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Abstrat

We study metri learning as a problem of information retrieval. We

present a general metri learning algorithm, based on the strutural SVM

framework, to learn a metri suh that rankings of data indued by dis-

tane from a query an be optimized against various ranking measures,

suh as AUC, Preision-at-k, MRR, MAP or NDCG. We demonstrate ex-

perimental results on standard lassi�ation data sets, and a large-sale

online dating reommendation problem.

1 Introdution

In many mahine learning tasks, good performane hinges upon the de�nition

of similarity between objets. Although Eulidean distane on raw features pro-

vides a simple and mathematially onvenient metri, there is often no reason to

assume that it is optimal for the task at hand. Consequently, many researhers

have developed algorithms to automatially learn distane metris in supervised

settings.

With few exeptions, these metri learning algorithms all follow the same

guiding priniple: a point's good neighbors should lie loser than its bad neigh-

bors. Of ourse, the exat de�nitions of good and bad vary aross problem

settings and algorithms, but typially they derive from some ombination of

proximity and label agreement. In keeping with this priniple, metri learning

algorithms are often evaluated by testing the auray of labels predited by

k-nearest neighbors on held out data.

At a high level, we onsider a metri good if, when given a test point q, sort-
ing the training set by inreasing distane from q results in good neighbors at
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the front of the list, and bad neighbors at the end. Viewed in this light, we an

ast nearest neighbor predition as a ranking problem, and the predited label

error rate as a loss funtion over rankings. Thus, at its ore, the metri learn-

ing problem is a speial ase of information retrieval in the query-by-example

paradigm.

In reent years, many advanes have been made in the development of learn-

ing algorithms for ranking Joahims (2005); Burges et al. (2005); Xu & Li (2007);

Volkovs & Zemel (2009). Unlike the lassi�ation problems typially addressed

by metri learning, ranking problems generally lak a single evaluation riterion.

Rather, a host of di�erent evaluation measures have been proposed, eah ap-

turing a di�erent notion of �orretness.� Beause rankings are inherently om-

binatorial objets, these evaluation measures are often non-di�erentiable with

respet to model parameters, and therefore di�ult to optimize by learning al-

gorithms. Nonetheless, progress has been made, and there are now several algo-

rithmi tehniques for optimizing various ranking evaluation measures Joahims

(2005); Chakrabarti et al. (2008); Volkovs & Zemel (2009).

In the present work, we seek to bridge the gap between metri learning

and ranking. By adapting tehniques from information retrieval, we arrive at

a general metri learning algorithm whih optimizes for the true quantity of

interest: the permutation of data indued by distanes in the learned metri.

Conversely, our parameterization of the ranking funtion by a distane metri

is quite natural for many information retrieval appliations, inluding image

searh and multi-media reommendation.

The present approah, based on strutural SVM Tsohantaridis et al. (2005),

readily supports various ranking evaluation measures under a uni�ed algorithmi

framework. The interpretation of metri learning as an information retrieval

problem allows us to apply loss at the level of rankings, rather than pairwise

distanes, and enables the use of more general notions of similarity than those

used in previous metri learning algorithms.

1.1 Related work

There has been a great deal of researh devoted to the design of algorithms

for learning an optimal metri in supervised settings. Typially, these metri

learning algorithms follow the general sheme of learning a (preferably low-rank)

linear projetion of the data suh that distanes to a pre-determined set of �good

neighbors� is minimized, while non-neighbor distanes are maximized.

Xing et al. (2003) hoose the good neighbors as all similarly labeled training

points, and solve for the metri by semide�nite programming. Distanes for

similar pairs of points are upper-bounded by a onstant, and dissimilar-pair

distanes are maximized. In e�et, this attempts to map eah lass into a ball

of �xed radius, but does not onstrain the separation between lasses.

Weinberger et al. (2006) de�ne the target neighbors of a point as the k
losest similar points in the original feature spae, and fores positive margins

between target neighbors and all other (dissimilar) points. This relaxes the

onstraint of Xing et al. (2003) that all points of a given lass must lie lose
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Figure 1: A toy example illustrating the dangers of relying on input features for

determining good neighbors. Top-left: A binary-labeled (�, �) data set in its

native feature spae. All disriminative information is ontained in the vertial

axis, but the sale of the horizontal axis orrupts the seletion of good neighbors.

Top-right: LargeMargin Nearest Neighbor (k = 3) selets the vertial neighbors,
leading to suboptimal performane. Bottom: Metri learning to rank (MLR)

orretly projets onto the vertial axis.

to eah-other, and the algorithm performs well in many real-world senarios.

However, as illustrated in Figure 1, the dependene on the original feature

spae for determining target neighbors an make the algorithm unsuitable for

problem domains involving noisy or heterogeneous features: a single orrupted

feature an dominate the initial distane alulations, and lead to sub-optimal

performane.

Neighborhood omponents analysis (NCA) Goldberger et al. (2005) relaxes

the problem by maximizing the expeted number of orretly retrieved points

under a stohasti neighbor seletion rule. Although this relaxation makes in-

tuitive sense, the optimization is non-onvex, and we lose the ability to apply

onstraints to the top-k nearest neighbors, whih an be of great importane

in pratie. Similarly, Globerson & Roweis (2006) optimize stohasti neighbor

seletion while attempting to ollapse eah lass to a single point. This idea

enfores more regularity on the output spae than NCA and leads to a onvex

optimization problem, but the assumption that entire lasses an be ollapsed

to distint points rarely holds in pratie.

The ore of our method is based on the strutural SVM framework Tsohan-

taridis et al. (2005). We provide a brief overview in Setion 2, and disuss

ranking-spei� extensions in Setion 4.

1.2 Preliminaries

Let X ⊂ R
d
denote the training set (orpus), with |X | = n. Y will denote the

set of permutations (rankings) of X . For a query q, let X+
q and X−

q denote the

subsets of relevant and irrelevant points in the training set. For a ranking y ∈ Y
and two points i, j ∈ X , we will use i≺yj (i≻yj) to indiate that i is plaed
before (after) j in y.
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W � 0 will denote a symmetri, positive semi-de�nite matrix in R
d×d

.

For i, j ∈ R
d
, we will denote distane under the metri de�ned by W as

‖i− j‖W =
√

(i− j)TW (i− j). For matries A,B ∈ R
d×d

, we will denote their

Frobenius inner produt as 〈A,B〉F = tr(ATB). Finally, 1[X ] will denote the
0-1 indiator funtion on the event X .

2 Strutural SVM review

Strutural SVM an be viewed as a generalization of multi-lass SVM Crammer

& Singer (2002), where the set of possible predition outomes is generalized

from labels to strutures, e.g., a parse tree, permutation, sequene alignment,

et. Tsohantaridis et al. (2005). The multi-lass SVM formulation of Crammer

& Singer (2002) fores margins for eah training point q ∈ X between the true

label y∗ and all other labels y:

∀y 6= y∗ : wT

y∗q ≥ wT

y q + 1− ξ,

where ξ ≥ 0 is a slak variable to allow margin violations on the training set.

Similarly, strutural SVM applies margins between the true struture y∗ and all
other possible strutures y:

∀y ∈ Y : wTψ(q, y∗) ≥ wTψ(q, y) + ∆(y∗, y)− ξ. (1)

Here, ψ(q, y) is a vetor-valued joint feature map whih haraterizes the rela-

tionship between an input q and an output struture y. (This notation subsumes
the lass-spei� disriminant vetors of multi-lass SVM.) Unlike lass labels,

two distint strutures (y∗, y) may exhibit similar auray, and the margin

onstraint should re�et this. To support more �exible notions of strutural

orretness, the margin is set to ∆(y∗, y): a non-negative loss funtion de�ned

between strutures, whih is typially bounded in [0, 1].
For a test query q̂ in multi-lass SVM, the predited label y is that whih

maximizes wT

y q̂, i.e., the label with the largest margin over other labels. Anal-

ogously, strutural preditions are made by �nding the struture y whih max-

imizes wTψ(q̂, y). The predition algorithm must be able to e�iently use the

learned vetor w when omputing the output struture y. As we will see in Se-
tions 2.2 and 3, this is easily aomplished in general ranking, and spei�ally

in metri learning.

2.1 Optimization

Note that the set Y of possible output strutures is generally quite large (e.g.,

all possible permutations of the training set), so enforing all margin onstraints

in (1) may not be feasible in pratie. However, utting planes an be applied

to e�iently �nd a small working set of ative onstraints whih are su�ient

to optimize w within some presribed tolerane Tsohantaridis et al. (2005).
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The ore omponent of the utting plane approah is the separation orale,

whih given a �xed w and input point q, outputs the struture y orresponding
to the margin onstraint for q whih is most violated by w:

y ← argmaxy∈Y w
Tψ(q, y) + ∆(y∗, y). (2)

Intuitively, this omputes the struture y with simultaneously large loss ∆(y∗, y)
and margin sore wTψ(q, y): in short, the weak points of the urrent model w.
Adding margin onstraints for these strutures y e�iently direts the opti-

mization toward the global optimum by fousing on the onstraints whih are

violated the most by the urrent model.

In summary, in order to apply strutural SVM to a learning problem, three

things are required: a de�nition of the feature map ψ, the loss funtion ∆,

and an e�ient algorithm for the separation orale. These proedures are all of

ourse highly interdependent and domain-spei�. In the next setion, we will

desribe the prevalent approah to solving ranking problems in this setting.

2.2 Ranking with strutural SVM

In the ase of ranking, the most ommonly used feature map is the partial order

feature Joahims (2005):

ψpo(q, y) =
∑

i∈X+
q

∑

j∈X−

q

yij

(

φ(q, i)− φ(q, j)

|X+
q | · |X

−
q |

)

, (3)

where

yij =

{

+1 i ≺y j

−1 i ≻y j
,

and φ(q, i) is a feature map whih haraterizes the relation between a query

q and point i. Intuitively, for eah relevant-irrelevant pair (i, j), the di�erene
vetor φ(q, i) − φ(q, j) is added if i ≺y j and subtrated otherwise. Essentially,

ψpo emphasizes diretions in feature spae whih are in some sense orrelated

with orret rankings. Sine φ only depends on the query and a single point,

rather than the entire list, it is well-suited for inorporating domain-spei�

knowledge and features.

Separation orales have been devised for ψpo in onjuntion with a wide

variety of ranking evaluation measures Joahims (2005); Yue et al. (2007);

Chakrabarti et al. (2008), and we give a brief overview in Setion 4.

One attrative property of ψpo is that for a �xed w, the ranking y whih

maximizes wTψpo(q̂, y) is simply i ∈ X sorted by desending wTφ(q̂, i). As we
will show in the next setion, this simple predition rule an be easily adapted

to distane-based ranking.
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3 Metri learning to rank

If the query q lies in the same spae as the orpus X , a natural ordering is

produed by inreasing (squared) distane from q: ‖q − i‖2. Sine our goal is

to learn an optimal metri W , distanes are omputed in the learned spae and

sorted aordingly: ‖q − i‖2W . This omputation is haraterized in terms of

inner produts as follows:

‖q − i‖2W = (q − i)TW (q − i) = tr
(

W (q − i)(q − i)T
)

=
〈

W, (q − i)(q − i)T
〉

F
,

where the seond equality follows by the yli property of the trae.

This observation suggests a natural hoie of a feature map:

φM (q, i)
.
= −(q − i)(q − i)T. (4)

(The hange of sign preserves the ordering used in standard strutural SVM.)

To summarize, sorting the orpus by asending ‖q− i‖W is equivalent to sorting

by desending 〈W,φM (q, i)〉F . Similarly, by using φM with ψpo, the ordering y
whih maximizes the generalized inner produt 〈W,ψpo(q, y)〉F is preisely X in

asending order of distane from q under the metri de�ned by W .

Thus, by generalizing the vetor produts in Equations 1 and 2 to Frobenius

inner produts, we an derive an algorithm to learn a metri optimized for

list-wise ranking loss measures.

3.1 Algorithm

Ideally, we would like to solve for the optimal metri W ∗
whih maximizes the

margins over all possible rankings for eah query. However, sine |Y| is super-
exponential in the size of the training set, implementing an exat optimization

proedure is out of the question with urrent tehniques. Instead, we approxi-

mate the full optimization program by using a utting-plane algorithm.

Spei�ally, our algorithm for learningW is adapted from the 1-Slak margin-

resaling utting-plane algorithm of Joahims et al. (2009). At a high-level, the

algorithm alternates between optimizing the model parameters (in our ase,W ),

and updating the onstraint set with a new bath of rankings (y1, y2, . . . , yn)
(one ranking for eah point). The algorithm terminates one the empirial loss

on the new onstraint bath is within a presribed tolerane ǫ > 0 of the loss

on the previous set of onstraints.

The key di�erene between the 1-Slak approah and other similar utting-

plane tehniques is that, rather than maintaining a slak variable ξq for eah q ∈
X , there is a single slak variable ξ whih is shared aross all onstraint bathes,
whih are in turn aggregated by averaging over eah point in the training set.

As we illustrate in Setion 3.2, this enables e�ient bookkeeping and gradient

alulations in the optimization proedure.

We introdue two modi�ations to adapt the original algorithm to metri

learning. First, W must be onstrained to be positive semi-de�nite in order to
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Algorithm 1 Metri Learning to Rank (MLR).

Input: data X , rankings y∗1 , . . . , y
∗
n, slak trade-o� C > 0, auray threshold

ǫ > 0
Output: metri W � 0, slak variable ξ ≥ 0
1: C ← ∅
2: repeat

3: Solve for the optimal metri and slak:

(W, ξ)← argminW,ξ f(W ) = tr(W ) + Cξ

s. t.W � 0

ξ ≥ 0

∀(y1, y2, . . . , yn) ∈ C :

1

n

n
∑

i=1

〈W, δψpo(qi, y
∗
i , yi)〉F ≥

1

n

n
∑

i=1

∆(y∗i , yi)− ξ

4: for i = 1 to n do

5: yi ← argmaxy∈Y ∆(y∗i , y) + 〈W,ψpo(qi, y)〉F
6: end for

7: C ← C ∪ {(y1, . . . , yn)}
8: until

1

n

n
∑

i=1

∆(y∗i , yi)− 〈W, δψpo(qi, y
∗
i , yi)〉F ≤ ξ + ǫ

de�ne a valid metri. Seond, we replae the standard quadrati regularization

1

2
wTw (or

1

2
tr(WTW )) with tr(W ). Intuitively, this trades an ℓ2 penalty on the

eigenvalues of W for an ℓ1 penalty, thereby promoting low-rank solutions.

The general optimization proedure is listed as Algorithm 1. For ompat-

ness, we de�ne

δψpo(q, y
∗, y) = ψpo(q, y

∗)− ψpo(q, y).

3.2 Implementation

To solve the optimization problem in Algorithm 1, we implemented a gradient

desent solver

1

. After eah gradient step, the updated W is projeted bak onto

the feasible set of PSD matries by spetral deomposition.

Although there appears to be a great many feature vetors (δψpo) in use in

the algorithm, e�ient bookkeeping allows us to redue the overhead of gradient

1

Our algorithm is implemented in MATLAB, and we will make the soure ode available

upon publiation.
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alulations. Note that ξ an be interpreted as the point-wise maximum of a

set {ξ1, ξ2, . . . }, where ξi orresponds to the margin onstraint for the ith bath.
Therefore, at any time when ξ > 0, the gradient of the objetive f(W ) an

be expressed in terms of a single bath (ŷ1, . . . , ŷn) whih ahieves the urrent

largest margin violation:

∂f

∂W
= I −

C

n

n
∑

i=1

δψpo(qi, y
∗
i , ŷi).

Note that ψpo only appears in Algorithm 1 in the form of averages over

onstraint bathes. This indiates that it su�es to maintain only a single d×d
matrix

Ψ =
1

n

n
∑

i=1

δψpo(qi, y
∗
i , yi)

for eah bath, rather than individual matries for eah point. Beause φM

derives from outer-produts of the data, eah ψpo(q, y) an be fatored as

ψpo(q, y) = XS(q, y)XT,

where the olumns of X ontain the data, and S(q, y) is a symmetri n × n
matrix with

S(q, y) =
∑

i∈X+
q

∑

j∈X−

q

yij

(Aqi −Aqj)

|X+
q | · |X

−
q |
, (5)

Aqx = −(eq − ex)(eq − ex)T,

and ei is the i
th

standard basis vetor in R
n
. By linearity, this fatorization an

also be arried through to δψpo(q, y
∗, y) and Ψ.

The summation in Equation 5 an be omputed more diretly by ounting

the ourrenes of Aqx with positive and negative sign, and olleting the terms.

This an be done in linear time by a single pass through y.
By expressing Ψ in fatored form, we an delay all matrix multipliations

until the �nal Ψ omputation. Beause the S(q, y) an be onstruted diretly

without expliitly building the outer-produt matries Aqi, we e�etively redue

the number of matrix multipliations at eah gradient alulation from O(n) to
2.

4 Ranking measures

Here, we give a brief overview of popular information retrieval evaluation rite-

ria, and how to inorporate them into the learning algorithm.

Reall that the separation orale (Equation 2) seeks a ranking y whih max-
imizes the sum of the disriminant sore 〈W,ψpo(q, y)〉F and the ranking loss

∆(y∗, y). One ommon property to all evaluation riteria under onsideration is
that they are invariant to permutations on�ned to the relevant (or irrelevant)
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sets. As has been previously observed, optimizing over y redues to �nding an

optimal interleaving of the relevant and irrelevant sets, eah of whih has been

pre-sorted by the point-wise disriminant sore 〈W,φM (q, i)〉F Yue et al. (2007).

Sine all measures disussed here take values in [0, 1] (1 being the sore for

a perfet ranking), we onsider loss funtions of the form

∆(y∗, y) = Sore(y∗)− Sore(y) = 1− Sore(y).

AUC

The area under the ROC urve (AUC) is a ommonly used measure whih har-

aterizes the trade-o� between true positives and false positives as a threshold

parameter is varied. In our ase, the parameter orresponds to the number of

items returned (or, predited as relevant). AUC an equivalently be alulated

by ounting the portion of inorretly ordered pairs (i.e., j ≺y i, i relevant and
j irrelevant), and subtrating from 1. This formulation leads to a simple and

e�ient separation orale, desribed by Joahims (2005).

Note that AUC is position-independent: an inorret pair-wise ordering at

the bottom of the list impats the sore just as muh as an error at the top of

the list. In e�et, AUC is a global measure of list-wise ohesion.

Preision-at-k

Preision-at-k (Pre�k) is the fration of relevant results out of the �rst k re-

turned. Pre�k is therefore a highly loalized evaluation riterion, and aptures
the quality of rankings for appliations where only the �rst few results matter,

e.g., web searh.

The separation orale for Pre�k exploits two fats: there are only k + 1
possible values for Pre�k (0, 1/k, 2/k, . . . , 1), and for any �xed value, the best

y is ompletely determined by the ordering indued by disriminant sores. We

an then evaluate all k+1 interleavings of the data to �nd the y whih ahieves

the maximum. See Joahims (2005) for details.

Closely related to Pre�k is the k-nearest neighbor predition sore. In the

binary lassi�ation setting, the two are related by

KNN(q, y; k) = 1 [Pre�k(q, y) > 0.5] ,

and the Pre�k separation orale an be easily adapted to k-nearest neighbor.
However, in the multi-lass setting, the interleaving tehnique fails beause the

required fration of relevant points for orret lassi�ation depends not only

on the relevane or irrelevane of eah point, but the labels themselves.

In informal experiments, we notied no quantitative di�erenes in perfor-

mane between metris trained for (binary) KNN and Pre�k, and we omit

KNN from the experiments in Setion 5.
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Average Preision

Average preision (or Mean Average Preision, MAP) Baeza-Yates & Ribeiro-

Neto (1999) is simply the preision-at-k sore of a ranking y, averaged over all

positions k of relevant douments:

AP (q, y) =
1

|X+
q |

|X+
q
|+|X−

q
|

∑

k=1

Pre�k(y)1
[

k ∈ X+
q

]

.

Yue et al. (2007) provides a greedy separation orale for average preision that

runs in time O(|X+
q | · |X

−
q |). Our implementation uses a relatively simpler

dynami programming approah with equivalent asymptoti runtime. (Details

are omitted here for brevity.)

Mean Reiproal Rank

Mean reiproal rank (MRR) is the inverse position of the �rst relevant do-

ument in y, and is therefore well-suited to appliations in whih only the �rst

result matters.

Like Pre�k, there is a �nite set of possible sore values for MRR (1, 1/2, 1/3, . . . , 1/(1+
|X−

q |)), and for a �xed MRR sore, the optimal y is ompletely determined.

It is similarly straightforward to searh over sore values for the maximizer.

See Chakrabarti et al. (2008) for a more omplete treatment of optimizing MRR.

Normalized Disounted Cumulative Gain

Normalized Disounted Cumulative Gain (NDCG) Järvelin & Kekäläinen (2000)

is similar to MRR, but rather than rewarding only the �rst relevant doument,

all of the top k douments are sored at a deaying disount fator. In the

present setting with binary relevane levels, the formulation we adopt is ex-

pressed as:

NDCG(q, y; k) =

∑k

i=1
D(i)1[i ∈ X+

q ]
∑k

i=1
D(i)

D(i) =











1 i = 1

1/ log2(i) 2 ≤ i ≤ k

0 i > k

.

Chakrabarti et al. (2008) propose a dynami programming algorithm for the

NDCG separation orale, whih we adapt here.

5 Experiments

To evaluate the MLR algorithm, we performed experiments on both small-sale

and large-sale data sets, as desribed in the next two setions. In all experi-

ments, we �xed the auray threshold at ǫ = 0.01.
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Table 1: Summary statistis of the UCI data sets: dimensionality, training and

test set sizes, and the number of lasses. IsoLet's training set was further split

into training and validation sets of size 4991 and 1247.

d # Train # Test # Classes

Balane 4 500 125 3

Ionosphere 34 281 70 2

WDBC 30 456 113 2

Wine 13 143 35 3

IsoLet 170 6238 1559 26

5.1 Classi�ation on UCI data

We �rst tested the auray and dimensionality redution performane of our

algorithm on �ve data sets from the UCI repository Asunion & Newman (2007):

Balane, Ionosphere, WDBC, Wine, and IsoLet. For the �rst four sets, we

generated 50 random 80/20 training and test splits. Eah dimension of the data

was z-sored by the statistis of the training splits.

For IsoLet, we repliate the experiment of Weinberger et al. (2006) by gener-

ating 10 random 80/20 splits of the training set for testing and validation, and

then testing on the provided test set. We projet by PCA (as omputed on the

training set) to 170 dimensions, enough to apture 95% of the variane.

Table 1 ontains a summary of the data sets used here.

We trained metris on eah data set with the �ve variants of MLR: MLR-

AUC, MLR-Pre�k, MLR-MAP, MLR-MRR, and MLR-NDCG. For ompar-

ison purposes, we also trained metris with Large Margin Nearest Neighbor

(LMNN)Weinberger et al. (2006), Neighborhood Components Analysis (NCA) Gold-

berger et al. (2005), and Metri Learning by Collapsing Classes (MLCC) Glober-

son & Roweis (2006).

To evaluate the performane of eah algorithm, we tested k-nearest neighbor
lassi�ation auray in the learned metris. Classi�ation results are presented

in Table 2

2

. With the exeption of NCA and MLCC on the Balane set, all

results on Balane, Ionosphere, WDBC and Wine are within the margin of

error. In general, MLR ahieves auray on par with the best algorithms under

omparison, without relying on the input features for seleting target neighbors.

Figure 2 illustrates the dimensionality redution properties of the MLR al-

gorithms. In all ases, MLR ahieves signi�ant redutions in dimensionality

from the input spae, omparable to the best ompeting algorithms.

2

LMNN auray on IsoLet was reported by Weinberger et al. (2006). Dimensionality

results were not reported.
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Table 2: k-nearest neighbor lassi�ation error (%) on learned metris. Re-

ported error is orresponds to the best hoie of C and k.
Algorithm Bal. Ion. Wdb Wine Isolet

MLR-AUC 7.9 12.3 2.7 1.4 4.5

MLR-P�k 8.2 12.3 2.9 1.5 4.5

MLR-MAP 6.9 12.3 2.6 1.0 5.5

MLR-MRR 8.2 12.1 2.6 1.5 4.5

MLR-NDCG 8.2 11.9 2.9 1.6 4.4

LMNN 8.8 11.7 2.4 1.7 4.7

NCA 4.6 11.7 2.6 2.7 10.8

MLCC 5.5 12.6 2.1 1.1 4.4

Eulidean 10.3 15.3 3.1 3.1 8.1

0 10 20 30 40 50

Balance

Ionosphere

WDBC

Wine

Isolet

Dimensionality

MLR−AUC

MLR−P@k

MLR−MAP

MLR−MRR

MLR−NDCG

LMNN

NCA

MLCC

Euclidean

170

Figure 2: Dimensionality redution for the UCI data sets. Reported dimen-

sionality is the median number of dimensions neessary to apture 95% of the

spetral mass of the best-performing W . �Eulidean� orresponds to the native

dimensionality of the data.

5.2 eHarmony data

To evaluate MLR on a large data set in an information retrieval ontext, we

trained metris on mathing data provided by eHarmony

3

: an online dating

servie whih mathes users by personality traits.

For our experiments, we foused on the following simpli�ation of the data

and problem: eah mathing is presented as a pair of users, with a positive

label when the math was suessful (i.e., users expressed mutual interest),

and negative otherwise. Eah user is represented by a vetor in R
56

whih

desribes the user's personality, interests, et. We onsider two users mutually

relevant if they are presented as a suessful math, and irrelevant if the math

is unsuessful. Irrelevane is not assumed for unmathed pairs.

Mathings were olleted over two onseutive time intervals of equal length,

and split into training (interval 1) and testing (interval 2). The training split

ontains approximately 295000 unique users, not all of whih de�ne useful

queries: some appear only in positive mathings, while others appear only in

negative mathings. Sine these users provide no disriminative data, we omit

3

www.eharmony.om
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Table 3: Summary statistis of eHarmony mathing data.

Mathings Unique users Queries

Training 506688 294832 22391

Test 439161 247420 36037

Table 4: Testing auray and training time for MLR and SVM-MAP on eHar-

mony mathing data. Time is reported in CPU-seonds, and |C| is the number
of utting-plane bathes before onvergene.

Algorithm AUC MAP MRR Time |C|

MLR-AUC 0.612 0.445 0.466 232 7

MLR-MAP 0.624 0.453 0.474 2053 23

MLR-MRR 0.616 0.448 0.469 809 17

SVM-MAP 0.614 0.447 0.467 4968 36

Eulidean 0.522 0.394 0.414

them from the set of query users. Note that suh users are still informative, and

are inluded in the training set as results to be ranked.

We further redue the number of training queries to inlude only users with

at least 2 suessful and 5 unsuessful mathings, leaving approximately 22000

training queries. A summary of the data is presented in Table 3.

We trained metris with MLR-AUC, MLR-MAP and MLR-MRR. Due to

the small number of minimum positive results for eah query, we omit MLR-

P�k and MLR-NDCG from this experiment. Note that beause we are in an

information retrieval setting, and not lassi�ation, the other metri learning

algorithms ompared in the previous setion do not apply. For omparison, we

train models with SVM-MAP Yue et al. (2007), and feature map φ(q, i) = (q−i).
When training SVM-MAP, we swept over C ∈ {10−2, 10−1, . . . , 105}.

Table 4 shows the auray and timing results for MLR and SVM-MAP.

The MLR-MAP and MLR-MRR models show slight, but statistially signi�ant

improvement over the SVM-MAP model. Note that the MLR algorithms train in

signi�antly less time than SVM-MAP, and require fewer alls to the separation

orale.

Although MLR improves over baseline Eulidean distane in this retrieval

task, it seems that linear models may not su�e to apture omplex struture

in the data. Generalizing MLR to produe non-linear transformations will be

the fous of future researh.

6 Conlusion

We have presented a metri learning algorithm whih optimizes for ranking-

based loss funtions. By asting the problem as an information retrieval task,
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we fous attention on what we believe to be the key quantity of interest: the

permutation of data indued by distanes.
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