
UCLA
UCLA Electronic Theses and Dissertations

Title
Machine Learning Modeling and Predictive Control of Nonlinear Processes Using Noisy Data

Permalink
https://escholarship.org/uc/item/2cq504bn

Author
Luo, Junwei

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cq504bn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Machine Learning Modeling and Predictive Control

of Nonlinear Processes Using Noisy Data

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Chemical Engineering

by

Junwei Luo

2021

ABSTRACT OF THE THESIS

Machine Learning Modeling and Predictive Control

of Nonlinear Processes Using Noisy Data

by

Junwei Luo

Master of Science in Chemical Engineering

University of California, Los Angeles, 2021

Professor Panagiotis D. Christofides, Chair

This work focuses on applying machine learning modeling on predictive control of nonlinear

processes with noisy data. We use long short-term memory (LSTM) networks with training

data from sensor measurements corrupted by two types of noise: Gaussian and non-Gaussian

noise, to train the process model that will be used in a model predictive controller (MPC).

We first discuss the LSTM training with noisy data following a Gaussian distribution, and

demonstrate that the standard LSTM network is capable of capturing the underlying process

dynamic behavior by reducing the impact of noise. Subsequently, given that the standard LSTM

performs poorly on a noisy dataset from industrial operation (i.e., non-Gaussian noisy data), we

propose an LSTM network using Monte Carlo dropout method to reduce the overfitting to noisy

data. Furthermore, an LSTM network using co-teaching training method is proposed to further

improve its approximation performance when noise-free data from a process model capturing

the nominal process state evolution is available. A chemical process example is used throughout

the study to illustrate the application of the proposed modeling approaches and demonstrate their

open- and closed-loop performance under a Lyapunov-based model predictive controller with state

measurements corrupted by industrial noise.

ii

The thesis of Junwei Luo is approved.

Nasim Annabi

Yunfeng Lu

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2021

iii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Notation . 5

2.2 Class of Systems . 5

2.3 Stabilization via Control Lyapunov Function . 6

2.4 Long Short-Term Memory Network . 7

2.5 Model Predictive Control Using LSTM models 11

3 Neural Network Training Using Noisy Datas 13

3.1 LSTM Training With Gaussian Noise . 13

3.2 LSTM Training With Non-Gaussian Noise . 17

3.3 LSTM Networks Using Dropout Layers . 17

4 Co-teaching Method 22

4.1 Open-loop Simulation Results of Three LSTM Models 26

4.2 Closed-loop Simulation Results under LMPC . 27

5 Conclusion 30

A Appendix 31

iv

List of Figures

A.1 (a) Time evolution of the LSTM internal states ‖ωh
i h‖1 and the input states

‖ωm
i m‖1 under Gaussian noise for multiple data sequences, and (b) RMSE in terms

of the noise level for LSTM models trained against different noise levels. 32

A.2 Noisy industrial-data sets from ASPEN (black line in the top panel), the denoised

result using Savitzky−Golay filter (red line in the top panel), and the extracted

(normalized) noise from ASPEN industrial data (bottom figure). 33

A.3 State profiles predicted by the dropout LSTM and the standard LSTM, where the

red line is dropout LSTM, the black, dashed line is the ground truth, the yellow

line is the standard LSTM, and the blue, dotted line is the noisy state measurement. 34

A.4 The symmetric co-teaching framework that trains two networks (A and B)

simultaneously. 35

A.5 (a) Closed-loop state profiles, and (b) Manipulated input profiles (u1 = ∆CA0, u2 =

∆Q) for the initial condition (-1.25, 66) under LMPC using standard LSTM (red),

co-teaching LSTM (blue), and dropout LSTM (black). 36

v

List of Tables

A.1 Comparison of computation time under the standard LSTM and dropout LSTM

networks. 37

A.2 Tuning the threshold for the symmetry co-teaching methodology. 37

A.3 Statistical analysis of the open-loop predictions under non-Gaussian noise. 37

A.4 Statistical analysis of the closed-loop simulation results under non-Gaussian noise

using four noise levels. 37

vi

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Panagiotis D. Christofides for his guidance and

support throughout the course of the thesis.

I would like to thank Professor Yunfeng Lu and Professor Nasim Annabi for participating in

my Master’s thesis committee.

This work was submitted for publication in AIChE Journal, 2021, and is co-authored by Zhe

Wu, David Rincon and Professor Panagiotis D. Christofides. I would like to acknowledge their

contributions to this thesis and express great thanks for their help.

vii

Chapter 1

Introduction

Data-driven modeling has historically received significant attention in the context of model

predictive control (MPC) e.g., [1,2,4,6,14,49,54]. Over the past few decades, system identification

methods such as singular value decomposition ([29]), N4SID ([41]), autoregressive models

with exogenous inputs ([22, 28, 35]), artificial neural networks ([31]) have been widely used to

develop data-driven models for MPC (see, [8, 21, 36, 55, 56] for reviews of system identification).

Among many data-driven modeling approaches, machine learning modeling has demonstrated

its superiority in modeling complex nonlinear systems due to the high degree of freedom (e.g.,

number of neurons, various types of activation functions and of training algorithms) [3, 25, 39, 44]

in capturing nonlinearities. In order to develop a machine learning model with a desired

prediction accuracy for MPC, a high-quality dataset that can be generated from industrial process

sensors, lab experiments, or extensive computer simulations is required, from which supervised

machine learning models can learn the nonlinear relationship between network inputs and outputs.

However, real industrial measurements often involve noise stemming from different sources, such

as sensors variability and common plant variance, which is a critical point in machine learning

modeling that has not been addressed yet in the context of machine-learning-based MPC.

Many methodologies have been proposed for dealing with noisy measurements in the literature.

For example, the ARX and ARARX processes have been extended for the case of additive white

1

noise on the input and output observation [9]. Similarly, subspace identification based on principal

component analysis has been proposed by estimating the noise term [45]. Under different noise

models using closed-loop operation data, several subspace identification methods (i.e., canonical

variate analysis, CVA, N4SID, PLS, ARX) were able to identify correctly the process models [23].

Additionally, the Kalman filter is one of the most well-known methodologies for state estimation

of linear systems under Gaussian white noise ([30, 52]). Similarly, state estimation techniques

have been proposed for denoising industrial measurements for nonlinear systems, such as the

extended Kalman filter, unscented Kalman filter, and moving horizon estimation ([30]). In general,

these methodologies are built under assumptions on the type of noise and system structure ([30]).

As a result, a priori process knowledge such as first-principles models are often needed, which

restricts the use of these methods in real industrial systems ([15, 52]). On the other hand,

the Savitzky-Golay filter is one of the most popular methods for smoothing noisy data ([33])

without any knowledge of process model. This method fits a moving low-order polynomial on

adjacent data points by tuning the polynomial order and the size of the data window. However,

tuning the parameters could be time demanding and the computational cost is proportional to the

window width, which limits its application in real-time control problems. Therefore, development

of a data-driven process model that can directly predict process dynamic behavior from noisy

measurement data remains a challenge.

In recent years, machine learning has attracted an increased level of attention in model

identification [5, 37, 43]. Recurrent neural networks (RNN) have been one of the widely used

modeling approaches due to their ability of representing temporal dynamic behavior through

feedback loops in neurons, and have been successfully incorporated in MPC [47, 48]. When the

data training set is not very informative, a model based on principal component analysis (PCA)

and RNN has been proposed and tested with MPC in which an alternative closed-loop model

re-identification step is proposed ([17]). Long short-term memory network (LSTM) is a type

of RNN model that has been used to maintain information in memory for long periods of time

due to its special units in addition to standard units. LSTM has also been used as prediction

2

model in MPC [7], and has been implemented with economic MPC in its encoder-decoder

LSTM structure [10]. Additionally, machine learning techniques have also been improved by

incorporating feature engineering ideas to efficiently develop models for large-scale systems. For

example, it was demonstrated that both machine learning and projection to latent structure (PLS)

methods show poor performance on raw vibration signals from a laboratory-scale water flow

system, and therefore, further treatment of raw datasets, such as feature-based monitoring that

can significantly improve model prediction is needed. [18, 19, 34] An implementation of similar

machine learning structures can be found for nonlinear systems [26,32,53], and their potential role

in Industry 4.0 was also highlighted in (bio)chemical processes ([40]). While machine learning

techniques have shown great potential in modeling big datasets, machine learning modeling using

noisy data has been one of the key issues hampering their implementation to chemical plant data

since most machine learning applications are still limited to deterministic cases (i.e., noise-free

datasets) in the literature ([52]).

Many in-silico studies adopt Gaussian noise for testing the robustness of the proposed machine

learning methods; however, more realistic conditions such as non-Gaussian noise have not been

studied. Unlike Gaussian noise that can be handled by many standard machine learning modeling

approaches, non-Gaussian noise may lead to incorrect mapping from input to its (noise-free)

ground-truth output due to its overfitting to the noisy pattern of the training dataset corrupted

by non-stationary noise. A simple, effective technique to reduce overfitting to non-Gaussian

noisy data without having any a priori process knowledge is to employ a dropout method

in the neural network training process. Specifically, a dropout method randomly drops the

connections between units in adjacent layers during training, and provides an efficient way that

approximately combines many different neural network architectures together to improve the

prediction performance ([20, 38]). Recent works [12, 13] have extended dropout to approximate

Bayesian inference with theoretical results that provide insights into the use of dropout in RNN

models. Moreover, when noise-free process data generated using a priori process knowledge are

available (for example, computer simulations based on first-principle models that approximate real

3

processes), the co-teaching method may provide a potential solution to further improve model

performance by using the noise-free dataset. The co-teaching method was originally proposed

to solve classification problems with noisy data (i.e., mislabeled data) in the machine learning

community [16]. Specifically, the co-teaching method with a symmetric or asymmetric mode

depending on the noise level of the dataset, is able to learn the noise-free pattern through noisy

data by using two models that share clean information between each other during each training

step ([16]). However, to our knowledge, little attention has been paid to the extension of the

co-teaching method in regression problems.

Motivated by the above, this work studies machine learning modeling of nonlinear processes

using noisy data via novel neural networks techniques with dropout and co-teaching methods.

Specifically, we first investigate the standard LSTM models’ capability of modeling noise-free

process dynamics using process data with Gaussian noise. Then, we present the Monte Carlo

dropout technique and demonstrate the implementation of dropout LSTM in handling noisy

industrial-data sets from ASPEN that follows a non-Gaussian distribution. Lastly, we discuss the

co-teaching method in the context of regression problems and demonstrate its improved modeling

performance by further accounting for noise-free data in the training process. The rest of this thesis

is organized as follows: in Chaper 2, the notations, the class of nonlinear systems considered, the

long short term memory network and the formulation of LSTM-based model predictive controller

are given. In Chapter 3, we use a chemical process example to study the de-noising capability of

LSTM networks using a noisy training dataset of Gaussian distribution, and the dropout LSTM

modeling approach for handling non-Gaussian noise. In Chapter 4, we propose the co-teaching

scheme using both industrial noisy data and first-principles solutions to improve LSTM training

performance. Open-loop and closed-loop simulations under a Lyapunov-based MPC using the

aforementioned LSTM models are carried out to compare their performance.

4

Chapter 2

Preliminaries

2.1 Notation

The notation |·| is used to denote the Euclidean norm of a vector. xT denotes the transpose of

x. The notation L fV (x) denotes the standard Lie derivative L fV (x) := ∂V (x)
∂x f (x). Set subtraction

is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}. The function f (·) is of class C1 if it is

continuously differentiable in its domain.

2.2 Class of Systems

The class of continuous-time nonlinear systems considered is described by the following system

of first-order nonlinear ordinary differential equations:

ẋ = F(x,u) := f (x)+g(x)u, x(t0) = x0

y = x+w
(2.1)

where x∈Rn is the state vector, u∈Rm is the manipulated input vector, y∈Rn is the vector of state

measurements that are sampled continuously, and w ∈ Rn is the noise vector. The control actions

are constrained by u ∈U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm. f (·) and g(·) are sufficiently

smooth vector and matrix functions of dimensions n× 1 and n×m, respectively. Throughout

the study, we assume that the initial time t0 is zero (t0 = 0), and f (0) = 0 such that the origin

5

is a steady-state of the nominal (i.e., w(t) ≡ 0) system of Eq. 2.1 (i.e., (x∗s ,u
∗
s) = (0,0), where

x∗s and u∗s represent the steady-state state and input vectors, respectively). Note that the machine

learning modeling methods that will be developed in this study are not restricted to the system

with all states assumed to be measurable. If there exist unmeasured states in an actual process, the

machine learning modeling approaches can still be applied using system inputs and outputs only

provided that the system dynamics that are not observable from the outputs are asymptotically

stable. Alternatively, state estimation techniques can be applied with system inputs and outputs to

handle unmeasured states when the system is observable.

2.3 Stabilization via Control Lyapunov Function

Consider the nominal system of Eq. 2.1 with noise-free state measurement available (i.e., y(t) =

x(t) with w(t) ≡ 0). To guarantee that the closed-loop system is stabilizable, a stabilizing control

law u = Φ(x) ∈ U that renders the origin of the nominal system of Eq. 2.1 (i.e., w(t) ≡ 0)

exponentially stable is assumed to exist. Following converse Lyapunov theorems ([24]), there

exists a C1 Control Lyapunov function V (x) such that the following inequalities hold for all x in

an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (2.2a)

∂V (x)
∂x

F(x,Φ(x))≤−c3|x|2, (2.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (2.2c)

where c1, c2, c3 and c4 are positive constants. F(x,u) represents the nonlinear system of Eq. 2.1.

The universal Sontag control law ([27]) is a candidate controller for u = Φ(x). A set of states

φu ∈ Rn is first characterized where Eq. 2.2 is satisfied under u = Φ(x). Then a level set of the

Lyapunov function inside φu is used as the closed-loop stability region Ωρ for the nonlinear system

of Eq. 2.1 as follows: Ωρ := {x ∈ φu | V (x)≤ ρ}, where ρ > 0 and Ωρ ⊂ φu.

6

2.4 Long Short-Term Memory Network

RNN have been utilized in numerous applications to model nonlinear dynamical systems with

time-series process data due to their ability to represent temporal behavior using the feedback

loops in the hidden layer. Among many types of RNN models, LSTM networks have received

increasing attention due to their ability to model long-term sequential dependencies with the use of

three gates (the input gate, the forget gate, and the output gate) that help avoid vanishing gradients

during training.

In this work, we develop an LSTM model with the following general form to approximate the

nonlinear system of Eq. 2.1:

˙̂x = Fnn(x̂,u) := Ax̂+Θ
T z (2.3)

where x̂ ∈ Rn is the LSTM state vector, and u ∈ Rm is the manipulated input vector. z =

[z1 · · ·zn+m+1]
T = [H(x̂1) · · ·H(x̂n) u1 · · ·um 1]T ∈ Rn+m+1 is a vector of both the network states

x̂ and the inputs u, where H(·) represents nonlinear activation functions in each LSTM unit, and

“1” represents the bias term. A = diag{−α1 · · · −αn} ∈ Rn×n is a diagonal coefficient matrix,

and Θ = [θ1 · · ·θn+m+1] ∈ R(n+m+1)×n with θi = βi[ωi1 · · ·ωi(n+m) bi], i = 1, ...,n. αi and βi are

constants, and ωik is the weight connecting the kth input to the ith neuron where i = 1, ...,n and

k = 1, ...,(n+m), and bi is the bias term for i = 1, ...,n. αi are assumed to be positive constants

such that the state vector x̂ is bounded-input bounded-state stable. From the general form of the

continuous-time LSTM networks of Eq. 2.3, it is clear that the evolution of LSTM states over time

can be obtained based on the current state and manipulated inputs. However, considering that the

neural network training datasets typically consist of sampled-data that are discrete in time, the

following equations are practically utilized by the LSTM network to calculate the predicted output

7

sequence x̂(k) from the input sequence m(k), k = 1, ...,T :

i(k) =σ(ωm
i m(k)+ω

h
i h(k−1)+bi) (2.4a)

f (k) =σ(ωm
f m(k)+ω

h
f h(k−1)+b f) (2.4b)

c(k) = f (k)c(k−1)+ i(k)tanh(ωm
c m(k)+ω

h
c h(k−1)+bc) (2.4c)

o(k) =σ(ωm
o m(k)+ω

h
o h(k−1)+bo) (2.4d)

h(k) =o(k)tanh(c(k)) (2.4e)

x̂(k) =ωyh(k)+by (2.4f)

where m(k) denotes the kth element in the input sequence m∈R(n+m)×T that contains the measured

states x∈Rn and the manipulated inputs u∈Rm with a sequence length of T , and x̂∈Rn×T denotes

the LSTM network output sequence. T is the number of measured states of the sampled-data

system of Eq. 2.1. h(k), c(k), i(k), f (k), and o(k) are the internal state, the cell state, the outputs

from the input gate, the forget gate, and the output gate, respectively. tanh(·) is the hyperbolic

tangent activation function and σ(·) is the sigmoid activation function. ωm
i and ωh

i represent

the weight matrices for the LSTM input vector m, and the hidden state vector in the input gate,

respectively. Similarly, ωm
c , ωh

c , ωm
f , ωh

f , ωm
o , ωh

o represent the weight matrices for the input

vector m and the hidden state vector h in calculating the cell state c, the forget gate f , and the

output gate o, respectively, with bi, b f , bo,bc representing the corresponding bias terms. The

predicted state vector x̂ given by the LSTM network is the linear combination of the internal state

h, where ωy and by denote the weight matrix and bias vector for the output, respectively. Readers

can refer to [7] for both the structures of an unfolded LSTM network (i.e., a general form of RNN

model) and of the internal setup of an LSTM network (e.g., forget, input and output gates).

The training and validation datasets for developing the LSTM model are generated using

extensive open-loop simulations of the nonlinear system of Eq. 2.1 with various initial conditions

x0 ∈ Ωρ and control actions u ∈ U . Specifically, the control actions are fed into the nonlinear

system of Eq. 2.1 in a sample-and-hold fashion, i.e., u(t)= u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk+∆

8

and ∆ is the sampling period. The continuous-time nonlinear system of Eq. 2.1 is integrated using

explicit Euler method with a sufficiently small integration time step hc < ∆; in practice, time-series

process data may be used. In each simulation run, we choose an initial condition and a set of

control actions, and carry out the open-loop simulation for the system of Eq. 2.1 over a fixed

length of time (P+1) ·∆, where P is an integer and P≥ 1. The states x are measured continuously

at each integration time step, and therefore, a total of (P+ 1) · ∆

hc
measured states are saved in

each simulation run. As a result, the LSTM network will use the measured states within the first P

sampling periods (i.e., y(t), ∀t ∈ [0, P ·∆)) and the manipulated inputs u(t), ∀t ∈ [∆, (P+1) ·∆) to

predict the states in the second P sampling period (i.e., y(t), ∀t ∈ [∆, (P+1) ·∆)), from which the

predicted state in the last sampling period, i.e., y(t), t ∈ [P ·∆, (P+1) ·∆), is obtained based on the

previous state measurements. In this case, the number of measured states T in the LSTM network

of Eq. 2.4 is set to P · ∆

hc
, and the input sequence m to the LSTM network is formulated as follows:

m = [x(0),x(hc)...,x(P ·∆−hc); u(∆),u(∆+hc), ...,u((P+1) ·∆−hc)] (2.5)

The LSTM dataset is then partitioned into training, validation and testing datasets, and the training

process is carried out using the neural-network library, Keras, with an optimal LSTM structure

(e.g., number of layers, units, and weight initialization approaches) to achieve a desired model

accuracy that satisfies the closed-loop stability requirements of MPC that will be introduced in the

next section. The LSTM model is developed to predict one sampling period forward; however, by

applying the LSTM model in a rolling horizon manner, it can predict future states over a much

longer period of time, and therefore, can be used as the prediction model in MPC.

Remark 1. To simplify the discussion of modeling nonlinear systems using LSTM models, Eq. 2.3

presents a general form of one-hidden-layer LSTM (or any RNN) network with n states x̂ to

approximate the true process state x ∈ Rn in Eq. 2.1. However, the LSTM modeling approach

is not restricted to a one-hidden layer structure with n states only. In practical implementation,

the LSTM output layer corresponds to the states of the nonlinear system of Eq. 2.1 (see Eq. 2.4),

and multiple hidden layers and a sufficient number of LSTM units can be used to improve model

9

accuracy according to the approximation theorem saying that an RNN model with a sufficient

number of neurons can approximate any nonlinear dynamic system on compact subsets of the

state-space for finite time [11]. Note that the linear unit is only used between the last hidden layer

and the output layer, while nonlinear activation functions such as tanh and sigmoid functions are

used in the previous hidden layers to introduce nonlinearities into the LSTM model. Additionally,

LSTM gates typically use sigmoid for the input/output/forget gates and tanh for the cell state and

the internal state. The saturation limit is to regulate whether there is no flow or complete flow

of information through the gates. Also, tanh function is used because its second derivative can

sustain for a long range before going to 0, therefore can overcome the vanishing gradient problem

in conventional RNN’s.

Remark 2. Note that extensive open-loop simulations under different initial conditions and control

actions is not the only way to generate the machine learning dataset. The data generation can also

be done with a single continuous trajectory (e.g., under a pseudorandom binary input sequence)

that is commonly adopted in classical subspace algorithms.

Remark 3. The LSTM inputs and outputs in this work are different from those in [7], which only

uses the state measurement x(t) at the current sampling time, e.g., t = tk, to predict the states in

the following sampling period, i.e., x(t), ∀t ∈ (tk, tk+1]. Although the proposed LSTM structure

in [7] works well when noise-free state measurement is available, i.e., w ≡ 0 in Eq. 2.1, the state

prediction based on the current state measurement may show significant deviation from the true

state in the presence of sensor noise. As a result, we introduce a window of length P in the LSTM

input and output sequences in this work to reduce the dependence of LSTM network on the current

state measurement by accounting for past (noisy) state measurements over P sampling periods to

provide better predictions.

10

2.5 Model Predictive Control Using LSTM models

The Lyapunov-based model predictive control (LMPC) scheme using the LSTM model is given by

the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (2.6a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (2.6b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.6c)

V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)), if x(tk) ∈Ωρ\Ωρnn (2.6d)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (2.6e)

where x̃ is the predicted state trajectory, N is the number of sampling periods in the prediction

horizon,and S(∆) is the set of piecewise constant functions with period ∆. Φnn(x) is the stabilizing

control law that renders the origin of the LSTM system of Eq. 2.3 exponentially stable. Ωρ is

the stability region for the closed-loop LSTM system, and Ωρnn is the target region that the state

is ultimately driven into. V̇ (x,u) represents the time-derivative of the Lyapunov function V , i.e.,
∂V (x)

∂x (Fnn(x,u)). The LMPC computes the optimal input sequence u∗(t) over the prediction horizon

t ∈ [tk, tk+N), and send the first control action, u∗(tk), to the system to be applied for the next

sampling period. Then, the LMPC horizon is rolled one sampling step forward, and is resolved at

the next sampling time.

The optimization problem of Eq. 2.6 is to minimize the time-integral of the function

L(x̃(t),u(t)) that has its minimum value at the steady-state (x∗s ,u
∗
s) = (0,0) over the prediction

horizon subject to the constraints of Eqs. 2.6b-2.6e. The constraint of Eq. 2.6b is the LSTM

model of Eq. 2.3 that is used to predict the states of the closed-loop system. Eq. 2.6c defines the

input constraints applied over the entire prediction horizon. The constraint of Eq. 2.6d drives the

closed-loop state towards the origin if x(tk) ∈ Ωρ\Ωρnn , in which the time-derivative of V in the

constraint of Eq. 2.6d is approximated using a forward finite difference method. The constraint

11

of Eq. 2.6e maintains the state within Ωρnn for the remaining time after the state enters Ωρnn .

Additionally, since the LSTM model is developed using sampled-data collected every integration

time step hc in open-loop simulation, the state is measured with the same integration time step in

MPC and fed into the LSTM model of Eq. 2.6b at each sampling time. When the noise-free state

measurement is available, closed-loop stability is guaranteed for the nonlinear system of Eq. 2.1

under LMPC in the sense that the closed-loop state is bounded in Ωρ for all times and can be

ultimately driven into Ωρnn for any initial condition x0 ∈ Ωρ . The reader is referred to [47] for

detailed closed-loop stability and feasibility analysis.

12

Chapter 3

Neural Network Training Using Noisy Datas

While LSTM networks developed using noise-free computational simulation data have been

demonstrated to be able to predict process dynamics accurately, LSTM training with noisy data

has been a challenging research problem when dealing with industrial process data that contain

noise. Traditional approaches for reducing noise in time-series data include the use of a filter, e.g.,

Savitzky-Golay filter, to smoothen the data without distorting the signal tendency. However, the

filtering performance relies on the sliding time window length, which also affects the computation

time in real-time implementation. Therefore, in this chapter, we discuss LSTM training methods

that directly use noisy time-series data to predict true states. Specifically, we will discuss two types

of sensor noise, Gaussian noise and non-Gaussian noise in the following sections.

3.1 LSTM Training With Gaussian Noise

We first consider a Gaussian white noise w ∼ N (0,σ2) in sensor measurement y of Eq. 2.1,

and demonstrate that the LSTM network is able to predict the true states well using the noisy

state measurements following Gaussian distribution. We use a chemical process example to

illustrate the de-noising capability of LSTM network with Gaussian noise data. Specifically,

a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where an irreversible

second-order exothermic reaction takes place is considered. The reaction transforms a reactant

A to a product B (A→ B). The inlet concentration of A, the inlet temperature and feed volumetric

13

flow rate of the reactor are CA0, T0 and F , respectively. The CSTR is equipped with a heating jacket

that supplies/removes heat at a rate Q. The CSTR dynamic model is described by the following

material and energy balance equations:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (3.1a)

dT
dt

=
F
V
(T0−T)+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(3.1b)

where CA is the concentration of reactant A in the reactor, V is the volume of the reacting liquid in

the reactor, T is the temperature of the reactor and Q denotes the heat input rate. The concentration

of reactant A in the feed is CA0. The feed temperature and volumetric flow rate are T0 and F ,

respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp. ∆H, k0, E,

and R represent the enthalpy of reaction, pre-exponential constant, activation energy, and the ideal

gas constant, respectively. Process parameter values can be found in [48], and are omitted here.

Additionally, for this particular example, we have shown in [48] that a machine learning model

was able to better capture the nonlinear dynamics of the CSTR process than a data-driven linear

state-space model using a noise-free dataset. Beyond its poor performance under noise-free dataset,

a linear state-space model is not applicable in this example because the sensor measurements are

now corrupted by industrial noise, and thus, the evolution of state variables can no longer rely on

the current state measurement.

We study the operation of CSTR under LMPC around the unstable steady-state (CAs, Ts) =

(1.95 kmol/m3, 402 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The manipulated inputs are the

inlet concentration of species A and the heat input rate, which are represented by the deviation

variables ∆CA0 =CA0−CA0s , ∆Q = Q−Qs, respectively. The manipulated inputs are bounded as

follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr. Therefore, the states and the inputs

of the closed-loop system are xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q], respectively, such that

the equilibrium point of the system is at the origin of the state-space, (i.e., (x∗s ,u
∗
s) = (0,0)). The

14

Lyapunov function V (x) = xT Px is designed with P =

 1060 22

22 0.52

. Then, the closed-loop

stability region Ωρ for the CSTR is characterized as a level set of the Lyapunov function with ρ =

368, from which the origin can be rendered exponentially stable under the controller u=Φ(x)∈U .

The explicit Euler method with an integration time step of hc = 10−4 hr is used to numerically

simulate the dynamic model of Eq. 3.1. The LMPC optimization problem is solved using the

python module of the IPOPT software package [42], named PyIpopt with the sampling period

∆= 10−2 hr. The forward finite difference method is used to approximate the first-order derivatives

in IPOPT by adding a small perturbation ∆u on the optimized variable (i.e., the control actions u).

The LSTM models are generated following the standard data generation and learning algorithm

in [46, 47].

We first carry out extensive open-loop simulations of Eq. 3.1 with various initial conditions

and control actions to generate the clean and noisy datasets. However, it should be noted that

in reality, the noisy data comes from chemical plants, and computational simulations based on

first-principles models are only used to generate noise-free data. In open-loop simulation, the state

x is measured every integration time step hc and saved in the clean datset without introducing any

measurement noise, while a Gaussian noise w1 ∼ N (0 kmol/m3,2.5× 10−3 (kmol/m3)2) and

w2 ∼N (0 K,25 K2) are added on concentration and temperature measurements, respectively in

the noisy dataset. Then, we train the LSTM network using the noisy dataset following the standard

LSTM training process without accounting for the fact that the dataset is corrupted by Gaussian

noise. Additionally, an LSTM network using the noise-free dataset is also generated as a baseline

for comparison. Common techniques that optimize a neural network and perform hyperparameter

tuning include preprocessing of data, optimization of network topology, and adjusting learning rate,

optimizer, loss function, and number of epochs. In this study, the two LSTM models are developed

with the same structure, and the mean squared errors (MSE) between the LSTM predicted values

and the actual noise-free value are calculated as follows to indicate the capability of the two LSTMs

in approximating true state trajectories: 1) the MSE of x1 and x2 for the standard LSTM using

15

clean dataset are 3.816× 10−5 (kmol/m3) and 0.0837 (K), respectively, and 2) the MSE of x1

and x2 for the standard LSTM using noisy dataset are 1.275× 10−4 (kmol/m3) and 1.053 (K),

respectively. It can be seen that the LSTM trained with clean dataset achieves better MSE results

than that using noisy dataset; however, both networks achieve sufficiently small MSEs, which

implies that the standard LSTM formulation is able to suppress the contributions from noisy state

measurements, and learn the noise-free pattern that captures the true process dynamics. Following

the study in [51], we provide an insight on the de-noising capability of LSTM by computing

the relative contributions of the LSTM internal dynamics and of the noisy input (i.e., noisy state

measurements). Fig. A.1(a) shows the time evolution of the LSTM internal states (i.e., ‖ωh
i h‖1 in

a black dotted line) and LSTM input network (i.e., ‖ωm
i m‖1 in a red dashed line) states for 20 data

samples using the same noise level. From any of the data sample, it is observed that the internal

state evolution is smoother than the input network and that the norm of the internal states is larger

than that of the input network. Therefore, it is concluded that the internal states play a dominant

role in the prediction of LSTM outputs when using a noisy dataset. This explains why the LSTM

network is capable of predicting true states well even using noisy state measurements.

Additionally, we study the de-noising capability of LSTM networks for different noise levels.

We calculate the root mean-square errors (RMSE) of the three LSTM networks trained against

different noise levels (i.e., small, medium and large σ in Fig. A.1(b)) in predicting true states using

the noisy datasets with various noise levels (i.e., noise level 1, 2, 3 and 4 in Fig. A.1(b)). Noise level

1, 2, 3, 4 correspond to the white Gaussian noise with σ
CA
1 = 0.05, σT

1 = 5, σ
CA
2 = 0.1, σT

2 = 10,

σ
CA
3 = 0.15, σT

3 = 15, and σ
CA
4 = 0.2, σT

4 = 20 on x1 = CA−CAs and x2 = T −Ts, respectively,

where the subscript number denotes the noise level, and the units are omitted here. The three

LSTM networks trained against the small, medium and large noise levels represent the LSTM

models using the training datsets with level 1, 2 and 3 Gaussian noise, respectively. It is shown in

Fig. A.1(b) that the LSTM model trained against the noise with a small σ perform better in small

noise level, but is sensitive to the variation of noise level. On the other hand, the LSTM model

trained against the noise with a large σ is less sensitive to the noise level since the network relies

16

more on its internal dynamics as shown in Fig. A.1(a). Therefore, Fig. A.1(b) provides an insight

on the optimal range of noise levels where different LSTM networks can be applied. Additionally,

it also explains why the neural networks trained on a noise-free dataset become extremely sensitive

to small perturbations on testing data, and as a result, we sometimes intentionally introduce noise

into neural network training process in order to improve its robustness in practical implementation.

3.2 LSTM Training With Non-Gaussian Noise

Through the investigation of the case of Gaussian noise in training datasets, we have demonstrated

that the standard LSTM is able to reduce the impact of Gaussian noise by utilizing its internal

dynamics. In this section, we further study the LSTM capability of handling non-Gaussian noise

and introduce a dropout method that is used to reduce overfitting in LSTM when trained with a

noisy dataset. While there are many types of non-Gaussian noise that are difficult to formalize

the distribution using an equation, we study a specific industrial noise in chemical processes to

illustrate the application of LSTM networks.

The top panel in Fig. A.2 shows the original dimensionless data from ASPEN (public domain

data), from which it can be seen that the data noise follows a non-Gaussian distribution due to the

irregular drifts. To extract the noise information, a Savitzky−Golay filter is used to approximate

the underlying noise-free profile, which is represented by the red line in the top figure of Fig. A.2.

By subtracting the raw data from its noise-free trajectory and then performing normalization, the

main feature of this industrial data noise is extracted, which is shown as the normalized noise in

the bottom of Fig. A.2. In the following simulations, the normalized industrial data noise will be

added into LSTM datasets generated from open-loop simulations of the CSTR of Eq. 3.1 to mimic

the industrial data for the CSTR process we considered.

3.3 LSTM Networks Using Dropout Layers

The dropout technique is widely used in neural networks to prevent overfitting by randomly

masking network units [38]. Although the standard LSTM model is demonstrated to predict

17

process dynamics well using the sensor measurements with Gaussian noise, it performs poorly

on training data corrupted by non-Gaussian noise as shown in Fig. A.3. In this section, we take

advantage of Monte Carlo dropout method (MC dropout) that was recently proposed in [12, 13],

in which RNN models using MC dropout method were interpreted as probabilistic models.

Specifically, the RNN weights are treated as random variables, and the posterior distribution of

the RNN model weights is obtained by sampling the network with randomly dropped out weights

at test time (termed Monte Carlo samples). It was demonstrated in [13] that by using dropout

techniques, a large RNN model with a sufficient number of neurons may lead to improved denoised

results compared to small RNN models that were commonly used in the past to avoid overfitting.

To simplify the discussion, we present the Monte Carlo method using the general form of

LSTM models in Eq. 2.3. However, the following discussion can be readily generalized to the

detailed LSTM network of Eq. 2.4, and other RNN models, e.g., gated recurrent unit (GRU) as

shown in [13]. Let W = {Wi}L
i=1 denote the weight matrix of the LSTM model of Eq. 2.3 including

all the weights and bias terms to be optimized, where Wi is the weight matrix of dimension Ki×

Ki−1 for each LSTM layer i, and L is the number of layers. Given the LSTM training data that

include the data pair of (M,X), where M and X represent the LSTM input and output matrices,

respectively, the goal of the LSTM model using MC dropout method (termed dropout LSTM) is to

find the posterior distribution over the weights p(W |M,X). We first define a binary variable zi, j

of Bernoulli distribution following [12]:

zi, j ∼ Bernoulli(pi) (3.2)

where zi, j = 0, i = 1, ...,L, j = 1, ...Ki−1 represents the jth weight between layer i− 1 and layer i

being dropped out with probability 1− pi, and zi, j = 1 represents the weight remaining unchanged

with probability pi. Therefore, the weight matrix Wi can be represented as follows for i = 1, ...,L.

Wi = Bi ·diag(zi) (3.3)

18

where Bi are the variational variables to be optimized. Since the posterior distribution p(W |M,X)

is intractable in practice, [12] proposed to use the approximating distribution q(W) of Eqs. 3.2-3.3

and minimize the Kullback-Leibler (KL) divergence between the full posterior and q(W).

Therefore, an approximate predictive distribution of LSTM output can be given as follows:

p(x∗ |m∗, X, M) =
∫

p(x∗ |m∗, W)q(W)dW (3.4)

where m∗ is the LSTM input in testing datasets, x∗ is the corresponding LSTM predicted output,

and X, M are the LSTM inputs and outputs in training dataset. Additionally, Eq. 3.4 can be

approximated by performing Monte Carlo dropout at test time and calculating the averaged results

as follows:

p(x∗ |m∗, X, M)≈ 1
Nt

Nt

∑
k=1

p(x∗ |m∗, Wk) (3.5)

where Wk ∼ q(W), and Nt is the number of realizations in dropout LSTM. It is noted that

unlike normal dropout approach that does not apply dropout at test time, the main difference

of MC dropout is that it applies dropout at both training and testing phases, thereby the LSTM

prediction is no longer deterministic. Given a same testing input, by performing dropout LSTM

prediction multiple times, we will be able to generate random predictions, from which an

approximate probabilistic distribution of LSTM output is obtained. In this way, dropout LSTM

provides a potential solution to learn the ground truth (i.e., nominal state trajectories) from sensor

measurement data corrupted by a complex, non-Gaussian noise. This is conceptually equivalent to

the stochastic optimization problem that uses Monte Carlo method to simulate an uncertain process

to predict state propagation. In fact, the dropout LSTM (i.e., the LSTM model using MC dropout)

itself can be considered as a complex nonlinear process model with the dropped LSTM weights

being uncertain variables. The application of dropout LSTM is illustrated using the same CSTR

example that has been introduced in the previous Chapter, and the simulation results are presented

below.

The open-loop prediction results for standard LSTM and dropout LSTM are summarized in

19

Table A.3, and will be discussed in detail after we introduce the co-teaching method in the next

chapter. Overall, it can be concluded from Table A.3 that the dropout LSTM achieves better

prediction results in terms of smaller validation MSE. Fig. A.3 shows one of the open-loop

prediction results from the dropout LSTM and the standard LSTM using the same noisy dataset

for training. Specifically, we ran dropout LSTM prediction 300 times to obtain the distribution

of predicted state trajectories, from which we show the mean state trajectory (red line) and the

95% standard deviation interval (gray region) in Fig. A.3. It is demonstrated that the mean state

trajectory predicted by the dropout LSTM is much closer to the ground truth (i.e., the nominal state

trajectory in black) compared to the state trajectory (yellow line) predicted by the standard LSTM.

Since dropout LSTM uses Monte Carlo simulation to perform forward prediction, which is one

of the most time-consuming parts in solving MPC [49], whether nonlinear first-principles models

or machine learning models are used, parallel computing is utilized to reduce the computation

time by running multiple realizations in different cores/nodes. Note that the time complexity of the

forward pass algorithm of machine learning models (more precisely, the number of multiplications

involved in the linear combinations) not only depends on the dimension of inputs, but also depends

on the number of layers and the size of each layer, which could be large for a complex nonlinear

system. The parallelization of dropout LSTM is particularly useful when it is incorporated in

MPC for real-time control implementation. Table A.1 summarizes the averaged computation

time for predicting one state trajectory using standard LSTM, and dropout LSTM under serial

and parallel computing, respectively with a testing dataset of 100 data samples. It is noted that

in the parallel implementation of dropout LSTM, 60 nodes were reserved in UCLA Hoffman 2

computing cluster to carry out 60 simulation runs such that each simulation run was assigned

to a single worker node. The mean state trajectory and standard deviation are computed in the

host node after synchronization operation. It is clearly seen from Table A.1 that the computation

time increases dramatically as the number of simulation runs increase under serial computation

of dropout LSTM. On the other hand, the parallel computation of dropout LSTM can instead

significantly reduce the computation time to the level that is comparable to the standard LSTM.

20

Remark 4. The standard and dropout LSTMs in serial mode perform the function evaluations

in the host node only, while the dropout LSTM predictions in parallel mode are performed

in the worker nodes, where each worker node calculates one dropout realization. Note that

the computation time reported in Table A.1 accounts for the time of data normalization and

denormalization before and after LSTM predictions as well as the time of the synchronization step

(in parallel computing). The computation time for all of these pre-processing and post-processing

calculations is around 0.0158 s. Therefore, the computation time for prediction step only is

0.0378 s for serial dropout LSTM, which is around 15 times longer than 0.0025 s for parallel

dropout LSTM. It is noticed that the computation time for serial dropout LSTM is not exactly 60

times longer than that for parallel dropout LSTM because in parallel computing, a synchronization

step is performed to ensure that each task in worker node blocks until all tasks in the computing

group reach the host node. As a result, the computation time for parallel dropout LSTM

depends heavily on the slowest worker node. Despite the slight performance degradation due to

synchronization step, the computational efficiency is still much improved under parallel computing

of dropout models.

21

Chapter 4

Co-teaching Method

Unlike the standard and dropout LSTM networks that use noisy data only for training, the

co-teaching method that we will discuss in this chapter takes advantage of noise-free datasets

that can be obtained from first-principles modeling and simulation of chemical processes to

further improve LSTM prediction accuracy. Co-teaching has been originally proposed for the

classification problem with noisy labels ([16,50]), for example, in image classification, one of the

most popular applications of neural networks that classifies the images into one of a number of

predefined classes. However, in many cases, the training dataset for image classification task is not

totally clean in the sense that some images are mislabeled, where the term “noisy label” is often

used to represent the image data with incorrect labels. Without any treatment on dataset, training

neural networks using such a noisy dataset may lead to undesired model accuracy. However,

cleaning noisy labels manually also appears impractical when dealing with a high-dimensional

dataset.

Co-teaching is an algorithm that trains models with noisy labels by training two networks

simultaneously using different datasets of the targeted system ([16]). Fig. A.4 shows a schematic

diagram of the co-teaching method with two networks: A and B. The intuition of co-teaching is

straightforward and it is based on the observations that neural networks tend to fit simple pattern at

the early stage of training process [16]. As a result, noise-free data will achieve a low loss function

value, while noisy data typically has a high loss function value. Specifically, the co-teaching

22

training method (Algorithm 1) works as follows: in each mini-batch during training epoch k,

each model checks its data sequences (i.e., each pair of data labeled as input and output), and

generates a small dataset with all the data that has a low loss function value. This new dataset

can be approximately regarded as noise-free datasets, and will be shared between two networks.

Subsequently, after receiving the new noise-free datasets from the peer network, the weights are

updated and the training is resumed for one more epoch. The above process is repeated until the

all the training epochs are completed.
Algorithm 1: Co-teaching Algorithm

D is the original mixed dataset, Imax is the maximum number of iterations, x is the data

sequence, loss(A,x) calculates the loss function value for data x under model A, lossT is

the threshold for identifying small-loss data sequences, and η is the learning rate.

for i = 0 to Imax do
Select a mini-batch Dm from D

Obtain the small-loss data sequences from model A:

DA = {x ∈ Dm | loss(A,x)≤ lossT}

Obtain the small-loss data sequences from model B:

DB = {x ∈ Dm | loss(B,x)≤ lossT}

Update the weight matrix of model A: WA = WA−η∇loss(A,DB)

Update the weight matrix of model B: WB = WB−η∇loss(B,DA)

end

One of the main benefits of co-teaching method is that each network can filter noisy labels

in different ways due to distinct learning abilities ([16]). In order for the algorithm to perform

accurately, it is important to have a considerable number of clean sequences during the training step

such that clean sequences can be detected and shared within the two networks. However, to our

knowledge, little attention has been paid to the implementation of co-teaching method in solving

regression problems. In this study, we take advantage of the idea of co-teaching method, and adapt

it to LSTM modeling of nonlinear processes using noisy data. Specifically, we first develop a

noise-free dataset from extensive first-principles model simulations. Although an accurate process

23

model is generally unavailable for industrial chemical processes, a first-principles model based

on well-known mass, energy, and momentum balances can be developed to approximate process

dynamics. This noise-free dataset can then be used in co-teaching training to guide LSTM

networks to learn the underlying (noise-free) dynamics. When using co-teaching method for

solving regression problems, it is important to tune the LSTM structure, develop a high-quality

dataset consisting of both noise-free and noisy data, and choose the threshold that can identify

the clean data in the mixed dataset. Specifically, the number of units in each network should be

carefully chosen in order to achieve a balanced performance between the noisy and clean pattern.

For example, a large number of hidden units are not preferred since the network tends to fit both

clean and noisy data at the same time (i.e., overfitting). Second, the ratio between clean data

obtained from the approximated model and noisy data should also be carefully chosen. If clean

data is insufficient, the networks are not able to share the noise-free process dynamics information

during training phase; however, if too much clean data is included in the mixed dataset, then

the network would simply learn the process dynamics from approximated first-principles model

instead of the actual process dynamics from noisy data. Additionally, given a mixed dataset, it

is also important to identify the clean data by evaluating loss function value as introduced at the

beginning of this chapter. To better understand the role of threshold in choosing clean data, we

perform the following case study using the symmetry co-teaching method with model A and B that

share clean data during the training step. Model B uses a dataset of 500 sequences in which the first

100 data are noisy and the following 400 data are clean sequences. Subsequently, at the end of each

epoch, based on the threshold we pre-determined, we select the clean sequences by evaluating their

contribution to the loss function. Table A.2 shows the selected clean sequences for four thresholds

lossT during the same epoch. It is demonstrated in Table A.2 that under the threshold of 0.01, 306

sequences are selected to be shared with model A in which 267 are truly clean sequences (i.e., the

accuracy is approximately 87%). By decreasing the threshold value, it is shown in Table A.2 that

fewer data sequences are selected as clean data; however, the accuracy is increasing (e.g., the ratio

of true clean data is increasing to 95.6% for the threshold 0.0014). Therefore, the threshold for

24

identifying clean data also plays an important role in the co-teaching training performance.

Another type of co-teaching framework uses an asymmetric structure (termed asymmetric

co-teaching). Unlike the symmetric co-teaching that trains two models using the same dataset,

asymmetric co-teaching methodology trains two models (i.e., A and B) using a noise-free and

a noisy dataset, respectively. In this work, the noise-free dataset for model A comes from

extensive open-loop simulation for the CSTR model of Eq. 3.1 under 2000 initial conditions that

cover the entire stability region and 100 pairs of manipulated inputs. Based on the open-loop

simulation dataset, the noisy dataset is generated by adding the industrial noise of Fig. A.2 on state

measurements. As a result, the two datasets have the same number of data sequences and the data is

also organized in the same order. In other words, the kth data sequence in the two datasets are using

the same initial condition and the same control actions with the only difference that the industrial

noise is added on state measurements. In asymmetric co-teaching framework, clean dataset is

extracted and shared only from model A to model B, and not in the opposite direction. Similar to

Algorithm 1, in each training epoch, model A sends a subset of clean data sequences to model B.

To update the noisy labels during the co-teaching implementation in the asymmetric co-teaching

method, the noisy labels are randomly updated using its noise-free counterpart from the clean

dataset. It will be shown in the next section that LSTM training using asymmetric co-teaching

method can achieve better model accuracy than the LSTM using standard training algorithm with

the same mixed dataset of clean and noisy data. To implement the co-teaching method in Keras,

the training process of the neural network is discretized by using a loop structure in order to update

the noisy LSTM outputs between two consecutive epochs. After updating the outputs, the training

is resumed and the noisy outputs will be updated again at the end of next training epoch.

Remark 5. Bias is intentionally introduced into the LSTM models in order to improve their

performance in predicting underlying (nominal) process dynamics. Note that as we assume no

information on industrial noise is available, the proposed LSTM models do not account for any

error term in its formulation – the LSMT inputs are process states and control actions only. Also,

since the training data is noisy for both LSTM inputs and outputs, the objective of dropout and

co-teaching LSTM modeling approaches is to avoid overfitting (overfitting typically exhibits low

25

bias and high variance, where low bias means that the model fits well on the training set, and high

variance means that the model is unable to make accurate predictions on the validation set). In

fact, no bias is undesired in this case because it means that the LSTM model fits the noisy pattern

(i.e., noisy outputs) very well, and cannot predict the true (nominal) state.

4.1 Open-loop Simulation Results of Three LSTM Models

We carry out the open-loop simulations using standard LSTM, dropout LSTM, and co-teaching

LSTM models trained with the same noisy dataset, and show the MSE results in Table A.3. It

should be noted that all the LSTM models in Table A.3 are developed using the same structure in

terms of neurons, layers, epochs, and activation functions. Additionally, the MSE is calculated

as the difference between the predicted state trajectories and the underlying (noise-free) state

trajectories since the goal is to capture the nominal process dynamics using noisy data. Therefore,

an LSTM model with a low MSE value implies that the model is able to predict smooth state

trajectories that are close to the ground-truth trajectories.

As shown in Table A.3, we first train three standard LSTM models using the noise-free

dataset (baseline case), the mixed dataset, and the noisy dataset, respectively, to demonstrate

that the standard LSTM modeling approach cannot achieve a desired model accuracy without a

high-quality dataset. However, compared with the standard LSTM using noisy data only (i.e., 1c

in Table A.3), it is observed that the LSTM using mixed data (i.e., 1b in Table A.3) shows a slight

improvement of model prediction with the use of noise-free data in training. The co-teaching

LSTM and dropout LSTM models are then developed using the same noisy dataset. Specifically,

the co-teaching LSTM starts with a noise dataset, and receives clean data sequences from the peer

model as the training process evolves. As a result, the weight matrices of the co-teaching model are

able to capture a balanced pattern that accounts for both noisy and clean data. The dropout LSTM

is trained using the noisy dataset only and the final prediction results are obtained by averaging all

Monte Carlo realizations that apply dropout at test time. It is shown in Table A.3 that the dropout

LSTM outperforms the standard LSTM model in terms of a lower MSE, and the co-teaching LSTM

achieves the best performance among all the models.

26

4.2 Closed-loop Simulation Results under LMPC

We run closed-loop simulations on the CSTR system of Eq. 3.1 under the LMPC of Eq. 2.6 using

different LSTM models (i.e., standard LSTM, co-teaching LSTM, and dropout LSTM). The LMPC

receives noisy measurements at each integration time step, and solves for the optimal control

actions at every sampling time. The control objective is to operate the CSTR at the unstable

equilibrium point (CAs, Ts) by manipulating the heat input rate ∆Q and the inlet concentration

∆CA0 under LMPC. The LMPC objective function of is designed with the following form:

L(x,u) = |x|2Q1
+ |u|2Q2

(4.1)

where Q1 and Q2 are coefficient matrices that balance the contributions of state convergence and

of control actions (i.e., energy and reactant). Table A.4 summarizes the closed-loop performance

of different LSTM models by using the objective function of Eq. 4.1 as an indicator. Specifically,

industrial noise of four different levels (i.e., tiny, small, medium and large levels) are added on

closed-loop state measurements for each LSTM model. The four noise levels correspond to the

multiplication of the normalized industrial noise (Fig. A.2) with the coefficients σ
CA
i and σT

i ,

i = 1,2,3,4 that have been reported in Section 3.1. Each level of noise is tested in closed-loop

simulation using five different initial conditions in the stability region. Then, we use the LMPC

objective function value to analyze its closed-loop performance in the way that a large objective

function value implies a slow convergence and a high energy consumption. We calculate the

objective function value over time for each closed-loop state trajectory and compute the averaged

result, i.e., 1
Ns

∑
Ns
i=1
∫ t=ts

t=0 L(x,u)dt for each LSTM model, where Ns is the number of simulation

runs (Ns = 5 corresponding to five different initial conditions in this study), and ts is the closed-loop

simulation time. The mean objective function value is finally normalized with respect to its biggest

value in all simulation runs to eliminate the impact of initial conditions on closed-loop performance

analysis.

As shown in Table A.4, the standard LSTM has the worst closed-loop performance in terms

27

of the largest objective function value among all three models. Additionally, co-teaching and

dropout LSTMs achieve a significant improvement (around 20%) for the small and medium noise

levels, while the improvement is less than 10% for tiny and large noise levels. Specifically, it is

observed from closed-loop simulations that under a tiny noise level, the LMPCs using the three

LSTM models all drive the closed-loop state to the steady-state quickly. This is consistent with the

fact that the machine-learning-based LMPC is robust to a sufficiently small disturbance as shown

in [47]. Additionally, all the LSTM models perform poorly under a large noise level since the

noisy state measurements deviate far from its true state in the presence of a large noise, which

makes it challenging for LSTM to predict the true states. As a result, LMPC is unable to solve

for the optimal control actions that can drive the closed-loop state towards the steady-state. In

fact, all the closed-loop state trajectories show significant oscillations under a large noise level.

Practically, such a large noise implies that the problem is beyond the scope of sensor noise, and

equipment maintenance may be needed before bringing controller system on-line. In the case of a

small and a medium noise level, it is shown in Table A.4 that closed-loop performances under the

co-teaching and dropout LSTMs are much improved compared to the standard LSTM. This implies

that the proposed LSTM modeling approaches are preferred in handling noise in such a range of

noise levels. From Table A.4, we can conclude that the improvements of model accuracy under

dropout/co-teaching methods vary depending on the noise levels. Therefore, just like any other

machine learning models, whether the dropout and co-teaching LSTM models achieve desired

performance and how much improvement they have can only be assessed after the training process

(i.e., open-loop performance) and also in the closed-loop operation (i.e., closed-loop performance).

In Fig. A.5(a) and Fig. A.5(b), we show one of the closed-loop simulation results under a

medium noise level. It is observed in state profiles of Fig. A.5(a) that the standard LSTM model

shows significant variation when the closed-loop state approaches the steady-state. This is due to

the fact that states predicted by the standard LSTM are far from the true states, which mislead the

LMPC to give a solution that drives the state in a wrong direction. However, since the co-teaching

LSTM and dropout LSTM models have been demonstrated to achieve a desired model accuracy

28

in Section 4.1, it is expected that the LMPC using these two models can maintain the state in

a small neighborhood around the steady-state more smoothly. Note that the MPC will not be

able to stabilize the system exactly at the steady-state due to the sample-and-hold implementation

of control actions, and the model mismatch between the LSTM model and the actual nonlinear

process. Therefore, if the state trajectory of the closed-loop system starting from the stability

region Ωρ remains bounded in Ωρ and converges to a small compact set around the origin

where it will be maintained thereafter, then the system is considered practically stable under the

sample-and-hold implementation of MPC. The control action ∆CA0 in Fig. A.5(b) shows variation

over the simulation period because the closed-loop states in Fig. A.5(a) move dynamically within

Ωρnn under MPC. Since both the reactant concentration CA and reactor temperature T remain close

to the steady-state value after t = 0.25 hr in Fig. A.5(a), the system is practically stable for the

initial condition (-1.25, 66) under LSTM-based MPC.

Remark 6. The closed-loop control performance is influenced by the model accuracy after

the training process. Since the dropout/co-teaching LSTM modeling approaches are purely

data-driven, no stability guarantees can be derived priori to the training. In [48], we have

demonstrated that closed-loop stability is ensured for the machine-learning-based MPC provided

that the machine learning model achieves a desired model accuracy in a given operating region.

Therefore, if the dropout and co-teaching LSTM models are developed with a desired model

accuracy, the stability analysis also holds for the MPC using these LSTM models.

29

Chapter 5

Conclusion
In this work, we presented machine learning approaches that can predict underlying nonlinear

process dynamics from noisy data. We initially investigated the case of Gaussian noise and

demonstrated that the standard LSTM using noisy dataset was able to achieve a desired model

accuracy since the internal states of the neural network played a dominant role in prediction. Then,

we investigated the case of a non-Gaussian noise from ASPEN industrial-data sets, for which

the standard LSTM networks showed poor prediction performance. To handle industrial noisy

data, dropout LSTM and co-teaching LSTM schemes were proposed to learn process dynamics

using noisy data only, and using both noisy data and noise-free first-principles model simulation

data, respectively. The chemical process example was utilized to demonstrate the improved model

accuracy achieved by the dropout and co-teaching LSTM models through both open-loop and

closed-loop simulations.

30

Appendix A

Appendix

31

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (hr)

0

1

2

3

4

5

6
||
ω
h i
h
||
1
,|
|ω

m i
m
||
1

Evolution of ||ωh
i h||1

Evolution of ||ωm
i m||1

(a)

1 2 3 4
0

1

2

3

4

5

6
10

-3

Small

Medium

Large

1
0

2

4

6
10

-5

(b)

Figure A.1: (a) Time evolution of the LSTM internal states ‖ωh
i h‖1 and the input states ‖ωm

i m‖1
under Gaussian noise for multiple data sequences, and (b) RMSE in terms of the noise level for
LSTM models trained against different noise levels.

32

Figure A.2: Noisy industrial-data sets from ASPEN (black line in the top panel), the denoised
result using Savitzky−Golay filter (red line in the top panel), and the extracted (normalized) noise
from ASPEN industrial data (bottom figure).

33

Figure A.3: State profiles predicted by the dropout LSTM and the standard LSTM, where the red
line is dropout LSTM, the black, dashed line is the ground truth, the yellow line is the standard
LSTM, and the blue, dotted line is the noisy state measurement.

34

A B

A

A

B

B

Figure A.4: The symmetric co-teaching framework that trains two networks (A and B)
simultaneously.

35

(a)

(b)

Figure A.5: (a) Closed-loop state profiles, and (b) Manipulated input profiles (u1 =∆CA0, u2 =∆Q)
for the initial condition (-1.25, 66) under LMPC using standard LSTM (red), co-teaching LSTM
(blue), and dropout LSTM (black).

36

Table A.1: Comparison of computation time under the standard LSTM and dropout LSTM
networks.

Model Computation time (seconds)
1) Standard LSTM 0.0165
2) Dropout LSTM with serial computing 0.0536
3) Dropout LSTM with parallel computing 0.0183

Table A.2: Tuning the threshold for the symmetry co-teaching methodology.

Threshold Clean seqs./Total seqs.
0.01 (267 / 306)
0.003 (96 / 102)
0.002 (37 / 38)
0.0014 (22 / 23)

Table A.3: Statistical analysis of the open-loop predictions under non-Gaussian noise.

Methods MSE x1 MSE x2

1a) LSTM : noise-free data only 0.0011 8.2056
1b) LSTM : mixed data 0.0258 22.1795
1c) LSTM: noisy data only 0.0328 29.5571

2) Co-teaching LSTM 0.0053 7.2123

3) Dropout LSTM 0.0052 19.2123

Table A.4: Statistical analysis of the closed-loop simulation results under non-Gaussian noise using
four noise levels.

Methods Tiny Small Medium Large
1) Standard LSTM 0.8786 0.9796 0.9430 0.8768

2) Co-teaching LSTM 0.8110 0.7587 0.7749 0.7850

3) Dropout LSTM 0.7162 0.6889 0.8078 0.7928

37

Bibliography

[1] E. Aggelogiannaki and H. Sarimveis. Nonlinear model predictive control for distributed

parameter systems using data driven artificial neural network models. Computers & Chemical

Engineering, 32:1225–1237, 2008.

[2] R. Al Seyab and Y. Cao. Nonlinear system identification for predictive control using

continuous time recurrent neural networks and automatic differentiation. Journal of Process

Control, 18:568–581, 2008.

[3] J. M. Ali, M. A. Hussain, M. O. Tade, and J. Zhang. Artificial intelligence techniques

applied as estimator in chemical process systems–a literature survey. Expert Systems with

Applications, 42:5915–5931, 2015.

[4] S. Aumi, B. Corbett, T. Clarke-Pringle, and P. Mhaskar. Data-driven model predictive quality

control of batch processes. AIChE Journal, 59:2852–2861, 2013.

[5] C. M. Bishop. Pattern recognition and machine learning. Springer-Verlag New York, 2006.

[6] D. Chaffart and L. A. Ricardez-Sandoval. Optimization and control of a thin film growth

process: A hybrid first principles/artificial neural network based multiscale modelling

approach. Computers & Chemical Engineering, 119:465–479, 2018.

[7] Scarlett Chen, Zhe Wu, David Rincon, and Panagiotis D Christofides. Machine

learning-based distributed model predictive control of nonlinear processes. AIChE Journal,

66(11):e17013, 2020.

38

[8] A. Delgado, C. Kambhampati, and K. Warwick. Dynamic recurrent neural network for

system identification and control. IEE Proceedings-Control Theory and Applications,

142:307–314, 1995.

[9] R. Diversi, R. Guidorzi, and U. Soverini. Identification of arx and ararx models in the

presence of input and output noises. European Journal of Control, 16:242–255, 2010.

[10] M. J. Ellis and V. Chinde. An encoder-decoder LSTM-based EMPC framework applied to a

building HVAC system. Chemical Engineering Research and Design, 160:508–527, 2020.

[11] K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time

recurrent neural networks. Neural networks, 6:801–806, 1993.

[12] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. In Proceedings of the International Conference on Machine

Learning, pages 1050–1059, 2016.

[13] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent

neural networks. In Proceedings of the Advances in Neural Information Processing Systems,

pages 1019–1027, 2016.

[14] A. Garg and P. Mhaskar. Utilizing big data for batch process modeling and control.

Computers & Chemical Engineering, 119:228–236, 2018.

[15] F. Hamilton, T. Berry, and T. Sauer. Ensemble kalman filtering without a model. Physical

Review X, 6:011021, 2016.

[16] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching:

Robust training of deep neural networks with extremely noisy labels. arXiv preprint

arXiv:1804.06872, 2018.

39

[17] H. Hassanpour, B. Corbett, and P. Mhaskar. Integrating dynamic neural network models with

principal component analysis for adaptive model predictive control. Chemical Engineering

Research and Design, 161:26–37, 2020.

[18] Q. P. He and J. Wang. Statistical process monitoring as a big data analytics tool for smart

manufacturing. Journal of Process Control, 67:35–43, 2018.

[19] Q. P. He, J. Wang, and D. Shah. Feature space monitoring for smart manufacturing via

statistics pattern analysis. Computers & Chemical Engineering, 126:321–331, 2019.

[20] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012.

[21] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin. Model selection

approaches for non-linear system identification: a review. International journal of systems

science, 39:925–946, 2008.

[22] J. K. Huusom, N. K. Poulsen, S. B. Jørgensen, and J. B. Jørgensen. Tuning siso offset-free

model predictive control based on arx models. Journal of Process Control, 22:1997–2007,

2012.

[23] B. C. Juricek, W. E. Larimore, and D. E. Seborg. Reduced-rank arx and subspace system

identification for process control. IFAC Proceedings Volumes, 31:247–252, 1998.

[24] H. K. Khalil. Nonlinear systems, volume 3. Prentice Hall, Upper Saddle River, NJ, 2002.

[25] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P. A. Ioannou.

High-order neural network structures for identification of dynamical systems. IEEE

Transactions on Neural Networks, 6:422–431, 1995.

40

[26] J. H. Lee, J. Shin, and M. J. Realff. Machine learning: Overview of the recent progresses and

implications for the process systems engineering field. Computers & Chemical Engineering,

114:111–121, 2018.

[27] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls. Systems

and Control Letters, 16:393–397, 1991.

[28] J. M. P. Menezes Jr and G. A. Barreto. Long-term time series prediction with the narx

network: An empirical evaluation. Neurocomputing, 71:3335–3343, 2008.

[29] C. Moore. Application of singular value decomposition to the design, analysis, and control

of industrial processes. In 1986 American Control Conference, pages 643–650. IEEE, 1986.

[30] S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L. Shah. Nonlinear

bayesian state estimation: A review of recent developments. Control Engineering Practice,

20:933–953, 2012.

[31] V. Prasad and B.W. Bequette. Nonlinear system identification and model reduction using

artificial neural networks. Computers & chemical engineering, 27:1741–1754, 2003.

[32] S. J. Qin and L. H. Chiang. Advances and opportunities in machine learning for process data

analytics. Computers & Chemical Engineering, 126:465–473, 2019.

[33] A. Savitzky and M.J.E. Golay. Smoothing and differentiation of data by simplified least

squares procedures. Analytical Chemistry, 36:1627–1639, 1964.

[34] D. Shah, J. Wang, and P. He. Feature engineering in big data analytics for iot-enabled smart

manufacturing–comparison between deep learning and statistical learning. Computers &

Chemical Engineering, 141:106970, 2020.

[35] H.T. Siegelmann, B. G. Horne, and C. L. Giles. Computational capabilities of recurrent narx

neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

27:208–215, 1997.

41

[36] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson,

and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview.

Automatica, 31(12):1691–1724, 1995.

[37] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and

Computing, 14:199–222, 2004.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15:1929–1958, 2014.

[39] A. P. Trischler and G. M. D’Eleuterio. Synthesis of recurrent neural networks for dynamical

system simulation. Neural Networks, 80:67–78, 2016.

[40] I. Udugama, C. Gargalo, Y. Yamashita, M. A Taube, A. Palazoglu, B. Young, K. Gernaey,

M. Kulahci, and C. Bayer. The role of big data in industrial (bio) chemical process operations.

Industrial & Engineering Chemistry Research, 59(34):15283–15297, 2020.

[41] P. Van Overschee and B. De Moor. N4SID: Subspace algorithms for the identification of

combined deterministic-stochastic systems. Automatica, 30:75–93, 1994.

[42] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57,

2006.

[43] H. Wang, D. Chaffart, and L. A. Ricardez-Sandoval. Modelling and optimization of a

pilot-scale entrained-flow gasifier using artificial neural networks. Energy, 188:116076, 2019.

[44] W. Wong, E. Chee, J. Li, and X. Wang. Recurrent neural network-based model predictive

control for continuous pharmaceutical manufacturing. Mathematics, 6(11):242, 2018.

42

[45] P. Wu, H. Pan, J. Ren, and C. Yang. A new subspace identification approach based on

principal component analysis and noise estimation. Industrial & Engineering Chemistry

Research, 54:5106–5114, 2015.

[46] Z. Wu and P. D. Christofides. Economic machine-learning-based predictive control of

nonlinear systems. Mathematics, 7:494, 2019.

[47] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine learning-based predictive control

of nonlinear processes. part I: Theory. AIChE Journal, 65:e16729, 2019.

[48] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine-learning-based predictive control

of nonlinear processes. Part II: Computational implementation. AIChE Journal, 65:e16734,

2019.

[49] W. Xie, I. Bonis, and C. Theodoropoulos. Data-driven model reduction-based nonlinear mpc

for large-scale distributed parameter systems. Journal of Process Control, 35:50–58, 2015.

[50] F. Yang, K. Li, Z. Zhong, Z. Luo, X. Sun, H. Cheng, X. Guo, F. Huang, R. Ji, and

S. Li. Asymmetric co-teaching for unsupervised cross-domain person re-identification.

Proceedings of the AAAI Conference on Artificial Intelligence, 34:12597–12604, 2020.

[51] K. Yeo. Short note on the behavior of recurrent neural network for noisy dynamical system.

arXiv preprint arXiv:1904.05158, 2019.

[52] K. Yeo and I. Melnyk. Deep learning algorithm for data-driven simulation of noisy dynamical

system. Journal of Computational Physics, 376:1212–1231, 2019.

[53] Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: LSTM cells and

network architectures. Neural computation, 31:1235–1270, 2019.

[54] J. Zeng, C. Gao, and H. Su. Data-driven predictive control for blast furnace ironmaking

process. Computers & Chemical Engineering, 34:1854–1862, 2010.

43

[55] Y. Zhu and F. Butoyi. Case studies on closed-loop identification for MPC. Control

Engineering Practice, 10:403–417, 2002.

[56] Y. Zhu, R. Patwardhan, S. B. Wagner, and J. Zhao. Toward a low cost and high performance

MPC: The role of system identification. Computers & Chemical Engineering, 51:124–135,

2013.

44

