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ABSTRACT OF THE DISSERTATION

Higher Moments Subset Sum Problem over Finite Fields

By

Jennifer Nguyen

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Daqing Wan, Chair

Let Fq be a finite field and let D ⊆ Fq. Let m be a positive integer and let k be an integer

such that 1 ≤ k ≤ |D|. For b = (b1, . . . , bm) ∈ Fmq , let Nm(k, b) denote the number of subsets

S ⊆ D with cardinality k such that for i = 1, . . . ,m,
∑
a∈S

ai = bi. The Moments Subset Sum

Problem is to determine if Nm(k, b) > 0. There are many results for when m = 1, but not

much is known about the higher moments. In this dissertation, we obtain a formula for

Nm(k, b) when m = 2 and conditions on the solvability of the Moments Subset Sum Problem

by using the Li-Wan sieve and properties of character sums and Gauss sums.

v



Chapter 1

Introduction

1.1 The Moments Subset Sum Problem

Let Fq be a finite field with cardinality q and characteristic p and let D ⊆ Fq. Let m be a

positive integer and let k be an integer such that 1 ≤ k ≤ |D|. For b = (b1, . . . , bm) ∈ Fmq , let

Nm(k, b) denote the number of subsets S ⊆ D with cardinality k such that for i = 1, . . . ,m,

∑
a∈S

ai = bi.

Understanding the number Nm(k, b) is the Moments Subset Sum Problem.

Definition 1.1. (Moments Subset Sum Problem [6]) Determine if Nm(k, b) > 0.
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Let j be an integer such that 1 ≤ j ≤ bm
p
c. Then, 1 ≤ pj ≤ m and

bpj =
∑
a∈S

apj

=

(∑
a∈S

aj

)p

= (bj)
p.

Therefore, we may assume, without loss of generality, that for all 1 ≤ j ≤ bm
p
c, bpj = bpj

and focus on i = 1, . . . ,m such that p - i.

We may also assume, without loss of generality, that k ≤ |D|
2

because of the symmetry

Nm(k, b) = Nm

(
|D| − k,

((∑
a∈D

a

)
− b1, . . . ,

(∑
a∈D

am

)
− bm

))
.

If m = 1, this problem becomes the decision version of the k-Subset Sum Problem and

it has been shown that, for general D, this is NP-complete [5]. This version arises in several

applications in many different fields. For example, in cryptography, Merkle and Hellman [17]

presented a public key cryptosystem based on a variation of the k-Subset Sum Problem. It

was one of the earliest public key cryptosystems, though it has since been broken [18].

If m = 2 or m = 3, then Gandikota, Ghazi, and Grigorescu [6] proved that the Moments

Subset Sum Problem is NP-hard. They also proved [7] that there exists c > 0 such that if

1 ≤ m ≤ c logn
log logn

, then the Moments Subset Sum Problem is NP-hard for prime fields of

size 2polynomial(n). The higher moments of this problem can be found in coding theory, where

solving the Moments Subset Sum Problem helps to answer the Deep Hole Problem and to

decode received words under certain conditions [9, 10, 13, 14, 21].

The main difficulty of this problem comes from the subset D. Since there are no
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restrictions on the choice of D, D might lack any algebraic structure. If D is a special subset

of Fq, then it is possible to obtain an exact value or an asymptotic formula for Nm(k, b). In

Chapter 2, we will review previous work on the Moments Subset Sum Problem for special

subsets D, as well as state our main results. Next, in Chapter 3, we will introduce the tools

we will use in our proofs that are in Chapter 4. Lastly, we will apply our results to the Deep

Hole Problem in Chapter 5.

1.2 Notation

In order to clarify some notations that we will be using in this dissertation, we will define

them here.

Definition 1.2. A permutation τ in the symmetric group Sk is of cycle type (c1, · · · , ck) if

τ has exactly ci cycles of length i.

Let N(c1, · · · , ck) be the number of permutations Sk of cycle type (c1, · · · , ck). Then

N(c1, · · · , ck) =
k!

1c1c1!2c2c2! · · · kckck!
.

Definition 1.3. Let η be the quadratic character of Fq and let ψ1 = e
2πi
p
TrFq/Fp (x). The

character ψ1 is called the canonical additive character of Fq.

Definition 1.4. Let k be a positive integer. Then, for any number x,

(x)k := x(x− 1) . . . (x− k + 1).

3



Chapter 2

Previous Results

2.1 For m = 1

If D = Fq or = F∗q, Li and Wan [10] obtained explicit formulas for N1(k, b).

Theorem 2.1. (Li, Wan [10])

(1) When D = Fq, if p - k, then for all b ∈ Fq,

N1(k, b) =
1

q

(
q

k

)
.

If p | k and b = 0, then

N1(k, 0) =
1

q

(
q

k

)
+ (−1)k+

k
p

(
q − 1

q

)(
q/p

k/p

)
.

If p | k and b 6= 0, then

N1(k, b) =
1

q

(
q

k

)
+ (−1)k+

k
p

(
−1

q

)(
q/p

k/p

)
.

4



(2) When D = F∗q, if b = 0, then

N1(k, 0) =
1

q

(
q − 1

k

)
+ (−1)k+b

k
p
c
(
q − 1

q

)(
q/p− 1

bk/pc

)
.

If b 6= 0, then

N1(k, b) =
1

q

(
q − 1

k

)
+ (−1)k+b

k
p
c
(
−1

q

)(
q/p− 1

bk/pc

)
.

To solve the decision version of the k-Subset Sum Problem, we only need conditions on

p, k, and b to determine when N1(k, b) > 0. In addition to simplifying Theorem 2.1, Li and

Wan [10] were able to find good asymptotic formulas for when Fq −D is small.

Theorem 2.2. (Li, Wan [10])

(1) Let D = Fq. If p > 2, then for 0 < k < q, N1(k, b) > 0 for all b ∈ Fq. If p = 2, then

for 2 < k < q − 2, N1(k, b) > 0 for all b ∈ Fq.

(2) Let |D| = q − 1 > 4. If p > 2, then for 1 < k < q − 2, N1(k, b) > 0 for all b ∈ Fq. If

p = 2, then for 2 < k < q − 3, N1(k, b) > 0 for all b ∈ Fq.

(3) Let q > p and c ≥ 2. Let |D| = q − c. If

q − c
2

(1− w) ≤ k ≤ q − c
2

(1 + w),

then ND(k, b) > 0 for all b ∈ Fq, where 0 < w ≤ 1 is an explicit constant.

(4) Let q = p. If |D| ≥ k +
p− 1

k
, then N1(k, b) > 0 for all b ∈ Fp.

Another interesting choice of D would be when D is a subgroup of Fq. If D is a

multiplicative subgroup of F∗q of index d, the k-Subset Sum Problem becomes much harder

5



because it is nonlinear. When D is a subgroup of index 2, Wang, Wang, and Zhou [22] were

able to find an explicit formula for N1(k, b).

Theorem 2.3. (Wang, Wang, and Zhou [22]) Let b ∈ F∗q.

Define

Ak,b(u, v, w) :=
∑

0≤ci≤k∑
ici=k

N(c1, . . . , ck)t
c1
1 . . . t

ck
k ,

where

ti =


u, if p - i, η(i) = η(b)

v, if p - i, η(i) = −η(b)

w, if p | i

.

Let t be the integer such that q = pt and let D = {x2 | x ∈ F∗q}.

(1) If either p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and t is even, then

N1(k, 0) =
1

q

( q−1
2

k

)
− (−1)k

q − 1

2qk!

[
Ak,1

(
1−√q

2
,
1 +
√
q

2
,
1− q

2

)

+ Ak,1

(
1 +
√
q

2
,
1−√q

2
,
1− q

2

)]

and

N1(k, b) =
1

q

( q−1
2

k

)
− (−1)k

2qk!

[
(1−√q)Ak,b

(
1−√q

2
,
1 +
√
q

2
,
1− q

2

)

+ (1 +
√
q)Ak,b

(
1 +
√
q

2
,
1−√q

2
,
1− q

2

)]

for b ∈ F∗q.
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(2) If p ≡ 3 (mod 4) and t is odd, then

N1(k, 0) =
1

q

( q−1
2

k

)
− (−1)k

q − 1

2qk!

[
Ak,1

(
1−√qi

2
,
1 +
√
qi

2
,
1− q

2

)

+ Ak,1

(
1 +
√
qi

2
,
1−√qi

2
,
1− q

2

)]

and

N1(k, b) =
1

q

( q−1
2

k

)
− (−1)k

2qk!

[
(1 +

√
qi)Ak,b

(
1−√qi

2
,
1 +
√
qi

2
,
1− q

2

)

+ (1−√qi)Ak,b
(

1 +
√
qi

2
,
1−√qi

2
,
1− q

2

)]

for b ∈ F∗q, where i =
√
−1.

For general d, Zhu and Wan [23] provided an asymptotic formula.

Theorem 2.4. (Zhu, Wan [23]) Let D be a multiplicative subgroup of F∗q with index d. Let

p > 2. There is an effectively computable absolute constant 0 < c < 1 such that if d < c
√
q

and 6 ln q < k ≤ q−1
2d

= |D|
2

, then N1(k, b) > 0 for all b ∈ Fq.

Moving further away from an algebraic structure, Keti and Wan [9] studied the case

when D is the image of a Dickson polynomial of degree d,

Dd(x, a) =

(
x+
√
x2 + 4a

2

)d

+

(
x−
√
x2 + 4a

2

)d

,

where a ∈ Fq. Dickson polynomials are like generalized monomials because when a = 0,

then Dd(x, 0) = xd.

Theorem 2.5. (Keti, Wan [9]) Let D = {Dd(x, a) | x ∈ Fq} for a ∈ F∗q. There exist

7



computable constants c1, c2 > 0 such that if the conditions

d+ 1

2

√
q < c1|D| and log2 q ≤ k < c2|D|

are satisfied, then N1(k, b) > 0 for all b ∈ Fq.

If D is a more general subset of Fq, then Wang and Nguyen [21] were able to answer

the k-Subset Sum Problem, relying on character sums over D.

Theorem 2.6. (Wang, Nguyen [21]) Let Fq be the finite field, where p is an odd prime.

Let D ⊆ Fq. If q ≥ 227584, |D| ≥ 36 ln2 q, and for all nontrivial additive characters

ψ : (Fq,+)→ C∗, ∣∣∣∣∣∑
x∈D

ψ(x)

∣∣∣∣∣ ≤ 1
3
√

2q
|D|,

then N1(k, b) > 0 for all b ∈ Fq and 3 ≤ k ≤ |D|
2

.

Using Theorem 2.6, Wang and Nguyen [21] were able to conclude the following conditions

for when D is the multiplicative subgroup of F∗q with index d and when D is the image of a

Dickson polynomial of degree d.

Corollary 2.1. (Wang, Nguyen [21]) Let p be an odd prime and D = {xd | x ∈ F∗q}. If

d < 0.8 6
√
q, then for all b ∈ Fq and 3 ≤ k ≤ |D|

2
, N1(k, b) > 0.

Corollary 2.2. (Wang, Nguyen [21]) Let p is an odd prime, a ∈ F∗q and D = {Dd(x, a)|x ∈

Fq}. If

q

[
1

gcd(d, q − 1)
+

1

gcd(d, q + 1)

]
≥ 72 ln2 q + 1 and

d+ 1 ≤ 0.39 · 6
√
q

[
1

gcd(d, q − 1)
+

1

gcd(d, q + 1)

]
,

then for all b ∈ Fq and 3 ≤ k ≤ |D|
2

, N1(k, b) > 0.
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One of the most important consequences of Corollaries 2.1 and 2.2 is the following

theorem.

Theorem 2.7. (Wang, Nguyen [21]) If p > 2 and D is the image of the monomial or a

Dickson polynomial of degree d, then the k-Subset Sum problem can be solved in deterministic

polynomial time in d log q.

Wang and Nguyen focused on the case when p > 2. If p = 2, Choe and Choe [4] found

a similar theorem.

Theorem 2.8. (Choe, Choe [4]) Let q = 2t, where t ≥ 11 and let D ⊆ Fq such that

|D| > max{5q 2
3 , (3.05t)2}. If ∣∣∣∣∣∑

x∈D

ψ(x)

∣∣∣∣∣ ≤ 1
3
√

2q
|D|

for all nontrivial additive characters ψ of Fq, then N1(k, b) > 0 whenever b ∈ Fq and 3 ≤

k ≤ |D|
2

.

Choe and Choe [4] also applied their theorem for when D is the multiplicative subgroup

of F∗q with index d and when D is the image of a Dickson polynomial of degree d.

Corollary 2.3. (Choe, Choe [4]) Let q = 2t, where t ≥ 13 and let D be the subgroup of F∗q

with index d. If d ≤ 1
3√2

6
√
q, then N1(k, b) > 0 whenever b ∈ Fq and 3 ≤ k ≤ |D|

2
.

Corollary 2.4. (Choe, Choe [4]) Let q = 2t, where t ≥ 11, a ∈ F∗q and D = {Dd(x, a)|x ∈

Fq}. If d ≤ 1
3√16

6
√
q, then N1(k, b) > 0 whenever b ∈ Fq and 3 ≤ k ≤ |D|

2
.

Similar to the case of p > 2, Corollaries 2.3 and 2.4 imply the following theorem.

Theorem 2.9. (Choe, Choe [4]) If p = 2 and D is the image of the monomial or a

Dickson polynomial of degree d, then the k-Subset Sum problem can be solved in deterministic

polynomial time in d log q.

9



2.2 For general m

The k-Subset Sum Problem has been studied extensively, but not much is known about

Nm(k, b) for m > 1. The work from Li and Wan [11] implies the following asymptotic

formula for general m when D = Fq.

Theorem 2.10. Let D = Fq. For any ε > 0, there is a constant cε > 0 s.t. if m < εk1/2

and 4ε2 ln2 q < k ≤ cεq, then Nm(k, b) > 0 for all b ∈ Fmq .

2.3 New results for m = 2

In this dissertation, we obtain a formula for N2(k, (0, 0)) when D = Fq.

Theorem 2.11. Let D = Fq, where p is an odd prime, and let t be the integer such that

q = pt.

For 0 ≤ ci ≤ k, i = 1, . . . , k, let s =
∑
p-i
ci and r =

∑
p|i
ci.

If p ≡ 1 (mod 4), then

N2(k, (0, 0)) =
1

k!q2

[
(q)k + (q − 1)

∑
0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)t−1(q − 1)
√
q

∑
0≤ci≤k∑
ici=k

s6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2

]

10



and if p ≡ 3 (mod 4), then

N2(k, (0, 0)) =
1

k!q2

[
(q)k + (q − 1)

∑
0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)
3t
2
−1(q − 1)

√
q

∑
0≤ci≤k∑
ici=k

s 6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2

]
.

In order to answer the Moments Subset Sum Problem under certain conditions, we have

the following corollary.

Corollary 2.5. Let q = p, where p is an odd prime, and let D = Fq. For a positive constant

c such that 0 < c < 1
2
, if −2 log(q)

log(2c)
≤ k ≤ c

√
q, then N2(k, (0, 0)) > 0.

Note that since 0 < c < 1
2
, log(2c) < 0 and therefore, −2 log(q)

log(2c)
> 0. Also, note that the

lower bound for k in Corollary 2.5 is an improvement on the lower bound for k in Theorem

2.10.

We prove Theorem 2.11 in Section 4.2 and Corollary 2.5 in Section 4.3 by utilizing a

sieve by Li and Wan [11], properties of characters sums, and the Gauss sum over Fq.
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Chapter 3

Tools

3.1 Li-Wan Sieve

To solve the Moments Subset Sum Problem, we need to count vectors with distinct coordinates.

Let D be a finite set. Let Dk = D×D× · · · ×D (k ∈ N+) be the Cartesian product of

k copies of D and let X be a subset of Dk. We are interested in the number of elements in

X with distinct coordinates, i.e., the cardinality of the set

X = {(x1, · · · , xk) ∈ X | xi 6= xj for ∀ i 6= j}.

Let Xij = {(x1, . . . , xk) ∈ X | xi = xj}. Then, by the Inclusion-Exclusion Principle,

|X| = |X| −
∑

1≤i<j≤k

|Xij|+
∑

1≤i<j≤k
1≤s<t≤k

|Xij

⋂
Xst| − . . .+ (−1)(

k
2)

∣∣∣∣∣ ⋂
1≤i<j≤k

Xij

∣∣∣∣∣ .

This equation has 2(k2) terms. When k is relatively large, the total error term may be

12



greater than the main term. To avoid this, another method to counting these vectors is to

use a sieve proposed by Li and Wan [11], which we will introduce here.

Let Sk be the symmetric group on {1, . . . , k}. For a given permutation τ ∈ Sk, we can

write it as the product of disjoint cycles, i.e., τ = (i1, · · · , ia1)(j1, · · · , ja2) · · · (l1, · · · , las),

where ai ≥ 1, 1 ≤ i ≤ s. The group Sk acts on Dk by permuting its coordinates, that is

τ ◦ (x1, · · · , xk) = (xτ(1), · · · , xτ(k)).

Definition 3.1. The set X is called symmetric if it is invariant under the action of Sk, i.e.,

for any x ∈ X and any τ ∈ Sk, τ ◦ x ∈ X.

Let f(x1, x2, · · · , xk) be a complex valued function defined over X, and denote

F =
∑
x∈X

f(x1, x2, · · · , xk).

In order to illustrate the sieve, we define for τ = (i1, · · · , ia1)(j1, · · · , ja2) · · · (l1, · · · , las),

Xτ = {(x1, · · · , xk) ∈ X | xi1 = · · · = xia1 , · · · , xl1 = · · · = xlas}.

Similarly, we can define

Fτ =
∑
x∈Xτ

f(x1, x2, · · · , xk).

Definition 3.2. A complex-valued function f defined on X is called normal on X if X is

symmetric, and for any two conjugate elements τ and τ ′ in Sk, we have

∑
x∈Xτ

f(x1, x2, · · · , xk) =
∑
x∈Xτ ′

f(x1, x2, · · · , xk).

13



Theorem 3.1. (Li, Wan [11]) If f is normal on X, then we have

F =
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)Fτ ,

where τ ∈ Sk is of cycle type (c1, · · · , ck).

3.2 Gauss Sums

In our proof, we will also need a few properties about Gauss sums.

Definition 3.3. Let χ be a multiplicative character of Fq and let ψ be an additive character

of Fq. Suppose that we extend χ to the whole field Fq by defining

χ(0) =


1, if χ is the trivial character

0, otherwise

.

The Gauss sum G(χ, ψ) is defined by

G(χ, ψ) =
∑
x∈Fq

χ(x)ψ(x).

Theorem 3.2. [16] Let t be the integer such that q = pt. Then,

G(η, ψ1) =


(−1)t−1

√
q, if p ≡ 1 (mod 4)

(−1)
3t
2
−1√q, if p ≡ 3 (mod 4)

.
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3.3 Some Combinatorial Formulas

We will also need another combinatorial tool in our proof.

Definition 3.4. Let Ck(t1, . . . , tk) be the generating function

Ck(t1, . . . , tk) :=
∑

∑
ici=k

N(c1, . . . , ck)t
c1
1 . . . t

ck
k .

Lemma 3.1. (Li, Wan [12]) Let a, b be two nonnegative real numbers such that b ≥ a and

let be p be a prime number. If ti = a for p - i, ti = b for p | i, then

Ck(t1, . . . , tk) = Ck(

p−1︷ ︸︸ ︷
a, · · · , a, b,

p−1︷ ︸︸ ︷
a, · · · , a, b, . . .)

≤
(
a+ k +

b− a
p
− 1

)
k

.

In the special case when a = 0 and b = q, we have the exact value of the generating

function.

Lemma 3.2.

Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .) =


k!
( q+k

p
−1
k
p

)
, if p | k

0, if p - k
.

Proof. By definition of the generating function,

Ck(t1, . . . , tk) =
∑

∑
ici=k

k!

1c1c1!2c2c2! · · · kckck!
tc11 . . . t

ck
k

=
∑

∑
ici=k

k!

c1!c2! · · · ck!

(
t1
1

)c1 (t2
2

)c2
. . .

(
tk
k

)ck

15



Therefore, we have the following exponential generating function,

∑
k≥0

Ck(t1, . . . , tk)
uk

k!
= eut1+u

2· t2
2
+u3· t3

3
+....

If ti = 0 for p - i, ti = q for p | i, then we have

∑
k≥0

Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .)u

k

k!
= eu

p· q
p
+u2p· q

2p
+u3p· q

3p
+...

= e
q
p

(
up+u2p

2
+u3p

3
+...

)

= e−
q
p
log(1−up)

=
1

(1− up)
q
p

=
∑
i≥0

( q
p

+ i− 1

i

)
upi.

Thus, Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .) is the coefficient of the term uk

k!
in the sum

∑
i≥0

( q
p
+i−1
i

)
upi.

If p | k, then the term uk appears when i = k
p
. Thus,

Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .) = k!

( q+k
p
− 1
k
p

)
.

If p - k, then the term uk does not appear in the sum and

Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .) = 0.

To combine Lemma 3.2 into one estimate, we have the following corollary.
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Corollary 3.1.

Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .) ≤ k!

( q+k
p
− 1
k
p

)

17



Chapter 4

Approaching the case of m = 2

4.1 Redefine the problem

Let D = Fq, where p is an odd prime, and m = 2. Let N2(k, (0, 0)) be the number of

unordered k-tuples x = (x1, . . . , xk) with distinct xi ∈ Fq such that


x21 + . . .+ x2k = 0

x1 + . . .+ xk = 0

(4.1)

Let Ñ2(k, (0, 0)) be the number of unordered k-tuples x = (x1, . . . , xk) with distinct

xi ∈ Fq such that


∑

1≤i<j≤k
xixj = 0

x1 + . . .+ xk = 0

(4.2)

Lemma 4.1. N2(k, (0, 0)) = Ñ2(k, (0, 0)).
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Proof. By squaring (x1 + . . .+ xk) and rearranging the terms, we have

x21 + . . .+ x2k = (x1 + . . .+ xk)
2 − 2

∑
1≤i<j≤k

xixj.

Then, (x1, . . . , xk) is a solution to the system of equations (4.1) if and only if it is a

solution to the system of equations (4.2).

Let x = (x1, . . . , xk) be a solution to the system of equations (4.2). Then, for some

g(y) ∈ y3Fq[y],

k∏
i=1

(1 + xiy) = 1 + (x1 + . . .+ xk)y +

( ∑
1≤i<j≤k

xixj

)
y2 + g(y)

= 1 + g(y)

≡ 1 (mod y3).

Therefore, we can redefine N2(k, (0, 0)) as the following.

Definition 4.1. The number N2(k, (0, 0)) is the number of unordered k-tuples x = (x1, . . . , xk)

with distinct xi ∈ Fq such that

k∏
i=1

(1 + xiy) ≡ 1 (mod y3),

i.e.,

N2(k, (0, 0)) =

∣∣∣∣∣
{
{x1, . . . , xk} ⊆ Fq |

∏
i=1

(1 + xiy) ≡ 1 (mod y3), xi 6= xj, for i 6= j

}∣∣∣∣∣ .

Let G = ((1 + yFq[y])/(1 + y3Fq[y]))
∗
. Then, all the multiplicative characters χ of

G are given such that for a ∈ Fq, χ(1 + ay) = ψ1(σ2a
2 + σ1a), where σ1, σ2 ∈ Fq [20].
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The q2 characters of G are parametrized precisely by the q2 pairs (σ1, σ2) ∈ F 2
q . For each

σ = (σ1, σ2) ∈ F 2
q , let χσ(1 + ay) = ψ1(σ2a

2 + σ1a). Note that if σ = (0, 0), then χσ has

order p.

Lemma 4.2. Let χσ be a multiplicative character of G. Then,

∑
a∈Fq

χσ(1 + ay) =



q, if σ1 = 0, σ2 = 0

0, if σ1 6= 0, σ2 = 0

ψ1

(
−σ2

1

4σ2
2

)
η(σ2)G(η, ψ1), if σ2 6= 0

.

Proof. (1) If σ1 = σ2 = 0, then for all a ∈ Fq, χσ(1 + ay) = 1 and

∑
a∈Fq

χσ(1 + ay) = q.

(2) If σ1 6= 0, σ2 = 0, then ∑
a∈Fq

χσ(1 + ay) =
∑
a∈Fq

ψ1(σ1a)

=
∑
a∈Fq

ψ1(a)

= 0.
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(3) If σ2 6= 0, then

∑
a∈Fq

χσ(1 + ay) =
∑
a∈Fq

ψ1(σ2a
2 + σ1a)

=
∑
a∈Fq

ψ1

(
σ2

(
a+

σ1
2σ2

)2

− σ2
1

4σ2
2

)

= ψ1

(
−σ2

1

4σ2
2

)∑
a∈Fq

ψ1(σ2a
2)

= ψ1

(
−σ2

1

4σ2
2

)∑
x∈Fq

ψ1(σ2x)(1 + η(x))

= ψ1

(
−σ2

1

4σ2
2

)∑
x∈Fq

ψ1(σ2x)η(x)

= ψ1

(
−σ2

1

4σ2
2

)
η(σ−12 )

∑
x∈Fq

ψ1(σ2x)η(σ2x)

= ψ1

(
−σ2

1

4σ2
2

)
η(σ2)G(η, ψ1).

4.2 Proof of Theorem 2.11

Instead of focusing on the number N2(k, (0, 0)), we will be looking at the following number.

Definition 4.2. Let M2(k, (0, 0)) be the number of ordered k-tuples x = (x1, . . . , xk) with

distinct xi ∈ Fq such that
k∏
i=1

(1 + xiy) ≡ 1 (mod y3),

i.e.,

M2(k, (0, 0)) =

∣∣∣∣∣
{

(x1, . . . , xk) ∈ Fkq

∣∣∣∣∣
k∏
i=1

(1 + xiy) ≡ 1 (mod y3), xi 6= xj, for i 6= j

}∣∣∣∣∣ .
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Let Ĝ be the group of multiplicative characters χσ of G. Based on the properties of

character sums,

M2(k, (0, 0)) =
1

q2

∑
xi∈Fq

xi distinct

∑
χσ∈Ĝ

χσ

(
k∏
i=1

(1 + xiy)

)
. (4.3)

Let X = Fkq ,

X = {(x1, . . . , xk) ∈ X | xi 6= xj, for i 6= j},

and for τ = (i1, · · · , ia1)(j1, · · · , ja2) · · · (l1, · · · , las) ∈ Sk,

Xτ = {(x1, · · · , xk) ∈ X | xi1 = · · · = xia1 , · · · , xl1 = · · · = xlas}.

For χσ ∈ Ĝ, define fχσ(x) = fχσ(x1, . . . , xk) = χσ

(
k∏
i=1

(1 + xiy)

)
and define

Fχσ =
∑
xi∈Fq

xi distinct

χσ

(
k∏
i=1

(1 + xiy)

)
=
∑
x∈X

fχσ(x).

For τ ∈ Sk, define

Fτ,χσ =
∑
x∈Xτ

χσ

(
k∏
i=1

(1 + xiy)

)
=
∑
x∈Xτ

fχσ(x). (4.4)

We can rewrite equation (4.3) as

q2M2(k, (0, 0)) =
∑
χσ∈Ĝ

∑
x∈X

fχσ(x). (4.5)

Recalling Definitions 3.1 and 3.2, the set X is symmetric and the function fχσ is normal
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on X. Therefore, by applying Theorem 3.1 to equation (4.5), we have

q2M2(k, (0, 0)) =
∑
χσ∈Ĝ

∑
0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)Fτ,χσ

= (q)k +
∑
χσ∈Ĝ
χσ 6=1

∑
0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)Fτ,χσ

= (q)k +
∑
σ1 6=0
σ2=0

∑
0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)Fτ,χσ

+
∑
σ2 6=0
σ1∈Fq

∑
0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)Fτ,χσ

= (q)k +
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)

∑
σ1 6=0
σ2=0

Fτ,χσ

+
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)

∑
σ2 6=0
σ1∈Fq

Fτ,χσ . (4.6)

If τ is of cycle type (c1, · · · , ck), then equation (4.4) becomes

Fτ,χσ =
k∏
i=1

∑
a∈Fq

χiσ(1 + ay)

ci

.

If p | i, then ∑
a∈Fq

χiσ(1 + ay)

ci

= qci .
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If p - i and σ2 6= 0, then by the third case of Lemma 4.2,

∑
a∈Fq

χiσ(1 + ay)

ci

=

∑
a∈Fq

ψi1(σ2a
2 + σ1a)

ci

=

∑
a∈Fq

ψ1(iσ2a
2 + iσ1a)

ci

=

(
ψ1

(
−σ2

1

4σ2
2

)
η(iσ2)G(η, ψ1)

)ci
= η(ici)ψci1

(
−σ2

1

4σ2
2

)
ηci(σ2)G

c1(η, ψ1).

Therefore, if σ2 6= 0,

Fτ,χσ = η

(
k∏
i=1

ici

)
qrψs1

(
−σ2

1

4σ2
2

)
ηs(σ2)G

s(η, ψ1). (4.7)

If p - i, σ1 6= 0, σ2 = 0, and ci 6= 0, then by the second case of Lemma 4.2,

∑
a∈Fq

χiσ(1 + ay)

ci

=

∑
a∈Fq

ψi1(σ1a)

ci

=

∑
a∈Fq

ψ1(iσ1a)

ci

= 0.

If p - i, σ1 6= 0, σ2 = 0, and ci = 0, then

∑
a∈Fq

χiσ(1 + ay)

ci

= 1.

Let s =
∑
p-i
ci and let r =

∑
p|i
ci.
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If σ1 6= 0, σ2 = 0, and s 6= 0, then there is at least one i such that p - i and ci 6= 0. Thus,

Fτ,χσ = 0. (4.8)

If s = 0, then

Fτ,χσ = qr. (4.9)

Using the values (4.7), (4.8), and (4.9) for Fτ,χσ , equation (4.6) becomes

q2M2(k, (0, 0)) = (q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)

∑
σ2 6=0
σ1∈Fq

η

(
k∏
i=1

ici

)
qrψs1

(
−σ2

1

4σ2
2

)
ηs(σ2)G

s(η, ψ1)

= (q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
qrGs(η, ψ1)

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2).

(4.10)

If s ≡ 0 (mod 2p), then

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2) = 1

and ∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2) = q(q − 1). (4.11)

If s 6≡ 0 (mod p) and s ≡ 0 (mod 2), then similar to the proof of the third case of

Lemma 4.2,
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∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2) =

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)

=
∑
σ2 6=0
σ1∈Fq

ψ1

(
−sσ2

1

4σ2
2

)

=
∑
σ2 6=0
σ1∈Fq

ψ1

(
−s
4
σ2
1

)

= (q − 1)
∑
σ1∈Fq

ψ1

(
−s
4
σ2
1

)
= (q − 1)η

(
−s

4

)
G(η, ψ1)

= (q − 1)η(−s)G(η, ψ1). (4.12)

If s 6≡ 0 (mod 2), then

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2) =

∑
σ2 6=0
σ1∈Fq

ψ1

(
−sσ2

1

4σ2
2

)
η(σ2)

=
∑
σ2 6=0

η(σ2)
∑
σ1∈Fq

ψ1

(
−sσ2

1

4σ2
2

)

=
∑
σ2 6=0

η(σ2)
∑
σ1∈Fq

ψ1

(
−s
4

(
σ1
σ2

)2
)

=

(∑
σ2 6=0

η(σ2)

)∑
σ1∈Fq

ψ1

(
−s
4
σ2
1

)
= 0. (4.13)
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Using values (4.11), (4.12), (4.13), equation (4.10) becomes

q2M2(k,(0, 0)) = (q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
qrGs(η, ψ1)

+ (q − 1)G(η, ψ1)
∑

0≤ci≤k∑
ici=k

s 6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
qrGs(η, ψ1).

(4.14)

By Theorem 3.2, we have that if p ≡ 1 (mod 4), then G(η, ψ1) = (−1)t−1
√
q and

Gs(η, ψ1) = ((−1)t−1
√
q)s. Since s is even, Gs(η, ψ1) = q

s
2 . Therefore, equation (4.14)

becomes

q2M2(k, (0, 0)) =(q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)t−1(q − 1)
√
q

∑
0≤ci≤k∑
ici=k

s 6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2 .

If p ≡ 3 (mod 4), then G(η, ψ1) = (−1)
3t
2
−1√q and Gs(η, ψ1) = ((−1)

3t
2
−1√q)s. Since s
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is even, Gs(η, ψ1) = (−1)
st
2 q

s
2 . Therefore, equation (4.14) becomes

q2M2(k, (0,0)) = (q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)
3t
2
−1(q − 1)

√
q

∑
0≤ci≤k∑
ici=k

s 6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2 .

Recalling Definition 4.1 of N2(k, (0, 0)) and Definition 4.2 of M2(k, (0, 0)), we have

M2(k, (0, 0)) = k!N2(k, (0, 0)) and q2M2(k, (0, 0)) = k!q2N2(k, (0, 0)). Therefore, if p ≡ 1

(mod 4), then

N2(k, (0, 0)) =
1

k!q2

[
(q)k + (q − 1)

∑
0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)t−1(q − 1)
√
q

∑
0≤ci≤k∑
ici=k

s6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ciN(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2

]

28



and if p ≡ 3 (mod 4), then

N2(k, (0, 0)) =
1

k!q2

[
(q)k + (q − 1)

∑
0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+ q(q − 1)
∑

0≤ci≤k∑
ici=k

s≡0(mod 2p)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
k∏
i=1

ici

)
q

2r+s
2

+ (−1)
3t
2
−1(q − 1)

√
q

∑
0≤ci≤k∑
ici=k

s 6≡0(mod p)
s≡0(mod 2)

(−1)k−
∑
ci+

st
2 N(c1, · · · , ck)η

(
−s

k∏
i=1

ici

)
q

2r+s
2

]
.

4.3 Proof of Corollary 2.5

Recalling Definition 4.1 of N2(k, (0, 0)) and Definition 4.2 of M2(k, (0, 0)), to find conditions

such that N2(k, (0, 0)) > 0, it is enough to find conditions for M2(k, (0, 0)) > 0.

From equation (4.10) of the previous proof, we have

q2M2(k, (0,0)) = (q)k + (q − 1)
∑

0≤ci≤k∑
ici=k
s=0

(−1)k−
∑
ciN(c1, · · · , ck)qr

+
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
qrGs(η, ψ1)

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2).

(4.15)

If s = 0, then let 0s = 1 and if s 6= 0, then let 0s = 0. By rearranging equation (4.15)

29



and taking absolute values, we have

|q2M2(k, (0, 0))− (q)k| ≤

∣∣∣∣∣(q − 1)
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)qr0s

+
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
qrGs(η, ψ1)

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2)

∣∣∣∣∣
≤ (q − 1)

∣∣∣∣∣∣∣∣
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)qr0s

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

0≤ci≤k∑
ici=k

(−1)k−
∑
ciN(c1, · · · , ck)η

(
k∏
i=1

ici

)
qrGs(η, ψ1)

∑
σ2 6=0
σ1∈Fq

ψs1

(
−σ2

1

4σ2
2

)
ηs(σ2)

∣∣∣∣∣∣∣∣
≤ (q − 1)

∑
0≤ci≤k∑
ici=k

N(c1, · · · , ck)qr0s + q(q − 1)
∑

0≤ci≤k∑
ici=k

N(c1, · · · , ck)qr(
√
q)s. (4.16)

Recalling Definition 3.4, inequality (4.16) becomes

|q2M2(k, (0, 0))− (q)k| ≤ (q − 1)Ck(

p−1︷ ︸︸ ︷
0, · · · , 0, q,

p−1︷ ︸︸ ︷
0, · · · , 0, q, . . .)

+ q(q − 1)Ck(

p−1︷ ︸︸ ︷√
q, · · · ,√q, q,

p−1︷ ︸︸ ︷√
q, · · · ,√q, q, . . .).

(4.17)

Using Lemma 3.1 and Corollary 3.1, inequality (4.17) becomes,

|q2M2(k, (0, 0))− (q)k| ≤ (q − 1)k!

( q+k
p
− 1
k
p

)
+ q(q − 1)

(
√
q + k +

q −√q
p

− 1

)
k

.

30



For M2(k, (0, 0)) > 0, it is sufficient to have

(q)k > (q − 1)k!

( q+k
p
− 1
k
p

)
+ q(q − 1)

(
√
q + k +

q −√q
p

− 1

)
k

. (4.18)

If q = p, then inequality (4.18) becomes

(q)k > (q − 1)k! + q(q − 1)

(
√
q + k −

√
q

q

)
k

. (4.19)

Suppose that

k ≥ −2 log(q)

log(2c)
for some constant 0 < c <

1

2
.

Since 2 log(q) > log(q2 −√q) and − log(2c) < log(
√
q)− log(c(

√
q + 1)), we have that

k >
log(q2 −√q)

log(
√
q)− log(c(

√
q + 1))

=
log(q2 −√q)

log
( √

q

c(
√
q+1)

) . (4.20)

Also, since 0 < c < 1
2
, we have

0 < c <

√
q

√
q + 1

and therefore, √
q

c(
√
q + 1)

> 1.

Since
√
q

c(
√
q+1)

> 1, log
( √

q

c(
√
q+1)

)
> 0. Thus, inequality (4.20) becomes

log

( √
q

c(
√
q + 1)

)
>

1

k
log(q2 −√q). (4.21)
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If we raise e to the two quantities in inequality (4.21), we have a new inequality

√
q

c(
√
q + 1)

> (q2 −√q)
1
k . (4.22)

If we multiply both sides by
√
q + 1, inequality (4.22) becomes

√
q

c
> (q2 −√q)

1
k (
√
q + 1). (4.23)

Suppose that k ≤ c
√
q. Then, 1

k
≥ 1

c
√
q

and inequality (4.23) becomes

q

k
> (q2 −√q)

1
k (
√
q + 1). (4.24)

If we raise both sides by the kth power, inequality (4.24) becomes

( q
k

)k
> (q2 −√q)(√q + 1)k. (4.25)

We have that

(q − 1)(
√
q + 1)k > q − 1.

Therefore, inequality (4.25) becomes

( q
k

)k
> (q − 1) + (q2 − q)(√q + 1)k (4.26)

We have that

(q)k
k!
≥
( q
k

)k
and (

√
q + 1)k ≥

(
√
q + k −

√
q

q

)
k

k!
.
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Thus, inequality (4.26) becomes

(q)k
k!

> (q − 1) + (q2 − q)

(
√
q + k −

√
q

q

)
k

k!
. (4.27)

Multiplying both sides by k!, inequality (4.27) becomes

(q)k > (q − 1)k! + q(q − 1)

(
√
q + k −

√
q

q

)
k

,

which is exactly inequality (4.19).

Thus, if q = p, then inequality (4.18) is fulfilled and M2(k, (0, 0)) > 0. Therefore,

N2(k, (0, 0)) > 0.
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Chapter 5

Applications to Coding Theory

5.1 Generalized Reed-Solomon Codes and the Deep

Hole Problem

When communicating over noisy channels, it is possible that errors can occur. In coding

theory, we study codes that can detect and correct these errors. One important class of

error-correcting codes is called the generalized Reed-Solomon codes.

Let Fq be a finite field of cardinality q and characteristic p. Let D = {x1, . . . , xn} ⊆ Fq

be an evaluation set and let 1 ≤ k ≤ n. A generalized Reed-Solomon code over Fq with

message length n and dimension k [19] is defined as

C = {(f(x1), . . . , f(xn)) ∈ Fnq | xi ∈ D, f(x) ∈ Fq[x], deg(f) ≤ k − 1}.

34



The (Hamming) distance between two words u, v ∈ Fnq is

d(u, v) = |{i | ui 6= vi}|

and the distance from a received word u to the code C is

d(u,C) = min
v∈C

d(u, v).

The covering radius of C is the maximum possible distance from a word in Fnq and a word

in C.

For a generalized Reed-Solomon code, the covering radius is n−k, i.e., d(u,C) ≤ n−k,

for all u ∈ Fnq .

Definition 5.1. A received word u is called a deep hole if d(u,C) = n− k.

Definition 5.2. (The Deep Hole Problem) Determine if a given word u is a deep hole.

It has been shown that for general evaluation setsD, the Deep Hole Problem is NP-complete

[8]. If we look at particular received words u, then this problem can be answered. In Section

4.2, we review a few techniques used to answer this problem and in Section 4.3, we apply

our results from Section 2.3 to certain received words u.

5.2 Some Previous Results

Let u = (u1, . . . , un) ∈ Fnq be a received word. Define

u(x) :=
n∑
i=1

ui

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

∈ Fq[x].
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The polynomial u(x) is the unique polynomial of degree at most n− 1 such that u(xi) = ui,

for 1 ≤ i ≤ n. Define

deg(u) := deg(u(x)).

We have d(u,C) = 0 if and only if deg(u) ≤ k − 1. If k ≤ deg(u) ≤ n− 1, then Li and

Wan [10] proved that there is a connection between deg(u) and d(u,C).

Theorem 5.1. (Li, Wan [10]) Let u ∈ Fnq be a word such that k ≤ deg(u) ≤ n− 1. Then,

n− k ≥ d(u,C) ≥ n− deg(u).

By Theorem 5.1, if deg(u) = k, then u is a deep hole. When D = Fq, Cheng and Murray

[3] conjectured the following statement.

Conjecture 5.1. (Cheng, Murray [3]) For the Reed-Solomon code C with D = Fq, where p

is an odd prime, a received word u is a deep hole if and only if deg(u)=k.

This conjecture has not been proven but, there has been some progress [3].

Theorem 5.2. (Cheng, Murray [3]) Let q = p be a prime and 1 < k < p1/4−ε. The vector u

is not a deep hole of the Reed-Solomon code C with D = Fp if k < deg(u) < k + p3/13−ε.

In [14], Li and Zhu were able to find the exact the distance or an upper bound on the

distance between a received word and the generalized Reed-Solomon code under different

conditions. There are many different cases, but a few cases from their work are as follows.

Theorem 5.3. (Li, Zhu [14]) Let C be a Reed-Solomon code with D = Fq, k ≥ 1, k + 2 ≤

q−1, and u ∈ Fnq represented by polynomial u(x) = xk+2−bxk+1 +cxk+v(x), deg(v) ≤ k−1,

then
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(1) If k + 2 = q − 1, then

d(u,Cq) =


q − k − 2 if b2 = c

q − k − 1 if b2 6= c

.

(2) If p 6= 2 and k + 2 ≤ q − 2, then if p - k + 2, we have d(u,C) ≤ q − k − 1.

In the case that p | k + 2, if b = c = 0 and k + 2 > q
2

+ 1, then d(u,C) ≤ q − k − 1.

There have been a variety of methods used to answer the Deep Hole Problem. In [2],

Cheng, Li, and Zhuang used deep hole trees to find when Conjecture 5.1 is true.

Theorem 5.4. (Cheng, Li, Zhuang [2]) Given a finite field Fq with characteristic p > 2,

if k + 1 ≤ p or 3 ≤ q − p + 1 ≤ k + 1 ≤ q − 2, then Conjecture 5.1 (The Cheng-Murray

conjecture) is true.

By looking at the existence of certain Fq-rational points of a family of hypersurfaces

defined over Fq, Cafure, Matera, and Privitelli [1] found conditions to answer the Deep Hole

Problem.

Theorem 5.5. (Cafure, Matera, Privitelli [1]) Let u be a received word and u(x) be its

interpolated polynomial. Suppose 1 ≤ deg(u)− k ≤ q − 1− k. Assume that

q > max{(k + 1)2, 14deg(u)2+ε} and k >

(
2

ε
+ 1

)
deg(u)

for some constant ε > 0. Then u is not a deep hole.

Li and Wan [13] and Liao [15] used character sums to find other conditions that rely on

the degree of u.
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Theorem 5.6. (Li, Wan [13]) Let u be a received word and u(x) be its interpolated polynomial.

Suppose 1 ≤ deg(u)− k ≤ q − 1− k. If

q > max{(k + 1)2, deg(u)2+ε} and k >

(
2

ε
+ 1

)
deg(u) +

8

ε
+ 2

for some constant ε > 0, then d(u,C) < q − k. In other words, u is not a deep hole.

Furthermore, if

q > max{(k + deg(u))2, (deg(u)− 1)2+ε} and k >

(
4

ε
+ 1

)
deg(u) +

4

ε
+ 2

for some constant ε > 0, then d(u,C) = q − (k + deg(u)).

Theorem 5.7. (Liao [15]) Let r ≥ 1 be an integer. Let u be a received word and u(x) be its

interpolated polynomial of degree m. If m ≥ k + r,

q > max

{
2

(
k + r

2

)
+ (m− k), (m− k)2+ε

}
and k >

1

1 + ε

(
r + (2 + ε)

(m
2

+ 1
))

for some constant ε > 0, then d(u,C) ≤ q − k − r. So u is not a deep hole.

We were able to determine conditions on the nonexistence of deep holes using our results

that were based on the Li-Wan sieve and properties of character sums.

5.3 Reduction to the Deep Hole Problem

In order to connect the Deep Hole Problem to the Moments Subset Sum Problem, we need

the following theorem.

Theorem 5.8. (Li, Wan [13]) Let C be a generalized Reed-Solomon code over Fq with

message length n and dimension k with evaluation set D. Let u ∈ Fnq be a word with
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deg(u) = k + d, where k + 1 ≤ k + d ≤ n− 1. Then, the error distance d(u,C) ≤ n− k − r

(1 ≤ r ≤ d) if and only if there exists a subset {x1, . . . , xk+r} ⊆ D and a monic polynomial

g(x) ∈ Fq[x] of degree d− r such that

u(x)− v(x) = (x− x1) . . . (x− xk+r)g(x)

for some v(x) ∈ Fq[x] with deg(v) ≤ k − 1.

As an application of Corollary 2.5, we were able to find when certain received words are

not deep holes.

Theorem 5.9. Let q = p, where p is an odd prime. Let C be a generalized Reed-Solomon

code with D = Fp. Let u be a received word with deg(u) = k+2 such that u(x) = xk+2+f(x),

where f(x) ∈ Fq[x] of degree < k. Then for a positive constant c such that 0 < c < 1
2
, if

−2 log(q)
log(2c)

− 2 < k ≤ c
√
q − 2, then u is not a deep hole.

Proof. Let u be a received word with deg(u) = k + 2.

By Theorem 5.8, d(u,C) ≤ n−k−2 if and only if there exists a subset {x1, . . . , xk+2} ⊆

D such that

u(x)− v(x) = (x− x1) . . . (x− xk+2). (5.1)

for some v(x) ∈ Fq[x] with deg(v) ≤ k − 1.

Subtracting v(x) from both sides, equation (5.1) becomes

u(x) = (x− x1) . . . (x− xk+2)− v(x). (5.2)
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Multiplying the linear terms together, equation (5.2) becomes

u(x) = xk+2 − (x1 + . . .+ xk+2)x
k+1 +

( ∑
1≤i<j≤k+2

xixj

)
xk+1 + ṽ(x), (5.3)

for some ṽ(x) ∈ Fq[x] with deg(ṽ) ≤ k − 1.

We have

u(x) = xk+2 + f(x), (5.4)

where f(x) ∈ Fq[x] of degree < k.

Therefore, comparing equations (5.3) and (5.4), we have that d(u,C) ≤ n− k− 2 if and

only if there exists a subset {x1, . . . , xk+2} ⊆ D such that

x1 + . . .+ xk+2 = 0

and ∑
1≤i<j≤k+2

xixj = 0.

This is the Moments Subset Sum Problem when D = Fq, m = 2, and b = (0, 0). Using

Corollary 2.5, if for a positive constant c such that 0 < c <
√
q

√
q+1

, if −2 log(q)
log(2c)

≤ k + 2 ≤ c
√
q,

then d(u,C) ≤ n − k − 2. By Definition 5.1, if d(u,C) ≤ n − k − 2, then u is not a deep

hole.
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