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In this thesis, I will demonstrate the capabilities of Ruratae, a physics-based

audio rendering engine that models and sonifies mechanical vibrations of Newto-

nian bodies. This new system will allow its users a range of possibilities and subtle

controls without requiring expert knowledge of signal theory and acoustics. It will

be an environment that allows users to produce dynamic, re-configurable, and in-

teractive sounds through physically-intuitive construction and playing behaviors.

I will discuss at detail known problems and issues that arise when attempting to

afford these abilities, and I will offer several solutions and strategies that can be

employed to tackle and reduce these upsets.
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Chapter 1

Introduction

Through this document, I propose in detail a new, real-time physical audio

simulation environment that is both powerful and accessible to the end-user. It

will be an environment that allows users to produce dynamic, re-configurable, and

interactive sounds through physically-intuitive construction and playing behaviors.

The following sections outline desiderata that describes the intentions of this work.

Fundamentally, three core demands must be met: that the model’s representation

and sonification is plausible, that the model is highly interactive and configurable,

and that the model is robust, stable and re-configurable.

1.1 Plausibility

First and foremost, I want to develop a system that allows its users a

range of possibilities and subtle controls without requiring expert knowledge of

signal theory and acoustics. Instead, I will present a system that expands user

understanding of the underlying principles out of their curiosity and subsequent

experimentations and interactions with the system. The user should be able to

produce easily repeatable results through their interactions with the system in

order to cement an understanding of the system’s behaviors. For this system to be

successful, I require an interface that is highly plausible, with a strong correlation

between the control parameters and the physical representation of the model.

To me, it seems self-evident that such an interface requires an appropriate

1
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visual rendering of the structural objects and that this rendering should respond

directly to the physical displacements depicted in the model. In addition to this

vibrating depiction, the visual rendering must inform the user about the system’s

underlying properties. This information should be built directly into the visual

representation, without resorting to table lookups or other tedious data represen-

tations. The visual representation can be altered and artistically re-interpreted,

depending on context. If the system is being used in an end-user context, such

as a live performance, art installation or digital media distribution, much of the

underlying properties of the system can be hidden from view. If the system is

being used within an editor or in a performance with no live video projection,

than the system can provide a larger quantity of information to inform the user as

they develop their model. In general, I wish to strive for as clean and minimal a

representation as possible, without compromising the integrity of the correlation.

The methods of controlling the system should also be part of this correla-

tion. They should be depicted in the visual representation and should assist the

user in modifying the model’s structural and physical properties. I also wish to

optimize the number of controls; allowing users to develop both a sense of ex-

pression and mastery over their controls. Users should be able to create identical

events that produce repeatable results, allowing them to observe gradual patterns

of interaction over time exposed to the system. Users should not be overwhelmed

by too many controls, I wish to reduce the number of ways users interact with the

system but boast subtlety of control. It is important to find ways to consolidate

control events into unified methods of operation, to emphasize depth of control

variability over variety of controls.

1.2 Interactivity

Ideally, the system should run in real-time, in order to produce truly dy-

namic, responsive interaction. Although there is no reason why it could not benefit

from being run on supercomputer clusters or with field-programmable gate arrays

(FPGAs), optimizing the system for consumer hardware ensures portability and
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extensibility. Enabling users with real-time functionality on cheaper components

allows a larger distribution for a variety of creative projects. By reducing the

computational costs of the system’s algorithms and making its memory footprint

relatively small, the system becomes more and more portable, enabling use in lap-

top performance, integration into pre-existing multimedia projects, use in custom

hardware or Arduino chips, and so forth. For these reasons, the system should

be able to function in real-time or near-real-time on conventional, modern con-

sumer hardware. Because of this demand, a considerable effort has been placed

on optimizing the system’s routines while still preserving the plausible and robust

expectations of the system.

Additionally, users should be able to use a multitude of input devices to

interact. The system should be agnostic to input devices, allowing any current,

past or future devices the potential to be interfaced with the system. Devices such

as keyboards, triggers, infrared sensors, accelerometers, joysticks and microphones

are just a few examples of the types of manners users may use to interact with the

system. Of course, these are simply some of the types of interfaces that one might

use (at least at the present time), but ideally this system’s life can be prolonged to

handle input from future technologies just as easily. There needs to be a unified

adapter interface for these interactions that allows input to be generalized into

parameters the system understands. Users should be able to effortlessly interact

with the system with any and all of possible inputs in a completely configurable

manner. Network capabilities should allow client users to interact with the system

on a server-side as well. Ideally, it should be as immediately responsive as possible,

limited only by the latencies of the input and output devices themselves.

A large emphasis is placed on user editing actions, in order to provide the

user with the power to control and design their model to whatever specifications or

inquiries they might have. Users should be able to easily modify any parameter of

the system and the system should treat this in the same way across all parameters.

Models should be able to be saved, restored, reset/undone, and instanced. Ideally,

a user should be able to create a portion of the model and instance that portion

several times to create a larger model. For example, a user might create a “string”
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model that they then instance several times to create a multi-string instrument

model.

1.3 Robustness

Stability and robustness are two vital components to any system intended

for widespread use. Though users can expect and must tolerate small errors,

any large instabilities will lead to undesirable results. It is important to take

precautions to avoid amassing too much global error, which results in artificial

damping, frequency drift, and worst of all, exponential growth.

Though it is discussed in much more detail later, it is impossible to overem-

phasize the importance of stability and energy preservation in computational physics

models. As a precaution, the system should assist the user when creating and

modifying models, keeping the properties they attempt to adjust within stable

boundaries. In the case of an instability, the system should be able to recognize it

as such and be able to auto-recover itself, either by gradually reducing energy back

to stable levels or resetting to previous stable states. Within stable ranges, the

system should try to model its interactions as accurately as possible, so that the

user can reasonably “tune” the instrument and predict the spectral and durational

content of their model.

Additionally, the system should be able to be reconfigured in real-time, al-

lowing users to create, destroy and modify the model. Enabling this behavior has

many interesting results, including designing models that account for hearing the

sounds of destruction and deformation physics. Treating creation, destruction and

modification physics in the same manner as performance (excitation) physics al-

lows the system a high degree of interactivity and robustness. Allowing the model

to be deformed, reshaped, torn, ripped and exploded allows the user a level of

interaction distinct to this type of virtual instrument performance.

To summarize, the design desiderata of this document mandates a model

that has a strong visual-aural-physical correlation, that is highly optimized for
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real-time use, supports a range of input devices, and is robust to a variety of user

interactions, preserving accuracy and energy. In the following chapters, I discuss

the system’s past, present and future state. In chapter one, I discuss the previous

contributions of computer music that influenced this work, followed by chapter

two’s explanation of the model’s mathematical frameworks. I then discuss the

design specifications and implementation details in chapters four and five. Lastly,

I discuss a real-world example of the system and the ramifications of such a system

for real-time interactive media and video games in chapter six.



Chapter 2

Previous Contributions

Physical modeling is a well-researched and thoroughly-investigated disci-

pline. Over several decades, many applications have arisen for modeling acoustical

phenomena using a combination of signal processing and computational physics

techniques. Some of these developments, such as digital waveguides [16], have en-

abled physically-responsive musical instruments to function on consumer hardware

since the early 1990s. Finite element methods [5] have been an invaluable resource

to engineers and acousticians in recent years, pushing the limits of computational

power in a effort to asymptotically describe the incredibly intricate vibrations of

large architectural structures and musical instruments alike. To suggest an alter-

native to an already incredible rich set of tools and methods would require an

application suited to tasks not already absorbed by these immense disciplines.

The work in developing CORDIS-ANIMA [6], which models physical vibration in

mass-spring models, was largely absorbed into the development of computational

physics engines of the past decade [14, pg. 2-7]. Though these engines can manage

large sets of rigid and soft body dynamics (and to some sense, vibrations), they

largely absolve themselves of the intricacies of acoustics, especially propagation.

Furthermore, these engines are typically designed to analyze sub-audible structural

soundness, measuring vibrations much lower than audible range [14, pg. 55]. The

research presented here attempts to synthesize the work of computational physics

engines and the interfaces computational acousticians are familiar with, to enable

the construction, modification and destruction of audibly-vibrating bodies, in real-

6
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fm :
∆f
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A

yn

Figure 2.1: Example of Abstract (FM) Synthesis

time. This first chapter delves into the research goals, strengths and weaknesses

of various physical-modeling techniques and how they compare to the alternative

method presented in this dissertation.

2.1 Abstract Synthesis

Abstract synthesis [4, pg. 2-8] techniques such as additive, subtractive,

wavetable, AM, and FM synthesis do not derive explicitly from physical behaviors

but can be manipulated to produce convincing mimics. This class of techniques

is canonical in the literature and has been researched thoroughly for the purposes

of electronic music; A great amount of that research being for the modeling of

established musical instruments.

A majority of these techniques were developed for computers of the 1970s

and 80s, hence when adapted for modern systems, those technique run extremely

efficiently, in terms of both computational and memory costs. Techniques such as

wavetable synthesis may have a more significant memory load, depending on the

number of tables used. Most abstract methods have guaranteed stability boundary

conditions. Those that are not, such as IIR filters and recursive delay-line networks,

can be stable when filter stability rules are met.

Though we refer to them as “abstract”, in practice it is the case that every

synthesis technique has behaviors appropriate to modeling different phenomena.

In specific cases, these behaviors can be applied to physical processes. For exam-

ple, FM synthesis (depicted in Fig. 2.1) is a non-linear method that makes it a

desirable candidate for modeling the complex spectrum of many percussion and

brass instruments. Additive or subtractive synthesis techniques assemble many
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Figure 2.2: Network of masses connected by springs

small components to create aggregate timbres; the accuracy of these techniques

increases with the number of components used. There are many cases where a pri-

ori knowledge regarding our model can allow us to construct very realistic models

from abstract synthesis techniques. Unfortunately, abstract synthesis techniques

do not intuitively map to physical models. Because they essentially seek accuracy

in sound and not behavior, a model must undergo constant intervention.

Because it lacks any notion of physical representation, abstract synthesis

also lacks any reasonable robustness. Aside from specific, case-by-case associations

one might adopt between abstract synthesis parameters and physical phenomena,

there are very few principles that can be directly implemented from model to

model. These issues therefore make reconfiguration very tricky to pull off.

Since there is no physical accuracy and hence no robustness, it follows there

cannot be any homogeneity. There is no way to determine a reasonable physical

state and hence, any visual representation of abstract synthesis would be entirely

the work of fiction; which isn’t necessarily a bad thing, just less desirable for our

purposes.
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2.2 CORDIS-ANIMA

CORDIS-ANIMA was a software project developed by researchers at ACROE

in France [6]. It is essentially a mass-spring system (an example of which is depicted

in Fig. 2.2). This system, at its core, integrates systems of ordinary differential

equations, solving an ODE for each mass particle in the system [4, pg. 8-10]. The

power of working at this atomic level incurs a harsh penalty. ODEs that attempt to

describe models with millions upon millions of particles are easily the most com-

putationally expensive of all models listed here. One can reduce computational

costs simply by approximating a structure using less particles, at the detriment of

fluidity and accuracy of the model.

ODEs, like PDEs, depend on the proper numerical method and time step to

remain stable. Even so, it is difficult to ensure global stability in an ODE system.

Since ODEs individually integrate component particles, they can only account of

local stability at any given particle. Because it is difficult to manage global, system-

wide energy growth, it is very easy for that energy growth to go undetected in the

system, allowing numerical errors to result in instability. Additionally, a proper

step size can be difficult to determine in large ODE systems that are comprised of

varying degrees of stiffness. Of course, for very complex behaviors like those found

in fluid dynamics, this means that one would need to construct models of millions

upon millions of particles to properly represent a given type of complex physical

phenomena.

Because of their localized nature (integration occurs on one particle at a

time), ODE systems are incredibly robust, even in real-time, and can easily ac-

count for destructive and constructive forces. In addition, because one can directly

integrate forces on any given particle, it is possible to simulate nearly any imagin-

able excitation method such as plucking, striking, blowing or bowing; simulating

them as Newtonian forces. Because ODE systems are built out of very elemen-

tary interactions, they allow for systems of almost any imaginable orientation to

be simulated. For this reason, ODE systems are the popular choice of real-time

interactive physics simulations found in games and interactive media.

ODE systems, like PDEs, operate directly on physical state information.
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x[n]
z−M/2

−1 y[n]

−1

z−M/2 H(z)

Figure 2.3: Example of Digital Waveguide Synthesis

Visual representation is, therefore, trivial to acquire.

I have examined several techniques, determining that, for physically-intuitive

construction and behaviors, ODEs are the most suitable technique. Given their ro-

bustness, homogeneity and ability to generate very complex behaviors out of very

simple rules, ODEs are significantly more well-equipped to handle the unknowable

requests of real-time users. Though cost and stability are significant problems,

several potential solutions arise and will be discussed in detail in the following

chapters.

2.3 Digital Waveguides

Digital waveguides (depicted in Fig. 2.3) are a technique of abstract synthe-

sis with applied physicality [4, pg.11-14]. The waveguide technique can be viewed

as a form of subtractive synthesis with a feedback-delay. Because the technique is

fundamentally structured in the same way as abstract synthesis techniques, it has

many of the advantages of abstract synthesis with the addition of having some sem-

blance of physical state. Waveguides model wave propagation through a medium,

and it has been shown that the one-dimensional waveguides are indeed mathemat-

ically equivalent to the one-dimensional wave equation. The wave equation is a

type of PDE that describes propagation waves through a medium of constant den-

sity and tension. This equation fundamentally describes many forms of physical

vibrations and it is because of this that we use it often for simulating structures

such as idealized acoustic tubes, strings, and drums.
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Waveguides can be extended to higher dimensions by the use of a scatter-

ing junction [17], a port which models reflections and transmissions at impedance

changes. Waveguides can also model inharmonic spectra by running multiple

waveguides in synchronized, parallel bands, a technique known as banded waveg-

uide synthesis.

One-dimensional waveguides are an extremely efficient means of simulating

propagation through a constant medium. Because they are built from abstract

synthesis techniques, they can be extended with additional abstract techniques

while retaining their relatively low cost. As noted above, scattering junctions

can be used to increase dimensionality, but at a sharply-increasing computational

cost. While the 1-D waveguide is significantly cheaper than a 1-D PDE, the 2-D

waveguide is equally expensive as the 2-D PDE, and a 3D waveguide is significantly

more expensive that the equivalent 3D PDE.

Waveguides require the conventional filter stability conditions to remain

stable. Like with abstract techniques, additional stabilizing processes can always

be added for additional local stability.

Waveguides are ideal candidates for representing 1-D wave equations. Banded

waveguides are competent at modeling inharmonic spectra and scattering junctions

introduce additional normal modes and higher dimensionality. All of these tech-

niques work well to model many idealized physical behaviors. However, if we desire

the modeling of mediums with either irregular shape or non-constant density or

tension, waveguides become less practical. Non-linearities can often still be mod-

eled with the help of scattering junctions, though waveguide models with high

amounts of scattering junctions tend to lose their cost advantages. A significant

drawback to waveguides is their inability to accurately measure large displacements

or destructive forces.

Scattering junctions make waveguide robustness possible. With care, waveg-

uides can be reconfigured in real-time as long as energy in the scattering junction

is properly handled. With enough scattering junctions, waveguides can function

much like any PDE or ODE system of wave propagation, though this requires

significant programmer intervention to implement adequate dynamic junctioning.



12

One can derive an approximate physical state of any point along a waveg-

uide by trivial signal operations. However, it should be noted that this derivation

is not entirely accurate as it does not evaluate large displacements; systems that

occasionally deal with very dynamic forces will therefore not be accurately rep-

resented. Additionally, a waveguide exists over some length of space-time, which

at every point along this line exists an equilibrium state and some displacement

above and below this equilibrium. It follows that a waveguide occupies an un-

defined 2-D plane in dimensional space. The transformation of this plane, (its

scale, rotation and translation), are not explicitly part of the waveguide model.

Thus, the plane’s transform is undefined, meaning that 1-D waveguides cannot be

mapped in N-dimensional space without ambiguity. To complicate things further,

scattering junctions between these segments have no inherit sense of direction, and

therefore they have no explicit dimensionality either. It is very important that the

programmer of such a system take special care to make the relationship between

visual and audible physical state consistent and unambiguous.

2.4 Modalys

Modalys is a piece of software developed by researchers at IRCAM [11].

It uses modal decomposition and synthesis to determine linear and non-linear

modes of vibrations for rigid bodies. Modal synthesis is another technique that

approximates the solution to simple PDEs. Modal synthesis has many similar

advantages to waveguide synthesis but instead of approximating a solution to the

physical state of a PDE, modal synthesis approximates the solution to the PDE in

terms of the energy present as each normal mode (a normal mode is the physical

location of a resonant frequency of the model). The first step in modal synthesis

is to perform an eigendecomposition on the PDE to represent the system in terms

of its normal modes. Once a matrix of normal modes has been established, initial

conditions can be provided and the system is numerically integrated over time; at

each time step, the frequency and amplitude for each normal mode is produced.

This information is usually then supplied to a bank of oscillators to generate the
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timbre of the structure at the given point in time.

The cost involved in using modal synthesis comes from the eigendecompo-

sition of the PDE (assuming one is possible) and from numerical integration for

each mode at each point in time [4, pg.10-11]. Therefore, the complexity of the

problem’s PDE as well as the number of modes one wishes to track will determine

the relative cost of the technique. For simple models based on wave equations,

the efficiency is on par with waveguides. However, some PDEs cannot be diago-

nalized, and therefore it may be impossible to deduce the eigendecomposition for

some meshes. In order to determine the normal modes of these sorts of systems,

very expensive integration methods and spectral analysis must be computed prior

to beginning integration of the technique’s output.

When eigendecomposition is possible, modal synthesis is typically stable.

However, if an eigendecomposition is not possible and direct simulation of the PDE

is the only way to determine the normal modes, numerical integration errors can

arise depending on method. With enough error, the system is prone to instability.

Modal synthesis accuracy is determined by the number of modes modeled

and the accuracy of the initial PDE system in describing a given model. Similar

to waveguides, a limitation of modal synthesis is the assumption that the model in

question does not undergo large displacements that would result in large changes to

modal frequencies. Likewise, modal synthesis systems do not model high energies.

Any reconfiguration in the system will require another eigendecomposition.

Real-time configuration should be possible, but arbitrary meshes can be unpre-

dictably expensive (and sometimes impossible). Because modal synthesis can-

not accurately model large displacements resulting from high energies, a model

that disassembles itself is not feasible without significant programmer interven-

tion. Since modal synthesis derives its solution solely from the frequency-domain,

there is no direct visual representation of physical state, but it can be deduced

through analytical means.
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2.5 Finite Element Methods (FEMs)

Finite element methods (FEMs) [4, pg. 16-18] use triangle meshes to quan-

tize the topology of a model in order to numerically solve for forces along the mesh.

FEMs typically use partial differential equations to approximate forces acting on

a model. PDEs enable one to directly simulate a PDE system and to avoid the

pitfalls of approximation techniques like waveguides or modal synthesis. Of course,

direct simulation of PDEs has its own pitfalls: high computational costs and the

potential for numerical instability.

The entire reason that waveguides and modal synthesis exist is that direct

PDE simulation is very computationally expensive, except in the few special cases

when PDEs actually perform better than their counterparts (i.e. 2-D (or higher)

PDEs perform better than 2-D (or higher) waveguides ??, PDEs perform better

than modal synthesis with complex mesh topographies). The high costs are not

unmanageable and can often be optimized significantly for fundamental PDEs.

The 2-D wave equation is an example of a highly optimized PDE that is used

often in computer graphics to simulate surface waves in liquids.

Stability conditions for PDEs are dependent on the accelerations produced

by the PDE’s variables. By choosing the proper numerical method to integrate by,

as well as choosing the right time step to integrate at, most PDEs remain stable.

Differential equations that produce very large acceleration values are consider stiff

equations and require very small time steps and very specialized numerical methods

in order to retain their stability.

Almost any well-defined physical propagation (such as airflow, heat disper-

sion, or surface vibration) can be described as a system of PDEs and therefore, a

PDE-based model accurately simulates almost any flow-based physical behavior.

PDEs can be reconfigured by re-computing any variables in the equation.

In the real-time case, care must be taken to avoid instabilities from sudden changes

in the PDE’s variables or otherwise new variables may require a smaller time step.

Directly simulated PDEs operate on physical state. Choosing a preferred

data representation, be it audible or visual, is trivial.



Chapter 3

A Mathematical Framework for

Vibration

The physics engine proposed in this work models sonic vibrations as me-

chanical oscillations of atomic particles. The particles are connected together by

attracting and repelling forces, and when organized into a network, produce rich

and dynamic spectra. I will build this model up, starting with the simplest forms

of oscillation and working into more and more intricate systems, beginning with

simple harmonic motion.

3.1 Simple Harmonic Motion

Simple harmonic (sinusoidal) motion is the simplest form of periodic oscil-

lation [8, pg. 4-6]. This motion is describe by

x = A sin

(
2π
t

τ
+ φ

)
, (3.1)

where x is displacement, τ is the period of the oscillation, t is time, φ is the phase

offset, and A is the oscillation’s amplitude.

When considering harmonic motion as being represented as moving along

a circle at constant speed, I can designate angular frequency by ω, displacement x

can be written as

x = A sin (ωt), (3.2)

15
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where

ω =
2π

τ
= 2πf. (3.3)

The velocity and acceleration can be differentiated from (3.12), obtaining

ẋ = ωA sin (ωt+ π/3),

= ωA cos (ωt),
(3.4)

and
ẍ = ω2A sin (ωt+ π),

= −ω2A sin (ωt),

= −ω2x.

(3.5)

This system is represented in the complex plane by using Euler’s identity [8, pg. 6-

7], eiθ = cos (θ) + i sin (θ), substituting the values from the general solution

z = Aeiωt,

= A cos (ωt) + iA sin (ωt),
(3.6)

where z is a complex sinusoid.

3.2 Mechanical Illustration

The core of the engine is focused on Newtonian dynamics. Let’s begin by

considering the elementary case of a mass connected to a wall by a spring, in one

dimension [8, pg. 4].

m

(x = 0)

k

Figure 3.1: A mass at equilibrium connected by a spring to a fixed wall

Figure 3.1 shows a mass, m, attached to a wall via a spring with stiffness

k; the mass is displaced by x. The spring acts to maintain an equilibrium between

the mass and the wall.
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m

(x > 0)
k

F

Figure 3.2: A mass, displaced from its equilibrium, connected by a spring to a

fixed wall

Displacing the mass results in a restoring force from the spring, pull back

in the opposite direction of its displacement (depicted in Fig. 3.2). This reciprocal

force describes Hooke’s law, which is formalized as

F = −kx. (3.7)

3.3 Classical Definition

When applying Newton’s second law, F = ma,

mẍ = −kx, (3.8)

mẍ+ kx = 0. (3.9)

The angular frequency, ωn, is defined by the equation

ωn =

√
k

m
. (3.10)

(3.9) can be written as

mẍ+ ω2
nx = 0, (3.11)

a homogeneous second-order linear differential equation, which has the general

solution

x = A sin (ωt+ φ), (3.12)

or

x = ẋ0 cos (ωnt) + x0 sin (ωnt), (3.13)
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where x0 is initial displacement and ẋ0 is initial velocity. The amplitude and phase

are derived from the system’s initial conditions

A =
√
ẋ0

2 + x20,

φ = tan−1
(
ẋ0
x0

)
,

(3.14)

3.4 Damped Harmonic Motion

Viscous damping force [8, pg. 11-13] is expressed by the equation

F = cẋ, (3.15)

where c is the damping constant. The damping ratio between damping constant

and spring constant is defined [1, pg. 137-143] as

ζ =
c

2
√
mk

. (3.16)

Adding the damping force to (3.9), the equation of damped harmonic motion

becomes

mẍ+ cẋ+ kx = F (t). (3.17)

When F (t) = 0, our equation reduces to a homogeneous differential equation which

has a solution of the form

x = eγt, (3.18)

and substituting terms ωn, γ, and ζ into the characteristic equation

γ2 + 2ζωnγ + ω2
n = 0, (3.19)

which has two roots,

γ1,2 = −ζωn ±
√
ζ2ω2

n − ω2
n. (3.20)

This results in the general solution given by

x = Aeγ1t +Beγ2t, (3.21)
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where A and B are coefficients evaluated from the system’s initial conditions:

A = x0 +
γ1x0 − ẋ0
γ2 − γ1

, (3.22)

B =
γ1x0 − ẋ0
γ2 − γ1

. (3.23)

Depending on the value of ζ (and hence, the roots to the characteristic equation),

the system will have one of three possible states: critically damped, over-damped,

or under-damped [18].

3.5 Critically-Damped (ζ = 1)

Critically-damped systems converge to zero as quickly as possible without

oscillating. The general solution for a critically-damped system is

x(t) = (A+Bt) e−ωnt, (3.24)

where

A = x0, (3.25)

B = ẋ0 + ωnx0. (3.26)

3.6 Over-damped (ζ > 1)

Over-damped systems converge to zero slower than critically-damped sys-

tems. The general solution for an over-damped system is

x(t) = Aeγ1t +Beγ2t, (3.27)

where

A = x0 +
γ + x0 − ẋ0
γ2 − γ1

, (3.28)

B =
γ + x0 − ẋ0
γ2 − γ1

. (3.29)
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3.7 Under-damped (0 ≤ ζ < 1)

Under-damped systems converge to zero slower than critically-damped sys-

tems while still oscillating. The frequency at which these systems is known as

the damping angular frequency (ωd). The general solution for an under-damped

system is

x(t) = e−ζωnt (A cos (ωdt) +B sin (ωdt)) , (3.30)

where

ωd = ωn
√

1− ζ2, (3.31)

A = x0, (3.32)

B =
ζωnx0 + ẋ0

ωd
. (3.33)

When ζ = 0, the system is undamped and the damping angular frequency is the

natural angular frequency.

3.8 Coupling, Normal Modes and Coordinates

Because I wish to model multi-frequency spectrum, I will need to deal with

systems capable of producing more than one natural frequency. When masses are

coupled together [8, pg. 34-36], they produce respective forces on one another and

produce additional modes of vibrations (and hence, additional natural frequencies).

The number of modes of a system is equal to the number of degrees of freedom

in a system. Each normal mode of vibration has a unique configuration (normal

coordinates) that corresponds to that mode’s pattern of oscillation through the

system. As I say above for single mode systems, determining the angular fre-

quency required solving the linear differential equation. The linear normal modes

and coordinates for undamped systems are determined through similar means, by

solving for a linear system of differential equations. This can be achieved easily

through matrix decomposition methods.
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m1 m2

x1 x2

k1 k2 k3

Figure 3.3: A two-mass at equilibrium connected by springs to two fixed walls

3.8.1 Eigendecomposition

As an example, suppose there are two masses connected together and to

two walls via three springs in one-dimension [8, pg. 26-28] as shown in figure 3.3.

From the given parameters, a linear system of equations is formed that can

solve for the system’s normal modes and coordinates.

The equations of motions for the two masses are as follows:mẍ1 + k1x1 + k2(x1 − x2) = 0

mẍ2 + k2(x2 − x1) + k3x2 = 0.
(3.34)

In order to solve for the modes of the system, the solution x(t) = eiωt is assumed,

where ẍ = −ω2x. For this, the system should take on the matrix form∑N
n=0 F (xn)

ma

= ẍa, (3.35)

−k1 + k2
m1

k2
m1

k2
m2

−k2 + k3
m2

[ x1

x2

]
=

[
ẍ1

ẍ2

]
. (3.36)

In order to simplify the solution for example purposes, let us assume the system

is homogeneous, where k = k1 = k2 = k3, m = m1 = m2 and

α = −2k

m
, (3.37)

β =
k

m
. (3.38)

Substituting for α and β: [
α β

β α

]
x = ẍ. (3.39)
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Figure 3.4: Normal coordinates x1,2 for ω2
1,2

Then, assuming a solution very similar to that of a single mass differential equation

x = veiωt =

[
v1

v2

]
eiωt, (3.40)

and therefore

ẍ = −ω2veiωt = −ω2x, (3.41)[
α β

β α

]
x = −ω2x. (3.42)

Mx = λx, where λ = −ω2,

∣∣M + ω2I
∣∣ = 0 =

∣∣∣∣∣ α + ω2 β

β α + ω2

∣∣∣∣∣ . (3.43)

The characteristic equation of the determinant is found to be

ω4 + 2αω2 + α2 − β2 = 0, (3.44)

which has the roots

ω2
1,2 =

−2α±
√

(2α)2 − 4(α2 − β2)

2
= −α± β. (3.45)

To find the eigenvectors (and hence the normal coordinates), the system is solved

for x, using the eigenvalues in the form(
M + ω2

1,2I
)
x1,2 = 0, (3.46)

where x1,2 are the eigenvectors of the matrix.

Solving the eigenvectors using arbitrary constants,∣∣∣∣∣ α + ω2
1 β

β α + ω2
1

∣∣∣∣∣x1 =

∣∣∣∣∣ −β β

β −β

∣∣∣∣∣x2, (3.47)

x1,1 = x1,2, (3.48)
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and ∣∣∣∣∣ α + ω2
2 β

β α + ω2
2

∣∣∣∣∣x2 =

∣∣∣∣∣ β β

β β

∣∣∣∣∣x1, (3.49)

x2,1 = −x2,2, (3.50)

where, with normalized directions,

x1 =

 1√
2

1√
2

 , (3.51)

and

x2 =

 1√
2

− 1√
2

 . (3.52)

resulting in the normal coordinates shown in figure 3.4. This formulation is par-

ticularly helpful in determining the normal modes of vibration for arbitrary linear

systems of any number of masses.

3.9 Driven Vibrations

Normal modes describe the central frequencies at which the system tends

to resonate [8, pg. 21-23]. A mode tends to have some amount of bandwidth

around the central frequency. When driving a linear system, its important to take

into account the spectrum of the driving force. When the driving force has a

spectrum that is harmonically similar to the system, it tends to reinforce these

central frequencies. However, when the driving force is harmonically dissimilar to

the system, it tends to force the modes of the system to oscillate slightly above

or below their natural frequency. Careful attention can be placed on deciding

qualities of the driving force in order to produce dynamic spectral results from the

system.

3.10 Non-Linear Vibrations

So far I have discussed purely linear systems, but it is the intention of this

work to handle non-linear systems as well. Non-linear systems are simply systems
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that have dependent variables that cannot be solved for [8, pg. 28-29]. For these

reasons, eigendecomposition becomes an inefficient means of determining solutions

and numerical integration from known initial conditions becomes the only possible

avenue. Examples of non-linearity in the proposed system include collision forces

(which are conditional forces based on agent proximity) [14, pg. 118-129], hysteresis

(which is a non-linear state of springs) [13] and rigidness of springs (which produces

a non-linear form of chaotic motion, similar to the motion of double pendulums)

[2], discussed in the following chapter.



Chapter 4

Design Specification

4.1 Primitives

The audio-physics engine is effectively a mass-spring network, which con-

sists of agents that interact with their neighbors using simple, relational behaviors.

From these simple behaviors, the lowly agent-to-agent communications give rise to

larger group dialogues; complex audible phenomena akin to the sounds of the phys-

ical world. I consider the lowest-level components of the system as its primitive

types. These types are placed into one of two categories: the vibrating agents, and

the forces that act on these agents. These primitives consist of particles, springs,

dampers, collisions, constraints and external forces.

4.1.1 Particles

In this system, I refer to all vibrating agents as particles. A particle is the

atomic unit of the system, consisting of a position vector (xp), velocity vector (ẋ),

mass (mp), spherical volume (rp) and kinetic friction (µp).

Position and Velocity

For strong plausibility of the model, I should be able to have a correlating

visual model and be able to dynamically alter the configuration of the model.

Though a Hamiltonian system ensures energy preservation, a Newtonian model

25
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allows us to describe the system much more easily, and with re-configurable terms.

Therefore, it is suitable to use a Newtonian state for each particle in the system.

Mass

If I ignored individual differences in mass in the system, the system would

only exhibit homogeneous macro-behaviors which can reduce to a variation of the

wave equation. By treating each particle’s mass independently, the system can

also exhibit non-homogeneous, dispersive behavior.

Spherical Volume

Because I wish to account for collisions in the system, I include a simple

notion of volume. The engine considers particles to act as simple spheres, therefore

the volume is treated as a radius. During collision detection, the distance between

two particles is checked against sum of the two particles’ radii to determine if any

intersection occurs.

Kinetic Friction

The particle’s kinetic friction value is the kinetic friction along any discrete

point along the particle’s circumference. The values from two particles are used to

compute their restitution factor (relative energy loss) during an inelastic collision.

4.1.2 Springs

Springs produce harmonic motions through the particle network. Typically,

springs are treated linearly. However, for the model, spring exhibit non-linear

plasticity as well as linear elasticity. The restoring forces they produce both depend

and act on pairs of particles, the displacements of which are denoted by xa and xb.

Fspring = −kspring(‖d‖ − Ls)
d

‖d‖
, (4.1)

where

d = xa − xb, (4.2)
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kspring =



κs, if ‖d‖ < Ys

κ′s, if Ys < ‖d‖ < Us

κ′′s, if Us < ‖d‖ < Rs

0 if ‖d‖ > Rs

. (4.3)

In addition to referencing the pair of the particles, a spring consists of an elastic

constant (κs), a resting length, or equilibrium, (Ls), a yield point (Ys), the spring’s

ultimate strength (Us), the spring’s rupture point (Rs), and two plastic constants

(κ′s and κ′′s).

Elastic Constant

The elastic constant describe the slope between stress and strain of the

spring while it persists in its elastic region.

Resting Length

The spring produces a force relative to the displacement from its resting

length between two particles. By introducing springs with non-zero resting length,

systems have deformable shape. With sufficiently stiff springs, this shape becomes

rigid, enabling the system to model vibrations in semi-rigid bodies. As the spring

is displaced into the super-elastic region, the resting length is increased to account

for the maximum stress placed on the spring. The engine can also allow the spring’s

resting length to decrease if the spring is compressed below its elastic region.

Yield Point

The yield point describes the point at which the spring becomes super-

elastic, entering a region of plasticity, which often enacts a non-linear response in

the spring dependent on how far displaced it is beyond this yield point. As the

spring displaces further above the yield point, its resting length and yield point is

increased, thus shifting its elastic region as well. As the spring releases from its

maximum displacement above the yield point, instead of returning to its previous

state, it now exhibits elastic behavior from this new yield point. At this point, the
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spring may continue to increase the yield point until its point of rupture. At any

time before this rupture, if the spring is displaced below the original yield point, its

resting length and current yield point will decrease, which can enable it to return

to its original state given the right conditions.

Ultimate Strength Point

The ultimate strength point is a point between the yield point and rupture

point in the plastic region. Typically, the ultimate strength point is the point

at which the spring produces the most stress for any given strain. The name is

adopted out of convention, but depending on the spring’s parameters, it may or

may not exhibit this behavior, and more importantly acts as a point to break up

the plastic region’s slope into two linear segments.

Rupture Point

The rupture point is the point at which the spring will break, severing the

bond between the two referential particles and removing itself from the system.

Beyond the point of rupture, the spring cannot recover.

Plastic Constants

Plastic constants, like elastic constants, describe stress-strain slope, but in

the plastic region of the spring. When modeling a ductile material, one might

set the first plastic constant to have a lower slope than the elastic region and the

second constant to have negative slope as it arrives at the rupture point.

4.1.3 Dampers

Like springs, dampers produce forces that both depend and act on a pair

of particles. However, unlike springs, dampers are only treated in the linear case.

Fdamping = −r (ẋa − ẋb) , (4.4)

where

d = xa − xb. (4.5)
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Aside from references to two particles, they consist simply of a damping constant

(r). Though dampers are usually lumped into a damped-spring, I isolate damping

in this system so that I can dampen particles that do not share spring forces. This

is helpful when attempting to filter specific harmonics of a system (see chapter 4).

Damping Constant

The damping constant determines the amount of resistive force produced

between the pair. Often dampers and springs act on the same particles. In those

cases, it is useful to derive the damping constant from the damping ratio (ζ), which

is relative to the spring’s linear stiffness constant (k),

ζ =
r

2
√
km

. (4.6)

When 0 < ζ < 1, the spring will be under-damped. If ζ = 1, the spring will be

critically damped. If ζ > 1, the spring will be over-damped.

4.1.4 Collisions

Collisions are conditional forces between pairs of colliding particles. A col-

lision’s force is determined entirely by its two particle references. It makes use of

every component of both particles.

Elastic Collisions

Elastic collisions are collisions between two particles that conserve momen-

tum (i.e. no energy loss due to friction) [14, pg. 118-129]. The conservation of

momentum demands that the total momentum before the collision is the same as

the total momentum after the collision

maẋa +mbẋb = maẋ
′
a +mbẋ

′
b, (4.7)

where ẋ is velocity before the collision and ẋ′ is velocity after the collision.

From this equation, I can derive the after-collision velocities for each particle

from their before-collision velocities and masses.

ẋ′a =
ẋa (ma −mb) + 2mbẋb

ma +mb

, (4.8)
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ẋ′b =
ẋb (mb −ma) + 2maẋa

ma +mb

, (4.9)

only when ‖xa − xb‖ < (ra + rb).

Elastic collisions suffice for systems of high-density, small mass particles,

but can appear unrealistic for larger structures.

Inelastic Collisions

Inelastic collisions are collisions that do not conserve momentum by ac-

counting for some energy loss due to friction between the two colliding particles

[14, pg. 118-129]. The amount of loss is determined by the coefficient of restitution

Cr = µaµb. The equations for velocity after inelastic collisions are defined as

ẋ′a =
Crmb (ẋb − ẋa) +maẋa +mbẋb

ma +mb

, (4.10)

ẋ′b =
Crma (ẋa − ẋb) +maẋa +mbẋb

ma +mb

, (4.11)

only when ‖xa − xb‖ < (ra + rb).

The advantage to this formulation is that the type of collision will vary

depending on Cr. When Cr = 1, the additional friction calculation is omitted and

the collision is perfectly elastic. When Cr = 0, the collision is perfectly inelastic,

resulting in the particles “sticking” together, moving together at the same speed

and direction,

ẋ′a = ẋ′b =
maẋa +mbẋb
ma +mb

. (4.12)

Whenever 0 < Cr < 1, the collision is partially inelastic, which is what is commonly

expected. Using inelastic collisions in the engine allows all types of collisions

to occur during simulation. Since Cr is calculation from each particles’ kinetic

friction, the elasticity of the collision is entirely under the user’s control. Typically,

the engine will use Eqs. 4.10 and 4.11 for particle collisions unless the engine is

explicity using only elastic collisions.

4.1.5 Constraints

Constraints [14, pg. 101-109] act between two particles, keeping them a

given distance apart, to produce fully rigid bodies. One may think of a constraint
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as a spring with infinite stiffness and a given resting length. It references a pair of

particles and consists solely of a resting length (Lc),

xa = xa − o, (4.13)

xb = xb + o, (4.14)

where

o = (‖d‖ − Lc)
d

‖d‖
, (4.15)

d = xa − xb. (4.16)

4.1.6 World Forces

External forces are all the forces, model-driven and user-driven, that ex-

ist in the system but are not produced by the system’s particles. Model-driven

forces such as gravity (g), air drag (b), and wind velocity (W) can be treated like

constants that exhibit predictable behavior over the entire system. Even when

dynamically altered, these forces will generate fairly predictable behavior. How-

ever, user-driven forces such as microphone and keyboard input are inherently

non-constant.

Gravity

The engine uses a simplistic model of gravity by applying a directional force

to all particles in the system [12, pg. 390-394],

Fgravity = mg. (4.17)

Air Drag

I can model the viscosity of the medium the model exists in (be it air,

water or jello) by considering a force relative to the given particle’s velocity [12,

pg. 394-396],

Fdrag = −bẋ. (4.18)
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Wind Force

Wind can be modeling by applying a force relative to the direction of the

difference between a particle’s velocity and wind velocity [12, pg. 460]

Fwind = kwind| (ẇ− ẋ) ·N|, (4.19)

where ẇ is wind velocity and N is the normal of the particle. The normal can

be calculated by determining the “edges” of the model’s mesh from neighboring

particles.

4.1.7 External Forces

Users can also submit their own force functions, these forces are accounted

in total net force for the system.

4.1.8 Microphones

The engine would not be complete without a method for extracting sound.

I treat the speed of sound as infinite, and simply measure directional velocity to-

wards a listening position. The engine attenuates the signal based on the particle’s

distance from the listening position. This effectively models an omni-directional

microphone. Additionally, by attenuating this velocity energy along the direction

angle, the engine can model more complex pickup patterns such as bi-directional

and cardioid patterns,

y =
N∑
i=0

ẋi ·
(

d
‖d‖

)
‖d‖

, (4.20)

where y is the pressure produced by all particles in the system and

d = xmic − xi. (4.21)

A more accurate but complex listening model would also include a delay based on

distance,

z =
‖d‖fs
c

, (4.22)
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where z is the delay in samples, fs is the sample-rate, c is the speed of sound in

the medium. Discretization errors will occur when particles move around, so each

particle’s delay should use 4-point interpolation as well.

4.2 Finite Difference Methods

In order to observe the state of the ODE system, and hence, “listen” to it,

I must solve the system using finite difference methods. A finite difference method

approximates a discrete solution to Newton’s equations of motion with continuous

forces [10, pg. 637]. These methods discretize the time domain of the differential

equation. Once the domain is discretized, the methods produce a set of discrete

numerical approximations to the derivative.

There are many finite difference methods that each have unique strengths

and weaknesses. This article will cover a few basic types and from comparison,

make a strong case for Beeman’s Algorithm as the primary method for the engine.

To simplify discussion, I will present each method as a solution to the motion of a

particle in one dimension. Newton’s equations of motions as differential equations

are coupled in the following manner:

dx

dt
= ẋ(t) = v(t), (4.23)

dv

dt
= ẍ(t) = v̇(t) = a(t), (4.24)

where a(t) = a(x(t), v(t), t). And since F = ma,

N∑
i=0

Fi(t) = ma(t) = mv̇(t) = mẍ(t). (4.25)

If I consider ∆t to be the time interval between successive sample boundaries

of the discrete equation solutions, then an, vn, xn are the discrete solutions to

acceleration, velocity and displacement at time tn = t0 + n∆t, where

an =
F (xn, vn, tn)

m
. (4.26)

The goal of any finite difference method is to determine the approximate value for

xn+1 and vn+1 at time tn+1 = tn + ∆t. Finite difference methods converge on the

actual solution to a differential equation as ∆t approaches zero.
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Figure 4.1: Numerical approximations to a continuous function with a large

timestep (left) and a small timestep (right).

4.2.1 Integration Types

Finite difference methods [15] can be divided into two broad categories;

multi-step methods which use several previous state approximations to calculate

future states and Runge-Kutta methods which use several future calculations to

approximate a weighted averaged future state. Of these categories, there are two

approaches to deriving solutions; explicitly using a “forward” method and implic-

itly using a “backward” method. Explicit methods calculate a future state by

calculating current state:

Y (t+ ∆t) = F (Y (t)) . (4.27)

Implicit methods solve by involving both the current and future state:

G (Y (t), Y (t+ ∆t)) = 0. (4.28)

Backward methods often require root-finding algorithms to converge towards so-

lutions. A common approach to using implicit methods to solve time-domain

equations is to use a paired “predictor/corrector” algorithm. The predictor por-

tion derives a rough approximation to future state from current state while the

corrector portion refines the approximation iteratively. Backward methods that

are adjusted using predictor-correctors are known as “semi-implicit”.

4.2.2 Discretization Error, Accuracy and Stability

When calculating approximations using a finite difference method, there

will be a difference between the value of the approximation and the exact actual

solution’s value. This error difference is known as discretization or truncation error
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[10, pg. 639-640]. This error at any given point is known as local truncation error.

The error compounded over the domain of the integration method is known as

global truncation error. Often the global error is notated as the nth order of ∆t,

O(∆tn). The higher the order, the lower global truncation error and hence, higher

accuracy of the method. 1

The stability of a method is measured by how well the method dampens

errors and conserves energy. Differential equations that are “stiff” are those with

rapid variation in the solution. Methods that react poorly to this high-frequency

fluctuation often incrementally over or under-approximate the solution, resulting

in exponential energy growth for over-approximation and exponential decay for

under-compensation. For audio applications, it is often more desirable for the

engine to “undershoot” a solution resulting in artificial damping rather than un-

bounded energy growth. For this reason, the engine favors approximations that

tend to the latter case. It is important to choose a relatively small ∆t to generate

a stable solution (depicted in Fig. 4.1).

4.2.3 Explicit Integration Methods

The following is an overview of several well-known explicit methods and

their respective strengths and weaknesses. I begin by consider the following Taylor

series expansion of the equations of motion [12, pg. 492-493]:

vn+1 = vn + an∆t+O(∆t2), (4.29)

xn+1 = xn + vn∆t+
1

2
an∆t2 +O(∆t3). (4.30)

Euler Method

Euler’s method is the most elementary forward numerical method [10,

pg. 638].

vn+1 = vn + an∆t, (4.31)

xn+1 = xn + vn∆t. (4.32)

1It is important to note that round-off error, which results from the finite precision on com-
puters, also leads to error, but is much less significant than truncation error.



36

As can be observed, it is equivalent to the Taylor series expansion. It uses in-

formation only from the beginning of current state’s interval to approximate the

future state. Its local truncation error is O(∆t2) while its global truncation error

is O(∆t). For this reason, it is known as a first-order method, often producing

unstable and inaccurate solutions.

Euler-Cromer Method

I can improve Euler’s stability for oscillatory systems simply by using a

last-point approximation.

vn+1 = vn + an∆t, (4.33)

xn+1 = xn + vn+1∆t. (4.34)

This slight alteration, known as Euler-Cromer [15], conserves energy for most low-

stiffness oscillatory equations, rendering this method significantly more stable and

accurate than Euler.

Leapfrog Method

Another improvement of Euler’s method is to use the middle velocity, in-

stead of the beginning or ending velocity. This half-step method is known as

“Leapfrog” integration [15].

vn+ 1
2

= vn− 1
2

+ an∆t, (4.35)

xn+1 = xn + vn+ 1
2
∆t. (4.36)

Its important to note that this method is not self-starting, therefore the initial

mean velocity must be calculated using

v 1
2

= v0 +
1

2
a0∆t. (4.37)

This method provides more stability that Euler and is a commonly-used higher-

order solver.
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Euler-Richardson Method

I can improve the Leapfrog method for velocity-dependent systems by com-

bining it with an Euler step. The Euler-Richardson is a method that combines

these two methods [15].

ṽn+ 1
2

= vn +
1

2
an∆t, (4.38)

x̃n+ 1
2

= xn +
1

2
vn∆t, (4.39)

ãn+ 1
2

=
F (x̃n+ 1

2
, ṽn+ 1

2
, tn+ 1

2
)

m
, (4.40)

vn+1 = vn + ãn+ 1
2
∆t, (4.41)

xn+1 = xn + ṽn+ 1
2
∆t. (4.42)

Note that two acceleration values are needed, the beginning acceleration and the

middle acceleration. I want to compute as few acceleration terms as possible in

the engine. Luckily, Euler-Richardson is significantly more accurate than Euler,

so the time step can be much larger, reducing its computational footprint. This

method is particularly excellent at accurately approximating oscillatory solutions,

often compute solutions only a few bits different. However, its stability range is

much smaller than even Euler-Cromer, so it does not fair well against moderately

stiff systems.

Verlet Method

A popular choice of molecular simulations, Verlet’s method [10, pg. 640-642]

is a second-order, explicit central difference method that uses the current position,

previous position, and current acceleration.

xn+1 = 2xn − xn−1 + an∆t2 +O(∆t2). (4.43)

This method is equally stable as Euler-Cromer, but without needing to compute

velocity directly. For systems that do not depend on velocity, this is a particularly

efficient method. However, for systems that depend on velocity, one must directly

compute velocity from positions:

vn =
xn+1 − xn−1

2∆t
. (4.44)
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This is a first-order approximation, which is very inaccurate. Additionally, when

using very small time steps (as I find in the engine), there is a significant amount

of round-off error, resulting in the method often reporting zero velocity for any

values below a fairly large epsilon.

Velocity Verlet Method

In order to avoid the velocity pitfalls of Verlet but still gain its computa-

tional advantages, one can use the Velocity Verlet form [10, pg. 641-642]

xn+1 = xn + vn∆t+
1

2
an∆t2, (4.45)

vn+1 = vn +
1

2
(an+1 + an) ∆t, (4.46)

It is a second-order method for both position and velocity. Alternatively, one can

compute velocity from current position, future position and future acceleration

(storing this value to be used for the next position update),

vn+1 =
xn+1 − xn

∆t
+

1

2
an+1∆t. (4.47)

Beeman Method

An improvement on Verlet is Beeman’s method [3], which uses previous,

current and future acceleration terms,

xn+1 = xn + vn∆t+
1

6
(4an − an−1) ∆t2, (4.48)

vn+1 = vn +
1

6
(2an+1 + 5an − an−1) ∆t. (4.49)

(4.50)

Alternatively, velocity can be derived from slightly different weights,

vn+1 = vn +
1

12
(5an+1 + 8an − an−1) ∆t. (4.51)

It improves Verlet in terms of energy conservation, providing significantly more

stability. It does not improve on Verlet’s accuracy, however.
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Runge-Kutta

A commonly used, but often inefficient method is the classical Runge-Kutta

(or RK4) [12, pg. 493-495]. This method computes a weighted average of the

iterative approximations from the current state.

xn+1 = xn + vn∆t, (4.52)

vn+1 = vn +
(k1 + 2k2 + 2k3 + k4)

6
∆t, (4.53)

where

k1 = a (xn, vn, tn) , (4.54)

k2 = a

(
xn +

k1
2

∆t2, vn +
k1
2

∆t, tn +
∆t

2

)
, (4.55)

k3 = a

(
xn +

k2
2

∆t2, vn +
k2
2

∆t, tn +
∆t

2

)
, (4.56)

k4 = a
(
xn + k3∆t

2, vn + k3∆t, tn + ∆t
)
. (4.57)

RK4 does indeed provide significantly more stability and accuracy than Euler.

However, it should also be clear that RK4 requires the times as many acceleration

computations. For particle systems and systems where acceleration has many

dependent variables, it is still more practical to use an Euler or Verlet method.

The computational cost of RK4 is greater than using an Euler or Verlet variation

at one-fourth the time step.

4.2.4 Numerical Methods Conclusions

In summary, the engine requires a fixed time step (at the audio sampling

rate) and demands energy conservation (stability) over accuracy. It also needs to

be able to provide this stability for as little computational expense as possible.

Therefore, the engine uses a modified Beeman’s algorithm, to benefit from higher

stability for relatively low computational cost. Using Beeman’s, the engine com-

putes acceleration terms once per sample and integration is optimized by storing

previous acceleration terms as precooked variables.
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Implementation Details

5.1 Low-Level Architecture

As stated previously, in addition to the requirements for sufficient accu-

racy and stability, the engine demands exceptionally high real-time performance

to ensure uninterrupted stream rendering. In order to achieve this high level of

performance, every aspect of the low-level engine must be profiled and optimized

to achieve maximum throughput.

The major difficulty in achieving high-performance comes from the shear

amount of computations that must be performed. For every calculated audio

sample, the engine must calculate the sum of all forces on every particle, integrate

each particle and then measure the energy for every particle for each listening

point (see previous chapter for details). For small numbers of particles and a

sparse network of springs, this is feasible, but as the order of particles and the

density of the network increases, the computational load goes up exponentially.

My optimization strategy deals directly with parallelizing computations, through

the use of SSE registers and thread concurrency, and reducing cache misses by

optimizing the engine’s data structures.

Once an acceptable speed have been reached, the next order of business is

tackling the state management of the engine’s primitives and how it communicates

with the outside world about its internal state, including the creation, deletion,

modification and querying of the engine’s primitives. I deal with this issue by

40
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implementing a reference management system to manage external requests and a

network of associative arrays to manage internal state.

5.1.1 Data Structures

Engine primitives are packed in carefully organized data structures that

are designed to improve cache hits and reduce redundant calculations. The engine

treats particles as one data type and springs/dampers as a another data type.

Precooked Coefficients

Condensing relatively-static variables into fewer run-time operations can

significantly reducing per-sample computation during integration. Take for exam-

ple the following classical integration of a mass on a spring:

Fn = −kxn, (5.1)

ẍn =
Fn
m
, (5.2)

ẋn+1 = ẋn + ẍn∆t, (5.3)

xn+1 = xn + ẋn∆t, (5.4)

which is a total of 6 operations per particle per sample. If it can be assumed that

∆t is fixed (and it will most certainly be under most audio-specific conditions),

the computation costs can be reduced by two-thirds:

gn = Bxn, (5.5)

xn+1 = xn + gn, (5.6)

where gn = ẋ∆t = ẍ∆t2 and B = ∆t2 k
m

, reducing the calculation to only 2

operations per particle per sample.

Warehouse

Both particles and springs have dependent variables (such as mass and

stiffness constants) that they require when calculating their precooked coefficients.
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These values are not needed during integration and only to be referenced when up-

dating or calculating the engine primitives’ properties. These variables are stored

in data warehouse structures in non-contiguous memory.

Reverse-Stack Structures

These two types are placed in tightly packed array in contiguous memory.

I will use two data structures for this; stacks and reverse-stacks.

Reverse-stacks are simple stack structures that push to the bottom instead

of the top of the structure, meaning the first entry exists at the end of the struc-

ture’s memory location, the second item exists right before the end, and so forth

as illustrated:

data[i] = mem[(N − 1)− i], (5.7)

where i is the lookup index, N is the maximum size of the structure, mem is the

location in memory and data is the desired item requested.

Heap Allocation

First I allocate a large heap that I will divide between particles and springs.

At the front of the heap, I place a reverse-stack structure of springs, which reserves

half of the heap. At the middle of the heap, following the end position of the

reverse-stack, I reserve a stack structure of particles. This formation allows us to

have very large maximum sizes for particles and springs while at the same time

only submitting contiguous memory to the cache.

Process Concurrency

As stated previously, integration involves four ordered stages (force calcu-

lations, collision detection, state integration, and constraint calculations). Though

the entire process must be ordered, the individual stages are not. Therefore, the

engine can benefit from asynchronously completing each stage. In order to accom-

plish this, the engine initially deploys worker threads that breakup the tasks for

each stage. The threads block until they all have completed a given stage at which

point they continue.
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SIMD Intrinsics

During integration, I take advantage of modern vector instrinsics for all

particle and spring calculations. During the force calculation stage, I integrate

four springs at a time in order to also vectorize scalar operations for the springs.

I also integrate four particles at a time for similar reasons.

5.1.2 State Management

The internal state management of the engine is similar to the structure of a

database management system, except that the low-level structures and operations

are optimized for real-time application. By managing state internally, many pow-

erful higher level features can be exposed to user for a wide range of applications.

Unique Keys

The engine maintains state internally, rearranging structures in order to

optimize cache throughput. It is desired to not expose its internal structure to the

user since the memory locations of any given data may not persist from update to

update. For this reason, the engine provides users with unique handles in order

to access engine primitives. Each particular instance of a primitive has a unique

handle and handles are not reused. The reason for this is that both the user and the

engine can remove primitives. The user may decide to remove a primitive through

the editing interface, while the engine may decide to destroy a given particle or

spring as a result of its update routine (via rupturing). Each unique handle is

then resolved internally to the corresponding primitive type and memory location

in order to operate on it as requested.

Associative Arrays

The engine also internally maps out the connections between particles

through associative arrays. There are two associative arrays, one for particles

and one for springs. The associative arrays are arrays of lists. The particle asso-

ciative array lists all the springs connected to each particle, the spring associative
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array lists the two particles connected to each spring. The engine uses these arrays

to determine the network topology of the system. For example, users can query

the engine to report all particles within a network and their depth from a given

particle.

Queries

In addition to queries regarding network topology, the engine handles queries

that can filter for specific parameters, much like a SQL database. Queries return-

ing all particles within a given radius or all particles accelerating beyond a given

threshold are two examples. This information can be used to allow Users to de-

velop custom force functions or other routines that can be attached to the core

engine. Queries can provide user-defined functions for comparisons, allowing users

to optimize search results. Queries on primary primitive structures (i.e. structures

submitted during integration) are generally much faster than secondary queries

(i.e. on warehouses).

State Preservation

State Preservation is important for many purposes. Since the models are

dynamic, a given snapshot of the model may produce significantly different results

than another snapshot of the same model. States allow users to store and recall

particular configurations of a given model. This is especially useful in order to

recover after an instability. A particularly important state is the “initial” state

of the model, which the engine treats as the default configuration to save and

restore the model in. The “initial” or resting state of the model is the ideal state

of equilibrium across the entire model. The engine can attempt to recover any

stable configuration back to the “initial” state by increasing air drag significantly,

measuring the total energy of the model and lowering air drag as energy drops,

until the model reaches a static, stable configuration.
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Instancing

In addition to model state preservation, the engine can preserve and modify

a sub-state of the model and instance another copy with altered properties. This

instancing technique allows the engine to render many pitched copies of a given

model. The pitch is estimated with a eigenvalue decomposition and the model’s

force matrix is adjusted to attain a desired fundamental frequency. Instancing

is general enough to be applied to other parameters other than pitch, such as

damping or friction as well. This technique can also benefit from only integrating

instances that have been driven by some external force, allowing a much wider

arsenal that if the entire model was always required to be rendered whole.

5.2 High-Level Interface

The high-level interface is an editing and performance application that pro-

vides real-time audio-video I/O to the engine. Though there is a distinction made

between editor and instrument, the engine does not distinguish the two; modifica-

tion, creation and deletion of primitives are treated as instantaneous non-linearities

in the ODE system.

Once stability can be reasonably assured, I can move on to developing a

high-level user interface. Before I continue detailing the system’s interface design,

I shall examine some applied theory of user interfaces. It should be noted that the

following theoretical observations come after the fact, as a way to describe how

one comes to interact with a system, and not the other way around.

5.2.1 Interface Theory

Interfaces represent the relationship between user and data. I fulfill this

relationship through symbols, which represent the underlying data. Symbols can

represent the data with as little or as much detail as desired, but whatever the

case, using symbols that are unambiguous, concise, and consistent is paramount to

efficient and intuitive interface design. These symbols are generated from the data

and when the data changes, the symbolic representation reflects those changes.
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Control and Feedback

The feedback between the symbol and the data allows the user to under-

stand the basic structure of the interface, but by interacting with the system, one

learns a great deal more; most significantly, one subconsciously prototypes its be-

havior, which leads the user’s to learning its control apparatus. Efficient control is

measured by the amount of power given to the user by the amount of effort required

for that power. Control is guided by feedback, and when there is consistent analog

between human gesture and directive, the user will grasp the underlying relation-

ship. The simpler and more direct the analog, the quicker the average user will

learn the mechanic and be able to address higher-order problems. With a suitable

balance between power and effort, the user can make subtle and dynamic changes

to the underlying data, which in turn is reflected by the symbolic representation.

Mastery

In order for the user’s to master control of the system, several significant

leaps of understanding must take place. Initially, after observing the presented in-

terface, one seeks confirmation of the meanings of the symbolic operations. After

this, one interacts with the interface and observes the variations in the symbolic

representation, produced by the user’s changing of underlying data. Once one

perceives the correlation between data changes and symbol variation, one begins

to recognize behaviors associated with changes one imparts on the system. When

the representation is updated at a rate where motion is perceived, one is given the

opportunity to directly observe in time the symbol-to-data correlation. With this

level of understanding, one learns to align the user’s control apparatus, balanc-

ing the user’s effort with the power one needs. Once one successfully learns this

balance, one masters the control, and regulates it to a background process. Once

control is out of the foreground, one can then focus the user’s mental prowess on

higher-order operations, namely building and playing musical instruments.
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5.2.2 Model-View-Controller

The High-Level Application adopts the model-view-controller (MVC) de-

sign pattern [9, pg. 4-6]. Care is taken to ensure the interface remains as modular

as possible. The low-level engine is built specifically to be highly modular; the

view and controller components of the application are designed to operate in a

similarly agnostic fashion.

5.2.3 Graphics Engine

The application hosts a modern OpenGL graphics rendering engine. The

engine supports modern techniques for shading and lighting effects. Though these

can be used in artistic presentations, they can assist users in determining the

depth of the model (using ambient occlusion methods) as well as the mesh nor-

mals (using diffuse and specular lighting methods). The graphics pipeline involves

rendering ray-traced spheres and cylinders to represent the particles and springs.

Ray-traced primitives involve projecting simple geometry onto a camera-aligned

billboard. This technique produces the effect of perfectly smooth meshes with

accurate depth projection and orthogonal vectors for each pixel on screen. This

allows us to follow up the ray-tracing technique with a Phong lighting model for

ambient, diffuse and specular lighting. Following lighting calculations, I use a full-

screen post process; a screen-space ambient occlusion algorithm that accounts for

occluded light when objects persist near enough to one another. Lighting effects

allow users to have a strong sense of the topology of their model. The ambient

occlusion significantly improves this sense of topology, and is common in many

molecular rendering programs.

5.2.4 The Editing Interface

A significant issue with this proposed system is how it should allow users

to construct and modify their virtual instruments. It can be a tricky situation,

since users will desire both the conventions of synthesizer programs as well as 3-D

modeling programs. Fundamentally, the proposed system’s editing interface should
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provide users with workspace to construct their models with as little interference

as possible. Conventions developed in 2-D and 3-D artistic modeling programs are

considered. Though the editor does not need the precise sophistication of CAD

software, some of the techniques developed for use in CAD editing software can be

adopted in this case.

At the system’s lowest level exists individual particles and the spring forces

that act on them. These are the elements that comprise the ODE system. Particles

have physical state as well as several associated properties such as radius and

mass. Springs generate forces which describe how particles interact. They have

associated properties such as tension and damping values. From these simple

elements and a handful of properties, I can produce a huge variety of sounds in

this environment. Many models begin to sound satisfyingly complex around several

tens of elements, but other models may require closer to several hundred to a few

thousand particles to sound equally convincing. Such a scenario may seem quite

unwieldy. Therefore, I strike a balance between power and effort by introducing

the notions of prefabrications and presets, on top of primitives.

Prefabrications can be seen as groups of particles and their related spring

forces. They are practical for constructing instruments without having to con-

stantly operate at the tedious elemental level. Presets can be seen as prefabrica-

tions with predefined values and value ranges. The point of this object hierarchy

is to enable the user to balance their amount of power with respect to the ef-

fort involved for that power. Constructing everything solely at the atomic level is

democratic but also inefficient, especially when the user creates a simple string out

of particles and then wishes to use many more strings to complete the instrument.

A prefabricated string can make this task much easier. Prefabricated strings can

also have presets that define different parameter vectors for various kinds of strings

(rope preset, metal preset, rubber preset, etc). By implementing prefabrications

and presets, the user can work with fewer, more complex elements instead of the

often-overwhelming amount of individual mass and spring elements.
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5.2.5 The Performance Interface

Performance tools are the most complex group of functions. Some tools

simply move the particles around. Others inject energy at localized particles or

particles within a given radius. Some common techniques include plucking, ham-

mering, blowing, scrapping, pulling, bowing, bouncing, tapping, and shaking; all

of which can modeled by various ways of injecting energy into the system. Re-

gardless of the details of their implementations, they are all different approaches to

system excitation. Some tools are controlled via the mouse; but there is no reason

to exclude the range of human interface devices common on modern computers.

Keyboards, joysticks, microphones, external MIDI controllers, custom serial de-

vices, and network clients are some a few of the possible ways to control various

excitation methods. The tools should be generic enough to attempt to accommo-

date a range of playing styles but also offer some specialty tools such as:

• A heat gun that slowly burns the instrument’s strings, loosening and unrav-

eling them until they snap apart.

• A electromagnetic tool that pulls and pushes particles surrounding it at var-

ious frequencies and amplitudes.

• Simulated water that fills a portion of the screen, respectively changing the

pitch of any part of the instrument that is underwater.

• A glue gun that sticks elements together, binding them with a rigid spring.

• A “kelvin” gun that works as the opposite to the heat gun, gradually increas-

ing the rigidness of the structure.
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Applications

This chapter hopes to illustrate the practical applications of the proposed

engine. Previously, the reader has been introduced to the philosophical and tech-

nical background to the realized audio engine in its current state. Ruratae is the

prototype physics-based audio engine. Ruratae is the Mycenaean Greek word for

lyrists, those that play the lyre. It seems suitable, since the project takes much

from Greco musical pioneers and those they inspired (e.g. Harry Partch).

Ruratae, in its present form, is a manifestation of many of the techniques

discussed in this document. It outlines the possibilities of dynamic, real-time

virtual musical instrument interactions, as well as points out many of the emergent

interface and design issues of the techniques. Users can create, modify, strike, pull

and destroy models with keyboard and mouse input. They can also save model

state, allowing them to preserve a model in filespace or allow them to “undo”

changes they make to the model. There is also a “music-box” that loads a pre-

rendered state that includes several instruments that I’ve created for users to

experiment with. This music-box acts as a tutorial introduction to the system.

Its strongest point is that is allows users of little-to-no musical background to

immediately begin creating, experimenting and exploring physical interactions with

their virtual musical instruments. The software is entirely self-contained, requires

no additional configuration by the user, and almost any modern computer will

satisfy its run-time requirements. There are certainly many areas that can be

improved on in the software.

50
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Figure 6.1: Screenshots of Ruratae v0.1b

6.1 Software Overview

The software (screenshots shown in fig. 6.1) is written in C++, and only

uses three external libraries; OpenGL for graphics rendering, PortAudio for cross-

platform audio driver access and GLFW for cross-platform windowing and system

event management. As noted in the previous chapter, there was considerable

attention paid to optimizing the physics calculations in order to make the system

very responsive. There are options to save and load model state. The software

presents the user with a canvas on which to create two-dimensional instruments.

There are a selection of input modes: craft, size, muffle, stretch, tighten, strike,

cut, and destroy. Each of these modes correspond to distinct types of interactions

with the system. Some modes interact only with masses and others interact with

springs, some modes interact with both primitive types.

Craft mode is the primary construction mode of the system. Crafting allows

the user to create strings, plates, and connections between structures. Using the
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mouse, the user can craft strings of masses connected by springs by clicking and

dragging. The start and end positions of the string are determined by the location

of the cursor when the mouse button goes down and goes back up. By holding the

shift button, the mode shifts to crafting a rectangular plate, with the mouse-down

and mouse-up positions determining the opposite corners of the plate. The user

can also connect strings to pre-existing masses by moving the mouse over them

when pressing or releasing the mouse button.

Size mode allows users to modify the mass value of the particles. The

interface allows users to slide between a range of pre-determined values while the

mouse button is held down on a mass. If the user holds shift, all masses are

selected that are connected via springs to the mass under the cursor. The range of

values is limited to a range known to be stable for the integration method chosen.

By changing the size of the masses, the model’s pitch changes accordingly, in a

determinant manner.

Muffle mode allows users to modify the damping value of the springs. A

similar slider interface is designed for selecting a damping value. The user can also

hold shift to select the connected network of springs. The damping value produces

a wide range of effects; because damping only occurs between individual springs,

the behavior of the system can be very dynamic in the case that some sections of

the model are very muffled and other sections are not, this produces a wide range

of possible spectral compositions.

Stretch mode applies to the resting length of the springs. The stretch values

are between zero and one and set the resting length as a percentage of the initial

length of a spring between two masses. Holding shift affects a network of springs.

This approach to setting resting length is useful for introducing the concept of

rigid springs to users, but in hindsight, it is clear that a more formal approach

for allowing variable rest-lengths not dependent on initial distance would be more

beneficial. The non-linear chaotic motion of springs with resting lengths is a very

interesting phenomena. Allowing the user the ability to explore the phenomena

at will was considered a particularly effective demonstration of the benefits of this

form of physical modeling.
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Tighten mode is very similar to Size mode, except that it affects the stiffness

constants of springs instead of the mass value of particles. It essentially has a

similar effect on the model, but the actual normal modes vary differently depending

on the model’s configuration. Like the previous modification modes, this mode uses

a slider that is enacted when the user mouses down on a desired spring. Holding

shift affects a network of springs.

Strike mode enables a simulated striking of the model. This is done by in-

troducing an impulse vector into the system. The magnitude and direction of the

impulse are randomly varied, as an attempt to reproduce microvariation of attack

in regular performance. This randomization feature was included because of the

significant limitations of keyboard-mouse performance. When more sophisticated

devices are introduced to the system that can account for actual microvariation

in performance, this randomization will not be as important. In the meantime,

the randomization significantly improves the realistic effect of striking the system.

What is particularly interesting is that the listening position of the user is deter-

mined by the mouse position, meaning that the user always listens to the model

from the perspective of the striking point. This allows the changes in the model’s

modal amplitudes to appear much more drastically, resulting in a hyper-realism of

the model’s vibration.

Cut mode allows the user to “cut” springs as if they have physical dimen-

sions. This effectively breaks the bond between particles. This break will cause

a discontinuity in the system’s equilibrium, resulting in a modal reconfiguration.

The new distribution of forces will impulse the network and depending on the

stiffness of the system, will inject a rather violent burst of energy into the system.

Without significant damping applied to the system, it can very often become un-

stable. Destroy mode is very similar to “cut” mode, except that it affects particles.

It should be noted that systems where spring resting length equals actual equilib-

rium state, the energy injected will be canceled out immediately, and no model

reconfiguration will occur.
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Figure 6.2: A blank scene in Ruratae

6.2 Getting started with Ruratae

In this section, I will guide the reader through the process of creating,

modifying, playing and destroying a simple instrument inside the Ruratae demo

software.

6.2.1 Crafting the string

We will begin by loading the software, which initializes a blank scene (de-

picted in Fig. 6.2). The menus located on the right-side panel represent a list of

the various editing and performance modes of the software. Select “craft” mode

from the list to create a string of particles connected in a line by springs. To begin,

position the mouse near a corner of the screen, click the left mouse button and

drag the mouse across the screen. You will see a faint overlay depicting the string

it will create once the left button is released (depicted in Fig. 6.3).

6.2.2 Modifying its properties

Once an object is created, it is immediately being simulated, which means

it can be performed on or modified in real-time. A string defaults to having
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Figure 6.3: Dragging the mouse along to make a string

homogenous mass and spring constants across its area. To create a string that is

less homogenous, we will modify some of the particles’ mass values. Select “size”

mode from the list to be able to adjust mass values for particles. Move the mouse

over a particle and click the left mouse button. A small slider widget will pop

up above the particle, indicating its current mass value. While holding the left

mouse button down, you can move the mouse to the left or right to adjust the

value (depicted in Fig. 6.4). If the slider value is moved all the way to the left, the

mass becomes a “fixed” mass, or “wall of infinite mass”. One can observe that the

ends of the string are both “fixed”-mass particles. Adjust several particles’ mass

values to make the string fairly heterogenously dense.

We can also adjust properties of the string’s springs. Select “stretch” mode

from the list to adjust the springs’ resting lengths. Move the mouse over a spring

and click the left mouse button. As with “size” mode, a slider pops up indicated

the available range of values to select (depicted in Fig. 6.5). Adjust some of the

springs’ resting lengths to make resting length fairly irregular over the string.

Likewise, we can adjust the damping constant for springs in the string in

almost the same way. Select “muffle” mode and adjust values on springs in the

same way as for “stretch” mode. You can hold down shift while holding down the

left mouse button to muffle a group (depicted in Fig. 6.6). One can also select
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Figure 6.4: Modifying a particle’s mass

Figure 6.5: Modifying a spring’s resting length
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Figure 6.6: Modifying all springs’ muffle/damping qualities

Figure 6.7: Modifying all particles’ masses
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Figure 6.8: Striking the string

a group of particles by holding shift while holding down the left mouse button

(depicted in Fig. 6.7).

6.2.3 Striking the string

Now that our model is complete, we can perform on it in various ways. Two

excitation methods that exist in this demo are striking and plucking. We can strike

the string by selecting the “strike” mode. Strike the string in various locations

to hear the string’s resonant frequencies being excited in different proportions

(depicted in Fig. 6.8). Plucking the string involves grabbing a particle along the

string, displacing it and then releasing it (depicted in Fig. 6.9).

6.2.4 Cutting the string and destroying its end-points

We can also perform on the string by cutting it. To cut a spring between

two particles, select “cut” mode and position the mouse over the spring desired to

be cut (depicted in Fig. 6.10). When you click on the spring, it will be removed

and the string will split into two parts, which each part rushing away from the

cut (depicted in Fig. 6.11). By selecting “destroy” mode, you can delete particles

instead of springs (depicted in Fig. 6.12).
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Figure 6.9: Plucking the string

Figure 6.10: Getting ready to cut the string
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Figure 6.11: After cutting the string, resulting in two independent string instru-

ments

Figure 6.12: After destroying several particles
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Figure 6.13: Reconnecting the pieces together

Figure 6.14: After reconnecting, a new string is born
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Figure 6.15: Selecting the entire string to be destroyed

At this point, we can reconnect the fragments of the previous string, to

give birth to a new instrument. Select “craft” mode and position the mouse over

a particle onscreen. Click the left mouse button and drag it along the screen until

the mouse is positioned on top of a different particle from a different fragment

(depicted in Fig. 6.13). Releasing the mouse button will create a string between

the two particles. Behold, a new instrument is born (depicted in Fig. 6.14). Finally,

we can clean-up our work space either by selecting “destroy” mode and holding shift

to select the entire group of particles and destroying them (depicted in Fig. 6.15),

or by clicked [new] at the top of the screen.

6.3 A Musical Taxonomy

As a demonstration of the variety of musical timbres produced by the sys-

tem, I will examine three instruments created in the system (depicted in fig. 6.16)

and explore their sonic possibilities when modified using the editor tools. The

first will be a harp instrument, which is a collection of nine independently vi-

brating strings. The second will be a drum box, a two-dimensional “drum”-like

membrane that will demonstrate how the properties of the system affect higher

dimensional bodies. The third instrument is a non-realistic (but still physically-
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Figure 6.16: Three virtual instruments created in Ruratae

informed) instrument that is comprised of a few taut strings connected together,

with noise-maker bodies attached along the strings. For this taxonomy, I have in-

cluded several audio examples that demonstrating the various characteristics. As

is required, these examples are available as a compressed archive included with the

electronic version of this document and are also available from the archive in hard-

copy form. It is important to emphasize that these are only some of the possible

interactions with these simple instruments that can produce unique sonic results.

Unfortunately, the actual dynamic and responsive elements of this system simply

cannot be captured using prerecorded audio samples. It would be quite impossible

to exhaust the system vocabulary in this format alone. However, I hope that these

examples give some illustration of the system’s potential power and versatility. For

archival purposes, I have labeled the musical examples by name of the instrument,

followed by a incremental number.

6.3.1 9-string harp

The 9-string harp (shown in fig. 6.17) is an object that, like its description

states, has nine independent vibrating strings that are grouped together but not

coupled. Each of the strings acts as a complete unit, the properties of all the



64

Figure 6.17: 9-string harp instrument modeled in Ruratae
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harp’s particles and springs are the same, the only difference between strings is the

number of particles of which they consist. Harp Example 1 (Video 1) demonstrates

plucking technique on each string, from the lowest to the highest. Plucking is

produced by grabbing a particle, displacing it from its equilibrium, and releasing

the particle. Harp Example 2 (Video 2) demonstrates striking of the strings,

from the lowest to the highest. There are spectral differences between plucking

and striking behaviors which result from exciting different modes in each case.

Harp Example 3 (Video 3) demonstrates scraping of the strings, from the lowest

to the highest, where a scrape moves from one end of the string to the other.

A scrape is simply a rapidly-repeating (and slightly varied) striking along the

body. As the scrape travels across the string, different tranverse and longitudinal

modes are excited, producing a shift in spectral energy. Harp Example 4 (Video 4)

demonstrates strumming up and down along all nine of the harp’s strings. Even

though this strumming behavior is simply generated by the mouse dragged along

the object, it shows how responsive the system can be to gestural input from the

user. Harp Example 5 (Video 5) demonstrates how the plucking behavior changes

when the strings are slightly muffled. Harp Example 6 (Video 6) demonstrates

how the plucking behavior changes when the strings are almost entirely deadened.

Note the variety of sound qualities between these various dampened systems. The

more deadened the system, the more hollow it appears. The more undamped the

system, the more metallic it appears. It is important to note that the relationship

between the modes produced in these examples depends both on system damping

and the amount of energy injected through plucking. Harp Example 7 (Video 7)

demonstrates how varying the rigidness of the spring lengths affects the system’s

modes. In this example, all nine of the harp’s string are given more “rigidness”

(i.e. the desired length of the strings’ springs are increased) and then the reverse

is applied. One can clearly hear the “popping” of the strings as they move from

being at rest at their initial end points and then deformed into a rigid and out-

blown state. Additionally, one can hear the reassembling of the strings as their

rigidness is reduced, allowing them to vibrationally return to their initial resting

positions. Harp Example 8 (Video 8) demonstrates the qualities of “rigid” strings,
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Figure 6.18: Two-dimensional drum membrane modeled in Ruratae

an example melody is played on the rigid strings. Note only the “rigidness” of

the strings has been changed, but this still affects their pitch. Harp Example 9

(Video 9) strums up and down on the harp again, this time while the strings are

still slightly rigid, producing a hollow, almost ceramic quality.

6.3.2 Two-dimensional drum membrane

The drum membrane object (shown in fig. 6.18) is assembled from parti-

cles connected by springs arranged in a grid. Each of the particles has a different

mass, which produces various changes in impedance along the object, resulting

in a drum-like, inharmonic spectrum. Drum Example 1 (Video 10) demonstrates

striking around the object in a circular pattern. Drum Example 2 (Video 11)

demonstrates scraping along the same path. In both of these examples, one can

hear how the impedance changes across the object affect the modal composition

of the sonic result. Depending on the horizontal and vertical position of the strike,

this determines which longitudinal and transverse modes are present in the vi-
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bration. Drum Example 3 (Video 12) plucks at various points along the object’s

shape. Its important to note that even though this object is considered to have a

defined two-dimensional shape, the user can still deform it by grabbing and dis-

placing particles (and subsequently, releasing them). Drum Example 4 (Video 13)

demonstrates how muffling affects the vibration of the membrane. A large amount

of damping is applied to the model and then it is scraped along its edges and

through its center. Also, note the similarity in result as compared to individual

strings with and without large amounts of damping. Drum Example 5 (Video 14)

is a demonstrative melody played on a membrane with almost no muffling, produc-

ing a very resonant ringing that lasts for a long duration. The object in this state

produces complex spectra comparable to that of a medium-sized tam-tam. This

example melody demonstrates the musicality of suitably complex models. Drum

Example 6 (Video 15) informs the listener of the sonic result of shaking the drum

membrane with fairly rigid springs. A shake is producing by grabbing a particle in

the model and then rapidly moving that grabbed particle around, causing the sys-

tem to (sometimes violent) re-stabilize itself at every thrust. With sufficiently rigid

springs, this produces an audible sloshing sound, which results from the non-linear

resonances of springs with non-zero resting lengths. Drum Example 7 (Video 16)

increases the rigidness of the system and also tightens the springs (increases the

spring constants), producing a crackling sound reminiscent of crunching an alu-

minum can. Drum Example 8 (Video 17) demonstrates how responsive the modal

composition is to the location of scrapes along a homogeneous membrane (one

where all particles have roughly the same mass). Note that this example’s mem-

brane has a moderate amount of rigidness, which adds to the hollow, or ceramic,

quality to this plate sound. Drum Example 9 (Video 18) and Drum Example 10

(Video 19) demonstrate the sounds of the membrane being destroyed and then

reconfigured, and being struck and shaken during the process. In video 18, one

can hear the instrument sloshing around, as particles are disconnected from one

another, leaving parts of the membrane free-floating. Video 19 demonstrates what

it sounds like to scrape this instrument once it has been partially destroyed.
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Figure 6.19: Non-realistic vibrating body modeled in Ruratae

6.3.3 Non-realistic vibrating body

The non-realistic vibrating body (shown in fig. 6.19) is composed of several

strings bound together in a haphazard formation, with stray particles connected

along the strings, which act as noise makers. This model is a perfect example of

the possibilities of the system in the realm outside of realistic physical models.

Thing Example 1 (Video 20) demonstrates a slow scrap around the object. One

can hear the rapid changes of modal composition as the user scrapes along the

body’s outline. Thing Example 2 (Video 21) plucks the body from various posi-

tions. Each pluck produces buzzing noises which are produced from the free-ended

particles coupled to the strings. These free-ended particles attempt to stabilize and

dampen dependent solely on their relative position to the strings. Thing Exam-

ple 3 (Video 22) reduces the model’s muffling quality, producing a very noisy and

resonant object. Thing Example 4 (Video 23) demonstrates how rigidness affects

the object’s sound quality. Increasing the rigidness makes the object even more

noisy, since the free-ended particles have more spectral agency when their springs

have non-zero resting length. Thing Example 5 (Video 24) continues examining

how rigidness affects this non-realistic body. The model is tightened and loos-

ened, at which point the listener can hear how the object’s modes are transformed

during this deformation. Thing Example 6 (Video 25) demonstrates an attempt
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to scrape the object, now that it is fairly rigid. This produces rapid changes in

the modal characteristics of the body, producing noisy, sloshing sounds which are

reinforced by the free-ended particles. Thing Example 7 (Video 26) couples this

non-realistic object with the previous harp object, connecting the object with one

of the harp’s string via a newly constructed spring. This example demonstrates

how responsive the system can be when coupling the vibrations between two ob-

jects. Depending on how this spring transfers energy between the two systems,

it will produce various results. This coupling behavior offers users the ability to

create huge multi-instrument models that can be coupled at explicit locations, a

concept made popular by digital waveguides.

6.4 Implications for Interactive Media

Since its inception into academia, computer music contributions often nod

to its traditional role as tool provider to fixed media artists. Though certainly

this particular tool has clear benefits for these sorts of artists, its real strength

lies in non-linear, interactive media. This system has already demonstrated its

strength as a real-time construction and performance interface. Though it can be

beneficial to composers, sound designers and performers that work in either fixed

or linear media paradigms, its real power lies in interactive, non-linear media, such

as installation art and video games.

There has been a significant amount of research into using dynamic compu-

tational acoustics models in video game engines [7]. This has primarily been a task

focused on wave propagation models and realistic, 3-D audio. Though this domain

is certainly interesting, there has been very little use of simulation of mechanical

vibrations. Historically, video games have implemented Newtonian simulations of

particle and rigid bodies [14, pg. 2]. These simulations are designed to model rel-

atively large bodies moving relatively slowly, focusing more on gravity and body

collisions instead of oscillatory motion. The system presented in this text hopes

to offer an extension to these types of physics engines by allowing video games

to properly simulate the complex vibrational modes of objects in a game world.
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These objects can vibrate and produce sonic energy relative to how they collide

with one another in the game world. Additionally, when objects are destroyed, the

engine can be used to simulate the sound of their destruction. Ideally, an artist

would simply need to submit a mesh model with attached metadata information

to the audio engine and it would simulate its interactions accordingly. Obviously,

it is considerably more expensive to simulate sonic vibration than forces that can

be integrated as the visual frame-rate. Therefore, care should be taken to only

simulate vibrational modes of objects within a limited vicinity of the listening

position.
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Conclusion

I have shown that it is possible to develop a system that provides users

an interface to physically-informed virtual instruments that does not prerequisite

expert knowledge of acoustics or DSP in order to use. The system is determinate,

and given enough cues, users can develop deeper understandings of the system’s

behaviors through repeated interaction. There is room to improve on how users

manage control paramters; developing a CAD-like editor would benefit users in

the long-run to be able to describe and shape models more effectively. The vi-

sual interface depicting physical displacement effectively demonstrates vibrational

behaviors, but developing more intuitive and elegant ways to describe parameters

visually will benefit the system. Many of these improvements can arise by enabling

users to develop their own rendering shaders; to enable advanced users to develop

catered renderings of the system. In the future, this could be accomplished through

a well-documented plugin system.

System control could be improved on as well. Currently, the demo software

only supports mouse input; ideally this should be generalized through a universal

input plugin system that would enable any and all sorts of inputs to be handled

agnostically. This could be accomplished by providing an input plugin with a

reference to the model, enabling the plugin to query the model for relevant infor-

mation such as a the nearest particle to the input’s virtual coordinates, as well

as allowing the input plugin to modify the model parameters or inject impulses

and force vectors into the model. When generalized, this structure would provide

71
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almost any possible input device the ability to interface with Ruratae.

The system is fairly optimized but there are many improvements for real-

time computation that can still be leveraged. It needs to be scalar, able to support

a range of devices from mobiles to desktops to clusters, enabling a full range of

possible use situations. SIMD Intrinsics are not fully optimized, lockless threading

techniques could be exploited further and some tasks could be offloaded to the

GPU. The largest hurdle to produce effectively-optimized code is still developing

smarter ways to avoid cache misses, which impede the system worse than any

other offender. Optimized and self-configuring memory structures are paramount

in developing fast, efficient code.

Currently, the system is fairly stable, though creative users may find it

too easy to create numerical explosions or infinitely self-impulsing systems. Us-

ing a combination of sophisticated integration methods and practical hotfix-style

algorithms, the system can be stabilized more effectively. Stability gains from

Beeman’s method, coupled with running the system at as high a samplerate as

possible will provide ample space for users to develop without worry of instabil-

ity issues. Additionally, a simple energy-measuring thread can run, detecting any

possible explosions as they occur and can enact a high drag force on the system

until it becomes stable again.

Lastly, the system in its current state does not a straight-forward way for

users to generate instruments based on fundamental frequency. A parallel thread

that analyzes and measures the natural frequencies of linearized forms of the model

will allow users to more accurately render models according to desired pitch or

modal composition. One of the encountered pitfalls of this type of system is that

users coming from a spectral-composition background feel that the system lacks the

ability to generate based on desired pitch. This is a two-fold problem; part of the

solution involves re-educating these users to understand how mechanical systems

work. The other part of the solution involves developing smarter editor instructions

to allow the system to respond to such pitch-based requests by analyzing and

reconfiguring models automatically. The problem is particularly complex, and I

predict a large portion of future development will be dedicated to tackling this
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problem.

Throughout this document, I have demonstrated the historical underpin-

nings, the mathematical framework, the specifications and implementations and

finally the realized practical application of this proposed physics-based audio en-

gine. I have shown what necessitates the power and accessibility this system affords

to its end-users. I have described the known problems and issues that arise when

attempting to afford these abilities and I have offered several solutions and strate-

gies that can be employed to tackle and reduce these upsets. In the near-future,

it is my aim to fully realize the technology discussed, and to distribute to a wide

general audience, in hopes that this contribution can impact people in many ex-

pressions of creativity and play. In summary, the system has accomplished many

of its initial tasks but there is significant room for improvement in dealing with

user interaction and usability.
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