o0,0,0) is then smaller than any value of f(t00) or f(%,%,,0).
Figures 18 through 23 indicate that k}(tJthié) does not behave in this
manner. No further attempts were made to find a simple closed form

expression for the third order kernel function which could be used in a
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direct integration of the third integral, but rather a complicated closed
form expression was found which was used for interpola tion and extrapolation
from the experimentally determined values of Kj (%, t,1;).

Figure: 18 indicated that K3 (t,t)t) might be approximated by an

expression of the form

b
cosh [C In (t+1) ]

fey=a -
(4.5)

Following the lead suggested by the fact that K, (%, ,t;,) could be approxi-
mated quite closely by a function of only one variable (‘tz)for t=2t,),
the expression
233
Cosh{a.3 lh(t3+l)] v (4.6)

a,

was investigated as an approximation to K3(t;,’tz,t3) for 't,>t13 't3

In this expression the constant a, is the value approachedAat large values
of 't3 . The data indicated that the different functions K3 (‘t+‘°°, t,t)
etc., all approached a common limit at large t values. The combination

a, - CLZ in Equation 4.6 is the value of this expression for t3= @)

An examination of the data values indicated that this initial value for the
various experimentally determined fuﬁctions could be approximated by a
function of only one variable:

S= t,+t?_—2‘t3 4.7
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These considerations eventually lead to the following approximate expression

for K3 (‘t“ tz) t_;) .

K3 (tl)t?-)t.i) - 0.04’35
in? 10333
(=)

| (4.9)
_ {p.0435 - 0.0235 ‘ |
955[0-54/" 0o635)f ) coshfo40q In [ t,(0184€ > oaiee ) +ﬂ}

for t,? t2>/'t3

The solid lines in Figures 18 through 23 are plots of this assumed value.
This expression indicates that the third order function of three variables
has been expressed as a function of two variables ( ts and ‘tf+t2f'2t§ ).

If this were exactly true it would mean a considerable reduction in the nymber

of tests required to completely describe this function. However, Figure 21

indicates that Ké(ﬁa)tl)tg) can only be approximately described using this
function.

Other interpolation techniques could have been used fo evaluate kg(tbtuﬁﬂ
at values other:.than those experimentally determined, but the above closed

form expression was used as a matter of convenience.
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V. EXPERIMENTAL COMPARISON

5.1 Introduction

We used as a test of the appropriateness of the finite order integral
representation, and our method of determining the kernel functions in this

one dimensional constitutive equation, a comparison between the actual

strain response of the material to a number of* variable loading histories
and the corresponding response predicted by our theory. Three variable
load history tests, chosen specifically for this purpose, were performed.

These tests were a load history consisting of seven step loads and two

loading patterns built :up of various ramp loadings and unloadings.

5.2 Multiple-Step Loading Test

Previous investigators [15,16] have demonstrated that various super-
position principles encounter difficulties when trying to predict the
material response due to decreasing loads. For this reason, as a relatively
severe test of the third order approximation used here, it was decided to
apply a multistage load history consisting of an initially high strgss,
decreasing in moderately large jumps. The complete load history is shown

in Figure 24. An initial step stress of +450 p.s.i. was decreased to

-450 p.s.i. in six steps of 150 p.s.i. The experimentally determined strain

is given by the solid line and indicates the average of two .tests. ' The

dotted line indicates the contribution to the strain predicted by our

third order theory due to the linear term of the third order constitutive
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equation. The crosses indicate the sum of the linear and the second order
terms and the circled points give our complete theoretical response. It is
seen from Figure 24 that the maximum difference between the theoretical and
experimental strains is 0.00105 or ;ess than four percent. For the great
majority of the time, the difference is much less than that figure.

When the time is greater than 3600 seconds, the time derivative of this
input is given by

o-(t) = 450 8(t) =150 §(t-bod) —150 §(t-1200) ~[50 (t-I800)

~150 d(t-2400) =150 (t-3000) - IS0 §(t-3£00) (4.10)
From the third order constitutive equation
t tt
ed) = [ K&9omde + [[ K tbnta) styotmy dadn
b 17 N . . (4.11)
+ f f / K (42,15, %) () o) o) dudT 4%

- -]

it is seen that for this input the evaluation of the effect of the linear
term involves seven terms, the evaluation of the second order. term involves
twenty-eight terms and the third order term involves sixty-three terms.
These terms are not all of the same sigh since the load history involves
increasing and decreasing loading steps. For this reason each term must
be evaluated very accurately in order to obtain reasonable accuracy in the
final sum.

The agreemént between the theoretical and experimental response due to

this many step loading history is exceptionally good.
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5.3 Ramp Loading Tests

Figures 25 and 26 describe two further variable load histories which
were used to verify the theory. These loadings éonsisted of various forms
of ramp loadings. These ramp loads were obtained by running water into and
out of a pail on the loading arm of the testing machine. A load cell was
used to record the actual load directly on the X—Y.plotter.

Again the experimental data is presented in Figures 25 and 26 as the
solid line; the contribution of the linear terﬁ is shown by the dotted line;
and as before, represents only the linear portion of our "best fit" third
order theory and does not represent the "best" linear fit; the contribution
of the linear and the quadratic term by the crosses; and the complete third
order theoretical strain response is presented by the circled points.

There is very good agreement between the experimental and theoretical
values except for the unloading portion of the load history presented in
Figure 27. The percentage error at the 600 second time for this experiment
is approximately seven and one-half percent. At all other times the

difference between experiment and theory is very small.

5.4 Summary

Although all possible variable load histories have not been studied, the
load histories examined here can be viewed as severe tests of the adequacy of
the third order approximation to the Volterra-Fréchet multiple integral
representation. The exceptionally good agreement between the theoretical
and experimental results for these few variable load histories indicates
that the creep law for the viscoelastic response of low density polyethylene

can be accurately described by a third order multiple integral representation.
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VI. DISCUSSION AND CONCLUSIONS

A method which can be used to determine the kernel functions in a multiple
integral representation of the constitutive equation of a nonlinear viscoelastic
material has been presented. This method was used to determine the one-di-
mensional creep functions in a third order multiple integral representation
for the creep of low density polyethylene. This material exhibited a con-
siderable nonlinear creep response even within a short period of time. It
was thus physically possible to conduct a large number of tests in order to
determine the creep kernel functions at a sufficient number of points so that
interpolation techniques could be used to adequately characterize these
functions. These characterizations of the kernel functions were verified
by demonstrating that the theoretical strains predicted by this representation
for a number of variable load histories gave very good agreement with the
experimentally determined strains. Thus it has been shown that the one-
dimensional constitutive equation for a : nonlinear viscoelastic material can
be accurately described by a functional polynomial of third dégree.

In order to determine the three-dimensional creep kernel functions for
this material, additional sets of tests would have to be performed. These
could include shearing creep tests which could be conducted by subjecting
a thin tube of the material to torsion. Combined tension and torsion tests
as well as triaxial tests, could also be conducted. A great deal of
ingenuity and effort would be required in order to design the experimental
equipment and to carry out all of the tests required to suitably determine the

three dimensional creep kernel functions.
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For certain stress analysis problems it may be desirable to have a
relaxation integral formulation rather than a creep integral formulation.
Inversion formﬁlae for the one-dimensional multiple integral formulation are
presented by Nakada [23]. These inversion formulae show that a finite order
creep integral relation . would, in general, yield an infinite order relaxation
integral relation. It would be advantageous to have an algorithm for invexrsion
of a "best-fit" finite order creep integral relation to a "best-fit" finite
order relaxation integral representation.

The numerical integratibn of the second and third order integrals for
the simple variable load histories used in this investigation to check the
theoretical formulation are very tedious, and for more general load histories
must be performed on a computer. Considerable storage would be required to
hold all of the values‘of the kernel functions necessary for an accurate
numerical integration of the three integrals. Special techniques should be
developed so that a computer canvefficiently evaluate these integrals. Given
the numerical values of the kernel functions, it would appear that (with the
assistance of a modern computer) one dimensional stress analysis problems may
be effectively treated using a three term multiple integral representation.
However, for two and three dimensional problems the difficulties are
greatly compounded, and it is doubtful that, at present, general problems
in this class can be treated effectively.

In this investigation special care was taken in the selection of a
nonlinear viscoelastic material which would keep the experimental testing

time to a minimum. In practice the stress analyst would be faced with the
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problem of determining the constitutive equation applicable to the particular
material being used. This material could well be one which creeps very slowly.
The time necessary to conduct all of the tests required to satisfactorily
describe the kernel functions in a multiple integral representation could

then be prohibitively long. Although & finite multiple integral representation
for the constitutive‘equatién might accurately describe the response of this
material, in many instances practical consideration might well rule out such

a representation. 1In such cases, it would probably be more expedient to

seek,within the stress ranges of interest, more specialized (albeit less accurate

representations of the constitutive relations of materials of interest.
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TABLE 1

Creep Strains After 600 Seconds at Constant Stress Level

Stress Number Average Maximum Minimum Maximum Maximum
Value of Tests Strain Strain Strain Difference Difference
(p.s.i.) (Percent) (Percent) (Percent) from Percent
Average of Average
Strain

100 6 0.5062 0.532 0.462 -0.0442 8.7

-100 4 -0.484 -0, 50 -0.471 0.016 3.3

200 7 1.0976 1.156 1.053 0.0594

~200 7 -1.043 -1,092 -1.013 -0.049 4,7

300 5 1.744 1.795 1.704 0.051 2.9

-300 4 ~1.637 -1.704 -1.577 -0.067 4.1

400 6 2.486 2.590 2.396 0.104 4.2

-400 6 -2.,204 -2.295 -2.110 ~0.094 4.3

500 5 3.325 3.482 3.210 0,157 . 4.7

~-500 S5 -2,889 -2.950 -2.777 -0.112 3.9




Experimentally Determined Value of the Linear Creep Kernel‘..Eunction

TABLE 1I
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. Time X, t) Time K,(t) ""Time K, (+)
(Secs) int e (Secs) __i_nf,o“" (Secs) me Y
b b 16
'1 0.2591 55 0.4120 650 0.5237
2 0.2771 .60 0.4158 700 0.5275
3 0.2908 65 0.4196 800 0.5231
4 0.3011 70 0.4232 900 0.5380
5 0.3095 80 0.4295 1000 0.5427
6 0.3162 90 0.4347 1200 0.5508
7 0.3222 100 - 0.4396 1400 0.5574
8 0.3275 110 0.4441 1600 0.5636
9 0.3322 120 0.4485 1800 0.5687
10 0.3367 140 0.4558 2000 0.5730
12 0.3441 160 0.4616 2500 0.5825
14 0.3508 180 0.4671 3000 0.5900
16 0.3566 200 0.4720 3500 0.5961
18 0.3615 230 0.4783 4000 0.6014
20 0.3665 260 0.4837 4500 0.606
23 0.3727 300 0.4905 5000 0.6096
26 0.3781 350 0.4970 5500 0.6137
30 0.3846 400 0.5032 6000 0.6166
35 0.3915 450 0.5084 7000 0.6230
,40 0.3974 500 0.5130 8000 0.6278
45 0.4026 550 0.5172 9000 0.6317
50 0.,4076 600 0.5209



Fig. 1
Lines in the tl, t2 plane along which
Kz(tl, t2) is determined

Fig. 2

Lines in tl t2 t3 space along which

K3(t1, t2,t3) is determined
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Fig. 3

General View of Loading Frames

Fig., 4

General View of Test Set-Up




e e

Fig. 5

Tension Specimens and Compression Testing Device

Fig. 6

Tension Specimen and Close-Up of
Compression Test Set-Up
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