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Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to imple-

ment or applicable to only a restricted range of regression models. This report provides practical guidance for im-

plementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect

effects for mediation analyses. IORW takes advantage of the odds ratio’s invariance property and condenses in-

formation on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, condi-

tional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted

exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on

treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment

on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders

treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This newmediation

technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropri-

ate for any standard regression model, including quantile regression and survival analysis. An empirical example is

given using data from the Moving to Opportunity (1994–2002) experiment, testing whether neighborhood context

mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station,

Texas) is provided.

direct effects; effect decomposition; indirect effects; mediation; weighted regression

Abbreviations: BMI, bodymass index; CI, confidence interval; IORW, inverse odds ratio weighting; IOW, inverse odds weight; MTO,

Moving to Opportunity.

Mediation analyses are crucial for understanding causal re-
lationships and identifying possible intervention points. The
field of mediation research has recently exploded, both con-
ceptually and methodologically (1–19). In this article, we
outline a new approach utilizing inverse odds ratio weighting
(IORW) to evaluate natural direct and indirect effects (8). The
benefits of IORWare multifold. It easily accommodates mul-
tiple mediators regardless of their scale and improves on re-
cent parametric mediation techniques that fit a regression
model for the outcome, given the exposure, mediators, and
covariates, and a model for the multivariate density of medi-
ators given exposure and covariates. Unlike the parametric
approach, which has been implemented in restricted settings,
IORWis universal (i.e., easily implementedwith any standard

regression model). In this article, we present the IORW
method for epidemiologic audiences and offer Stata code
(StataCorp LP, College Station, Texas) with which to imple-
ment it.

COUNTERFACTUAL-BASED APPROACHES AND

LIMITATIONS OF EXISTING TECHNIQUES

The counterfactual-based approach to mediation defines
direct and indirect effects in a nonparametric framework,
readily accommodating nonlinearities and interactions in-
volving exposure, mediators, and confounders. Pearl (2, 7)
articulated formal assumptions under which natural direct
and indirect effects are identified, demonstrating that such
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effects can be computed from observational data under cer-
tain assumptions entailing no residual confounding (7) using
the mediation formula (seeWeb Appendix 1, available at http://
aje.oxfordjournals.org/). Since Pearl’s seminal contribution,
the causal mediation literature has focused on developing
estimation strategies for computing the mediation formula.
Approaches include fully parametric methods (1, 7, 9, 10),
semiparametric methods (6, 11–16), and some doubly and
multiply robust methods that are less sensitive to model mis-
specification (6, 14, 17).
The parametric mediation approach posits models for the

outcome regression on exposure, mediator, and preexposure
confounders. This reduces to Baron and Kenny’s classical
approach in linear models with no exposure-mediator interac-
tion (4, 20). Recently proposed parametric approaches also
apply in the presence of exposure-mediator interactions or with
a nonlinear link function, when the Baron and Kenny decom-
positions are incorrect (9). Parametric approaches can have
restrictions on their application. For instance, VanderWeele and
Vansteelandt (21) recently developed a parametric (regression-
based) mediation method for multiple mediators which can be
used for rare, binaryoutcomes butwith the restriction that all me-
diators are continuous. Amethod created by Lange et al. (22) re-
lies on a model for the joint density of the mediators, which may
be a daunting task for multiple mediators of mixed variable type
(e.g., binary, continuous, counts). (Also see Hong and Nomi
(23) for a closely related approach.) If the goal is to decompose
an exposure effect conditional on covariates, Tchetgen Tchetgen
(8) cautions against using the parametric mediation formula if
1) either the outcomeor themediatormodels use a nonlinear link
or 2) there are multiple mediators. Both situations are common.
In situation 1, direct, indirect, and total effects obtained

with the parametric mediation formula will often be difficult
to interpret given the unorthodox scale induced by the link
function (8). Situation 2 requires building a model for the
mediator density, possibly involving discrete and continu-
ous components, which is a nontrivial modeling task that
becomes increasingly difficult as the number of mediators
increases. For instance, even if one had 10 continuous media-
tors and one assumed that they were normally distributed, one
would need to fit a regression for each mediator on exposure
and covariates. One would also need data on the variance of
each residual and correlations between the residuals (requiring
45 correlation coefficients ((10 × 9)/2)). This method could be
computationally prohibitive. An additional difficulty arises
when specifying the outcome if interactions exist among any
subset of mediators, covariates, and the exposure. Whether to
specify such interactions can rarely be decided on the basis of
prior knowledge, and empirical tests of interactions involving
multiple factors are notoriously underpowered (24, 25).
Here, we abandon the parametric mediation strategy and

present Tchetgen Tchetgen’s (8) IORW approach. IORW is
a simple alternative, is applicable even in the context of non-
linear links, and circumvents the difficulties of modeling the
joint density of multiple mediators.

Identification

Suppose independent and identically distributed data are
observed for n subjects with outcome Y, binary exposure E,

and mediatorM, which temporally succeeds the exposure and
precedes the outcome, and C is the vector of preexposure
variables that confound the relationship between (E, M) and
Y (as in the causal directed acyclic graph shown in Figure 1).
To define natural direct and indirect effects in causal terms
requires defining counterfactuals. Assume that for every level
of the exposure and mediator, there exists a counterfactual
or potential outcome Ye,m corresponding to the value of the
outcome had exposure and mediator taken values e and m,
respectively. Likewise, the counterfactual variable Me corre-
sponds to the value the mediator would have had if exposure
had been e.
Decomposition of the total effect of the exposure on the

outcome on the mean scale into natural direct and indirect
effects is

γtotalðCÞ ¼ g�1fEðYe¼1jCÞg � g�1fEðYe¼0jCÞg
¼ g�1fEðYe¼1; Me¼1 jCÞg � g�1fEðYe¼0; Me¼0 jCÞg
¼ g�1fEðYe¼1; Me¼1 jCÞg � g�1fEðYe¼1; Me¼0 jCÞg
þ g�1fEðYe¼1; Me¼0 jCÞg � g�1fEðYe¼0; Me¼0 jCÞg

¼ γindirectðCÞ þ γdirectðCÞ ; ð1Þ

where E stands for expectation and g−1 is a user-specified,
possibly nonlinear link function. This decomposition reveals
that identification of natural direct and indirect effects re-
quires identification of the conditional mean of the counter-
factuals Ye, Me* within levels of C, where (e, e*) ∈ {0,1}2.

Assumptions

Under Pearl’s nonparametric structural equation model in-
terpretation of the causal directed acyclic graph in Figure 1,
natural direct and indirect effects are nonparametrically
identified by the mediation formula (7). Pearl’s identifying

E M Y

C

Figure 1. Mediation model showing measured confounding of the
exposure, mediator, and outcome. E denotes the binary exposure;
M denotes the mediator, which temporally succeeds the exposure
and precedes the outcome; and C is the vector of preexposure vari-
ables that confound the relationship between (E,M ) and Y. Identifying
assumptions include the assumption that there is no unmeasured con-
founding of the effects of the 1) exposure on the mediator, 2) mediator
on the outcome, or 3) exposure on the outcome upon conditioning on
preexposure confounders. We also assume that there are no con-
founding variables affected by the exposure. This directed acyclic
graph demonstrates a generic causal structure, although in our empir-
ical example with Moving to Opportunity data, there is no arrow from
C to E, as E is randomly assigned.
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assumptions require no unmeasured confounding of the ef-
fects of the 1) exposure on the mediator, 2) mediator on the
outcome, or 3) exposure on the outcome, conditioning on
preexposure confounders. We also assume that there are no
confounding variables of the mediator-outcome relationship
affected by the exposure. The counterfactual definition of in-
direct effects invokes a potential outcome that could never be
observed, Ye¼1;Me¼0 . The nonparametric structural equation
model also assumes that Ye=1,m is conditionally independent
of Me=0 given C. This last assumption is much stronger than
conventional nonconfounding of the M-Y relationship and
has been somewhat controversial, because it is an assumption
about the independence of counterfactuals under conflicting
treatment values (M under e = 0 vs. Y under e = 1) (26, 27).

Such assumptions can never be enforced, even in an experi-
mental design. InWeb Appendix 2, we describe a simple sen-
sitivity analysis technique presented by Tchetgen Tchetgen
and Shpitser (6, 17) for evaluating the extent of bias due to
possible violation of the assumption, due to an unobserved
common cause of M and Y, possibly affected by E. The sen-
sitivity analysis technique presented here differs from those
developed by VanderWeele (28) and Imai et al. (29) in im-
portant ways. VanderWeele (28) postulates the existence of
an unmeasured confounderU, possibly vector-valued, which
when included in C recovers identification of the natural di-
rect effect. The sensitivity analysis then requires specification
of a parameter encoding the effect of the unmeasured con-
founder on the outcome within levels of (E, C, M) and
another parameter for the effect of the exposure on the density
of the unmeasured confounder given (C,E,M). This daunting
task renders the approach generally impractical, except when
it is reasonable to postulate a single unobserved binary con-
founder and one is willing to make further simplifying assump-
tions about the required sensitivity parameters. The advantage
of our approach is that it is agnostic about the dimension and
nature of unmeasured confounders U. Furthermore, confound-
ing of the mediator can be due to an exposure-induced con-
founder of the mediator-outcome relationship that is also an
effect of the exposure variable—an important possibility
which cannot be handled by the technique of VanderWeele
(28).

IORW ESTIMATION OF DIRECT AND INDIRECT

EFFECTS

IORW condenses information on the odds ratio between
treatment and mediators, conditional on covariates, into a
weight. This weight, the inverse exposure-mediator odds ratio
given covariates, is then used to estimate natural direct effects
via weighted regression analysis. Crucially, the mediator is
never entered into the regression model for the outcome and
is only used in the construction of the weight. Applying the
weights renders the exposure and mediator independent, de-
activating indirect pathways involving any component of the
multivariatemediators. A key advantage stems from the invari-
ance property of odds ratios (i.e., the odds ratio for the relation-
ship between 2 variables is the same regardless of which
variable is specified as dependent or independent), which per-
mits estimation of the odds ratio relating exposure and a medi-
ator via multiple logistic regression of a binary exposure on the

mediator and covariates, or via linear regression for normally
distributed continuous exposures (30). When we have multi-
ple mediators, the invariance property allows us to still derive
the relationship between exposure and the set of mediators
with a single regression model. Instead of estimating a sepa-
rate model for each mediator (i.e., regressing each mediator
on exposure), we estimate 1 regression model (i.e., regressing
exposure on all mediators) which is used to derive inverse
odds ratio weights.

We estimate the total effect with standard regression anal-
ysis by fitting a regression model akin to the direct effect
model, but omitting the IORWs. Then we estimate the direct
effect, applying IORW. Finally, we take the difference be-
tween the total and direct effects on the scale (g) chosen by
the analyst, using equation 1 above to compute the indirect
effect. This indirect effect is interpreted as the joint mediation
of the exposure effect by the set of mediators.

ADVANTAGES AND LIMITATIONS OF IORW

IORW can be used with any generalized linear models, in-
cluding those with nonlinear link functions, quantile regres-
sion, or survival models, and can be implemented in any
standard software that accommodates weighted regression.
IORW easily accommodates multiple continuous, dichoto-
mous, or categorical mediators by relying on standard logistic
regression for a binary exposure, or standard linear regression
for a continuous exposure, to evaluate the exposure-mediator
odds ratio. Using weights to capture the relationship between
exposure and the vector ofmediators circumvents the additional
difficulties of specifying a regression model for regression of
the outcome on the exposure and mediator, or specifying a
model for the joint conditional density of multiple mediators.
IORW is thus entirely agnostic with regard to the effects of
interactions between any mediator and the exposure on the
outcome; IORW is equally valid regardless of whether such
interactions are present, without having to specify them. Some
previously proposed mediation techniques can accommodate
interactions between the exposure and the mediator (9, 10,
31–33), but these methods handle only a single mediator and
are limited by the type of outcome andmediator they can han-
dle and the regression models that can be utilized.

Although IORW has many strengths and advantages in
comparison with other methods, it is not without limitations.
If the assumptions of traditional parametric mediation meth-
ods hold (e.g., Baron and Kenny’s approach using linear
regression), then these methods may produce more precise
estimates. IORWaccommodatesmultiplemediators and over-
comes the need to specify interactions between the exposure
and mediators, but variances of estimates can be wider than
those of traditional parametric mediation methods, possibly
making it more difficult to detect small indirect effects.

IMPLEMENTATION OF IORW FOR BINARY EXPOSURE

Implementation of IORW estimation of direct and indirect
effects proceeds as follows.

1. Fit a standard multiple logistic regression model for expo-
sure given mediators and covariates.
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2. Compute an IORW weight by taking the inverse of the
predicted odds ratio from step 1 for each observation in
the exposed group (the unexposed (or control) group
member’s IORW weight equals 1).

3. Estimate the direct effect of exposure via weighted gener-
alized linear models of the regression of the outcome on
exposure and covariates, with user-specified link function
g and the weights obtained in step 2.

4. Estimate the total effect of exposure using standard gener-
alized linear models with link function g of the outcome
on exposure and covariates.

5. Calculate indirect effects of the exposure on the outcome
via the proposed mediators by subtracting the direct effects
from the total effects using equation 1.

6. Bootstrap effect estimates to derive standard errors for
direct and indirect effects.

More efficient estimation may be obtained by stabilizing the
weights. Stabilization involves multiplying each individual’s
exposure-mediator odds ratio by the predicted odds of the ex-
posure, where the mediators are evaluated at their reference
value (e.g., when all mediators are set to zero). The resulting
inverse odds weight (IOW) is then used in lieu of the IORW
weight. In statistical software, this can be implemented by re-
trieving predicted odds from a regression of exposure given
mediators and covariates (step 2 above) and taking the in-
verse to arrive at inverse odds weights.
Although we discuss the implementation of IORW for a

binary exposure, the method is not restricted by the classifi-
cation of the exposure variable. If the exposure had 3 levels
(e.g., treatment group 1, treatment group 2, and control group),
we could likewise estimate IOW (IORW) via polytomous
logistic regression.
Alternatively, if the exposure is continuous, then IORW

weights may be assigned to each level of the continuous vari-
able utilizing linear regression to compute the odds ratio
weights (30, 34). Specifically, the conditional odds ratio (OR)
function OR(E,MjC) relating a normally distributed continu-
ous exposure E and a vector of mediators M (M = (M1, M2))
within levels of C can be computed using the following re-
gression model:

E ¼ β0 þ β1M1 þ β2M2 þ β03C þ e; ð2Þ

with e∼ N(0, σ2), so that for each participant, the computed
inverse odds ratio weight is

1
ORðE;MjCÞ ¼

1

e½ðβ1×E×M1Þþðβ2×E×M2Þ�=σ2 : ð3Þ

Empirical data example

We analyzed data from Moving to Opportunity (MTO),
a randomized housing mobility experiment (1994–2002)
implemented in 5 large US cities (Boston, Massachusetts;
Baltimore, Maryland; Chicago, Illinois; Los Angeles, Cali-
fornia; and New York, New York) with over 4,600 families,
using the MTOTier 1 Restricted Access Data (35). MTOwas
designed to understand the impact of voluntary relocation of
low-income families from distressed public housing in high-

poverty neighborhoods to private rental housing in lower-
poverty neighborhoods by means of housing subsidies. Vol-
unteer families were randomized to one of 3 treatment groups
in 1994–1997. For parsimony, we combined the 2 experi-
mental treatment groups who were offered Section 8 housing
vouchers to subsidize the rental of a private market apart-
ment, so our exposure was binary. The control group was
given no further assistance but could remain in public hous-
ing (36, 37). We analyzed a dichotomous, common out-
come: the prevalence of obesity, defined as a body mass
index (BMI; weight (kg)/height (m)2) greater than or equal
to 30, among household heads as calculated from self-reported
height and weight in 2002.
Because MTO treatment members moved out of distressed

public housing, we hypothesized that changes in economic
and demographic compositional neighborhood characteris-
tics mediated MTO effects on obesity prevalence. To opera-
tionalize neighborhood characteristics, we extracted 24 highly
correlated census tract characteristics (coinciding with MTO
participants’ 1997 locations). We used exploratory factor
analysis with iterated principal axes and orthogonal varimax
rotation (38).We retained 4 factor scores that had eigenvalues
above 1, which captured latent constructs summarizing de-
mographic and economic neighborhood characteristics and
minimized multicollinearity (39, 40) in estimating IORW
weights. The 4 factors were as follows: 1) an economic factor
(median family income, percentage of people aged≥25 years
with a college degree, percentage of owner-occupied housing
units, percentage of female-headed households with children,
percentage of people aged ≥25 years with less than a high
school diploma, percent unemployed among persons aged
≥16 years in the civilian labor force, percentage of house-
holds receiving public assistance, percentage of people in
poverty); 2) a business factor (number of businesses, annual
payroll, number of employees); 3) aminority composition fac-
tor (percent non-Hispanic black, percent Hispanic, percent
foreign-born); and 4) a minority males and minority adults
factor ( percentage of the population who were minority
males aged ≥16 years among employed civilians, percentage
of minority males aged 10–19 years, percentage of minority
adults aged ≥25 years). Testing mediation with the original
24 census variables individually (in lieu of factor scores)
demonstrated similar indirect effect estimates, although
they were smaller and more imprecise.
We implemented Poisson regression (41) to estimate risk

ratios for the total effect of the MTO treatment on obesity.
To control for potential confounding of the exposure, medi-
ator, and outcome (Figure 2), we included preexposure char-
acteristics such as site, age, race/ethnicity, socioeconomic
status, household composition, and housing/mobility vari-
ables as covariates (Table 1). MTO survey weights adjusted
for attrition and varying random assignment ratios across
time (42); new weights can be calculated as the product of
original MTO survey weights and IORW weights.
IORW and IOW mediation analyses were implemented in

Stata/SE 11 (StataCorp LP, College Station, Texas), with
bootstrapped (1,000 iterations) standard errors. The validityof
bootstrap-based inference relies on one’s ability to respect the
original study design in the process of generating bootstrap
samples. This process can be quite involved in the context
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of survey weights (43), and therefore it was forgone in the
current illustration, in favor of a simpler analysis in which
we accounted for possible selection bias by adjusting for a
fairly extensive set of prerandomization covariates in all re-
gression models. We confirmed that our strategy was indeed
appropriate by informally comparing point estimates with-
out and with MTO survey weights (Table 1 vs. Web Table 1)
to ensure that conclusions were consistent. Results were qual-
itatively similar, though indirect effects were somewhat atten-
uated without the MTO survey weights.

Web Appendix 3 contains sample Stata code for imple-
menting IOWand the nonparametric bootstrap.WebAppendix

4 contains Stata code for IOW combined with bootstrapping of
multiply imputed data (44). Researchers utilizing multiple me-
diators may adopt an imputation strategy to preserve sample
size. Under a missing-at-random assumption, multiple imputa-
tionmay allow formore precise and less biased estimates than a
complete case analysis (45). The Stata code included in Web
Appendix 3 implements a procedure called multiple imputa-
tion by chained equations (MICE), which produces imputed
data sets by utilizing a series of imputation models, 1 model
for each variable with missing data (44). Rubin’s rule was
used to combine estimates across imputed data sets (44, 46).
Web Appendix 5 provides Stata code for constructing IORW

MTO
Treatment 

Economic and
Compositional
Neighborhood
Characteristics 

Adult
Obesity 

Baseline Adult
Characteristics 

Figure 2. Directed acyclic graph for the empirical example. We hypothesized that the treatment effects of the Moving to Opportunity (MTO) inter-
vention on adult obesity would be mediated by economic and compositional neighborhood characteristics, conditional on potential preexposure
covariates.

Table 1. Testing of Mediation of the Effects of Moving to Opportunitya Housing Voucher Intervention (vs. Remaining

in Public Housing (Control Group)) on Adult Obesity Prevalence in 2002 Using Inverse Odds Weightingb

Effect of Treatment on Obesityc

Mediator(s)d

All 4 Census Factors Economic Factor Only

RR 95% CI P Value RR 95% CI P Value

Indirect effect 0.95 0.89, 1.02 0.15 0.96 0.92, 1.00 0.04

Direct effect 0.95 0.86, 1.06 0.36 0.95 0.87, 1.04 0.25

Total effect 0.91 0.84, 0.98 0.02 0.91 0.84, 0.98 0.02

Abbreviations: CI, confidence interval; RR, relative risk.
a n = 3,401 adult household heads in the Moving to Opportunity experiment (1994–2002).
b Census tract data (Census 2000) were linked to 1997 census tract locations of the residential addresses of Moving

to Opportunity participants. In binary treatment models, the Section 8 housing voucher group was compared with

public housing controls. The Section 8 voucher group combined the 2 originally randomized groups: the low-

poverty neighborhood Section 8 group and the regular Section 8 group.
c Covariates included adult baseline characteristics such as study site, age, sex, race, ethnicity, marital status,

employment status, receipt of welfare, education, school enrollment, no teens in the household at baseline, household

member with a disability, having lived in the baseline neighborhood for 5 or more years, feeling very unsafe in the

neighborhood, and having moved more than 3 times prior to baseline.
d Four mediators were derived from exploratory factor analysis: 1) an economic factor (median family income,

percentage of people aged ≥25 years with a college degree, percentage of owner-occupied housing units, percentage

of female-headed households with children, percentage of people aged ≥25 years with less than a high school

diploma, percent unemployed among persons aged ≥16 years in the civilian labor force, percentage of households

receiving public assistance, percentage of people in poverty); 2) a business factor (number of businesses, annual

payroll, number of employees); 3) a minority composition factor (percent non-Hispanic black, percent Hispanic, percent

foreign-born); and 4) a minority males and minority adults factor (percentage of the population who were minority males

aged≥16 years among employed civilians, percentage ofminoritymales aged10–19 years, percentage ofminority adults

aged ≥25 years).
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weights (instead of IOW-stabilized weights). In our example,
IOWand IORWestimates were almost identical, but IOW stan-
dard errors were smaller, given stabilization, as anticipated.

Results from the empirical example

Among 3,401 MTO adult household heads in our analyti-
cal sample (i.e., with nonmissing values on BMI, covariates,
and mediators), the MTO voucher program had a significant
protective total effect against obesity (11% risk reduction) in
comparison with controls remaining in public housing (rela-
tive risk = 0.89, 95% confidence interval (CI): 0.89, 0.98).
Obesity prevalence in the control group was 46.8% as com-
pared with 42.3% for combined treatment groups. Using
IOW to test mediation, the 4 factor scores, corresponding
to neighborhood characteristics in 1997 (0–3 years following
baseline and random assignment), accounted for 49% of the
total effect (Table 1), suggesting that changes in census tract
characteristics induced by the MTO intervention substan-
tially mediated MTO treatment effects on obesity. When all
4 factors were entered together, the relative risk for the indi-
rect effect was 0.95 (95% CI: 0.89, 1.02; P = 0.15) (Table 1).
When only the economic factor was included, the relative risk
for the indirect effect was 0.96 (95% CI: 0.92, 1.00; P =
0.04), suggesting that this pathway accounted for most of
the indirect effect.
Additionally, using continuous BMI as the outcome vari-

able (rather than the dichotomous obesity variable), we found
that MTO treatment was associated with approximately a
1-unit decrease in BMI (total effect: −0.91; P = 0.001). The
4 factors together mediated 56% of the total effect (indirect
effect: −0.50; P = 0.12), although results were once again
driven by economic and business characteristics (indirect ef-
fect: −0.58, P = 0.11). Thus, our empirical example suggests
that the effect of MTO treatment on adult obesity was par-
tially mediated through structural neighborhood characteris-
tics. In particular, we found that economic characteristics of
census tracts, not the demographic composition of neighbor-
hoods, mattered for adult obesity and the BMI status of adults
4–7 years after random assignment to the MTO housing
choice voucher program.
The IORW method relies upon the investigator to select

mediator variables that s/he thinks are important intermedi-
ates between the exposure and the outcome. An incredible
strength of the IORW method is that it can accommodate
multiple mediators, unlike many other mediation methods.
However, including many mediators, especially in a small
data set, may produce unreliable or unstable weights or effect
estimates. The same is true of covariates. The tradeoff is that
if important covariates are omitted, estimates may be biased,
since covariates are included to control for confounding of
the exposure, mediator, and outcome relationships.
Because of randomization, total effects of the intervention

could, in principle, be evaluated without concerns about con-
founding bias. However, mediating factors are not random-
ized, and therefore, despite efforts to account for baseline
confounders, unobserved confounding cannot be ruled out
with certainty. In a sensitivity analysis, we adjusted for addi-
tional available preexposure covariates (a total of 28 covari-
ates) and found very comparable indirect effects.

As we noted previously, we additionally assume, as do
other mediation methods (9, 12, 47, 48), that there are no
confounders of the mediator-outcome relationship that are
affected by the exposure. This assumption, in essence, re-
quires that pathways between the exposure and mediator do
not also affect the outcome (4). When this assumption does
not hold, natural indirect and direct effects, in general, cannot
be identified—although there are exceptions (27, 29, 49, 50),
including the case where there is no individual-level additive
effect of interaction between the exposure and mediator on
the outcome, an assumption that cannot be confirmed empir-
ically (51). One practical implication is that the closer in time
the mediator is measured as compared with the exposure, the
less likely this assumption is to be violated. To minimize po-
tential violation of this assumption, in our empirical example,
our mediators were linked to time points closer to baseline
than to outcome measurements; for example, census tract
characteristics were linked to MTO participants’ 1997 loca-
tions (0–3 years following random assignment). In sensitivity
analyses, we restricted the analytical sample to persons with
1997 study entry dates (n = 1,099), and thereby the mediator
was modeled within 1 year of random assignment. Indirect
effects were robust to this restriction, and indeed hypothe-
sized mediator variables accounted for an even larger per-
centage of total effects, compared with results from the entire
sample.
Additionally, in sensitivity analyses we assessed the amount

of confounding induced by unobserved variables that could
potentially bias our observed finding, by applying methods
recommended by Tchetgen Tchetgen and Shpitser (6, 17).
Briefly, the sensitivity analysis quantifies the possible con-
founding bias present in the direct effect (and the indirect ef-
fect) given measured confounders, by offsetting the observed
outcome by a value encoded in a selection bias function. The
specific methods used to calculate the selection bias function
and the corresponding outcome offset are detailed in Web
Appendix 2, and the ranges of direct and indirect effects
are plotted across levels of our chosen sensitivity parameter
(λ(c)), which captures, for a binary mediator, the following
counterfactual difference: λ(c) = E(Ye=1,mjE = 1, M = 1, C)−
E(Ye=1,mjE = 1, M = 0, C).
Clearly, λ(C) is zero for all levels of C only if M is un-

confounded given C; otherwise, λ(C) captures the extent to
which confounding may lead to differences in the average po-
tential BMI (Ye=1,m) under an intervention moving people to a
low-poverty neighborhood (M = 1) with a voucher (E = 1),
comparing persons who were observed to have moved with
the help of a voucher with persons who failed to move despite
receiving the voucher. A positive value of λ(C) indicates that
persons with greater BMI were more likely to adhere to the
intervention, while a negative value of λ(C) indicates the op-
posite. Thus, by varying λ(C) one can obtain a sensitivity
analysis for confounding of the mediator (6, 17). We imple-
mented the approach in the MTO data upon making the sim-
plifying assumption that λ(C) = λ does not depend on C. The
direct effect plot (Web Figure 1) indicates very little bias in
the direct effect; the direct effect coefficient remains consis-
tent (ranging from 0.195 to 0.219) and nonsignificant. The
indirect effect coefficient ranges from −0.930 to −1.306;
however, the significance level is more sensitive to bias.
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Specifically, the indirect effect coefficient has P < 0.1 when λ
ranges from −0.3 to 1.5, but the indirect effect has P > 0.1
when λ ranges from −1.5 to −0.4. This suggests that the in-
direct effect may be overestimated due to confounding bias
for values of λ below −0.4—that is, if the potential BMI
(under the active intervention) of persons more likely to ad-
here to the intervention was in actuality at least 0.4 units
lower than that of persons less likely to adhere.

Nonlinearities in the IORW model can be incorporated
through variable specification (e.g., including polynomial
terms for some mediators in the regression model). To sim-
plify the exposition, we considered only linear main effects
for the application.

CONCLUSION

In this paper we have demonstrated the utility and advan-
tages of IORWmediation over the use of other methods, have
presented an empirical example, and have provided statistical
code for its implementation. Testing of mediation is neces-
sary to understand the active components of exposures and
of interventions for improving population health, and it can
be facilitated by easier implementation of such methods.
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