
UC Irvine
ICS Technical Reports

Title
A safety-critical software design and verification technique

Permalink
https://escholarship.org/uc/item/2cr141mp

Author
Cha, Stephen Sungdeok

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cr141mp
https://escholarship.org
http://www.cdlib.org/

A SAFETY-CRITICAL SOFTWARE DESIGN AND
~·

VERIFICATION TECHNIQUE

Dissertation

Stephen Sungdeok Cha

Department of Information and Computer Science

University of California, Irvine

Irvine, California 92717

Technical Report No. 91-62

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

UNIVERSITY OF CALIFORNIA

Irvine

A Safety-Critical Software Design and Verification Technique

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Information and Computer Science

by

Stephen Sungdeok Cha

Committee in charge:

Professor Nancy G. Leveson, Chair

Professor K.H. Kim

Professor Debra J. Richardson

1991

@1991

STEPHEN SUNGDEOK CHA

ALL RIGHTS RESERVED

I

The dissertation of Stephen Sungdeok Cha is approved,

and is acceptable in quality and form for

publication on microfilm:

t~ ni versi ty of California, Irvine

1991

11

Dedication

To my parents, Mr. In Jun Cha and Mrs. Sung Sook Kim, and

to my wife, Yoondeok.

111

Contents

List of Figures

List of Tables .

Acknowledgements

Abstract .

Chapter 1 Approaches to Software Safety .
1.1 Introduction
1.2 Dissertation Overview

Chapter 2 Survey and Evaluation of Previous Research
2 .1 Software Design Methodology
2.2 Security Design Techniques
2.3 Software Safety Verification Techniques

Chapter 3 A Safety-Oriented Design Method
3.1 Introduction
3.2 High-Level Design Analysis
3.3 Detailed Design Safety Verification
3.4 Some Safe Design Techniques .. ;

Chapter 4 A Safety-Oriented Management Structure
4.1 Software Safety Management .
4.2 System Safety Management

Chapter 5 A TCAS Example .
5.1 Introduction
5.2 TCAS Design Description .
5.3 TCAS Safety Analysis . . .
5.4 An Improved TCAS Design

Chapter 6 Conclusions and Future Work
6.1 Conclusions .
6.2 Future Work

IV

v

Vl

Vll

IX

1
1
4

7
7

10
14

21
21
24
35
46

52
52
57

60
60
63
67
77

81
81
82

List of Figures

2.1 Software Safety Techniques . . .
2.2 Run-Time Safety Environment .
2.3 Roles of Safety Executive

14
18
20

3.1 Safety-Oriented Method Overview . 22
3.2 A Brute Force Algorithm to Detect Safety-Critical Items 25
3.3 AnalyzeANode (inn : node) 26
3.4 An Enhanced Algorithm to Detect Safety-Critical Items . 28
3.5 AssignNodeLevels (out MaxLevel : integer) 29
3.6 AnalyzeANode (in n : node; out MustBackUp : boolean) 30
3. 7 Distribute WP (in n : node; in WP : boolean; out Successful : boolean) 31
3.8 Undo (in n : node; out Resolved : booelan) . 32
3.9 Essential Firewall Requirements 34
3.10 Why Concurrency Safety Analysis is Needed 36
3.11 Impacted Concurrency States and the Rendezvous . 43

4.1 Safety Management Hierarchy Recommended in the MoD-Std-0055 53
4.2 Slight Variation to Mod-StD-0055 Management Hierarchy . . 55
4.3 Safety-Critical System Development Management Hierarchy 57

5.1 CAS Logic Functions 61
5.2 Procedures Threat-Detection and Setup-Parameters 64
5.3 Procedures Hit-Or-Miss-Test and Hit-Test-Init 65
5.4 Procedure Compute-Tau 66
5.5 Procedure Compute-VMD-HMD. . . . 67
5.6 Procedure Run-Range-Altitude-Test . . 68
5.7 Procedure Log-Threat-Info 68
5.8 Structure of Threat-Detection Procedure 69
5.9 Control Flow of Threat-Detection Procedure 70
5.10 Control Flow of Range-Test Procedure . . . 72
5.11 Propagation of WP from Range-Test Task 73
5.12 Propagation of WP from Altitude-Test Task 75
5.13 Firewall Installation 78
5.14 Safety-Critical Module Augmentation with Run-Time Assertions . 79
5.15 Main Procedure and Safety-Independent Module 80

v

List of Tables

1.1 Causes of Tandem System Outages from 1985 to 1989 ;3

5.1 Derivation of Run-Time Assertions 76

VI

Acknowledgements

Without the guidance, encouragement, and patience of my advisor, Professor
N a.ncy Leveson, this dissertation could not have been completed.

I am also grateful to the committee members Professor K.H. Kim and Professor
Debra Richardson. Joan Isenbarger was the proofreader of my first and the last
publications as a graduate student. Her help is deeply appreciated. Reuven Greenberg
suggested the safety constraints from which I developed a TCAS example. His help
is appreciated.

Curriculum Vitae

February 18, 1960

October 30, 1980

1983

1986

1991

Publications

Born CheongPyong, South Korea

Immigrated to the United States

B.S. in Information and Computer Science, University of
California, Irvine, California (Cum Laude)

M.S. in Information and Computer Science, University
of California, Irvine, California

Ph.D. in Information and Computer Science, University
of California, Irvine, California

Dissertation "A Safety-Critical Software Design and Ver­
ification Technique"

N.G. Leveson, S.S. Cha, and T.J. Shimeall. Safety Verification of Ada Programs
using Software Fault Trees. IEEE Software, July 1991.

Vll

N.G. Leveson, S.S. Cha, T.J. Shimeall, and J.C. Knight. The Use of Self-Checks
and Voting in Software Error Detection: An Empirical Study. IEEE Transaction on
Software Engineering, SE-16(4) 1 pp 432-443, April 1990.

S.S. Cha, N.G. Leveson, and T.J. Shimeall. Safety Verification in MURPHY
using Fault Tree Analysis. In Proceedings of the 10th Interational Conference on
Software Engineering, pages :377-386, Raffle City, Singapore, April 1988. Reprinted
in Tutorial: Software Risk A!fanagement, B. Boehm, editor, 1989.

S.D. Cha, J.C. Knight, N.G. Leveson, and T.J. Shimeall. An Empirical Study
of Software Error Detection using Self-Checks. In Digest of Papers: The Seventeenth
International Symposium on Fault Tolerant Computing, pages 156-161, Pittsburgh,
PA, July 1987.

S.S. Cha. Dynamic Load Balancing Algorithm Complexity. Technical Report
87-24, Department of Information and Computer Science, University of California,
Irvine, 1987.

S.S. Cha. A Recovery Block Model and Its Analysis. In W. Quirk, editor,
Safe Comp '86, pages 21-26. IFAC, Pergamon Press, Sarlat, France, October 1986.

Vlll

I

Abstract of the Dissertation

A Safety-Critical Software Design and Verification Technique
by

Stephen Sungdeok Cha
Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1991
Professor Nancy G. Leveson, Chair

Safe software can be developed by applying a safety-oriented design method and
establishing good safety management procedures. However, safety-oriented design has
not received much research attention in the past.

This dissertation proposes a software design method whose goal is to minimize
the amount of safety-critical code and to produce a design whose safety can be verified.
Starting from the software safety requirements, backward analysis is used to identify
the safety-critical modules and derive their safety constraints. Safety constraints play
an important role since they become the criteria against which the safety of detailed
design is verified. This dissertation also proposes the use of information hiding princi­
ples to implement a "firewall." The firewall protects the safety-critical modules from
the safety-independent modules, thereby minimizing the amount of safety verifica­
tion effort required in formally certifying the design safety. The complexity of design
safety verification is further reduced by employing an incremental and selective verifi­
cation. This dissertation argues that concurrency decisions on safety-critical software
must be based on careful trade-off analysis and demonstrates that concurrent designs
do not necessarily require exhaustive concurrency safety verification. An application
of the proposed safety-oriented design method is demonstrated using a subsystem of
TCAS II (Traffic Alert and Collision Avoidance System).

Management aspects of software safety are important because of the direct and
significant impact management has on safety. This dissertation examines how to
organize safety-critical projects and distribute safety responsibilities.

IX

Chapter 1

Approaches to Software Safety

1.1 Introduction

Software safety became a critical concern in the 1980s because of the increased

use of software to control safety-critical systems. A system is considered safety­

critical if system behavior can result in death, injury, property loss, or environmental

damage[27]. Twenty years ago, software failures merely annoyed users who had to

perform manual recovery actions such as reissuing checks with the correct amounts.

Now the failure of safety-critical software can have catastrophic consequences when

effective recovery activities do not exist. For example, a software error on the Therac

25 therapy machine was responsible for the death of four patients[19, 24]. The list

of computer-related accidents, reported to the ACM RISKS forum and selectively

published in the ACM Software Engineering Notes[41], is long and growing. Some

safety-critical computer systems have been the subject of public controversy.

In the Airbus A320[37], a commercial fly-by-wire aircraft, almost all of the direct

mechanical links from the cockpit to the aircraft parts have been computerized 1 ; pilot

commands are interpreted by the flight computers that send commands to the motors

1The only surfaces retaining mechanical control of the hydraulics are the rudder and pitch rim.

1

2

to move the appropriate parts. The A320s have been in service for about three yea.rs

now, and software has not been proven to be the direct cause of the two crashes

that have occurred to date. Yet, the safety of its control software and the use of

the N-version programming technique[26, 48) as a means of developing safe software

continues to be debated2
. Some computer scientists are concerned because:

• The embedded software is designed to override any of the pilot's commands that

the software determines to be dangerous. They have questioned the wisdom

of such design decisions and have argued that the pilots should be given the

ultimate authority especially in emergency situations.

• The results of some controlled experiments suggest that the N-version program­

ming technique may not be very effective due to correlated failures[25, 29). A

theoretical model of N-version programming showed that a small degree of cor­

related failures can significantly reduce the degree of reliability improvement[7).

Other safety-critical systems include air traffic control, aircraft collision avoid­

ance (TCAS), nuclear power plant shutdown, and patient monitoring. The safety of

software controlling these systems has significant and direct impact on the lives of

the general public.

Recently, Forester and Morrison[9] proposed an international ban on the use

of computers in controlling safety-critical systems, expressing concern that current

software engineering technology is not mature enough to put human lives at risk.

Their concerns are valid, and the use of software in controlling safety-critical systems

must be carefully analyzed against the feasible alternatives such as using electro­

mechanical controls or depending on manual controls. However, the increasing and

2Extensive debates on the safety of the A320 aircraft and its control software have appeared in

the ACM Risks Forum since May 1988.

I Causes 11 1985 1987 1989

Software 33.5% 38.8% 62.1%

Hardvrnre 28.8% 22.43 6.6%

Maintenance 18.6% 12.6% 15.1%

Operation 8.8% 11.9% 15.1%

Environment 6.0% 9.5% 5.9%

Others 4.2% 4.8% 5.3%

Table 1.1: Causes of Tandem System Outages from 1985 to 1989

irreversible trend of controlling safety-critical systems via software shows that most

people think the advantages outweigh the potential hazards.

Most safety-critical systems are embedded systems, where software is only a part

of a larger system, which can be very large, complicated, and expensive to develop.

The entire system could consist of a collection of distributed hardware, software,

and human operators. Therefore, the system may fail due to permanent or transient

hardware failures, software failures, hardware-induced software failures[l 7], operator

mistakes, or environmental events.

Hardware reliability has improved impressively in the last few years; hardware

failures are no longer a major cause of system failures. This trend is especially true

with the availability of commercial fault-tolerant computers. Software improvements,

however, have been less impressive. Based on the reported causes for Tandem system

outages from 1985 to 1989 as shown in Table 1.1, Gray[ll] recently argued that

software has become the major bottleneck in further improving system reliability.

4

The development of perfectly safe software is impossible and unnecessary. A

realistic goal is to develop software that is free of hazardous beliavior. Development

of such software, however, remains a challenging task because:

• Most of the safety-critical systems are real-time systems where the sequencing

and timing of input events are determined by the real-world (environment) and

not by the program. Furthermore, a real-time system must meet its deadlines.

Timeliness of real-time system outputs is as important as their correctness.

• The demands on the system may occur in parallel rather than in sequence. The

system must react correctly to multiple events within the limit of its specified

load and capacity. For example, a traffic light controller at an intersection

must sense pedestrians as well as cars approaching the intersection from all

four directions. All these events may occur simultaneously or in a very short

interval.

• The competitive and profit-oriented industrial environment always forces com­

panies to develop safety-critical software with a minimal allocation of resources.

The constraints are usually further compounded by the pressure of meeting

deadlines.

1.2 Dissertation Overview

Safe software can be developed by applying a safety-oriented design method

and establishing good safety management procedures. However, safety-oriented de­

sign has not received much research attention. The United Kingdom software safety

standard(38], for example, provides little help beyond the following:

The design shall minimize the extent of safety critical software. The safety
critical software shall be isolated from other equipment functions. The
detailed design shall avoid common mode failures with hazardous conse­
quences. Fault tolerance, defensive programming, graceful degradation,
and fail-safe design techniques shall be used when possible. The design
shall be hierarchical and modular with well-defined interfaces between
modules.

In essence, the standard specifies general principles for developing safety-critical

software design without providing techniques about how these principles might be

accomplished.

This dissertation proposes a safety-oriented design method that consists of the

following:

• An analysis procedure guiding the high-level design phase where the safety-

critical modules are identified and their safety constraints, a set of conditions

whose truth are necessary to ensure safety, are derived.

• A selective and incremental safety verification technique where the safety of the

detailed design can be certified before coding begins.

• Various design techniques to enhance safety including reducing the probability

of timing-related errors and using programming language constructs designed

to deal with abnormal data or control errors at run-time.

• A safety-oriented software management hierarchy.

Chapter 2 reviews the previous research on software design techniques, security

design techniques, and software safety verification techniques. Chapter 3 extends

the work of Leveson[27] and proposes a safety-oriented software design method. The

method consists of a design hazard analysis and design safety verification technique.

Chapter 4 proposes a safety-oriented software project management hierarchy. Chapter

6

5 demonstrates an application of the design method and the verification technique

on the official design of TCAS II (Traffic Alert and Collision Avoidance System).

Chapter 6 draws conclusions and discusses directions for future research.

I

Chapter 2

Survey and Evaluation of Previous

Research

This chapter surveys previous research on software design techniques, security

design techniques, and software safety verification techniques. A thorough survey

of software design techniques or security design techniques is impractical since the

subjects are extremely broad. Therefore, this chapter briefly surveys and evaluates

previous research from a software safety viewpoint. Finally, software safety verifica­

tion techniques are reviewed.

2.1 Software Design Methodology

Following the recognition of a software crisis in the late 1960s, intensive research

on software design techniques gave birth to many design methodologies. However, no

software design technique classification schemes are widely accepted in the literature.

Freeman and Wasserman[lO], in their popular IEEE tutorial, classify software design

techniques as either process-oriented or data-oriented. Yau and Tsai[56] adopt es­

sentially the same classification although the design techniques listed for each group

7

s

are different. Pressman(46], on the other hand, further classifies the process-oriented

design techniques as either data flow-oriented or data structure-oriented design tech­

niques (e.g., Jackson system design). The process-oriented design techniques include,

but are not limited to, functional decomposition, structured design, structured anal­

ysis and design technique (SADT), Jackson design methodology, Hierarchy-lnput­

Process-Output (HIPO). Examples of data-oriented techniques are object-oriented

and conceptual database design techniques.

Experts do not always agree on such terms as design techniques (or methodolo­

gies), design principles, and design notations. For example, Yau and Tsai list modular

programming as a design technique while Fairley[8] classifies modularity, used in the

same context, as one of the fundamental design principles. Neither the classification

of software design techniques nor the definition of sometimes blurry and abstract

terms is the subject of this research. Therefore, this dissertation arbitrarily adopts

the scheme used by Pressman and evaluates each approach for its applicability to

safety-critical software design.

Data flow-oriented design techniques, the most general and perhaps the most

widely used approaches, are certainly applicable to safety-critical software design.

The resulting design, however, exhibits different characteristics depending on the

selected decomposition criteria. Various module decomposition criteria have been

proposed in the literature. Stepwise refinement[54] can be adapted as a decomposition

criterion, and each of the major processing steps can be implemented as a module.

Principles such as information hiding[42] can guide the decomposition process. The

"uses hierarchy," proposed by Parnas[44), is another decomposition criterion where

software maintainability (e.g., the ease of extension or contraction) is emphasized.

I

9

While these decomposition criteria promote the properties any good software design

must possess, they do not specifically address safety issues.

The applicability of data structure-oriented design techniques[l8), proven ef­

fective and widely used in business (or data-processing) applications, appear to be

severely limited (if applicable at all) when it comes to safety-critical software designs.

Harel and Pnueli[14) used the term "transformational systems" to capture the es­

sential characteristics of such applications where the primary function of software is

almost always to process the stream of input data (e.g., transaction records) and to

produce the outputs in the required format (e.g., transaction summary). Much of

software complexity in such applications stems from the need to manipulate compli­

cated input and output data structures. The algorithms to determine the values of the

. outputs themselves tend to be relatively straightforward. Therefore, it makes sense to

base the design of such software on input and output data structures. However, safety­

critical software is primarily found in embedded systems whose primary function is

process control. Much of the complexity in developing process control software lies

in determining how to properly control the environment. Inputs to software, usually

denoting the occurrence of environmental events, often arrive from the sensors in the

form of interrupts with relatively simple (if any) data structures (e.g., numeric values

or escape sequences). Similarly, software outputs, often generated to the actuators,

rarely require the manipulation of complicated data structures.

Object-oriented design[3] is another technique one can use to design safety­

critical software. Object-oriented design proceeds by initially identifying the objects

that the software must manipulate. The data structure of the objects as well as the

set of operations to be performed on the objects are subsequently identified, and the

operations to be performed on an object are most likely to be grouped into a module

10

(e.g., a package). Although this dissertation does not specifically address safety­

cri tical software development using object-oriented design techniques, the analysis

procedure presented in the dissertation can be applied to object-oriented design.

2.2 Security Design Techniques

Since society has become more dependent on computers for information pro­

cessing and storage, computer security has been an active research topic. An orga­

nization must protect private and proprietary information from unauthorized access.

Computer security is a critical concern not only to the financial success of a corpora­

tion but also to national security. Although there is no single strategy for achieving

security, previous research has focused on cryptography and access control techniques.

Denning[5] defines cryptography as the science and. study of secret writing.

Privacy is preserved by transforming a plaintext NI into a ciphertext C using the

enciphering key EK before storing or transmitting information. The authorized user,

who has a cryptographic key DK, performs a decipherment or decryption operation

to access the plaintext. A cryptography technique must satisfy the following security

requirements to be useful[5]:

• It should be computationally infeasible for a cryptanalyst to systematically

determine the plain text M from intercepted ciphertext C.

• It should be computationally infeasible for a cryptanalyst to systematically

determine the deciphering transformation from intercepted ciphertext C, even

if the corresponding plaintext NI is known.

11

An example of an encryption method is the Data. Encryption Standard (DES), speci­

fied by the National Bureau of Sta.ndards(36] for use on unclassified U.S. Government

applications. Cryptography techniques by themselves, however, have no direct rela­

tion to software safety, and further discussion is omitted.

The fundamental requirements of access control and multi-level security tech­

mques are:

• Never allow access to or operation on information by the users without proper

authorization.

• Never deny an access to or operation on information by authorized users.

Access control mechanisms can be either discretionary or mandatory depending on

who controls the access policies (e.g., user versus system). Discretionary access control

mechanisms proposed in the literature are passwords, capability, and access control

lists.

When access control is based on a password, the user assigns an individual

password to each object (i.e., file) that must be protected. The technique quickly

becomes impractical in a large organization.

When access control is based on capability, each user is assigned a capability list

that specifies the set of objects the user is authorized to access as well as the mode of

access for each object. However, the management of capability-based access control

may be inefficient. For example, when· a file is deleted, the capability list of all the

users must be searched and updated. Otherwise, a user may acquire an unauthorized

access when another file is created with the same name.

12

With an access control list that specifies the authorized users and their access

mode on each object, managing user access to an object is simple. However, access

to the objects may be inefficient because the associated access control list must be

scanned whenever an access is requested. Grouping users (e.g., by the projects),

assigning suitable default access modes (e.g., allowing reads but prohibiting writes

within the group), and using efficient searching technique (e.g., hashing) can allow

efficient and secure access.

Multi-level security techniques were developed for the Department of Defense to

protect classified military information stored in computers. All information is assigned

a classiflcation level, and each user is assigned a clearance level. A classification or

clearance level consists of:

• Sensitivity Level: Unclassified, Confidential, Secret, or Top Secret.

• Category: A list of subjects or keywords on the contents of information (e.g.,

NATO and nuclear).

A user can access the object if and only if the user's clearance level 'dominates'

the object's classification level. For example, a user with top. secret clearance can

read confidential documents while a user with an unclassified clearance cannot read

secret documents. However, writes are prohibited to prevent the transfer of top

secret information to an unclassified document. The protection of resources using

access control mechanisms is an essential property of a secure system. Without such

mechanisms, a system becomes useless (and even harmful) since no guarantee can be

made on system security. Furthermore, secure systems must preserve security despite

dynamic changes (e.g., classification and clearance levels) and authorization transfers

among users.

1:3

Similarly, safety-critical software development needs to separate the safety­

cri tical modules from the safety-independent modules. Fortunately, the access control

issues for safety-critical software are simpler than the ones for secure systems. Access

control in safety-critical software is a desirable (rather than a mandatory) property.

The identification and proper protection of safety-critical modules simplifies the ef­

fort required for safety certification, but they do not necessarily make the system

safer. Furthermore, the safety attribute of a module is static and does not change

at run-time, and there is no need to deal with the transfer of safety attributes from

one module to another. Therefore, adequate access control is provided as long as the

safety-critical variables are never shared between the safety-critical and the safety­

independent modules. This separation guarantees that the safety-critical behavior of

software is completely determined by the semantic definitions of the safety-critical

modules.

The security kernel, a small component of the system whose correctness is suf­

ficient to verify the security of the entire system, is the most widely used technique

for building secure systems. The kernel can encapsulate the safety-critical modules

as suggested by Rushby[50]. He showed that the kernel can enforce "negative proper­

ties" (i.e., absence of commission faults) but not "positive properties" (i.e., absence

of omission faults) of the system. The positive properties cannot be enforced because

"no matter what 'good' properties a kernel may possess, there can be no guarantee

that the rest of the system will use the kernel correctly." Safety, however, can be en­

forced as long as the safety-critical resources are under the total control of the safety

kernel.

I

l

Life-cycle phase

Requirements
specification

High-level
design

Detailed
design

Coding

Software safety technique

Requirements
safety analysis

Design hazard
analysis

De~i_gn s.afety
venficat10n

Code safety
verification

Fault tree analysis
Petri net analysis
Real-time logic

Software fault tree analysis

Software fault tree analysis

Figure 2.1: Software Safety Techniques

2.3 Software Safety Verification Techniques

14

Software safety has a relatively short history as a research topic. The most

comprehensive and authoritative survey on software safety to date is provided by

Leveson[27]. The paper discusses what software safety issues are, why software safety

is an important topic, and how software safety might be achieved.

The importance of applying systematic and rigorous safety verifications at the

end of each development phase has been stressed by Leveson[28], and several safety

verification techniques have been proposed in the literature (Figure 2.1). While some

techniques, such as software fault tree analysis, are general enough to be applicable

LS

throughout software development, the applicability of others are limited to specific

phases.

Leveson and Stolzy[34] demonstrate how software safety requirements can be

derived through the modeling of the system operation using timed Petri Nets[45] with

an extended notation to allow the modeling of faults and failures. The goal of software

safety is to fulfill the part of system safety requirements allocated to software. In other

words, software safety is essentially a system property, and any discussion of software

safety outside the context of system safety would be meaningless. Reachability graph

analysis derived from the Petri Net model of the system reveals the potential failure

modes, and software safety requirements can be derived to prevent their occurrence,

either by imposing timing constraints on the events or by requiring software to control

the occurrence of event sequences. They developed the concept of "critical states" as a

means of avoiding exhaustive generation of the reachability graphs without sacrificing

the expressive or analytical power of the model.

Fault tree analysis (FTA) is another technique that can be used to derive soft­

ware safety requirements. It was developed in the 1960s for the safety analysis of the

Minuteman missile system and has become one of the most widely used system safety

techniques. The fault tree handbook[53] explains the technique as follows:

Fault tree analysis can be simply described as an analytical technique,
whereby an undesired state of the system is specified (usually a state that
is critical from a safety standpoint), and the system is then analyzed in the
context of its environment and operation to find all credible ways in which
the undesired event can occur. The fault tree itself is a graphic model
of the various parallel and sequential combinations of faults (or system
states) that will result in the occurrence of the predefined undesired event.
The faults can be events that are associated with component hardware
failures, human errors, or any other pertinent events which can lead to
the undesired event. A fault tree thus depicts the logical relationships of

basic events that lead to the undesired event - which is the top event of
the fault tree.

It is important to understand that a fault tree is not a model of all
possible failures or all possible causes for system failure. A fault tree is tai­
lored to its top event which corresponds to some particular system failure
mode, and the fault tree thus includes only those faults that contribute
to this top event. Moreover, these faults are not exhaustive - they cover
only the most credible faults as assessed by the analyst.

16

Software safety requirements can be derived by expanding the system fault trees

to the software interface levels and by identifying the failure modes that the software

may cause or to which it may contribute.

Software functional and safety requirements must be analyzed before the design

activity begins. .Jaffe and Leveson[20] developed a definition of the logical com-

pleteness of the requirements. This work was further expanded by .Jaffe, Leveson,

Heimdahl, and Melhart[21] to include a set of criteria that detect flaws in the black-

box specification of real-time software. The criteria are specified using a general

behavioral specification model called a requirements state machine and is applicable

to any specification languages based on state machines (e.g., statecharts[12, 13]) ..

J aha~ian and Mok[22] developed a procedure to perform timing-related safety

analysis on software requirements using a formal logic called Real-Time Logic (RTL).

The requirements are represented in the event-action model and later mechanically

transformed into a set of RTL formulas and subsequently into the equivalent formulas

in Pres burger arithmetic with uninterpreted functions. This technique, as the authors

point out, is applicable mainly to the software requirements and, in particular, anal-

ysis of the timing-related behaviors.

The most commonly used software safety technique applied to the code level is

software fault tree analysis (SFTA). The technique was adapted from system fault tree

17

analysis by Leveson and Harvey[30] and also in parallel by Taylor[51]. Leveson and

Harvey successfully applied the technique to sequential software controlling the oper­

ations of a scientific satellite. They report on the detection of an error that remained

undetected despite the extensive functional testing previously performed on the soft­

ware. It was a serious error that could have caused the destruction of the satellite.

Subsequent research extended the SFTA technique to more complex languages with

features such as concurrency and exception handling[4, 33]. The analysis is guided

by the use of statement templates that describe the failure modes of each statement.

This approach is the same as the one used in formal axiomatic verification[6, 16] where

· the weakest preconditions are derived that are necessary to satisfy the given postcon­

ditions. In fact, SFTA can be seen as a graphical application of formal axiomatic

verification where the postconditions describe the hazardous conditions rather than

the correctness conditions.

The informal nature of SFTA allows the results of other analysis techniques

(e.g., timing analysis using Petri Nets) to be incorporated into the fault tree and

allows the entire system, including hardware, software, and operators, to be system­

atically analyzed[39]. unfortunately, the informal nature of the technique is also its

major weakness because the success of the technique heavily depends on the ability

of the analysts. SFTA is essentially a structured walk-through technique with special

emphasis on safety issues rather than correctness ones. Therefore, the technique is

applicable in virtually all phases of the software life cycle.

The SFTA technique has been successfully applied on several, mostly classified,

military projects including F18-E and F16 control software. It was also used in

verifying the safety of Canadian nuclear power plant shutdown software that consisted

of about 6,000 lines of Pascal and Fortran code. The overhead was moderate in that

18

Safety executive Fail-safe
Application .. _ processmg - -
modules with • .. modules
safety assertions Safety policies

..._ _..
Interrupt handler -

Timer ~
_.,,, Safety mechanisms - -

..... .. Scheduler

z ~
Human operators ·watchdog processes

(audits,sensors/
alarms, ...)

Figure 2.2: Run-Time Safety Environment

the analysis took approximately two man-months including training. Although no

errors were detected using SFTA, the technique wa~ useful in making the software

more robust against errors and in developing the contents of run-time assertions to

detect potentially hazardous internal software states. According to Leveson, who

helped engineers to perform SFTA, the engineers found the technique to be effective

and easy to use, and they are using it on other safety-critical software projects.

Leveson, Shimeall, Stolzy, and Thomas·[32] proposed a general run-time struc­

ture, called a safety executive (Figure 2.2), where the hazardous run-time system

states are detected by evaluating safety assertions(31] inserted in the code. The

causes of hazardous run-time system states include:

l
I

i
I
I

I

19

• Erroneous safety requirements due to an incorrect hazard analysis. This m­

cludes erroneous assumptions made about the environment.

• Software design errors not detected by validation and verification techniques.

• Environmental failures, operator errors, or hardware failures that affect software

even if software correctly implements the requirements.

Upon the detection of the occurrence of hazardous system states, the safety execu­

tive initiates appropriate recovery procedures such as a reset, shut-down, or fail-safe

processmg.

It is possible to design the application to include features that monitor the

system states and initiate recovery routines whenever necessary, but the use of general

run-time safety environments such as safety executives[32] is preferred (Figure 2.3).

Although the separation of the safety responsibilities may not necessarily reduce the

degree of the correlated failures between the application and the safety executives, it

reduces the complexity of the application and enhances the reusability of the safety

executive software.

Safety exectuive

Safety-critical software

Known safe state

reset,
shutdown,

fail-safe

environmental
events

required
outputs

Potentially hazardous

state unless corrected

failure
to restore

to safe state

Hazardous system states

necessary condition
for mishap

(Unrecoverable)
Safety mishap state

Figure 2.3: Roles of Safety Executive

20

Chapter 3

A Safety-Oriented Design Method

3.1 Introduction

The goal of a safety-oriented design method, such as that shown in Figure 3.1,

is to minimize the amount of safety-critical code and to produce a design whose safety

can be certified. Safety constraints, i.e., the set of conditions whose truths are neces-

sary to ensure safety, play an important role in designing safety-critical software. The

safety constraints of a module1 describe the desired postconditions2 , and backward

analysis can be applied to determine the necessary weakest preconditions. A module

can be called "inherently safe" or "safety-independent" if the safety constraints are

TRUE. If, on the other hand, the design contains a module whose safety constraints

are FALSE, the design must be revised since the module is "inherently unsafe." All

other modules are called "safety-critical," and the algorithmic design of the module

must ensure that the safety constraints and the functional requirements are always

satisfied.
1The term 'module' is used to refer to the entire software or any of its component - either a

procedure or a function.
2If the module consists of non-terminating cyclic routines, this refers to the end of a processing

cycle.

21

High-level design

Functional and
safety requirements

A decomposition proposal

Identification of
safety-critical items

Isolation and protection

Detailed design

Detailed module design

Design safety verification

Design document

Figure 3.1: Safety-Oriented Method Overview

22

23

Software learns about the occurrence of environmental events to which it must

react only via externally visible inputs. Similarly, software controls the environment

only by generating externally visible outputs. Therefore, the initial safety constraints

must be formulated as a predicate involving only the externally visible inputs, outputs,

and time (if applicable); the initial safety constraints are equivalent to either the

software safety requirements or their negation depending on how the requirements

are formulated. As the modules are decomposed successively, the safety constraints

for each module need to be refined. Safety constraints that are not expressed in terms

of inputs, outputs, and time have been erroneously formulated.

The identification of the safety-critical modules is not enough. It is necessary

to isolate and protect the safety-critical modules from the ones that are not. It is also

desirable to minimize the number of safety-critical modules. When the detailed design

is complete, the safety constraints become the criteria against which the design safety

can be formally verified. The complexity of design safety verification can be reduced

if the safety-critical modules are identified and protected from the other modules.

Section 3.2 describes a design hazard analysis technique that identifies the

safety-critical modules and derives their safety constraints. It presents a brute-force

analysis technique, suggests enhancements to resolve safety constraint conflicts, and

discusses essential requirements of a "firewall" to protect the safety-critical modules

from the rest. Section 3.3 discusses how to verify the safety of the detailed design

efficiently by using an incremental and selective verification technique. Section 3.4

proposes some safe design techniques that enhance safety by reducing the possibility

of timing-related errors and dealing with abnormal data and control errors.

24

3.2 High-Level Design Analysis

High-level design may be conceived as consisting of successive refinement into

a set of modules and the interactions among them. The decomposition may also

introduce a set of internal variables (i.e., data flows). The module being decomposed

can be completely characterized by its functional requirements FM(IM, OM, t) and the

safety constraints CM(IM, OM, t) where IM, OM, and t denote the module's inputs

and outputs, and time (if applicable), respectively. After allocating the functional

requirements, it is necessary to identify the safety-critical modules and to derive their

safety constraints.

The decomposition can be formally represented as a directed graph where nodes

denote the functions that the modules compute and edges denote the data-dependency

among the modules. When a module NI is decomposed, the process of identifying the

safety-critical modules and their safety constraints starts with the safety constraints

of the module CM. This section proposes an analysis technique using the following

notation:

F(n) : Function being computed at the node n.

source(e), dest(e) : Source and destination node of the edge e, respectively.

c(e) : Safety constraints associated with the edge e. If a node n has outgoing edges

e1 , ... , ei, the module's safety constraint is defined as c(e1) /\ ... /\ c(ei)·

3.2.1 Safety-Critical Module Identification

Ve, c(e) := TRUE; - - initially assumed to be safety-independent

vci loop - - for each constraint subcondition

25

OutEdges := { edges with direct impact on Ci but without dest node };

Ve 3 OutEdges, c(e) := c(e) /\ Ci; - - initialization

NodesToProcess := {Ve 3 OutEdges, Vn 3 n=source(e) };

while (N odesToProcess =I []) loop

n : = { n 3 N odesToProcess}; - - select a node to analyze

NodesToProcess := NodesToProcess - [n];

AnalyzeAN ode(n);

end loop;

end loop;

Figure 3.2: A Brute Force Algorithm to Detect Safety-Critical Items

Figure 3.2 shows how a brute-force backward analysis can be applied for each

component of the safety constraints. First, the output modules that have direct im­

pact on the satisfiability of the safety constraints are identified (i.e., NodesToProcess).

Then, backward analysis is applied to one node at a time until there are no more nodes

to process.

The AnalyzeANode procedure, shown in Figure 3.3, starts with the derivation

of the weakest preconditions necessary to satisfy the safety constraints. A module

is safety-independent if the safety constraints (i.e., post condition) and the weakest

precondition are the same. If, on the other hand, the weakest precondition is either

TRUE or FALSE, the analysis need not be propagated to other nodes. Otherwise, each

component of the weakest precondition must be made true either by propagating it

to another module as its safety constraint or by enforcing it within the module using

run-time assertions. If the variables that constitute each component of the weakest

precondition in conjunctive normal form are passed from another module via data

Vj(l:::; j:::; i) 3 source(ej) = n, Cn := c(ei) !\ ... !\ c(ei);

WP(n) :=weakest precondition, in CNF, to satisfy Cn;

if WP(n) =FALSE then

HALT; - - inherently unsafe, revise design, and repeat analysis

elsif (WP(n) -/:- Cn) and (WP(n) -/:-TRUE) then

V WPi(n) loop

InEdges := {edges passing data used in vVPi(n)}

if size(InEdges) = 1 then

e := { e 3 InEdges };

if (f-ln 3 n = so'Urce(e)) then - - safety-critical input assertions

F(n) :='if WPi then F(n) else RECOVERY; end if;

else - - data flow from another module

c(e) := c(e) !\ WPi(n);

if c(e) =FALSE then

HALT; - - revise design and repeat analysis

else

N odesToProcess := N odesToProcess + [source(n)]

end if;

end if;

else - - use run-time assertions to ensure safety

F(n) :='if WPi(n) then F(n) else RECOVERY; end if';

end if;

end loop;

end if;

Figure 3.3: AnalyzeANode (inn : node)

26

l

27

flow, the condition can be best enforced by the module supplying the data. Otherwise,

the functional definition of the module needs to be augmented using assertions so that

the safety-critical computations take place only when it is safe to do so. It should be

emphasized that the designer should always specify the proper recovery activities to

be invoked when the assertions do not hold.

The brute-force approach presented above has some drawbacks. If safety con­

flicts are detected (e.g., FALSE weakest precondition), the analysis must be applied

in entirety on a revised design. Due to the ad hoc order of applying the analysis on

each component of the safety constraints, such conflicts may not be detected quickly.

The enhanced algorithm, shown in Figure 3.4 through 3.8, improves the brute

force algorithm in the following two ways:

• The data-flow dependency (i.e., AssignNodeLevels procedure) determines the

order of module analysis.

• If there is a module whose current design cannot guarantee the satisfaction of

the safety constraints, an attempt is made to substitute a functionally equivalent

but algorithmically different design to see if the conflicts can be resolved. If not,

the AnalyzeANode procedure returns with a flag (e.g., MustBackUp =TRUE)

indicating the need to attempt recovery at other nodes (e.g., Undo procedure).

The AssignNodeLevels procedure (Figure 3.5), invoked as a part of initialization,

uses data-flow dependency and assigns a level to each node so that the levels of source

nodes are always greater than that of the destination nodes for all the data flows.

Backward analysis can then be applied in the ascending level order.

The AnalyzeANode procedure (Figure 3.6) is basically the same as the one

previously presented except that the Distribute WP procedure (Figure 3. 7) sets the

Ve, c(e) := TRUE; - - assume safety-independence

vci loop - - for each constraint condition

28

OutEdges := { edges with direct impact on Ci but without <lest node };

Ve 3 OutEdges, c(e) := c(e) /\Ci;

end loop;

CurLevel := 1; AssignNodeLevels (MaxLevel); - - analyze data-dependency

OLoop: while (CurLevel < MaxLevel) loop - - in ascending level order

NodesToProcess := {Vn 3 level(n)=CurLevel}

while (NodesToProcess i= []) loop

n := { n 3 NodesToProcess };

NodesToProcess := NodesToProcess - [n];

AnalyzeANode(n, MustBackUp);

if (MustBackUp) then - - unsafe module detected

Undo (n, Resolved);

exit OLoop when (• Resolved); - - parent substitution failed

end if;

end loop;

CurLevel := CurLevel + 1;

end loop;

if (not Resolved) then

HALT; - - revise design and repeat analysis

end if;

Figure 3.4: An Enhanced Algorithm to Detect Safety-Critical Items

Ve 3 -,:J dest(e), level(source(e)) := 1;

CurLevel := 1; MaxLevel := 1;

loop

Edges:= {Ve 3 level(dest(e))=CurLevel };

exit when Edges = [];

Ve 3 Edges loop

level(source(e)):=level(<lest(e))+ 1;

if level(source(e)) > MaxLevel then

MaxLevel := level(source(e));

end if;

end loop;

Cur Level : = Cur Level + 1;

end loop;

Figure 3.5: AssignNodeLevels (out MaxLevel : integer)

29

parameter Successful to FALSE upon the detection of safety constraint conflicts. In

such cases, attempts are made if the substitution of semantically equivalent but al­

gorithmically different functions can resolve the conflicts. If not, the node returns

the boolean flag MustBackUp to TRUE so that the analysis can be backtracked to the

nodes that are the destination of the data flows originating from the node n.

The Undo procedure (Figure 3.8) determines if the safety conflicts that could

not be resolved locally can be resolved by modifying the functional definition at one of ,

the parent nodes (e.g., the destination node of data flows). Safety constraint conflicts

are considered to be resolved if and only if backward analysis applied at the parent

node (i.e., PN ode) and the child node (i.e., n) do not require any further backups.

The modification of the functions at the parent node requires that backward analysis

MustBackup := FALSE;

Vj(l:::; j:::; i) 3 source(ej) = n, Cn := c(e1) /\ ... /\ c(ei);

loop

WP(n) :=weakest precondition, in CNF, to satisfy Cn;

exit when (WP(n) = Cn) V (WP(n) =TRUE); - - ignore

Ve 3 n=source(e), save c(e);

DistributeWP (Successful);

exit when Successful;

if :3 G(n) then - - local substitution failed

F(n) := G(n);

else

MustBackUp := TRUE;

exit;

end if;

end loop;

Figure 3.6: AnalyzeANode (in n : node; out MustBackUp : boolean)

30

Successful:= WP(n) =f. FALSE;

if Successful then

V \i\!Pi loop

Edges := { edge supplying value used in WPi};

if size(Eclges) > 1 then - - data-flow from multiple modules

F(n) :='if WPi then F(n) else RECOVERY; end if';

else - single data-flow source

if (pn 3 n = source(e)) then - - input assertion

F(n) := 'if WPi then F(n) else RECOVERY; end if';

else - - another module

c(e) := c(e) /\ WPi;

if c(e) =FALSE then

Ve 3 n=source(e), restore c(e);

Successful := FALSE;

exit;

end if;

end if;

end if;

end loop;

end if;

31

Figure 3.7: DistributeWP (inn : node; in WP: boolean; out Successful: boolean)

Resolved := FALSE;

ParentNodes := { Vm 3 3e (source(e)=n) /\ (dest(e) = m)};

OLoop: while (not Resolved) and (ParentNodes -/= []) loop

PNode := { m 3 ParentNodes };

AParent:

ParentNodes := ParentNodes - [PNode);

Ve 3 PNode=dest(e), save c(e);

loop

exit AParent when J-3 G(PNode); - - parent substitution failed

F(Pnode) := G(PNode);

ParentWP :=Weakest precondition for PNode;

AnalyzeANode(PNode, MustBackup);

if (1 MustBackup) then

AnalyzeANode(n, MustBackup);

if (1 MustBackup) then

Resolved := TRUE;

32

ChildNodes := { Vm 3 3e (source(e) = m) /\ (dest(e) = PNode)};

NodesToProcess := NodesToProcess + ChildNodes;

exit OLoop;

else

Ve 3 PNode=dest(e), restore c(e);

end if;

end if;

end loop; - - for each parent node

end loop; - - not resolved

Figure 3.8: Undo (in n : node; out Resolved : booelan)

33

be applied again on some child nodes because different safety constraints may be

propagated.

It is possible, in principle, to extend the Undo procedure so that the backtracking

continues until either the safety constraint conflicts a.re resolved or there are no more

modules to which one can backtrack. However, the idea. of "global" (or extensive)

backtracking seems impractical because:

• For a complete backtracking analysis, one must examine the various combina­

tions of functional definitions at all the modules involved.

• Since the analysis is applied recursively at each level of decomposition, the num­

ber of modules one must analyze at a time is not expected to be large.

The Undo procedure, therefore, halts the analysis if the substitution of various func­

tional definitions at the node and at the parent node fail to resolve the conflict.

3.2.2 Safety-Critical Module Protection

Once the safety-critical modules have been identified, it is important to protect

the safety-critical items by a "firewall." The firewall allows the safety-critical modules

to be clearly identified and reduces the effort required for safety verification. The basic

idea behind a firewall is to restrict the interactions between the safety-critical modules

and the safety-independent ones so that the behavior of the safety-critical modules

can be completely determined given only their definitions.

Security techniques can be used to implement firewalls because their goal is to

control access to objects. Capability and access lists are general concepts used to

S afety-cri ti_ca_l __ -+-+-___

inputs

Firewall

Safety-independent
inputs

data flow control flow

Safety-independent
modules

Safety-critical
outputs

Safety-independent
outputs

Figure 3.9: Essential Firewall Requirements

;34

enforce access limitation in security. Rushby(50] suggested the use of kernel encapsu-

lation as a means of protecting safety-critical items. While security techniques such as

capabilities or kernelization provide adequate means of protecting the safety-critical

items, this dissertation proposes the use of information hiding principles(43] instead

(Figure 3.9) because:

• The implementation of a capability or kernel within the application is a non-

trivial task, and the implementation is subject to errors. Information hiding,

on the other hand, does not require any implementation overhead.

• The formal verification of the correctness of a capability or kernel is a complex

and difficult task, but verification of information hiding is simple and can be

provided easily by the compiler.

To implement a firewall, data flow from the safety-independent modules to the

safety-critical modules is prohibited. Similarly, calls from the safety-critical modules

3.5

to the safety-independent modules are prohibited. However. the opposite unidirec­

tional data and control flows need to be allowed. When an input triggers multiple

outputs, some may be safety-critical while others may not. In such cases, the inputs

should be considered safety-critical and must be processed by the safety-critical mod­

ules. A unidirectional data flow allows the safety-independent modules to access such

inputs. When a package construct is used to group the safety-critical modules, the

package specification must declare only the following items to be visible:

• The variables whose values are to be passed unidirectionally to the safety­

independent modules. The safety-critical modules may assign values to these

variables, but the safety-critical outputs must not depend on the values of these

variables.

• The subprograms that safety-independent modules may call. The parameter

passing mode must be strictly limited to the out mode that is semantically

equivalent to the unidirectional data flow.

The strict enforcement of such restrictions, despite the potential inconvenience to the

developers, simplifies the safety verification process and should enhance safety.

3.3 Detailed Design Safety Verification

After the detailed design is complete, design safety verification should be applied

to detect errors before the coding begins. Intermediate verification requires additional

36

A·CD

c

task A task B

Figure 3.10: Why Concurrency Safety Analysis is Needed

resources, but should simplify the safety verification of the final code. If the safety­

oriented design method presented in the previous section is employed during the high­

level design phase, the safety verification of the detailed design can be accomplished

by proving that:

• The safety-critical modules are protected from the others. This allows one to

verify the safety of the entire software by analyzing the safety of 'the safety­

critical modules only.

• Algorithmic definitions of the safety-critical modules satisfy their safety con­

straints. This dissertation proposes an incremental approach to safety verifica­

tion: sequential safety verification followed by an optional concurrency safety

verification.

If the safety-critical software is implemented in a sequential language, the appli­

cation of the second phase is unnecessary. Otherwise, concurrency safety verification

is necessary, even if all the safety-critical modules are proven to be safe, because the

concurrent execution of the individually safe modules might be unsafe. For example,

37

suppose that the safety constraints are given as (A V B) /\ (C V D) and tha.t the

two safety-critical modules, whose control-fl.ow graphs are shown in Figure 3.10, are

executed concurrently. Although each module satisfies the safety constraints individ­

ually, the concurrency state (a2 , 61) might fail to satisfy the safety constraints. The

safety of the concurrency state depends on the pace of task execution, which ma.y not

be under the programmer's control.

3.3.1 Firewall Adequacy Verification

Verifying the firewall's adequacy shows that the interactions among the safety­

critical and safety-independent modules have no effect on the semantic behavior of

the safety-critical modules. The firewall adequacy verification for a block structured

language such as Ada can be accomplished by determining satisfaction of the following

static criteria:

• The safety-critical and the safety-independent modules have no variables that

are visible to both of them except those specifically declared for the purpose

of unidirectional data flows. Furthermore, the values of the variables used for

data fl.ow should never be used in determining the values of the safety-critical

outputs.

• The safety-critical modules may not call any safety-independent modules. When

the safety-independent modules call the safety-critical modules, the actual pa­

rameters should not violate the unidirectional data fl.ow rules. The prohibition

of in -type or in out -type parameters in such calls guarantees the absence of

side-effects ..

:38

3.3.2 Design Safet~ Verification: Sequential Phase

Design hazard analysis, as described above, identifies the safety constraints CM

and the desired weakest preconditions wp(RM, CM) for each safety-critical module

based on its functional requirements RM. Sequential safety verification on the detailed

design attempts to prove that the detailed algorithmic definitions of module FM satisfy

these constraints.

The verification can be performed in either a forward or backward manner.

Forward analysis attempts to prove that all the states reachable from the known

initial state are safe. Using the desired weakest precondition, wp(RM, CM), as the

initial condition, the postcondition R can be derived (e.g., { wp(RM, CM)} FM { R}).

The module is safe in a sequential execution environment if and only if R is logically

equivalent to or a "stronger" condition than the safety constraints (e.g., R =} CM)·

Forward analysis, however, becomes impractical if there are a large number of states

to consider.

Backward analysis, on the other hand, starts with the safety constraints as the

initial condition. The weakest precondition derived based on the detailed module

design, wp(FM, CM), can then be compared against the desired weakest precondition

wp(RM, CM)· The module is safe, when executed sequentially, if and only if the

predicate

evaluates to TRUE.

When backward sequential module safety verification is performed, not all the

computational steps within the safety-critical modules need analysis. Nor do their

;39

results (e.g., intermediate c?nditions leading to the module's weakest precondition)

need to be saved for use in subsequent concurrency verification. Only the compu­

tations that cause the intermediate weakest preconditions to be changed need to be

saved. Additionally, the statements that deal with concurrency, such as entry calls

or rendezvous points, need to be saved so that correct concurrency safety verification

may be performed.

3.3.3 Design Safety Verification: Concurrency Phase

While past software designs were predominantly sequential, the use of concur­

rent designs is increasing. Concurrency is advantageous when a natural and logically

concise solution can be developed. However, concurrency decisions on safety-critical

software must be based on careful trade-off analysis because:

• The run-time overhead of creating and managing tasks is significant. Such run­

time overhead, in some hard real-time systems, _may cause failures due to missed

deadlines or even safety hazards.

• The complexity may increase due to the various ways tasks may communicate.

Some rendezvous may result in hazardous states, but exhaustive verification is

usually impractical.

• The application of concurrent software verification techniques is likely to be

more expensive and prone to errors than the sequential counterparts.

Where the use of concurrency in safety-critical software design can be justified,

a safety-oriented design method must provide a technique to verify the safety of

concurrent design efficiently. This dissertation proposes that the use of concurrency

40

in safety-critical software design be limited only to the cases where software must

simultaneously control logically distinct subsystems. Therefore, the decision to use

concurrency must be made early in the design phase, and the subsequent refinements

must proceed sequentially.

Concurrency safety verification proves that the concurrent execution of the mod­

ules that are proven to be safe in the sequential execution environment is also safe.

Since concurrency safety verification is a form of static analysis, the following as­

sumptions are often needed to enable or to simplify the analysis[35]:

• Arrays of tasks are not allowed, and at most a fixed number of tasks are active

simultaneously.

• Tasks do not share variables (e.g., no race conditions).

While the former is an inherent limitation of any static analysis technique, the latter

simplifies the analysis by forcing the tasks to communicate only by explicit rendezvous

and eliminates the possibility of side-effects.

While it is possible, as noted by Long and Clarke[35], to extend the analysis

technique to handle side-effects, the techniques become more complicated and less

efficient due to the introduction of nondeterminism. Development of software tools

to (fully or partly) automate the analysis becomes more costly. More importantly,

analysis results themselves could be subject to more errors. The possibility of erro­

neous analysis cannot be ignored for safety-critical software design. Therefore, one

must carefully evaluate the trade-offs between the restricted design activities that re­

quire relatively simple verification procedures and the unrestricted and flexible design

activities that require more sophisticated (and potentially more erroneous) verifica­

tion procedures. It is almost always wiser to choose the former unless the restrictions

I

41

are too severe to prevent designers from developing understandable and maintainable

designs. This is especially true for the design of safety-critical software.

A straightforward approach to concurrency safety verification generates all the

feasible combinations of the critical states and proves that the safety constraints are

satisfied in all the concurrency states. There a.re two functionally equivalent meth­

ods of determining the feasible concurrency states. The first method starts from

the known initial concurrency state and identifies all the concurrency states that are

reachable (e.g., concurrency graph[52], Petri Net reachability graph[45], or task in­

teraction graph[35]). The second method first generates all possible combinations of

component states regardless of their reachability (e.g., the Kleene star operator in

constrained expression formalism[2]). The pruning process is then followed to elimi­

nate the infeasible concurrency states. The rendezvous points, which must have been

introduced to fulfill the functional requirements, serve as a pruning tool. The pruning

allows one to achieve the effect of applying the shuffle operator in the constrained

expression formalism. The satisfiability of the safety constraints at each concurrency

state can then be determined by serializing the concurrent execution into the list of

feasible sequential executions. However, this brute-force analysis is impractical due

to the enormous number of serial executions that must be analyzed.

An efficient concurrency safety verification technique has been developed based

on the following argument:

• Concurrency safety verification can be achieved by proving that all the reachable

concurrency states satisfy the safety constraints (e.g., the bruce-force technique

described above). Or, one can accomplish the same objective by proving that

42

there are no concurrency states that lead to the violation of the safety con-

straints.

• Unlike the sequential safety analysis where all the safety-critical modules must

be analyzed, only the safety-critical modules that could be executed concur-

rently with other safety-critical modules (henceforth called "concurrent safety-

critical modules") need to be analyzed in concurrency safety verification.

• Even some of the statements setting the safety constraint conditions to false

within the concurrent safety-critical modules can be ignored because not all

the safety constraints a.re subject to violation during concurrent execution.

Therefore, only the safety constraints that are subject to violation in the con-

current execution environment need to be analyzed, and only the statements

setting such safety constraint conditions to false need to be examined.

Suppose, for example, that the safety constraint the concurrent modules must

satisfy is given as (A V B) /\ (C V D) and that the modules have the control-flow

graph shown in Figure 3.11. The initial and final states of the tasks are represented as

a1 and b1 and as an and bn, respectively. The states ai, aj, and bk change the value of

the safety constraint C as indicated. The potential rendezvous points are represented

as r al, r a2, and r a3 for task A and as rb1 and rb2 for task B. The rendezvous points

(1) and (2) represent the synchronization of task A at states ra1 and ra3 , respectively,

with task Bat state rbl· Rendezvous points (3) and (4) represent the rendezvous at

the states r a 2 and rb2, respectively. The condition C remains false between the states

ai through aj for the task A. The concurrency states that include any of states ai
/

through aj as their members could possibly fail to satisfy the safety constraints, and

these states are collectively referred to as "impacted concurrency states."

0

r al J_ -----_ _(]) _ ---------~'
ai(1C) O /

I

I __,-(3) ,,/
'T'a2 a- /1

I ~:Y
aj(C)O

1
/

I,,/
r.3 ,

an Q

task A

I
I

I

I
I

I

(4)-----

task B

control flow

--rendezvous

Figure 3.11: Impacted Concurrency States and the Rendezvous

43

44

The scope of the impacted concurrency states depends on the formulation of

the safety constraints themselves and the placement of the rendezvous points among

the concurrent modules. The term "complementary conditions" is used to refer to

the conditions that can still satisfy the safety constraints regardless of the current

values of some other conditions. If, for example, the safety constraints are given

as (A V B) /\ (C V D) , the conditions A and B are complementary conditions

in that the safety constraints can be satisfied by either (or both) of the conditions

being TRUE. Similarly, the conditions C and D are the complementary conditions.

Representing the safety constraints in the conjunctive normal form clearly reveals

the complementary conditions. If, on the other hand, the safety constraints were

(A V B) /\ C, there is no complementary condition to C, and setting C to false

would always cause the safety constraints to be violated.

Similarly, the rendezvous might reduce the size of the impacted concurrency

states. These rendezvous points might have been introduced to fulfill the functional

requirements of the module or as a safe design technique during the sequential module

safety verification. For the control-flow graph shown in Figure 3.11, the impacted

concurrency states are (ai .. a j, b1 .. bn) in the absence of any rendezvous. Rendezvous

point (1), however, prevents states b1 through rb1 (excluding the boundary state

rb1) from being affected by the event of setting C to FALSE at ai. Accordingly, the

impacted concurrency states are reduced to (ai··aj, rbl··bn)· The rendezvous point (2)

similarly limits the impacted concurrency states to (ai··aj, b1 .. rb1).

However, not all rendezvous points are effective in reducing the size of impacted

concurrency states. Rendezvous points (3) and (4) are such examples. They are

ineffective for either of the following reasons:

4.5

• The rendezvous occurs at the state where the safety invariant conditions remain

FALSE.

• The rendezvous occurs only on one path or a limited number of paths in the

concurrent modules. Therefore, it is possible for the rendezvous not to occur. 3

If the analysis reveals that there are some impacted concurrency states that

fail to satisfy the safety constraints, assertions or rendezvous can be introduced as

appropriate. Assertions are used to provide further constraints on executing the

safety-critical statements so that they are executed only when their safety can be

guaranteed not only in the sequential but also in the concurrent execution environ­

ment. Rendezvous points are used as a means of controlling the pace of task execu­

tions so that the concurrency states that violate the safety constraints can never occur

in the absence of abnormal control-flow errors. If the assertions or rendezvous points

are unable to guarantee the satisfaction of the safety constraints at some impacted

concurrency states, the design must be revised.

The traditional concurrency analysis techniques would have required the gener­

ation and analysis of a large number of concurrency states that either have nothing to

do with safety or that can never possibly cause the safety constraints to be violated.

However, incremental safety analysis allows the analysis to focus only on statements

that have direct impact on safety in the concurrent execution environment.

3 The possibility of task deadlocks due to the absence of the expected rendezvous is a different

issue. While it is possible for hazardous states to occur consequently, the standard deadlock detection

techniques would reveal such possibilities.

46

3.4 Some Safe Design Techniques

While the rigorous application of the safety-oriented design method presented

in the previous section should prevent hazardous states from occurring, the hazardous

states still may occur due to:

• Timing errors.

• Generation of software outputs in an incorrect order.

• Abnormal data and control flow errors.

This section proposes some safe design techniques to reduce or control these prob­

lems. Section 3.4.1 explains how the possibility of timing errors can be reduced.

Section 3.4.2 recommends the use of software interlocks to ensure the correctness

of outputs. Section 3.4.3 shows a simple redundancy technique using programming

language constructs that can detect or tolerate data and control flow errors.

3.4.1 Timing Errors

Timing analysis on software requirements has received some attention in the

past few years. For example, timing analysis techniques on the requirements have

been developed by Jahanian and Mok[22, 23]. Since the design may introduce timing

errors, it is desirable to verify the timing aspect of the design, too. However, timing

analysis on the software design is more difficult than the analysis on the requirements

or the code.

Timing analysis at the requirements level is feasible because the requirements

address the "what" aspect of software rather than "how." That is, each activity

47

specified in the requirements can be modeled as either an atomic or composite activity.

Timing information on atomic activity is assumed known or can be specified. Timing

information on composite activities can be derived from that of the atomic activities

and their relationships. Therefore, for timing analysis on requirements, one need not

worry if an atomic action can be completed within the deadline; in fact, the analysis

starts with the assumption that it will be completed within its deadline.

Similarly, timing analysis on the source code is feasible because the source code

represents a concrete representation of the system being developed. Furthermore,

the source code can be compiled easily into lower level languages whose upper bound

on the execution time is known[l5). Therefore, maximum response time can be de­

termined by analyzing the module through all the feasible paths. If computation

involves loops with an indefinite number of iterations, no definite upper bound on

execution time can be derived. Watchdog timers, however, can be added to detect

timing errors at runtime.

On the other hand, no matter how detailed the design, it is an abs.tract stat~­

ment of "_how" software fulfills "what" is required. If the same design documents

are distributed to different programmers (or programming teams), it is reasonable

to expect different implementations to have different characteristics. For example,

the same operation (e.g., sorting) could be implemented using different algorithms.

Even if the algorithm is specified in the design documents (e.g., quick sort), differ­

ent implementations almost always exhibit different timing behavior. Therefore, it

is possible that some implementations satisfy the timing requirements while others

do not. These factors are essential in performing meaningful timing analysis but are

still unknown at the design phase, making timing analysis very difficult (if possible

at all).

48

However, there are m_easures designers can take to reduce the possibility of

hazards due to timing errors. Hazardous states may occur if the required response

occurs either too soon or too late. This includes the possibility of required events never

occurring. If an event is hazardous when it occurs too soon, the designer can tighten

the trigger conditions (e.g., require additional confirmation). If, however, the event is

hazardous when it occurs too late, the designer can relax the trigger conditions (e.g.,

provide an alternative source for the trigger conditions) so that timing errors occur

only when there are multiple errors in all the trigger conditions. Suppose, for example,

that the gate movement at a train crossing has been computerized. Hazardous states

occur with either of the following:

• The gate is not lowered before the train arrives at the crossing.

• The gate is raised before the train leaves the crossing.

The possibility of the former can be reduced by installing multiple sensors to de­

tect train movement. While multiple sensors increase the possibility of erroneously

lowering the gate when the sensors fail, these failures do not compromise safety.

Equivalently, a separate routine to issue the gate movement command could ensure

that the gate movement is delayed no more than the predefined period of time once

a train approaching the crossing is detected. The possibility of the latter can be

reduced by raising the gate only when separate sensors confirm that the train has left

the crossing.

3.4.2 Unsafe Output Sequences

Software mishaps can occur not only from inherently unsafe software outputs

but from an unsafe sequence of outputs. Suppose, for example, the generation of the

49

successive outputs 0 A imm~diately followed by OB is unsafe and that the generation

of the intermediate output Or is needed to ensure safety. Software interlocks pro­

vide an effective means of enforcing the desired output sequences, and they can be

implemented easily by modifying the output trigger conditions. If the trigger con­

dition functionally required for the output OB is denoted CB, one can "strengthen"

the trigger condition to be I /\ CB where I is the interlock condition. The output

sequencing can be accomplished if the interlock condition I, initially set to TRUE, is

set to FALSE after the generation of the output 0 A. Setting the interlock condition

to TRUE only after the generation of the required intermediate output 01 guarantees

that the output 0 A is never immediately followed by OB without the required output

01 in between. The interlock conditions, however, do not block the output OB from

being generated if the preceding output is not 0 A.

3.4.3 Abnormal Data and Control Errors

Another issue that must be addressed in developing high-quality safety-critical

software is that of the programming language constructs. Programming languages

impact productivity as well as safety. If the implementation language does not sup­

port the concepts used in the design, the program becomes longer, more expensive

to develop, and less reliable. This section proposes some programming language con­

structs that are useful in preventing and detecting abnormal data and control errors.

Data errors occur when incorrect values are assigned to the variables. Data er­

rors, almost always the result of design (logic) errors, can be detected using the safety

verification technique proposed earlier. However, data errors may occur abnormally;

environmental stress or hardware failures may cause data errors[l 7]. One such type

50

of stress occurs when a bit of memory holding the variable is toggled unexpectedly

when a gamma ray hits the memory cells hard enough to cause a change. Any un­

expected modification of these variables can be detected (or tolerated if desired) by

using redundancy (e.g., allocate the variable at two or three distinct memory loca­

tions). Data redundancy is hardly a new idea. For example, the VAXft 3000, the first

fault-tolerant VAX computer, comes with a layered product called a volume shadow­

ing server4
• The users can create a shadow set that consist of up to three disks, and

the shadow server software guarantees the data integrity among the redundant data

through multiple updates and voting upon data retrieval.

Selective data redundancy capability can also be provided by the programming

language if users are allowed to declare the safety attribute of variables along with

their data types.

procedure monitor_patient is

age : integer; - - default (safety independent)

blood_pressure : critical integer;

This relieves the programmer of the burden of designing software that can cope with

its own failures due to abnormal data errors. However, the designer need not manually

identify all the safety-critical variables because the compiler can identify all the safety­

critical variables through static data dependency analysis ·based on the declaration of

the safety-critical software outputs. While the implementation of data redundancy

requires additional resources, it is a simple and effective solution to potentially serious

software failures that are difficult to handle in software.

4 Volume shadowing is DEC's terminology for data redundancy.

.51

Control errors refer to the cases where the program (or module) execution occurs

due to the execution of an incorrect path. This often occurs due to logic errors (e.g.,

an incorrect branch condition), and the safety verification technique discussed earlier

should detect such errors. Abnormal data errors may also cause control errors. For

example, a data error in the program counter register or the variables used in branch

condition evaluation results in control errors. These types of errors can be either

detected or tolerated using the safety attributes proposed above.

An alternative is the use of batons[.5.5]. The basic idea is to determine the desired

control flow of the module and to assign a unique identifier to each place in the graph.

The baton is an internal variable that gets passed from place to place and modified.

Each place compares the baton values against its list of potential values and detects

the occurrence of abnormal control flow errors. The overhead of the baton, due to the

runtime comparison and modification of the baton variable, can be kept reasonable

if the compiler allows the technique to be limited to the safety-critical modules only.

Chapter 4

A Safety-Oriented Management

Structure

Software project management techniques are very important due to their di­

rect and significant impact on software quality. This is also true of their impact on

safety. As Leveson points out in her survey paper(27], "the degree of safety achieved

in a system depends directly on management emphasis," and the development of

high-quality safety-critical software is unlikely without management's recognition of

the seriousness of the software safety problems and its commitment of adequate re­

sources. Management needs to be aware of the effectiveness and the costs of potential

approaches to software safety so that a wise decision can be made about how the re­

sources are to be spent.

Software project management is a very broad subject that covers topics such as

planning, organizing, staffing, directing, and controlling[4 7]. This chapter addresses

the project management issues that are unique to software and system safety.

4.1 Software Safety Management

52

Safety Assurance
Advisor

r---------- ------,
I I
I I

: ISSA :
I I

L-----------------~

r-----------------,
I I

: Project Manager :
I I

I
'----~~---:::..,..:::-_~_-_-_-_-_~-~

r-------- --------,
I I

: Design Authority :
I I
I I

Development Team

Quality Assurance
Advisor

Independent
V&V Team

Figure 4.1: Safety Management Hierarchy Recommended in the MoD-Std-0055

Figure 4.1 shows the organizational structure recommended by the UK software

safety standard. It consists of a project manager, design authority, independent

software safety assessor (ISSA), an independent verification and validation (IV & V)

team, and a number of advisors assisting the project manager. The parties whose

approval is required in issuing the software safety certification are shown in dashed

boxes. The standard specifies the safety responsibilities as follows:

• The project manager, acting as the safety authority, bears the ultimate respon-

sibility for software development and its safety.

• The design authority, appointed by the project manager, appoints the ISSA and

the IV&V team. The primary responsibility of the design authority is safety

management which includes the following:

- Safety plan preparation. The safety plan is prepared at the beginning of

each phase and requires the project manager's approval. The plan provides

54

a detailed description of safety goals and the means of accomplishing such

goals.

Safety log maintenance. The safety log, main depository of information

related to safety, contains documents on review results, formal correctness

and safety proofs, hazard analysis results, etc.

Software design and verification. The design authority carries out high­

level design analysis by identifying the safety-critical modules and by iso­

lating them. The design authority also conducts formal correctness and

safety verification on the detailed design and the code.

• The ISSA, independent from the design authority, audits and reviews all activ­

ities and documents involved in safety-critical software development.

• The IV & V team, independent of the design team, checks the correctness of the

design and proofs. The results are recorded in the safety log.

• A number of advisors and authorities assist the project manager and the design

authority on various subjects. For example, the safety assurance advisor "ad­

vises the project manager on all safety matters." This includes the assessment

of the work by the design authority and the ISSA.

Figure 4.2 proposes a slightly different hierarchy where the ISSA is appointed

and supervised directly by the project manager - not by the design authority.· The

advantages of this include:

• The elimination of a redundant position.

The role of safety assurance advisor, assessing the work of the design

authority and the ISSA, may seem reasonable as providing yet another

r-----------------,
I I

: Project Manager :
I I
I I

r---------- r-------- --------,
I
I

I I

: ISSA : Design Authority :
I I

Quality Assurance
Advisor

I I

L-----------------~
I I

Development Team
Independent

V&V Team

Figure 4.2: Slight Variation to Mod-StD-0055 Management Hierarchy

level of "defensive line" against software mishaps. However, one of the

most fundamental management principles is that excessively redun-

dant positions reduce productivity due to increased communication

overhead.

The revised structure eliminates the position of the safety assurance

advisor by having the ISSA and the IV&V team advise the project

manager and the design authority, respectively, on safety matters.

• Managerial independence.

The standard recognizes the importance of technical as well as man-

agerial independence of the ISSA from the design authority. Having

the ISSA appointed and supervised directly by the project manager

ensures (or at least enhances) managerial independence from the de-

sign authority.

.55

• Reduced load on design authority.

The standard explicitly requires the design authority to be respon­

sible for safety management. Consequently, the design authority is

responsible for an overwhelmingly large number of tasks as detailed in

Annex B of the standard. Some tasks (e.g., safety log maintenance)

require administrative skills while others require technical skills (e.g.,

software hazard analysis, safety-oriented software design, etc). While

this heavy concentration of responsibilities allows the design authority

to control software development, it may result in a negative impact

on software safety. Furthermore, finding people who possess both

administrative and technical talents can be difficult.

Therefore, it is best to separate the technical and managerial aspects

of software safety responsibility. The technical aspects can be per­

formed by the design authority whose role is similar to that of the chief

programmer[40], and the administrative aspects can be performed by

the project manager.

• Lower turnover rates.

The standard notes that the person acting as the design authority may

vary from phase to phase (e.g., due to staff turnovers or individual

specialties). It is naive to expect no staff turnovers during develop­

ment, but it is reasonable to expect lower staff turnover rates among

the positions with greater responsibility. Software safety is more likely

to receive the continuous attention it deserves if the responsibility of

the actual safety management is shifted to a higher-ranking authority.

56

System
Safety
Manager

ISSA

System
Project
Manager

System
Engineering
Authority

System
Engineering
Team

Software
Engineering
Manager

Software
Design
Autliority

System quality
Assurance
Manager

Development
Team

IV&V Team

Figure 4.3: Safety-Critical System Development Management Hierarchy

4.2 System Safety Management

,57

A generalization of the safety-oriented software management hierarchy to in-

elude system safety is proposed in Figure 4.3. It recommends the appointment of

a system safety manager who is responsible for the verification of both system and

software safety. Since software safety is a system property, the ISSA can be appointed

and supervised by the system safety manager.

58

The system engmeenng authority a.nd the system safety manager should be

responsible for the early phases of system development (i.e., the system requirements

specification and system design). The system engineering authority develops the

system requirements, performs the preliminary hazard analysis (PHA), and allocates

the system requirements to subsystems. Upon the submission of the system design for

approval, the system safety manager should review the work of the system engineering

authority and make a recommendation on its safety to the system project manager.

Software safety responsibilities should be similarly allocated. The software de­

sign authority is responsible for the validation of the logical completeness and safety

of the requirements specification. The IV & V team should independently validate

the work of the software design authority. The software design phase, however, only

begins when the software engineering manager gives a formal approval to the inde­

pendent safety verification by the ISSA. The software design authority performs the

design hazard analysis and verifies the detailed design safety as presented in this dis­

sertation. The ISSA provides an independent recommendation on software design

safety to the software engineering manager who formally approves the completion of

the design phase. The same process is repeated in the coding phase.

The software engineering manager aids the software design authority by assum­

ing responsibilities on document and configuration controls. This allows the software

design authority to devote his or her efforts to the technical aspects of the project.

However, the software design authority must be kept informed about the documen­

tation and configuration changes. The project manager should maintain the safety

log as well. A software librarian could be hired if necessary to keep the load of the

software engineering manager at a reasonable level.

59

Upon the completion ?f software development, the system quality assurance

manager performs system integration and makes a recommendation to the system

project manager on its acceptance. The system safety manager must perform the

safety verification of the integrated system and certify the system safety. The system

project manager, based upon these recommendations, accepts the system and certifies

its safety.

Chapter 5

A TCAS Example

5.1 Introduction

This chapter describes an application of the safety-oriented design method de­

scribed in Chapter 3. It is demonstrated using the threat detection subsystem of the

TCAS II (Traffic Alert and Collision Avoidance System) software design. A Federal

Aviation Administration (FAA) publication[l] provides the best and most concise

description of the goals and the basic designs for the TCAS II. The complete descrip­

tion of the detailed CAS logic is published by the Radio Technical Commission for

Aeronautics (RTCA) [49].

TCAS, a family of airborne devices that function independently of the ground­

based air traffic control system, provide collision avoidance protection for a broad

spectrum of aircraft types. TCAS is based on the concept of range/range rate (tau)

which defines time-to-go, rather than distance-to-go, to the closest point of approach.

TCAS II provides traffic advisories and resolution advisories (i.e., recommended es­

cape maneuvers) in a vertical direction to avoid conflicting traffic. Effective CAS

logic operation requires a trade-off between necessary protection and unnecessary

60

Gl

Surveillance

Own aircraft -- Tracking r-------1 Target

.--

~
Traffic advisory

~ EXAMPLE

\ •
..... Threat detection Altitude test Range test .. r------:

•
Sense selection -- Resolution advisory

r-------1 Strength selection ~

TCAS coordination
T

~
Advisory

~
Air/ groun~ .

annunciation commumcat1on

Figure 5.1: CAS Logic Functions

advisories. Controlling the sensitivity level (SL) changes the dimensions of the pro­

tected air space around each TCAS-equipped aircraft. A higher SL provides better

protection but also increases the probability of unnecessary alerts.

The logic functions used by TCAS II to perform the collision avoidance task are

shown in Figure 5.1. The surveillance data on the 'ownn and intruder aircraft are

processed by the "Tracking" subsystem which creates the intruder track file (ITF).

The "Threat Detection" subsystem searches the list of intruders and identifies the

threats about which the traffic or resolution advisories are issued. The "Resolution
1The aircraft the TCAS must protect is referred to as 'own' while any other aircraft is called the

'intruder'.

62

Advisory" subsystem coordinates the recommended maneuvers to avoid collision with

other TCAS-equipped aircraft and displays the resolution advisories to the pilots.

Because of the complexity of the complete TCAS II design, the example in

this dissertation is limited only to the Threat-Detection subsystem. The threats are

identified by performing range and altitude tests on every altitude-reporting intruder.

The intruders are declared a threat when both the range and the altitude tests are

passed. However, the threat declaration may be delayed, even if the intruder passes

both tests, depending on the geometry of the encounter and the quality and length

of the vertical track data.

The PDL descriptions used in this chapter are slightly different from the one

published by the RTCA in the TCAS Minimum Operational Performance Standards

(MOPS). The differences are:

• Track-Firmness-Test. This procedure examines the quality and length of the

vertical track data to determine if the threat declaration should be delayed even

if the intruder passes both the range and the altitude criteria. While the RTCA

design invokes the Track-Firmness-Test only when the intruder passes the range

and the altitude tests, the modified PDL first invokes the Track-Firmness-Test

to see if the application of the the range and altitude tests are needed2 •

• Concurrency. The RTCA design is strictly sequential. To illustrate the appli­

cation of the method on concurrent designs, the modified PDL performs the

range and altitude tests as tasks.

2The modification is intended to simplify the complexity of backward analysis. However, the

modified design is more efficient than the RTCA design when a large number of intruders pass both

the range and altitude test but fail the Track-Firmness-Test which makes them non-threatening.

63

• Notation. The RTCA design uses record structures extensively. For example,

information related to an intruder is stored in an IT F record while the system

parameters and the global variables are stored in the P and G records, respec­

tively. Because unique field names are in the design, the modified PDL omits

the record names.

• Algorithmic Simplification. Computational definitions of the various tests (e.g.,

altitude tests, tau computations, etc.) have been slightly simplified to make

the example self-contained. This also enhances the understandability of the

example by non-TCAS experts.

e· Intruder Logging. The display of the intruder information on the pilot console

is safety-critical because incorrect information may make a pilot issue a poten­

tially hazardous command. Since all the modules within the Threat-Detection

subsystem of the RTCA design are safety-critical, a safety-independent module

logging the intruder information for post-flight analysis is introduced.

5.2 TCAS Design Description

The procedures Threat-Detection and Setup-Parameters are shown in Figure 5.2.

An intruder is declared a hit when the results of the tests (i.e., firm, zhi t, and rhi t)

are TRUE. The Setup-Parameters procedure initializes the following parameters:

tvpcmd: Max tau for vertical miss distance (VMD) calculation.

h1: Range-range rate hyperbola threshold.

trthr: Range tau threshold.

tvthr: Time-to-coaltitude threshold.

procedure Threat-Detection;

begin

Setup-Parameters;

hitflg := FALSE;

Track-Firmness-Test (firm);

if (firm) then

Hit-or-Miss-Test (zhi t, r hit);

hitflg := zhit /\ rhit;

if hitflg then

Log-Threat-Info;

end if;

end if;

end Threat-Detection;

procedure Setup-Parameters;

tvpcmd : = tvpct bl (lev); - - lev = max (index, plint)

hl := hltbl (lev);

if (itf.eqp = $TCAS) then

trthr : = trtet bl(lev); tvthr : = tvtet bl(lev);

else

trthr := trtutbl(lev); tvthr := tvtutbl (lev);

end if;

end Setup-Parameters;

Figure 5.2: Procedures Threat-Detection and Setup-Parameters

64

procedure Hit-or-Miss-Test (out zhit, rhit : boolean);

begin

Hit-Test- Ini t;

Compute-Tau (taur, trtru);

Compute-VMD-HDM (vmd, hmd);

Run-Altitude-Range-Test (zhit, rhit);

encl Hit-or-Miss-Test;

procedure Hit-Test-Init;

rz := zown - zint;

rzd := zclown - zdint;

a:= jrzj;

aclot : = rzcl * sign (zdint);

rdtemp := rd;

if (rd 2:: - rel thr) then

rcltemp := - rdthr;

encl Hit-Test-Init;

Figure 5.3: Procedures Hit-Or-Miss-Test and Hit-Test-Init

65

The values of these parameters are based on the higher of the sensitivity levels between

the own and intruder aircraft. Once the parameters are decided, the Track-Firmness­

Test examines the length and quality of the vertical tracking data. Upon passing the

Track-Firmness-Test, the Hit-or-Miss-Test evaluates the range and the altitude tests

in parallel.

The Hit-or-Miss-Test (Figure 5.3) performs its own initialization, calculates the

tau values, calculates the vertical and horizontal miss distances, and invokes the range

and the altitude test. The Hit-Test-Init procedure initializes the following:

rz: Relative altitude (i.e., own altitude minus intruder altitude).

procedure Compute-Tau is

begin

tauv := - adot;

trtru := max (mintau, - dt r); - - true tau r emp

if (r > 0) then
r_dmod2

taur := - r rd temp
else

taur := mintau;

end if;

taur :=max (mintau, taur); - - modified tau

end Compute-Tau;

Figure 5.4: Procedure Compute-Tau

rzd: Relative altitude rate.

a: Absolute value of the relative altitude.

adot: Signed value of relative altitude rate.

-------- ----------

66

rdtemp: Temporary variable for tau calculation (i.e., either tracked range rate rd or

the negation of the system threshold on range rate rdthr).

The Compute-Tau procedure (Figure 5.4) determines the values of the true

and modified tau, trtru and taur, respectively. TCAS uses the modified tau taur

because simulations have shown that an intruder with slow horizontal or vertical

closure rate can become dangerously close without crossing the true tau boundary[l].

The modified tau declares such intruders as threats earlier than the true tau can.

procedure Compute-V11ID-HMD is

begin

hmd := r + rd * tauv;

vmdl := rz + rzd * min (tvpcmd, trtru);

vmd2 := rz + rzd * min (tvpcmd, taur);

if (vmdl * vmd2 ~ 0) then

vmd := O;

elsif (vmdl > 0) then

vmd :=min (vmdl, vmd2);

else

vmd :=max (vmdl, vmd2);

end if;

end Compute-VMD-HMD;

Figure 5.5: Procedure Compute-VMD-HMD

67

The Compute-V.MD-HMD procedure (Figure 5.5) determines the vertical and

horizontal miss distances using the tau values supplied by the Compute-Tau proce-

<lure. The algorithmic definitions of the Range-Test and Altitude-Test tasks involve

the examination of the encounter geometries as shown in Figure 5.6. The Log-Threat­

Info procedure (Figure 5. 7) is provide to assist data analysis after the flight.

5.3 TCAS Safety Analysis

Figure 5.8 shows the structure of the Threat-Detection procedure and data

flows. Suppose that the safety requirements specify that the intruder located inside

the protected airspace be declared a threat. The initial safety constraints can be

procedure Run-Altitude-Range-Test (out zhit, rhit : boolean);

task body Range-Test is

begin

if (rd > rdthr) V (taur ~ trthr) V (r > rmax) then

rhit := (r ~ dmod) /\ (Ir* rdl ~ hl);

else

rhit :=TRUE

end if;

end Range-Test;

task body Altitude-Test is

begin

zhit := FALSE;

if (a < zthr) then

zhit := lvmdl < zdthr;

els if (adot < zd thr) then

68

zhit := (tauv < tvthr) /\ (lvmdl< zthr V (ihmdl< dmod /\ tauv < trtru));

end if;

end Altitude-Test;

begin

end Run-Range-Altitude-Test;

Figure 5.6: Procedure Run-Range-Altitude-Test

procedure Log-Threat-Info is

begin

- - append the following threat info to the end of threat-log-file

seek (threat-log-file, eof);

save 1TF .ID, taur, trtru, vmd, hmd, time-of-day

end Log-Threat-Info;

Figure 5.7: Procedure Log-Threat-Info

69

r ,rd,dmod,rdthr ,zthr

Threat-Detection *
Setup-Parameters

tvpcmd,hl, trthr, tvthr

Hit-or-Miss-Test
r

Hit-Test-Ini t

rz,rzd,a,adot

Compute-Tau

taur, trtru, tauv

Compute-VMD-HMD

vmd, hmd

' Run-Al ti tu de-Range-Test

Range-Test Altitude-Test

rhit zhit

y

t hitfl g

Figure 5.8: Structure of Threat-Detection Procedure

Setup-Parameters

I
Track-Firmness-Test(firm)

Hit-or-Miss-Test (zhi t, r hit);

(r 2 dmod V I rd 121 rdthr I V zhit) /\

(r 2 dmod V I rd 121 rdthr I V rhit)

hitfig := zhit /\ rhit

(r 2 dmod) V (I rd 121 rdthr I) V hitflg

if hitfig then Log-Threat-Info;

Safety Constraints

(r 2 dmod) V (I rd 121 rdthr I)

hitfig := false

(r 2 dmod) V (I rd 121 rdthr I) V hitflg

Figure 5.9: Control Flow of Threat-Detection Procedure

formally specified as:

(r < dmod) A (I rd 1<1 rdthr I) -+ hitflg

(r 2 dmod) V (I rd 121 rdthr I) V hitflg

70

where hitflg is the output (i.e. TRUE means a threat) and the others are the inputs.3

Figure 5.9 shows how backward analysis is applied on the Threat-Detection pro-

cedure where the initial safety constraints and the intermediate weakest preconditions

3Dmod is actually a local variable within the Threat-Detection procedure in the RTCA design. Its

value is Dmodtbl (lev) where lev is the maximum of the sensitivity level of the own and intruder

aircraft.

71

are shown in italics. Backward analysis reveals that the Log-Threat-Info procedure

is safety-independent because the weakest precondition is the same as the safety con­

straints. The procedure requires access to variables such as the intruder ID that we

assume are available, the values of the true and the modified tau, and the vertical

and horizontal miss distances. If any of these variables turn out to be safety-critical,

they must be protected by a firewall so that the Log-Threat-Info procedure may not

modify their values accidently.

The safety constraints of the Run-Range-Altitude-Test procedure are:

(r 2:: dmod V I rd 12::1 rdthr I V rhit) !\ (r 2:: dmod V I rd 12::1 rdthr I V zhit)

Therefore, the safety constraints of the Range-Test and the Altitude-Test become

(r 2:: dmod V I rd 12::1 rdthr I V rhit) and (r 2:: dmod V I rd 12::1 rdthr I V zhit), re­

spectively.

Figure 5.10 shows the continued application of backward analysis to the Range­

Test task that results in the following weakest precondition:

(r 2:: dmod) V (I rd 12::1 rdthr I) V

(I r * rd I :::; hl) !\ (r :::; dmod) V

(rd :::; rdthr !\ taur < trthr !\ r :::; rmax)

The weakest precondition, given in disjunctive normal form, can be regarded as

having several lines of defense toward the satisfaction of the safety constraints. For

example, the truth of the predicate c1

(r 2:: dmod) V (I rd 12::1 rdthr I)

is based only on the input values. If the condition c1 is TRUE, the Range-Test task is

safe in a sequential execution environment in the absence of abnormal data or control

Weakest Precondition
(r 2 dmod) V (I rd 121 rdthr I) V
(Ir* rd I::; hl /\ r::; dmod) V
(rd::; rdthr /\ taur < trthr /\ r ::; rmax)

(r 2 dmod) V (I rd 121 rdthr I) V

(Ir* rd 1::; hl /\ r::; dmod)

rhit := lr*rdl::;hl /\ r::;dmod

(r 2 dmod) V (I rd 121 rdthr I) V
(taur < trthr /\ r < rmax) V
(Ir* rd 1::; hl /\ r ::; dmod)

~trthr V r2':rmax)

72

true (r 2 dmod) V (I rd 121 rdthr I) V
(I r*rd 1::; hl /\ r::; dmod)
rhit := lr*rdj::;hl /\ r::;dmod

rhit := true

Safety Constraints
(r 2 dmod) V (I rd 121 rdthr I) V rhit

Figure 5.10: Control Flow of Range-Test Procedure

d r,rd,dmo
rdthr,zt hr l C1 = (T' 2:: d mod) V (J rd J2:: rdthr)

Setup-Parameters

tvpcmd,
trthr,tvt

hl,
c2 = (Jr* r d J::=; hl) A (r < dmod)

rz,rzd,a,

taur,trtru,

hr

•
Hit-Test-Init

adot

• r
Compute-Tau

tauv c3 = (taur

• if 1(C1 V C2

< trthr) A (r < rdthr) A (r:::; rmax)

V c3) then WARN RANGE HAZARD

Compute-VMD-HMD

vmd, hm d

•
Range-Test

Figure 5.11: Propagation of WP from Range-Test Task

74

errors. If, on the other hand, the condition ci is FALSE, the condition c2

(Ir* rd l:S; hl) V (r :S; dmod)

is the second line of defense. Its predicate is expressed using variables internal or

external to the routine. In such cases, the development of run-time assertions requires

that either the values of the variables (i.e., r, dmod) or the predicate (i.e., r < dmod)

be passed from one module to another. Similarly, the predicate c3

(taur < trthr) /\ (r < rdthr) /\ (r:::; rmax)

serves as the last line of defense toward the satisfaction of the Range-Test safety

constraints. Figure 5.11 shows the assertions inserted to detect the occurrences of

hazardous states.

Similarly, Figure 5.12 shows how the following weakest precondition of the Al­

titude-Test task is distributed as the safety constraints of other modules:

(r ~ dmod V I rd 1~1 rdthr I) V

(a~zthrV lvmdl<zdthr) /\

(a < zthr V adot < zdthr) /\

(tauv < tvthr) /\

a < zthr V adot ~ zdthr V (I vmd I< zthr V I hmd I< dmod) /\

(I vmd I< zthr V tauv < trtru)

= di V ((d2 V d6) /\ (1d2 V d3) /\ (1d2 V 1 d3 V (d4 /\ (ds V d6) /\ (d6 V d1))))

The truth of condition di ensures the satisfaction of the safety constraints. Since the

Hit-Test-Init may control the truth of only predicates d2 and d3 , one can consider the

following cases:

In the first case, the assertions are introduced within the Compute-VMD-HMD

procedure that are triggered when the condition (•di /\ 1 d2 /\ 1 d5) holds. Similarly,

r,rd d d , mo, 1 d1 = (r ~ dm od) V (I rd I~ rdthr) rd thr,zthr

Setup-Parameters

pcmd,hl, tv
trt

rz,

taur,t

hr,tvthr
*

Hit-Test-Init

rzd,a,adot

•

d2 =a~ zth r
zdthr d3 = adot <

if (-id1 /\ d2 /\ -.d3) then WARN HAZARD ALTITUDE 1

Compute-Tau

rtru,tauv
d4 = tauv < t
ds = tauv < t

t if (-.d1 /\ d2 /\

vthr
rtru
d3 /\ -.d4) then WARN HAZARD ALTITUDE 2

Compute-VMD-HMD

d6 =Jvmdl < zthr
< dmod

vm d, hmd d1 =I hmd I
if (-id1 /\ -.d 2 /\ -.d6) then WARN HAZARD ALTITUDE 3;
if (-id1 /\ d2 /\ d3 /\ -.d6) then

.. if -.(ds /\ d7) then WARN HAZARD ALTITUDE 4;

Altitude-Test

Figure 5.12: Propagation of WP from Altitude-Test Task

75

I

76

d2 =FALSE vVP = d6

d2 = TRUE, d3 = FALSE WP= FALSE

d2 = TRUE, d3 = TRUE vV P = d4 /\ d6 /\ (ds V d1)

Table 5.1: Derivation of Run-Time Assertions

warnings of expected violations of the safety constraints of the Altitude-Test task are

issued if the condition (-.d1 /\ d2 /\ -.d3) holds. Table 5.1 shows how to develop the

assertions that detect the potentially hazardous software states for the last case.

The identification of the safety-critical modules and the derivation of their safety

constraints are similarly applied to other procedures. For example, the safety con­

straints of the Compute-VNID-HMD procedure are:

(I vmd I< zthr) /\ (I hmd I< dmod)

while that of the Hit-Test-Init procedure is:

(a< zthr) V (adot < zdthr)

The continued application of backward analysis reveals the safety-critical modules,

their safety constraints, and the safety-critical variables.

The backward analysis technique is used during the software design phase for

the following reasons:

• To identify the safety-critical modules and to derive their safety constraints

during the high-level design phase.

I

77

• To verify the safety of the safety-critical modules in the detailed design phase

and to derive the contents of the run-time assertions that make the software

more robust against potentially hazardous internal states.

Despite the use of concurrency in the Threat-Detection procedure, concurrency

safety verification is unnecessary since there are no safety-critical variables that are

subject to race conditions. Not all concurrent executions of safety-critical modules

require concurrency safety verification.

The analysis reveals that all the modules except the Log-Threat-Info are safety­

critical and that the safety-critical variables taur, trtru, vmd, hrnd are shared be­

tween the safety-critical modules and the safety-independent module.

5.4 An Improved TCAS Design

Upon the completion of the software design phase, a detailed desig~ document

whose safety can be certified must be produced. The safety-critical modules must

be clearly identified as such and protected from the safety-independent modules to

ensure the absence of hazardous side-effects. The following PDL descriptions show

how the basic design of the Threat-Detection TCAS subsystem can be augmented with

assertions to detect the occurrences - regardless of their causes - of the potentially

hazardous software states. 4 The augmented design also introduces several variables

(e.g., log-vmd, log-hmd, etc) serving as a medium for unidirectional data flow from

the safety-critical modules to the safety-independent module.

4The lines that are missing in or different from the less robust TCAS design are indicated by

asterisks.

I

* package Detect-Threat-Critical is

* procedure Threat-Detect; - - no longer main procedure

* - - types definitions are assumed

* distance log-vmd, log-hmd; - - for unidirectional data-flow

* second log-taur, log-trtru;

* boolean log-hitflg;

* end Detect-Threat-Critical;

* package body Detect-Threat-Critical is

* procedure Threat-Detect;

begin

Setup-Parameters;

hitflg := FALSE;

Track-Firmness-Test (firm);

if (firm) then

Hit-or-Miss-Test (zhit, rhit);

hitflg := zhit /\ rhit;

else

hitflg := FALSE;

end if;

log-hitflg := hitflg;

end Threat-Detect;

- - other procedures invisible to outside package go here

- - Compute-Tau is shown below as an example

* end Detect-Threat-Critical;

Figure 5.13: Firewall Installation

78

I

procedure Compute-Tau is

begin

tauv := - aclot;

trtru :=max (mintau, - dt r); - - true tau r emp
if (r > 0) then

r_dmod2

taur := - r rd temp
else

taur := mintau;

end if;

taur :=max (mintau, taur); - - modified tau

* c3 := taur<trthr /\ r <rdthr /\ r :::;rmax;

* d4 := tauv < tvthr;

* d5 := tauv < trtru;

* if • (cl V c2 V c3) then

* WARN RANGE HAZARD; - - place recovery routine if desired

* end if;

* if (• dl /\ d2 /\ d3 /\ •d4) then

* WARN ALTITUTE HAZARD 2

* end if;

* log-taur := taur; - - assign values for unidirectional data-flow

* log-trtru := trtru;

end Compute-Tau;

Figure 5.14: Safety-Critical Module Augmentation with Run-Time Assertions

79

*
*
*
*
*
*
*

- -- - - - - --~------------

procedure Main is

begin

Threat-Detect;

if (log-hitflg) then

Log-Threat-Info;

end if

end Main;

procedure Log-Threat-Info is

begin

- - append the threat info to the end of threat-log-file

seek (threat-log-file, eof);

80

* save ITF.ID, log-taur, log-trtru, log-vmd, log-hmd, time-of-day

end Log-Threat-Info;

Figure 5.15: Main Procedure and Safety-Independent Module

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation proposes a safety-oriented design method whose goal is to

minimize the amount of safety-critical code and to produce a design whose safety can

be certified. Backward analysis, which was used to verify safety of source code, is

used to guide the software design process. Design hazard analysis allows the analyst

to augment the design being developed with run-time assertions or rendezvous, as

appropriate, to prevent the occurrence of hazardous software states. It is also shown

that a limited backtracking can be applied to resolve safety constraint conflicts upon

the detection of unsafe modules.

Information hiding is recommended as a means of protecting the safety-critical

modules from the others so that the safety verification needs to be applied only

on the former. Safety verification is a labor-intensive and costly process. While

firewalls alone do not necessarily make software safer, they minimizes the cost of

safety verification during the development and maintenance phases.

This dissertation also proposes an incremental and selective verification tech­

nique that further reduces the complexity of design safety verification. It argues that

81

82

concurrency decisions on safety-critical software must be based on careful trade-off

analysis. The dissertation proposes a criterion where the use of concurrency in the

safety-critical software development can be justified. It also argues that a concurrent

design does not necessarily require exhaustive concurrency safety verifications.

The management aspect of software safety is as important as the technical one.

This dissertation examines how to organize safety-critical projects and to distribute

safety responsibilities.

While the design of safety-critical software remams a challenging task, this

dissertation provides useful guidelines on how the design activity can be organized

around the goal of enhancing safety.

6.2 Future Work

Safety-critical software has direct and significant impact on the lives of the

general public. The following research is in order:

• Industrial application and evaluation. The safety-oriented method pro­

posed in this dissertation is practical and seems applicable on large industrial

projects as demonstrated on a subsystem of the TCAS II design. The applica­

tion of the method to various industrial projects would reveal its applicability

and scalability. The method is currently being applied on an air traffic control

system being developed.

• Software Safety Requirements Derivation and Analysis. The appli­

cation of the safety-oriented design method proposed in this dissertation can

I

83

produce a design whose safety can be certified. However, a design is safe only

when the software safety requirements are correctly derived.

Software safety requirements are derived by performing system hazard analysis

such as fault tree analysis and Petri Net analysis(34]. The success of fault tree

analysis heavily depends on the capability of analysts due to its informal nature.

While Petri Net analysis is useful in determining how a system might fail, its

applicability on large industrial systems is not yet proven. It is also unclear

how fail-soft behavior of a system can be modeled in Petri Nets.

• Safe design derivation. This dissertation demonstrates how a decomposi­

tion proposed by the designer can be evaluated from safety viewpoints. With

increasing use of formal specification languages, it may be possible to mechan­

ically derive a safe design from the requirements specification.

• Programming language constructs. Further works are necessary in guid­

ing safety-critical software design activities and in enhancing safety through

programming language constructs.

Bibliography

[1] Federal Aviation Administration. Introduction to TCAS II. U.S. Department of

Transportation, 1990.

[2] G.S. Avrunin, L.K. Dillon, J.C. Wilenden, and W.E. Riddle. Constrained

Expressions: Adding Analysis Capabilities to Design Methods for Concurrent

Software Systems. IEEE Transaction on Software Engineering, SE-12(2):278-

292, February 1986.

[3] G. Booch. Software Engineering with Ada. Benjamin/Cummings, 1986.

[4] S.S. Cha, N.G. Leveson, and T.J. Shimeall. Safety Verification in Murphy us­

ing Fault Tree Analysis. In Proceedings of the 10th Interational Conference on

Software Engineering, pages 377-386, Raffle City, Singapore, April 1988.

[5] D. Denning. Cryptography and Data Security. Addison Wesley, 1982.

[6] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[7] D.E. Eckhardt Jr. and L.D. Lee. A Theoretical Basis for the Analysis of

Multiversion Software Subject to Coincident Errors. IEEE Transaction on

Software Engineering, SE-11(12):1511-1517, December 1985.

[8] R.E. Fairley. Software Engineering Concepts. McGraw-Hill Book Company, 1985.

[9] T. Forester and P. Morrison. Computer Unreliability and Social Vulnerability.

Futures, pages 462-474, June 1990.

84

I

85

[10] P. Freeman and A.I. Wasserman, editors. Tutorial on Software Design Tech­

niques. IEEE Computer Society, fourth edition, 1983.

[11] J. Gray. A Census of Tandem System Availability between 1985 and 1990. IEEE

Transaction on Reliability, 39(4):409-418, October 1990.

[12] D. Ha.rel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8:231-274, 1987.

[13] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and

A. Shutl-Trauring. Statemate: A Working Environment for the Development

of Complex Reactive Systems. In Proceedings 10th International Conference on

Software Engineering, pages 396-406, Raffie City, Singapore, April 1988.

[14] D. Harel and A. Pnueli. On the Development of Reactive Systems. In K.R.

Apt, editor, Logics and Models of Concurrent Systems, pages 477-498. Springer­

Verlag, 1985.

[15] V.H. Hasse. Real-Time Behavior of Programs. IEEE Transaction on Software

Engineering, SE-7(9):494-501, September 1981.

[16] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communica­

tions of the ACM, 12(10):576-583, October 1969.

[17] R.K. Iyer and P. Velardi. Hardware-related Software Errors: Measurement

and Analysis. IEEE Transaction on Software Engineering, SE-11(2):223-231,

February 1985.

[18] M. Jackson. Principles of Program Design. Academic Press, 1975.

[19] J. Jacky. Programmed for Disaster: Software Errors that Imperil Lives. The

Sciences, 29(5):22-27, September/October 1989.

86

[20) M.S. Jaffe and N.G. Leveson. Completeness, Robustness, and Safety in Real­

Time Software Requirements Specification. In 11th International Conference

on Software Engineering, pages 302-311, Pittsburgh, Pennsylvania, May 1989.

IEEE Computer Society Press.

[21) M.S. Jaffe, N.G. Leveson, M. Heimdahl, and B.E. Melhart. Software Require­

ments Analysis for Real-Time Process-Control Systems. IEEE Transaction on

Software Engineering, 17(3):241-258, March 1991.

[22] F. Jahanian and A.K. Mok. Safety Analysis of Timing Properties in Real­

Time Systems. IEEE Transactions on Software Engineering, SE-12(9):890-904,

September 1986.

[23] F. J ahanian and A.K. Mok. A Graph-Theoretic Approach for Timing Analysis

and Its Implementation. IEEE Transactions on Computers, C-36:961-975,

August 1987.

[24] E. Joyce. Software Bugs: A Matter of Life and Liability. Datamation, pages

88-92, 15 May 1987.

[25] J.C. Knight and N.G. Leveson. An Experimental Evaluation of the Assumption

of Independence in Multiversion Programming. IEEE Transaction on Software

Engineering, SE-12:96-109, January 1986.

(26] J.C. Knight and N.G. Leveson. A Reply to the Criticisms of the Knight &

Leveson Experiment. Software Engineering Notes, 15(1):24-35, January 1990.

[27] N.G. Leveson. Software Safety: What, Why, and How. ACM Computing Surveys,

18(2):125-164, June 1986.

[28] N. G. Leveson. Software Safety in Embedded Systems. Communications of the

ACM, February 1991.

87

[29] N.G. Leveson, S.S. Cha, T.J. Shimeall, and J.C. Knight. The Use of Self-Checks

and Voting in Software Error Detection: An Empirical Study. IEEE Transaction

on Software Engineering, SE-16(4), April 1990.

[30] N. G. Leveson and P.R. Harvey. Analyzing Software Safety. IEEE Transactions

on Software Engineering, SE-9(5):569-579, September 1983.

[31] N.G. Leveson and T.J. Shimeall. Safety Assertions for Process Control Systems.

In Proc. 13th International Symposium on Fault Tolerant Computing, Milan,

Italy, 1983.

[32] N.G. Leveson, T.J., Shimeall, J.L. Stolzy, and J.C. Thomas. Design for Safe

Software. In AIAA '83, 1983.

[33] N.G. Leveson and J.L. Stolzy. Safety Analysis of Ada Programs using Fault

Trees. IEEE Transactions on Reliability, R-32(5):479-484, December 1983.

[34] N.G. Leveson and J.L. Stolzy. Safety Analysis Using Petri Nets. IEEE

Transaction on Software Engineering, SE-13(3):386-397, March 1987.

[35] D.L. Long and L.A. Clarke. Task Interaction Graph for Concurrency Analysis. In

11th International Conference on Software Engineering, pages 44-52, Pittsburgh,

Pennsylvania, May 1989. IEEE Computer Society Press.

[36] Data Encryption Standard. National Bureau of Standards, 1977.

(37] Airbus A320, The New Generation Aircraft. Aviation Weekly & Space

Technology, pages 45-66, February 2, 1987.

(38] Interim Defense Standard 00-55 (Draft): Requirements for the Procurement of

Safety Critical Software in Defense Equipment. United Kingdom Ministry of

Defense, May 1989.

88

[39] J.W. Mclntee Jr. Fault Tree Techniques as Applied to Software (Soft Tree).

Technical report, USAF, March 1983.

[40] H. Mills. Chief Programmer Teams: Principles and Procedures. IBM Federal

Systems Division, 1971.

[41] P.G. Neumann. Some Computer-Related Disasters and Other Egregious Horrors.

ACM Software Engineering Notes, 10(1):6-7, January 1985.

[42] D.L. Parnas. On the Criteria to be used in Decomposing Systems into Modules.

Communications of the A CNI, pages 1053-1058, December 1972.

[43] D.L. Parnas. A Technique for Software Module Specification with Examples.

Communications of the ACM, 15(5):330-336, May 1972.

[44] D.L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE

Transaction on Software Engineering, SE-5(2):128-138, March 1979.

[45] J.L. Peterson. Petri Net Theory and the Nlodeling of Systems. Prentice-Hall,

1981.

[46] R.S. Pressman. Software Engineering: A Practioner's Approach. McGraw-Hill

Book Company, second edition, 1987.

[47] D. Reifer, editor. Tutorial: Software Management. IEEE Computer Society,

third edition, 1986.

[48] J.C. Rouquet and P.J. Traverse. Safe and Reliable Computing on Board

the Airbus Aircraft. In W. Quirk, editor, SafeComp '86, pages 93-97. IFAC,

Pergamon Press, October 1986.

[49] RTCA/D0-185. Minimum Operational Performance Standards for TCAS

Air borne Equipment. Technical report, Radio Technical Commission for

Aeronautics, 1989.

I

j

89

[50] J. Rushby. Kernels for Safety. In Proc. CSR Workshop on Safety and Security,

Glascow, Scotland, October 1986.

[51] J .R. Taylor. Fault Tree and Cause Consequence Analysis for Control Software

Validation. Technical Report RISO-M-2326, RISO National Laboratory, January

1981.

[52] R.N. Taylor. A General-Purpose Algorithm for Analyzing Concurrent Programs.

Communications of the ACM, 26(5):362-376, May 1983.

[53] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree

Handbook. U.S. Nuclear Regulatory Commission, Washington, D.C., January

1981. NUREG-0492.

[54] N. Wirth. Program Development by Stepwise Refinement. Communications of

the ACM, 14(4):221-227, April 1971.

[55] S.S. Yau and R.C. Cheung. Design of Self-Checking Software. In Int. Conj. on

Reliable Software, pages 450-457, April 1975.

[56] S.S. Yau and J.J.P. Tsai. A Survey of Software Design Techniques. IEEE

Transaction on Software Engineering, SE-12(6):713-721, June 1986.

