
UC Irvine
UC Irvine Previously Published Works

Title
Application of Nondimensional Dynamic Influence Function Method for Eigenmode 
Analysis of Two-Dimensional Acoustic Cavities

Permalink
https://escholarship.org/uc/item/2cq8s968

Authors
Kang, S. W
Atluri, S. N

Publication Date
2014

DOI
10.1155/2014/363570

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cq8s968
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Research Article
Application of Nondimensional Dynamic Influence
Function Method for Eigenmode Analysis of Two-Dimensional
Acoustic Cavities

S. W. Kang1 and S. N. Atluri2

1 Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792, Republic of Korea
2Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

Correspondence should be addressed to S. W. Kang; swkang@hansung.ac.kr

Received 5 February 2014; Accepted 23 March 2014; Published 10 April 2014

Academic Editor: Luı́s Godinho

Copyright © 2014 S. W. Kang and S. N. Atluri. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper establishes an improved NDIF method for the eigenvalue extraction of two-dimensional acoustic cavities with arbitrary
shapes. The NDIF method, which was introduced by the authors in 1999, gives highly accurate eigenvalues despite employing a
small number of nodes. However, it needs the inefficient procedure of calculating the singularity of a systemmatrix in the frequency
range of interest for extracting eigenvalues andmode shapes.The paper proposes a practical approach for overcoming the inefficient
procedure bymaking the final systemmatrix equation of theNDIFmethod into a formof algebraic eigenvalue problem.The solution
quality of the proposed method is investigated by obtaining the eigenvalues and mode shapes of a circular, a rectangular, and an
arbitrarily shaped cavity.

1. Introduction

The authors developed the nondimensional dynamic influ-
ence function method (NDIF method) for extracting highly
accurate eigenvalues and eigenmodes of arbitrarily shaped
membranes and acoustic cavities [1, 2]. Later, the authors
extended the NDIF method to membranes with high con-
cavity [3] and plates with various boundary conditions [4–
7]. In the NDIF method, as in the boundary element method
(BEM) [8], a field problem is solved on its boundary along
which nodes are distributed.The distinct feature of the NDIF
method is related to the fact that no interpolation functions
between the nodes are required, so that the basic collocation
method is employed to satisfy a given boundary condition.
This approach enables us to reduce a large amount of numer-
ical calculation induced due to the interpolation functions
and, as a result, to obtain highly accurate eigenvalues.

On the other hand, the weak point of the NDIF method
is that its final systemmatrix depends on a frequency param-
eter, unlike in the finite element method (FEM) [9]. In

general, the final system matrix equation of FEM has a form
of algebraic eigenvalue problem [10] and as the result its
systemmatrices are independent of the frequency parameter.
Recently, to overcome this weak point for the NDIF method,
the authors employed a modified approach of expanding
the nondimensional dynamic influence function in a Taylor
series for free vibration analysis of membranes with arbitrary
shapes [11]. In this paper, the modified approach [11] is
extended for eigenmode analysis of two-dimensional acoustic
cavities with general shapes.

Common methods for extracting eigenvalues of an arbi-
trarily shaped acoustic cavity are the finite element method
and the boundary element method [8, 9]. It is well known
that BEMhas the advantage of discretizing only the boundary
of the domain of interest unlike FEM. However, there was
the limitation that system matrices involved in BEM depend
on a frequency parameter before the innovative work of
Nardini and Brebbia [12]. In 1982, Nardini and Brebbia
succeeded in formulating a final system matrix equation
in BEM as a form of algebraic eigenvalue problem and
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opened new horizons in the BEM research [12]. Since then,
BEM researches have focused on improving the accuracy of
eigenvalues. Kirkup and Amini introduced a practical way
of reducing the nonlinear eigenvalue problem to a stan-
dard generalized eigenvalue problem through a polynomial
approximation [13]. Ali et al. presented a historical and
critical review of BEM in acoustic eigenvalue analysis [14].
Provatidis tested different types of basis functions for more
accurate eigenvalues of two-dimensional acoustic cavities
using the dual reciprocity/boundary element technique [15].
Recently, Wang et al. investigated approximation functions
such asRBF (radial basis functions) andTPS (thin plate spline
functions) in the dual reciprocity BEM for accurate acoustic
eigenvalue analysis [16]. Gao et al. presented accurate solu-
tions for eigenvalue analysis of three-dimensional acoustic
cavities using BEM with the block Sakurai-Sugiura method
[17].

Many researchers have studied new numerical methods
for more accurate eigenvalue analysis than FEM and BEM.
For instance, the NDIF method [1–7], which was developed
by the authors, offers much more accurate eigenvalues than
FEM. For acoustic cavities with simple shapes having no
exact solution, a great deal of analytical or semianalytical
research has been performed to increase the accuracy of
eigenvalues and eigenmodes. Amir and Starobinski studied a
method for calculating the eigenmodes of two-dimensional
cavities having two axes of symmetry by computing wave
propagation in waveguides of arbitrarily changing cross
section [18]. Willatzen and Voon solved quasianalytically a
triaxial ellipsoidal acousticcavity with walls using the Frobe-
nius power-series expansion method [19]. Koch computed
acoustic resonances in rectangular two-dimensional deep
shallow open cavities [20]. Lee presented a semianalytical
approach to solve the eigenproblem of an acoustic cavity
with multiple elliptical boundaries by using the collocation
multipole method [21]. Although analytical and semianalyt-
ical methods such as abovementioned methods [18–21] give
highly accurate solutions, there is the limitation that they are
not applicable to arbitrarily shaped acoustic cavities. In this
paper, a simple and practical approach, which is applicable
to arbitrary shapes and offers a highly accurate solution, is
proposed by extending the authors’ previous research [11].

2. Theoretical Formulation

2.1. Review of the Nondimensional Dynamic InfluenceMethod.
The original NDIF method [2] for acoustic eigenproblems is
reexamined before the development of an improved theoret-
ical formulation. As shown in Figure 1, imagine a waveform
that spreads circularly outward from the center point r

0
in an

infinite acoustic field. Since the field is infinite in extent, the
waveform will depend on the scalar distance from the center
point r

0
to the field point r, 𝑟 = |r − r

0
|. The wave equation

in this case reduces to
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Figure 1:Waveform that spreads circularly outward from the center
r
0
in an infinite acoustic field.

where 𝑝 = 𝑝(𝑟, 𝑡) is sound pressure and 𝑐 is the speed
of sound. In the case of harmonic problems with a time-
dependent term 𝑒

𝑗𝜔𝑡, the relation 𝑝 = 𝑃(𝑟) 𝑒𝑗𝜔𝑡 leads (1) to

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝑃

𝜕𝑟

) + 𝑘
2
𝑃 = 0, (2)

where 𝑘 = 𝜔/𝑐 (𝜔 is the angular frequency).
If the physical consideration that sound pressure is

bounded at the center point r
0
(𝑟 = 0) is given, a unique

solution of (2) is the Bessel function of the first kind of order
zero, 𝐽

0
(𝑘𝑟), which is finite everywhere including the center

point. Note that the Bessel function of the second kind and
order zero 𝑌

0
(𝑘𝑟) is discarded since it is infinite at the center

point (𝑟 = 0) although it satisfies (2). Now, 𝐽
0
(𝑘𝑟) is termed

a nondimensional dynamic influence function in a two-
dimensional infinite acoustic field. This function physically
represents the pressure at a field point due to unit pressure at
the center point of awave that spreads circularly in the infinite
region. Note also that the argument of 𝐽

0
(𝑘𝑟) used in this

study is dimensionless and that the nondimensional dynamic
influence function satisfies the homogeneous Helmholtz
equation:

∇
2
𝑃 + 𝑘
2
𝑃 = 0, (3)

which is a governing differential equation of eigenvalue
problems.

In an infinite acoustic field shown in Figure 2, 𝑁 nodes
are distributed along the fictitious contour (the dotted line)
of which the shape is exactly the same as the boundary of
the cavity of interest. Next, we consider that 𝑁 waves, of
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Figure 2: Two-dimensional acoustic cavity depicted by the dotted
line in an infinite acoustic field.

which the forms are given by the nondimensional dynamic
influence functions, spread circularly from each of the nodes.
Then, the pressure at field point r can be obtained by
linearly superposing the nondimensional dynamic influence
functions:

𝑃 (r) =
𝑁

∑

𝑠=1

𝐴
𝑠
𝐽
0
(𝑘

󵄨
󵄨
󵄨
󵄨
r − r
𝑠

󵄨
󵄨
󵄨
󵄨
) , (4)

which also satisfies the Helmholtz equation (3) because each
of the nondimensional dynamic influence functions does.
Thus (4) can be employed as a trial solution for solving the
eigenfield of the finite-sized cavity represented by the dotted
line in Figure 2.

The unknown coefficients 𝐴
1
∼ 𝐴
𝑁

involved in the
trial function are determined by applying a given boundary
condition to the function. If a rigid-wall boundary condition
is given, the boundary condition defined continuously along
the boundary Γ is discretized so as to be satisfied only at
previously located nodes to obtain the trial function; that is,

𝜕𝑃 (r
𝑖
)

𝜕𝑛
𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑁, (5)

where 𝑛
𝑖
denotes the normal direction from the boundary at

r = r
𝑖
, as shown in Figure 2. Substituting the eigensolution

(4) into the discrete boundary condition (5) gives

𝑁

∑
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) = 0, 𝑖 = 1, 2, . . . , 𝑁. (6)

Equation (6) can be written into the system matrix equation:

SM (𝑘)A = 0, (7)

where the elements of the systemmatrix SM(𝑘) of order𝑁×𝑁
are given by

SM
𝑖𝑠
=
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) , (8)

and the elements of the column vector A of order 𝑁 × 1

correspond to the unknown coefficients 𝐴
1
∼ 𝐴
𝑁
.

It may be seen in (7) and (8) that the elements of the sys-
tem matrix SM(𝑘) depend on the frequency parameter 𝑘. As
a result, the inefficient procedure of searching the frequency
parameter thatmakes the systemmatrix singular by sweeping
the frequency parameter in the range of interest is required to
extract eigenvalues in the NDIF method.

2.2. Improved Formulation of the NDIF Method. First, (6) is
rewritten as
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(9)

The Bessel function of the first kind of order 1 𝐽
1
in (9) is

expanded in a Taylor series [22] as follows:
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where𝑀 denotes the number of terms of the series and Γ(𝑗 +
1) and Γ(𝑗 + 2) represent the Gamma functions. Substituting
(10) into (9) yields
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As the first step to extract a systemmatrix equationhaving
a form of algebraic eigenvalue problem, (11) is rearranged in
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For simplicity, (12) is rewritten in
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Figure 3: Circular acoustic cavity discretized by 16 boundary nodes.

Next, (13) is rewritten as a form of polynomial equation
with respect toΛ by removing the first summation as follows:

Λ
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Resolving (15) in factors yields

Λ[Λ
0

𝑁

∑

𝑠=1

𝐴
𝑠
𝜓
(0)

𝑖𝑠
+ Λ
1

𝑁

∑

𝑠=1

𝐴
𝑠
𝜓
(1)

𝑖𝑠
+ ⋅ ⋅ ⋅ + Λ

𝑀

𝑁

∑

𝑠=1

𝐴
𝑠
𝜓
(𝑀)

𝑖𝑠
] = 0,

𝑖 = 1, 2, . . . , 𝑁,

(16)

which is divided into
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(18)

Equation (17) denotes that the first eigenvalue is equal to zero
for an acoustic cavity with a rigid-wall boundary condition.
The higher eigenvaluesmay be obtained by changing (18) into
a form of algebraic eigenvalue problem. For this purpose, (18)
is first expressed in the simple matrix equation:

Λ
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0
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𝑀
A = 0, (19)

where the elements of matrixΨ
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Equation (19), which is called the higher order polyno-
mial eigenvalue problem [24], may again be changed into the
algebraic eigenvalue problem [10] as follows:

SM
𝐿
B = ΛSM

𝑅
B, (21)

where the system metrics SM
𝐿
and SM
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are given, using the

diagonal matrix I, by
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and the vector B is given by

B = {A𝑇 ΛA𝑇 Λ
2A𝑇 ⋅ ⋅ ⋅ Λ

𝑀−1A𝑇} . (23)

Note that the newly obtained final system matrices SM
𝐿

and SM
𝑅
are independent of the frequency parameter unlike

SM(𝑘) in (7). As a result, eigenvalues can simply be extracted
from (21) without the inefficient procedure required in the
original NDIF method. On the other hand, the 𝑖th mode
shape can be obtained by plotting (4) where the unknown
coefficients 𝐴

1
∼ 𝐴
𝑁
are given by the elements of A𝑇 in (23)

for the 𝑖th eigenvalue.

3. Verification Examples

The validity and accuracy of the proposed method are shown
in numerical tests of circular, rectangular, and arbitrarily
shaped acoustic cavities.

3.1. Circular Acoustic Cavity. The proposed method is first
applied to a circular acoustic cavity of unit radius where
the exact solution [23] is known. As shown in Figure 3, the
boundary of the circular cavity is discretizedwith 16 nodes for
the proposed method. Eigenvalues obtained by the proposed
method using 𝑀 = 10, 𝑀 = 15, 𝑀 = 20, and 𝑀 = 25

are presented in Table 1, which also shows the eigenvalues
given by the exact method [23], NDIF method [2], and FEM
(ANSYS). In Table 1, it may be said that the eigenvalues by
the proposed method in the case of𝑀 = 20, which coincide
with those by the NDIF method [2], converge rapidly and
accurately to those by the exact method [23]. Furthermore, it
should be noted in Table 1 that the proposed method using
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Table 1: Eigenvalues of the circular cavity obtained by the proposed method, the exact method, the NDIF method, and FEM (parenthesized
values denote errors (%) with respect to the exact method).

Number Proposed method (16 nodes) Exact method [23] NDIF method [2] (16 nodes) FEM (2042 nodes)
𝑀 = 10 𝑀 = 15 𝑀 = 20 𝑀 = 25

1 1.8412 (0.000) 1.8412 (0.000) 1.8412 (0.000) 1.8412 (0.000) 1.8412 1.8412 (0.000) 1.8419 (0.038)
2 3.0542 (0.000) 3.0542 (0.000) 3.0542 (0.000) 3.0542 (0.000) 3.0542 3.0542 (0.000) 3.0564 (0.072)
3 3.8317 (0.000) 3.8317 (0.000) 3.8317 (0.000) 3.8317 (0.000) 3.8317 3.8317 (0.000) 3.8374 (0.149)
4 4.2012 (0.000) 4.2012 (0.000) 4.2012 (0.000) 4.2012 (0.000) 4.2012 4.2012 (0.000) 4.2059 (0.112)
5 5.3176 (0.000) 5.3176 (0.000) 5.3176 (0.000) 5.3176 (0.000) 5.3176 5.3176 (0.000) 5.3261 (0.160)
6 5.3313 (0.002) 5.3313 (0.002) 5.3314 (0.000) 5.3314 (0.000) 5.3314 5.3314 (0.000) 5.3427 (0.212)

Table 2: Eigenvalues of the rectangular cavity obtained by the proposed method, the exact method, the NDIF method, and FEM
(parenthesized values denote errors (%) with respect to the exact method).

Number Proposed method (24 nodes,𝑀 = 20) Exact method [23] NDIF method [2] (24 nodes) FEM
1813 nodes 2500 nodes

1 2.618 (0.00) 2.618 2.618 (0.00) 2.618 (0.00) 2.618 (0.00)
2 3.490 (0.00) 3.491 3.491 (0.00) 3.492 (0.03) 3.492 (0.03)
3 4.363 (0.00) 4.363 4.363 (0.00) 4.364 (0.02) 4.364 (0.02)
4 5.236 (0.00) 5.236 5.236 (0.00) 5.240 (0.08) 5.238 (0.04)
5 6.293 (0.00) 6.293 6.293 (0.00) 6.297 (0.06) 6.295 (0.03)
6 6.982 (0.03) 6.981 6.981 (0.00) 6.990 (0.13) 6.989 (0.11)

only 16 nodes yields more accurate eigenvalues than FEM
(ANSYS) using 2042 nodes.

In addition, mode shapes produced by the proposed
method using 16 nodes for 𝑀 = 20 are presented in
Figure 4 and they agree well with those given by the exact
method [23], which are omitted in the paper. Note that white
regions in the mode shapes are nodal lines, at which the
pressure has a minimum value.

On the other hand, the accuracy of an eigenvalue obtained
by the proposed method can be verified by plotting its mode
shape. If the plotted mode shape does not satisfy exactly
the given boundary condition (the rigid-wall boundary
condition), it may be said that the eigenvalue is not accurate
and larger number of nodes and series functions are required
to improve its accuracy.

3.2. Rectangular Acoustic Cavity. In this section, a rectan-
gular acoustic cavity with dimensions 1.2m × 0.9m is dis-
cretized with 24 nodes as shown in Figure 5, where the loca-
tion and the corresponding normal directions are illustrated.
Since the rectangular cavity has 4 corners unlike the circular
cavity, the normal directions at the corners are approximately
determined by the sum of the two normal vectors for the
edges adjacent to each corner.

In Table 2, eigenvalues obtained by the proposed method
are compared with those computed by the exact method [23],
the NDIFmethod, and FEM (ANSYS). It may be said that the

proposed method using 24 nodes for𝑀 = 20 gives accurate
eigenvalues within 0.03% error. However, it is noted that
the eigenvalues by FEM using 2500 nodes have much larger
errors than those by the proposed method. On the other
hand, the reason that the sixth eigenvalue by the proposed
method has some error unlike that by the NDIF method is
that the Bessel function (10) is approximately expanded in a
Taylor series.

Figure 6 shows mode shapes obtained by the proposed
method, which agree well with those by the exact method
[23], which are omitted in the paper.

3.3. Arbitrarily Shaped Acoustic Cavity. An arbitrarily shaped
cavity whose boundary is composed of a semicircle of unit
radius and two equilateral edges √2m in length is shown
in Figure 7 where the normal directions at the 3 corners
are approximately determined as illustrated in the rectan-
gular cavity. Eigenvalues obtained by the proposed method,
NDIF method [2], and FEM (ANSYS) are summarized in
Table 3. Since the current cavity has no exact solution, errors
of the proposedmethodwith respect to FEMusing 1571 nodes
are calculated in Table 3 where it may be observed that the
proposed method has very small errors within 0.3%. It may
also be said in Table 3 that the proposedmethod always yields
lower eigenvalues than FEM and, as a result, it gives very
accurate results because it is well known that exact results
exist below FEM results.
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Table 3: Eigenvalues of the arbitrarily shaped cavity obtained by the proposed method, the NDIF method, and FEM (parenthesized values
denote errors (%) with respect to FEM using 1571 nodes).

Number Proposed method (16 nodes,𝑀 = 20) NDIF method [2] (16 nodes) FEM
719 nodes 1088 nodes 1571 nodes

1 1.958 (0.10) 1.958 (0.10) 1.961 1.960 1.960
2 2.025 (0.05) 2.025 (0.05) 2.027 2.026 2.026
3 3.082 (0.16) 3.082 (0.16) 3.090 3.088 3.087
4 3.633 (0.30) 3.633 (0.30) 3.649 3.646 3.644
5 3.996 (0.25) 3.996 (0.25) 4.014 4.009 4.006
6 4.578 (0.26) 4.578 (0.26) 4.600 4.594 4.590

(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Figure 4: Mode shapes produced of the circular cavity by the proposed method using 16 nodes for𝑀 = 20.

Figure 5: Rectangular acoustic cavity discretized by 24 boundary nodes (the 4 arrows denote the normal directions of the corner nodes).
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(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Figure 6: Mode shapes of the rectangular cavity obtained by the proposed method using 24 nodes for𝑀 = 20.

Figure 7: Arbitrarily shaped acoustic cavity discretized by 16 boundary nodes (the 3 arrows denote the normal directions of the corner nodes).

On the other hand, Figure 8 showsmode shapes obtained
by the proposed method, which are in good agreement
with those by FEM (ANSYS), which are shown in Figure 9
[2].

4. Conclusion

An improved NDIF method is proposed to more efficiently
extract eigenvalues and mode shapes of arbitrarily shaped
acoustic cavities. It is revealed that the proposed method

yields highly accurate eigenvalues, which converge to the
exact solution, and it gives much more accurate eigenvalues
than FEMusing a large number of nodes thanks to its concise
formulation. It is expected that the method presented in
the paper can be extended to accurately analyze multiply
connected two-dimensional cavities and three-dimensional
cavities. Note that the NDIF method does not give accurate
results for concave membranes and acoustic cavities [3]. To
overcome this problem, a subdomain method of dividing the
concave region of interest into several convex regions will be
developed in future research.
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(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Figure 8: Mode shapes of the arbitrarily shaped cavity obtained by the proposed method for using 16 nodes for𝑀 = 20.

(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Figure 9: Mode shapes of the arbitrarily shaped cavity obtained by FEM [2].
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