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Commercial wind turbines and residential home values: New evidence from 
the universe of land-based wind projects in the United States 

Eric J. Brunner a, Ben Hoen b, Joe Rand c, David Schwegman c,* 

a School of Public Policy, University of Connecticut, USA 
b Electricity Markets and Policy Department, Lawrence Berkeley National Laboratory, USA 
c Department of Public Administration and Policy School of Public Affairs, American University, USA   

A R T I C L E  I N F O   

We augment the USWTDB database with addi
tional information on the date of the 
“announcement” that a wind energy project 
was being developed and seeking permit 
approval. Data on announcement date comes 
from Hitachi Velocity Suite, which often cor
responds to the date a transmission intercon
nection application is filed and necessarily 
would follow or be coincident with a period in 
which land agents are securing local landowner 
leases, the development company sets up a 
local office, and other development activity 
occurs, such as the erection of a meteorological 
tower to collect local wind speeds. Any of these 
could incite local conversations about the 
possible arrival of the project in future years. 
We observe non-missing announcement dates 
for 60% of the wind energy projects in our 
sample. Given that most announcement dates 
occur approximately four years prior to a wind 
energy project becoming operational, we set 
the announcement date equal to four years 
prior to the operation date in cases where we 
are missing the actual announcement date.  
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A B S T R A C T   

We examine the impact of proximity to land-based commercial wind turbines on residential home values in the 
United States using data on the universe of commercial wind turbines and residential property transactions from 
2005 to 2020. Using event study and difference-in-differences identification strategies we find that, on average, 
homes located within 1 mile of a commercial wind turbine experience approximately an 11% decline in value 
following the announcement of a new commercial wind energy project, relative to counterfactual homes located 
3 to 5 miles away. Event study estimates also reveal important dynamics in the evolution of home values, with 
property values first declining following project announcement, and then recovering post project construction, 
with property value impacts becoming relatively small (~2%) and statistically insignificant 9 years or more after 
project announcement (roughly 5 years after operation began). Homes located within 1–2 miles of a commercial 
wind turbine experience much smaller impacts and homes located farther than 2 miles away are unaffected. Our 
results are primarily driven by wind projects located in urban counties with populations greater than 250,000.   
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1. Introduction 

Over the past decade, wind energy has become one of the fastest 
growing energy sources in the United States, accounting for approxi
mately 32% of U.S. electric capacity growth in 2021 (Wiser et al., 2023). 
Commercial wind energy generation has grown from approximately 6 
billion kWh in 2000 to 380 billion kWh in 2021, with more than 70,000 
turbines now accounting for 9.2% of total U.S. utility-scale electricity 
generation (Hoen et al., 2018; United States Energy Information 
Administration, 2022). The rapid growth in wind energy production has 
been accompanied by a large expansion in the number of counties 
hosting commercial wind energy projects and the number of homes 
located in close proximity to such projects. 

The growth of commercial wind energy installations has led to op
position to the siting of new projects, particularly as those projects have 
moved closer to more densely populated areas. One primary concern 
among residents within close distances of commercial wind turbines is 
the potential negative impact on home values due to the noise and 
shadow flicker associated with turbine rotation as well as the change to 
the surrounding landscape (Hoen et al., 2019). A relatively large body of 
literature has examined how proximity to wind turbines impacts resi
dential home values. Within the U.S. context, the evidence is mixed but 
the majority of studies find insignificant effects of wind turbines on 
home values (see reviews Brinkley and Leach, 2019; Rand and Hoen, 
2017, Parsons and Heintzelman, 2022). In contrast, studies from Europe 
generally find that close proximity to wind turbines has a negative effect 
on home values with home values falling by approximately 5–10% for 
homes located within 2 km (~1.2 miles) of a wind turbine. 

The purpose of this paper is to provide new evidence on how prox
imity to commercial wind turbines affects residential housing values 
within the U.S. context. Our analysis is based on the most comprehen
sive and nationally representative sample of wind energy projects and 
housing value transactions in the United States to date. We combine data 
from the U.S. Wind Turbine Database (USWTDB, Hoen et al., 2018) on 
the timing and exact location of the universe of wind turbine in
stallations in the U.S. from 2005 to 2020 with data on the universe of 
residential housing transactions from CoreLogic including the location, 
attributes, and sales data from 2005 to 2020. Our final sample consists of 
428 unique wind energy projects located across the United States and 
nearly 500,000 housing sale transactions located within five miles of a 
wind energy project. 

To isolate the causal effect of wind turbines on residential property 
values, we use difference-in-differences (DiD) and event study models 
that allow us to examine the evolution of housing prices for homes 
within [0, 1], [1, 2], and [2, 3] miles from a turbine four years prior to 
the announcement of a new commercial wind energy project to 10 years 
after the announcement. Our identification strategy has several key 
advantages for isolating the causal impact of proximity to a wind turbine 
on residential home values. First, as described in more detail below, our 
comparison group, which consists of homes 3 to 5 miles from the nearest 
turbine, and our fixed effect structure enables us to use only within 
project variation in sale prices and distance from a wind turbine. Thus, 
we avoid inter-housing market (or across-jurisdiction) comparisons that 
may bias our estimates. Second, we control for wind project-specific 
nonparametric trends in housing prices over time allowing us to better 
model generalized housing trends in specific markets. Finally, our 
identification strategy directly addresses the potential biases that can 
arise in standard DiD and event study models in the presence of stag
gered timing of treatment with heterogeneous treatment effects (Call
away and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and Abraham, 
2021). 

We find that the average home located within 1 mile of a commercial 
wind turbine experienced approximately an 11% decline in value 
following the announcement of a new commercial wind energy project, 
relative to homes 3 to 5 miles away from the project. Event study esti
mates also reveal important dynamics in the evolution of home values, 

with property values first declining following project announcement, 
and then recovering post project construction, with property value im
pacts becoming relatively small (~2%) and statistically insignificant 9 
years or more after project announcement. Homes located within 1–2 
miles of a commercial wind turbine experience much smaller impacts 
and homes located farther than 2 miles away are unaffected. Further
more, we find that our results are driven by wind projects and housing 
markets located in populated, urban metro areas with populations of 
250,000 or more. 

Our paper extends the existing literature in several important ways. 
First, much of the existing literature is focused on specific states or re
gions (e.g., Dong et al., 2023). In contrast, our study is based on the full 
universe of housing transactions and wind turbines in the United States. 
Second, all but one of the existing studies within the United States rely 
on housing transactions that occurred prior to 2014–2015 at the latest 
(Hoen et al., 2015). In contrast, we examine the impact of turbines 
constructed in the past 15 years. Lastly, we specifically examine the 
impact of turbines constructed in urban areas. This second contribution 
is particularly policy-relevant given we find that wind projects built in 
urban areas (counties with populations greater than 250,000) have 
negative impacts on property values compared to wind projects built in 
more rural communities (where we find no impact on property values). 
We discuss potential mechanisms for this difference below. 

2. Background & existing literature 

Since the early 1980’s when the first commercial wind turbines went 
into operation, wind energy has become an increasingly important en
ergy source in the United States, accounting for over 32% of U.S. electric 
capacity growth in 2021 and 9.2% of total U.S. utility-scale electricity 
generation. Appendix Figure A1 presents the distribution of county-level 
wind energy capacity in 2005 and 2022. As of 2005, there were 123 
counties with commercial wind energy installations that were concen
trated in the southeastern part of California and the Southwest and 
Midwest. By 2022, the number of counties with wind energy in
stallations had grown six-fold to 687, with wind energy installations 
spread across the Western, Southwestern, and Central United States and 
to a lesser extent the Northeast. As shown in Fig. 1, the rapid growth of 
wind energy projects has also resulted in a steep decrease in average 
distance to the nearest turbine for all transactions in our data. In 2005, 
the average parcel in our data was located 148.6 miles (238.2 km) away 

Fig. 1. Distance to Nearest Turbine for the Average House in the United States, 
2005-2020 
Notes: The figure represents the average distance to the nearest turbine for the 
average parcel in our transaction from 2005 to 2020. The average distance in 
2005 was 148.6 miles (standard deviation of 367.4 miles). By 2020, the average 
distance was 37.1 miles (standard deviation of 25.65 miles). 
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from the nearest turbine. This distance decreased to 54.1 miles (86.9 
km) by 2010, and then further to 37.1 miles (59.7 km) by 2020. 

Despite public opinion polls showing the majority of the U.S. popu
lation supports the expansion of alternative energy sources, such as wind 
energy, the rapid expansion of wind energy projects, accompanied by 
the increase in the number of projects located in closer proximity to 
more densely populated areas, has led to controversy regarding the 
siting of wind energy projects.1 Much of this controversy revolves 
around concerns over the potential impact of wind projects on resi
dential property values. As noted by Hoen et al. (2011) and Krekel and 
Zerrahn (2017), concerns about the potential negative impact of wind 
turbines on residential property values can be categorized into three 
general areas: 1) the potential impact of direct views of wind turbines on 
property values; 2) perceptions that wind turbines will make an area 
appear more developed and reduce the aesthetic appeal of the areas 
surrounding a wind project regardless of whether wind turbines can be 
directly seen from residential properties; and 3) concerns over noise and 
shadow flicker impacts from the rotating blades of a wind turbine along 
with annoyance associated with aviation obstruction lights installed on 
top of turbines.2 

Over the last decade a relatively large body of literature has emerged 
that examines the impact of wind turbines on residential property 
values, primarily using data from the United States and Europe. Within 
the U.S. context, the evidence is mixed but the majority of studies have 
found insignificant effects of wind turbines on residential property 
values. For example, using data on over 50,000 homes, including 1198 
homes within 1 mile of a turbine, Hoen et al. (2015) find negative, but 
small and insignificant, effects of turbines on homes located in close 
proximity to operating turbines, and slightly larger but still insignificant 
effects in the period after announcement but before operation. Lang 
et al. (2014) and Hoen and Atkinson-Palombo (2016), examine the 
impact of wind turbines on residential home values in more urban set
tings in Rhode Island and Massachusetts, respectively, and these studies 
find little evidence that close proximity to turbines lowers property 
values. While Hoen et al. (2015) and Hoen and Atkinson-Palombo 
(2016) both find small and insignificant impacts on average, both 
studies also find that estimates in the post-announcement-pre-operation 
period being slightly more negative, though still insignificant. In 
contrast, using data on approximately 11,000 residential property 
transactions in three upstate New York counties, Heintzelman and Tuttle 
(2012) find that close proximity to wind turbines (within 0.5 miles) 
reduces property values in 2 of the 3 counties by between 6 and 10%.3 

Most recently, using data on wind turbines and home values in Massa
chusetts and Rhode Island, Dong, Gaur and Lang (2023) find that 
properties within 1 km of a wind turbine decrease in value by approx
imately 2.5%–4.6% after construction relative to properties 3–10 km 
away. 

While the majority of U.S. studies have found small negative and 
insignificant effects of proximity to wind turbines on property values, 
the evidence from studies that use data from European countries typi
cally finds that proximity to wind turbines reduces residential property 
values. For example, using data from Denmark, Jensen et al. (2014) 
estimate that homes where residents can see a turbine decline in value 
by 3%, and these homes decline by an additional 2% if residents can 
hear the turbines when compared to those properties outside of visible 
or auditory range. They also find effects fade as distance increases. 
Gibbons (2015) finds that English and Welsh homes with a visible wind 
energy project within 2 km experience approximately a 5%–6% decline 
in value relative to homes without a view and those located farther 
away. From the Netherlands and using a difference-in-differences 
identification strategy, Dröes and Koster (2016) find a 1.4% reduction 
in home prices for homes located within 2 km of a wind turbine with the 
effects being larger for homes located near turbines in urban areas and 
for larger turbines. Similarly, using data from Germany, Sunak and 
Madlener (2016) and Sunak and Madlener (2017) find that turbine 
visibility and close proximity to wind turbines reduces residential home 
values by approximately 9%–20% respectively. More recently, Jensen 
et al. (2018), Dröes and Koster (2021) and Eichholtz et al. (2023), using 
data from Denmark, the Netherlands, respectively, find that close 
proximity to wind turbines reduces residential property values by be
tween 3%, 6% and 7%.4 

A number of studies have found evidence of negative anticipatory 
effects on housing values, which begin after the announcement of the 
wind project and continue through operation rather than manifesting 
when construction begins (e.g., Dröes and Koster, 2016; Jarvis, 2021; 
Dong et al., 2023). Furthermore, some studies find that post project 
construction, housing values rebound to levels existing prior to the 
project’s announcement (Dong et al., 2023).5 

The stark difference in findings between studies conducted in the U. 
S. and those conducted in Europe raises an important question: why do 
European studies nearly universally find that wind turbines reduce 
residential property values (and in many cases by a considerable 
magnitude), while studies from the U.S. typically find small and statis
tically insignificant effects? While the existing literature provides no 
definitive answer to that question, there are several possibilities. First, 
the population density of Europe is approximately 3.5 times higher than 
that of the U.S. Furthermore, that figure represents average population 
density and most wind turbines in the U.S. are located in the less densely 
populated areas of the Midwest and Southwest. Thus, it is simply harder 
to site wind turbines farther away from residential locations in Europe 
than in the U.S. Second, and relatedly, European studies tend to have 
significantly more residential sale transactions in close proximity to a 
wind turbine. For example, Dröes and Koster (2016) observe 149,939 
transactions within 2 km of a wind turbine while in the largest U.S. study 
to date, Hoen et al. (2015) observe approximately 1200 homes within 1 
mile of a turbine. 

As noted above, previous U.S. studies of the impact of wind turbines 
on residential property values contained a relatively small number of 
residential sales transactions within close proximity to turbines. That is 
not surprising given that most U.S. studies were published between 2012 
and 2016. These studies tended to use data on residential housing 
transactions from the mid-1990s through, at most, 2015. For example, 

1 For example, a January 2022 poll by the Pew Research Center, finds that 
69% of U.S. adults support the expansion of renewable energy installations such 
as wind and solar.  

2 Numerous studies have examined the potential health effects associated 
with living in close proximity to wind turbines, such as annoyance, sleep 
disturbance, anxiety, or depression. The consensus from the more rigorous 
studies (e.g., Bakker et al., 2012; Michaud et al., 2016, van Kamp and van den 
Berg, 2021) find links to annoyance but not health outcomes (also reviews by 
Knopper and Ollson, 2011; Guski et al., 2017; Freiberg et al., 2019). Annoyance 
has also been found to be correlated with perceptions of the planning process 
(Hübner et al., 2019; van Kamp and van den Berg, 2021).  

3 In related work, Heintzelman et al. (2017), examine the impact of wind 
turbines located on Wolfe Island, which straddles the border between New York 
and Canada, on property values. They find evidence of a negative effect of wind 
turbines on property values for homes located on the New York side of the 
border but no effect (and in some specification positive but insignificant effects) 
of wind turbines on property values for homes located on the Canadian side of 
the border. 

4 Appendix Table A1 provides a complete list of peer-reviewed studies 
examining the impact of wind turbines on residential property values along 
with whether those studies were conducted in the U.S. or Europe and their main 
finding.  

5 Although differences were not statistically significant, several studies find 
evidence of more negative effects on housing values in the post-announcement 
pre-construction period than that in the post-operation period (Hoen et al., 
2011, 2015; Lang et al., 2014; Vyn and McCullough, 2014; Hoen and 
Atkinson-Palombo, 2016). 
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Hoen et al. (2015), which represents perhaps the most extensive U.S. 
study to date, utilizes data on residential sale transactions from 1996 to 
2011, which, as shown in Fig. 1 predates the time period when wind 
turbines increasingly began to be sited closer to more densely populated 
areas. Further, over the last decade commercial wind turbines have 
grown in size, which likely has increased the visual impacts associated 
with turbines.6 Given the trend in the U.S. toward larger wind turbines 
located closer to areas with great population and more active housing 
markets over the last 10 years, the purpose of this paper is to revisit the 
relationship between residential property values and proximity to 
commercial wind turbines using data on the universe of commercial 
turbines and residential home transactions in the U.S. between 2005 and 
2020. Relative to existing U.S. studies, we observe over 20,000 resi
dential sales transactions within 1 mile of a wind turbine, compared to 
the approximately 1200 transactions observed by Hoen et al. (2015). 

3. Empirical framework 

To examine the relationship between proximity to wind turbines and 
residential property values we utilize a difference-in-differences (DiD) 
identification strategy that relates the timing of treatment (being close to 
a wind turbine post the announcement of a wind project) to home prices 
for homes located [0 to 1], [1 to 2], and [2 to 3] miles away from the 
closest turbine within a given wind energy project. Specifically, we first 
created 428 unique datasets, each representing a unique commercial 
wind project and the residential home transactions that occurred within 
5 miles of the project and transacted within 4 years prior to project 
announcement and 10 years post project announcement. We call each of 
these unique datasets a “project.” We then stacked the 428 projects to 
create our final analytic dataset and specify a stacked difference-in- 
differences specification of the following form: 

ln
(
Picdjt

)
= β Didt +Xiα+ δdc + λtc+φjc + εicdjt, (1)  

where ln(Picdjt) is the natural log of the sales price of residential home 
transaction i that belongs to project c within distance bin d and census 
block group j, that transacted in quarter and year t. Didt is a vector 
consisting of 3 distance bin indicators for homes located [0 to1], [1 to 2] 
and [2 to 3] miles from the closest turbine in the wind energy project 
and where each distance bin is interacted with an indicator for whether 
the home sale occurred after the announcement of the wind project. The 
omitted category for the distance bin indicators is homes located 3 to 5 
miles from the closest wind turbine in the project. δdc, λtc and φjc are, 
respectively, distance bin-by-project fixed effects (FEs), transaction 
quarter-by-year-by-project FEs and census block group-by-project FEs, 
and εicdjt is a random disturbance term. Finally, Xi is the vector of in
dividual home characteristics including: parcel size building living area 
square feet, the age of the building at the time of sale, age squared, the 
number of stories, bedrooms, and full and half bathrooms, . The standard 
errors in equation (1) are clustered at the project level, and we use 
STATA/MP v17 to estimate the regressions and event studies. 

The coefficients of primary interest in (1) are the β s which represent 
the DiD estimates of the effect of treatment (being close to a wind tur
bine post announcement of the project) on home prices for homes 
located [0 to1], [1 to 2], and [2 to 3] miles away from the closest wind 
turbine in a project, respectively. Note that each of the 428 projects 
represents a unique quasi-experiment where the DiD treatment group is 
homes located within [0 to1], [1 to 2], and [2 to 3] miles from the closest 
turbine in a wind project, which is compared to the control group, 

homes located 3 to 5 miles away, both before and after announcement of 
the wind project. 

The inclusion of distance bin-by-project FEs, δdc and transaction 
quarter-by-year-by-project FEs, λtc, imply that our estimates are identi
fied based only on within project variation in sale prices and distance 
from a wind turbine. Thus, our coefficients of primary interest, β s, 
represent the average treatment effect over the 428 quasi-experiments 
for homes located within each of our specified distance bins. Further
more, note that the inclusion of quarter-by-year-by-project FEs allows 
for very localized (project-specific) nonparametric trends in housing 
prices over time. Finally, our stacked DiD framework avoids the po
tential biases that can arise in standard DiD and event study models in 
the presence of staggered timing of treatment with heterogeneous 
treatment effects. Specifically, several recent studies have shown that 
DiD specifications relying on the staggered timing of treatment for 
identification may be biased in the presence of heterogeneous treatment 
effects due to the contamination of treatment effects from early versus 
later adopters from other relative time periods (Callaway and San
t’Anna, 2021; Goodman-Bacon, 2021; Sun and Abraham, 2021). As 
discussed by Cengiz et al. (2019) and Goodman-Bacon (2021) our 
stacked DiD model avoids this potential source of bias by ensuring that 
treatment effects are based only on within project comparisons. 

To examine the evolution of property values over time, we comple
ment the DiD model with an event-study model of the following form: 

ln
(
Picdjt

)
=

∑10

k=− 4
Tk,idtγk +Xiα+ δdc + λtc+φjc + ηicdjt, (2)  

where Tk,idt represents a series of lead and lag indicators for when a wind 
energy project is announced for each of the three distance bins, ηicdjt is a 
random disturbance term and all other terms are as defined in equation 
(1). We re-centered Tk,idt so that T0,idt always equals one in the year a 
project was announced. We included a series of indicators from 2 to 4 
years prior to a project being announced (T− 4,idt to T− 2,idt), and a series of 
indicators for the year the project was announced and 1–10 years after 
announcement (T0,idt to T10,idt). Note that Tk,idt is a vector consisting of 
14 indicators for the four years prior to a wind project being announced 
and the ten years after announcement for each of the three distance bins 
outlined in equation (1). Thus, Tk,idt includes 42 indicators all together 
(14 temporal indicators for each of the three distance bins). The omitted 
category for our treatment indicators (i.e., the reference year for all 
estimates) is the year prior to the announcement of a project (T− 1,idt). 

The coefficients of primary interest in equation (2) are the γ′
ks. The 

estimated coefficients on the lead treatment indicators (γ− 4 to γ− 2) 
indicate whether the parallel trends assumption appears to hold. Spe
cifically, if wind turbines induce exogenous changes in home values, 
these lead treatment indicators should be small in magnitude and sta
tistically insignificant, implying that the price of homes located close to 
a turbine (within 1, 2 or 3 miles) were trending in a similar way to homes 
located farther away (3–5 miles) prior to the announcement of a wind 
energy project. The lagged treatment indicators (γ1, …, γ10) allow the 
effect of distance to a wind turbine on home prices to evolve nonpara
metrically over time in the post treatment period. 

4. Data 

We construct an original dataset that combines data on the universe 
of residential property transactions from CoreLogic with data from the 
U.S. Wind Turbine Database (USWTDB) on the timing and exact location 
of the universe of wind energy installations and turbines in the U.S. from 
2005 to 2020. The complete CoreLogic housing transaction data consists 
of over 260 million residential property transactions in the United States 
from January 2005 to December 2020 and contains property-level 
characteristics including address, latitude-longitude coordinates, prop
erty type, and many property characteristics (e.g., living area, number of 

6 According to the U.S. Office of Energy Efficiency & Renewable Energy, the 
hub height of commercial wind turbines has increased 66% since 2000 from 
approximately 190 feet–322 feet in 2021. Furthermore, the diameter of turbine 
rotor blades has also increased substantially, up 104% since 1999 to 432 feet 
(Wiser et al., 2023). 
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bedrooms, baths, etc.), as well as transaction-specific data, including 
sale amount and sale date for each transaction. 

The USWTDB provides information on the universe of land-based 
and offshore wind turbines in the United States including the year 
each wind turbine became operational, the installed capacity of each 
turbine measured in kilowatts (kW), turbine technical specifications, 
and the latitude and longitude of each turbine which we use to geocode 
each property transaction to the nearest utility-scale wind turbine. 

We restrict the property transaction data in several ways. First, we 
restrict the sample to property transactions within 5 miles of the nearest 
utility-scale turbine (i.e., greater than 600 kW). We further restrict the 
sample to arm’s length transactions of residential properties that had 
complete information on their sale date and sale amount along with 
several other restrictions that are detailed in Appendix Table A2. Finally, 
we restrict the sample by removing transactions that do not contribute to 
our identification strategy due to insufficient observations within our 
distance bins. Our final analytic sample consists of 428 unique wind 
projects, across 34 states, and 496,054 transactions that occurred within 
5 miles of a utility-scale turbine. 

Fig. 2 illustrates the density of housing transactions in each of our 
pre-specified distance bins. The majority of these transactions are in our 
control group—homes located greater than 3 miles but within 5 miles of 
a turbine. We have approximately 20,000 transactions within 1 mile of a 
turbine, 61,000 transactions greater than 1 mile but within 2 miles of the 
nearest turbine, and over 90,000 transactions greater than 2 miles but 
within 3 miles of the nearest turbine. As noted above, we treat each of 
our 428 wind projects in our sample as unique quasi-experiments. Ap
pendix Figure A2, provides an example of one such project in Herkimer 
County, New York. 

In Table 1, we provide descriptive statistics on the full sample 
(Column 1), transactions within 3 miles (Column 2), and the control 
group (Column 3), and, in Table 2, we conduct a series of balancing tests 
that compare the characteristics of homes located within three miles of a 
utility-scale turbine to homes located 3 to 5 miles from the nearest 
turbine. Specifically, we regress the pre-determined characteristics of 
homes on an indicator that takes the value one if the transaction 
occurred within 3 miles of a turbine, and we include census block group, 
transaction quarter-by-year, and project fixed effects. We cluster stan
dard errors at the project level. As shown in Table 2 the treatment and 
control sample display remarkable balance: none of the property char
acteristics of homes located within 3 miles of the nearest turbine 
(treatment group) are statistically different from the characteristics of 

homes located 3 to 5 miles from the nearest turbine (control group). 
In Table 3, we present results similar to those reported in Table 2 

except we now include separate indicators for homes within 1 mile, 
homes located greater than 1 but within 2 miles, and homes located 
greater than 2 but within 3 miles of the nearest turbine. We find that 3 of 
these balancing tests (out of 24) are statistically significant at the 10%- 
level or less. Two of these tests (on the number of half baths) are small in 
magnitude (~0.1 fewer half-baths), and 2 of the 3 tests are on the “1 to 2 
miles” indicator. Overall, based on the results in Tables 2 and 3, we find 
relatively little evidence of meaningful differences between transactions 
within 3 miles of the nearest turbine (treatment group) and those be
tween 3 and 5 miles of the nearest turbine (control group), which pro
vides us with further confidence that our identification strategy can 
isolate the causal impact of proximity to a wind turbine on housing 
values. 

5. Results 

5.1. Event study estimates 

We begin by presenting the impact of proximity to a utility-scale 
wind turbine on property values by plotting the estimated γk

′s and 
associated 90% and 95% confidence intervals from our event study 
specification given by Equation (2). For ease of presentation, and to 
clearly visualize the dynamic treatment effects for home sales in each 
respective distance bin, we present separate event study estimates for 
each of our three treatment distance bins ([0 to1], [1 to 2] and [2 to 3] 
miles from the closest turbine) in Figs. 3–5 respectively. We note how
ever, that the estimates reported in Figs. 3–5 are all from the same 
regression model given by Equation (2). 

Fig. 3 presents event study estimates for homes within 1 mile of the 
closest turbine and reveals important dynamics in the effect of wind 
turbines on home values. Immediately following the announcement of a 
wind energy project, property values begin to decline, falling by 
approximately 15% two years after the announcement and remaining 
depressed until project construction is generally complete (approxi
mately 4 years after announcement). Following the beginning of oper
ation of a wind project, property values begin to stabilize and then rise. 
Nine years or more after the announcement of the project (i.e., 5 years 
after the project begins operating), any impact of wind turbines on 
property values becomes relatively small (~2%) and statistically insig
nificant. Thus overall, Fig. 3 reveals a measurable, but ephemeral, 

Fig. 2. Density of Transactions within 5 miles of a Turbine 
Notes: Figure presents the density of housing transactions within our three main 
distance bins of [0, 1], [1, 2] and [2, 3] miles from the nearest wind turbine and 
transactions in our control group consisting of homes located [3, 5] miles from 
the nearest turbine. 

Table 1 
Descriptive statistics.   

Full Sample Within 3 Miles Greater than 3 

Parcel Size (Acres) 0.43 0.44 0.43  
[1.32] [1.25] [1.35] 

Building Square Feet 1817.56 1792.96 1830.67  
[1171.48] [1012.17] [1247.88] 

Age of Building 54.72 59.81 52.01  
[37.53] [39.71] [36.02] 

Number of Stories 1.54 1.58 1.52  
[0.58] [0.57] [0.58] 

Number of Bedrooms 3.39 3.40 3.39  
[1.43] [1.44] [1.43] 

Number of Full Baths 1.82 1.79 1.84  
[0.99] [0.97] [1.00] 

Number of Half Baths 1.08 1.08 1.07  
[0.69] [0.39] [0.80] 

Adjusted Sale Price ($) 186,050 178,774 189,927  
[169,734] [167,709] [170,677] 

Total Transactions 496,054 172,423 323,631 

Notes: Table presents summary statistics for housing transactions where Column 
1 presents summary statistics for the full sample, column 2 presents summary 
statistics for homes located within 3 miles (being close to a wind turbine), and 
column 3 presents summary statistics for the control sample of homes located 3 
to 5 miles from the nearest turbine. 
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negative impact of wind turbines on property values following 
announcement of a wind project for properties within a mile of the 
turbine. Importantly, Fig. 3 provides little evidence that property values 
within 1 mile of a turbine were trending either higher or lower relative 
to property values 3 to 5 miles from a turbine prior to the announcement 

of a wind project: the estimated coefficients on two, three, or four years 
prior to announcement indicators are small in magnitude and close to 
zero. 

Figs. 4 and 5 present event study estimates for homes located more 
than 1 mile but within 2 miles of a turbine and homes located more than 

Table 2 
Balance tests on unit-level characteristics with fixed effects.   

Adjusted Sale 
Price ($) 

Parcel Size 
(Acres) 

Building Square 
Feet 

Age of 
Building 

Number of 
Stories 

Number of 
Bedrooms 

Number of Full 
Baths 

Number of Half 
Baths 

Within Distance (=1 if 
< 3 miles) 

-5162 0.0539 -21.0369 0.0639 0.0005 0.0096 0.0104 -0.0179  

(4948) (0.057) (29.75) (1.242) (0.022) (0.031) (0.032) (0.017) 
Control 

Mean 
$189,927 0.425 1830.67 52.01 1.52 3.40 1.84 1.72 

Notes: This table presents balancing tests for housing transaction attributes. Each column represents a separate regression where the listed housing attribute is regressed 
on an indicator that equals one if the housing unit is within 3 miles of the nearest wind turbine. All specifications include census block group fixed effects, sale year- 
quarter fixed effects, and project fixed effects. Robust standard errors in parentheses, clustered at the project level. 

Table 3 
Balance tests within distance bins.   

(1) (2) (3) (4) (5) (6) (7) (8) 

Adjusted Sale 
Price ($) 

Parcel Size 
(Acres) 

Building Square 
Feet 

Age of 
Building 

Number of 
Stories 

Number of 
Bedrooms 

Number of Full 
Baths 

Number of Half 
Baths 

0 to 1 Mile 
(tx1) 

3086 -0.0820 -46.9664 2.0015 0.0258 -0.0006 0.0027 -0.0948* 
(8891) (0.2700) (60.1986) (4.2381) (0.0371) (0.0732) (0.0739) (0.0488) 

1 to 2 Miles 
(tx2) 

-5782 0.4324* -49.9998 -2.3200 -0.0202 -0.0666 -0.0057 -0.1034** 
(5676) (0.2580) (45.9568) (2.9173) (0.0300) (0.0488) (0.0456) (0.0424) 

2 to 3 Miles 
(tx3) 

-5376 -0.0033 -14.7521 0.5499 0.0049 0.0302 0.0111 0.0043 
(5343) (0.0465) (32.7739) (1.2786) (0.0223) (0.0345) (0.0357) (0.0167) 

Control 
Mean 

$189,927 0.425 1830.67 52.01 1.52 3.40 1.84 1.72 

Notes: Table presents balancing tests for housing transaction attributes. Each column and row represents a separate regression where the listed housing attribute is 
regressed on an indicator that equals one if the housing unit is within 1 mile (Panel 1), 1 to 2 miles (Panel B) or 2 to 3 miles (Panel C) of the nearest wind turbine. All 
specifications include census block group fixed effects, sale year-quarter fixed effects, and project fixed effects. Robust standard errors in parentheses, clustered at the 
project level. ***p < 0.01, **p < 0.05, *p < 0.1. 

Fig. 3. Stacked Event Study Estimates for Homes located within 0–1 Miles of a 
Turbine 
Notes: Figure presents estimated coefficients from the stacked event study 
specification given by Equation (2). Estimates are for home located within 1 
mile of the nearest wind turbine. Specification includes distance-bin-by-project, 
census-block-group-by-project, and quarter-by-year-by-project fixed effects. 
Dotted red line denotes year prior to the announcement of a wind project. The 
thin vertical blue lines denote the 95% confidence intervals, whereas the 
thicker vertical blue lines denote the 90% confidence intervals. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 4. Stacked Event Study Estimates for homes located within 1–2 Miles of a 
Turbine 
Notes: Figure presents estimated coefficients from the stacked event study 
specification given by Equation (2). Estimates are for home located within 1–2 
miles of the nearest wind turbine. Specification includes distance-bin-by- 
project, census-block-group-by-project, and quarter-by-year-by-project fixed 
effects. Dotted red line denotes year prior to the announcement of a wind 
project. The thin vertical blue lines denote the 95% confidence intervals, 
whereas the thicker vertical blue lines denote the 90% confidence intervals. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

E.J. Brunner et al.                                                                                                                                                                                                                              



Energy Policy 185 (2024) 113837

7

2 miles but within 3 miles of a turbine, respectively. For homes located 
within 1–2 miles of a turbine (Fig. 4), the estimated treatment effects 
follow a similar pattern to those shown in Fig. 3, except the estimated 
treatment effects post project announcement are much smaller in 
magnitude and noisier. Specifically, 2–5 years post project announce
ment, property values decline by approximately 6 percent but then 
begin to rebound 6–10 years post announcement. Furthermore, we once 
again find no evidence of pre-trending prior to the announcement of a 
wind project. In contrast, for homes located 2 to 3 miles from the nearest 
turbine (Fig. 5), there is some evidence of a small decline in property 
values (~3%) 2–4 years post project announcement but in general we 
see no meaningful pattern in the estimated treatment effects and very 
few of the coefficients are economically meaningful (coefficients are 
between − 0.04 and 0.00) or statistically significantly different from 
zero. 

We test the robustness of all our stacked DiD event study estimates 
using an alternative event study estimator developed by Sun and 
Abraham (2021), which is also free from contamination and bias that 
may arise in event study models with staggered timing of treatment and 
heterogeneous treatment effects. We report these event studies in Ap
pendix Figure A3 through A5, and they are substantively and econom
ically similar to our main event studies. 

5.2. Difference-in-differences estimates 

In Table 4, we present DiD estimates based on Equation (1). All 
specifications in Table 4 include our core fixed effect structure, namely 
distance-bin-by-project fixed effects and transaction quarter-by-year-by- 
project fixed effects. The estimates represent the average treatment ef
fect after project announcement, through construction and into project 
operation. Columns 1–8 then present estimated treatment effects based 
on specifications with and without controls and with different locational 
fixed effects. Specifically, columns 1 and 2 present estimated treatment 
effects with and without controls from specifications that include 
census-tract fixed effects. Columns 3 and 4 replace the census tract fixed 
effects with census-tract-by-project fixed effects. Finally, columns 5 and 

6 replace the census tract fixed effects in columns 1 and 2 with census 
block group fixed effects while columns 7 and 8 report results from our 
preferred specification which replaces the block group fixed effects with 
block-group-by-project fixed effects. 

We begin by noting that the estimated treatment effects reported in 
Table 4 are remarkably robust regardless of the locational fixed effects 
we employ or whether or not we include controls: none of the estimated 
coefficients for each distance bin are statistically different from one 
another across each specification. While the coefficient on the “1–2 
mile” indicator oscillates between being marginally statistically signif
icant (in Columns 1–5 and 7) and statistically insignificant (in Columns 6 
and 8), the magnitudes of the coefficients are all similar, i.e., varying 
between 3.06% and 4.36%. The “0–1 mile” indicator remains highly 
statistically significant and large in magnitude regardless of the speci
fication. Moreover, the fact that the estimates reported in Table 4 are 
insensitive to the inclusion or exclusion of a host of controls for the 
physical characteristics of homes, provides further evidence that our 
event study and DiD estimates have a causal interpretation and that our 
identification strategy mimics a randomized control trial. Nevertheless, 
given the potential precision gains from including controls, our 
preferred specification includes the full set of controls for the attributes 
of transacted properties. 

We present the results of our preferred specification from Equation 
(1) in Column 8. On average the announcement, construction and 
operation of a wind project causes a 10.91% decline in property values 
for homes that are within one mile of the nearest turbine. This is a 
meaningful, though as noted above, ephemeral, decline following 
project announcement. For homes located within 1–2 miles from the 
nearest turbine, we find a statistically insignificant 3.06% decline in 
sales price, which is approximately one-third the size of the impact on 
homes within one mile of the turbine. This suggests that the negative 
effects of proximity to turbines on home values dissipates rather quickly 
with distance. Consistent with that notion, for homes located 2 to 3 miles 
from the nearest turbine, we consistently find no negative impacts on 
home values—all the estimated coefficients are positive in sign but small 
in magnitude and statistically insignificant.7 

Using our preferred specification, rather than using a somewhat 
arbitrary bandwidth of one mile, we estimate the impact of a wind 
turbines on home values using quarter-mile distance bins, and we plot 
these coefficients in Fig. 6.8 Consistent with Table 4, we find that the 
impact of wind turbines on home values decays quickly with distance. In 
fact, we find no statistically significant impacts after 1.25 miles. In this 
figure, the comparison group is properties more than 3.25 miles from the 
nearest turbine. However, these results are robust to altering the com
parison group to properties at least 2.5 miles from a turbine or those 
greater than 4 miles from a turbine. Note that the estimated coefficient 
on the [0 to 0.5) mile indicator bin is negative but statistically insig
nificant, likely because there are very few transactions within 0.5 miles 
of a turbine (hence the large standard errors). 

5.3. Falsification tests, Robustness Checks, and heterogeneity analysis 

To provide further evidence that our core results have a causal 
interpretation, we conduct a falsification test in which we randomly 
assign placebo wind energy projects to the centroid of census tracts 
located in counties without wind energy projects but with wind speeds 

Fig. 5. Stacked Event Study Estimate for homes located 2 to 3 Miles of a 
Turbine 
Notes: Figure presents estimated coefficients from the stacked event study 
specification given by Equation (2). Estimates are for home located within 2–3 
mile of the nearest wind turbine. Specification includes distance-bin-by-project, 
census-block-group-by-project, and quarter-by-year-by-project fixed effects. 
Dotted red line denotes year prior to the announcement of a wind project. The 
thin vertical blue lines denote the 95% confidence intervals, whereas the 
thicker vertical blue lines denote the 90% confidence intervals. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

7 Although not included in this paper for reasons of brevity we estimated 
effects within 1 mile of homes in four separate U.S. Census designated 
regions—the Northeast, Midwest, South, and West, finding similar temporal 
trends as the full sample but insignificant differences between the regions. 
These results are available upon request.  

8 Given the relatively few observations between 0 and 0.25 miles that are not 
properties that directly host wind turbines, we aggregate 0 to 0.5 miles 
together. The remaining indicators are quarter-mile bins. 
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and other characteristics that resemble counties with wind energy (“the 
matched sample”). Specifically, we first identify a sample of comparison 
counties, or counties that observationally resemble counties with wind 
projects, measured by socio-demographics and wind capacity, using 
propensity score matching. We use data on county income and de
mographic characteristics from the 2000 U.S. Decennial Census and 
measures of average county wind speed to estimate a propensity score 
using a nearest neighbor matching algorithm without replacement. We 
include controls for wind speed, wind speed squared, household income, 
population density, percent college educated, fraction homeowner, and 
share non-white. We exclude counties that have installed wind projects 
prior to 2005 from the falsification exercise. 

We randomly sample census tracts from the matched sample and 

randomly assign project announcement dates to these placebo wind 
energy projects from the probability distribution function of 
announcement dates we observe in our analytic sample. We then re- 
estimate our DiD models 1100 times and plot the estimated co
efficients, as well as the lower and the upper bounds of a 95% confidence 
interval for each coefficient, in Fig. 7 through 9. In Fig. 7, we see that our 
estimated effect from Table 4 for transactions within 1 mile lies signif
icantly to the left of the estimated coefficients from this placebo test, 
which are normally distributed around zero. For transactions within 1–2 
miles of a turbine, the estimated treatment effect from Table 4 is once 
again in the left tail of the distribution of estimated coefficients, while 

Table 4 
Main effects.   

(1) (2) (3) (4) (5) (6) (7) (8) 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

0 to 1 Mile (tx1) -0.1288*** -0.1267*** -0.1283*** -0.1270*** -0.1120*** -0.1101*** -0.1102*** -0.1091***  
(0.0389) (0.0406) (0.0368) (0.0383) (0.0367) (0.0390) (0.0367) (0.0388) 

1 to 2 Miles (tx2) -0.0436* -0.0400* -0.0423* -0.0400* -0.0382** -0.0305 -0.0383** -0.0306  
(0.0233) (0.0241) (0.0224) (0.0231) (0.0192) (0.0204) (0.0191) (0.0203) 

2 to 3 Miles (tx3) 0.0187 0.0152 0.0173 0.0134 0.0180 0.0141 0.0177 0.0138  
(0.0232) (0.0223) (0.0220) (0.0211) (0.0197) (0.0180) (0.0196) (0.0179) 

Observations 479,841 479,841 475,607 475,607 496,215 496,215 496,054 496,054 
R-squared 0.7952 0.8255 0.8072 0.8337 0.7188 0.7781 0.7193 0.7784 
Distance Bin-Project FE Y Y Y Y Y Y Y Y 
Tract FE Y Y N N N N N N 
Tract-by-Project FE N N Y Y N N N N 
Block Group FE N N N N Y Y N N 
Block Group-by-Project 

FE 
N N N N N N Y Y 

Year-Quarter-by-Project 
FE 

Y Y Y Y Y Y Y Y 

Controls N Y N Y N Y N Y          

Notes: Table presents estimates or the impact of proximity to wind turbines on housing values based on Equation (1). All specifications include distance-bin-by-project 
fixed effects and year-by-quarter-by-project fixed effects. Specifications with controls include the full list of housing attributes reported in Table 1. Robust standard 
errors in parentheses, clustered at the project level. ***p < 0.01, **p < 0.05, *p < 0.1. 

Fig. 6. Differences in Treatment Effect by Bin Distance 
Notes: Figure presents estimated coefficients from a version of Equation (1) 
where we include indicator terms by the half-mile rather than the one-mile 
indicators presented in Equation (1). The specification includes distance-bin- 
by-project, census-block-group-by-project, quarter-by-year-by-project fixed ef
fects, and control. The thin part of the blue lines denotes the 95% confidence 
interval, and the thicker part of the blue lines denotes the 90% confidence in
terval. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 7. Falsification Tests for within 1 Mile (N = 1100) 
Notes: Figure presents estimates from falsification tests where we randomly 
assign pseudo wind energy projects to the centroid of census tracts located in 
counties without wind energy projects and randomly draw from the empirical 
distribution of actual project start dates. Red line depicts actual treatment effect 
estimate from column 8 of Table 4 for homes located within one mile of the 
nearest wind turbine. The lower bound is the lower bound of the 95% Confi
dence Interval for each of the average estimates, whereas the upper bound is the 
upper bound of the 95% Confidence Interval for each average estimate. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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the estimated effect on homes between 2 and 3 miles from a turbine is 
within the distribution of the estimated coefficients, consistent with the 
results in Table 4 showing no impact of turbines on housing values for 
homes located 2 to 3 miles from the nearest turbine. Overall, the falsi
fication tests provide robust evidence that our estimated impact of 
proximity to wind turbines on home values is not being driven by chance 
or idiosyncratic market factors. 

As noted previously, we restrict our sample by trimming potential 
outliers which we define as transactions in the top and bottom percentile 
of sales amount, land area, or living area, as well as foreclosed proper
ties. Trimming these potential outliers, which some studies define as the 
top/bottom percentile (see Hoen et al., 2011; Hoen et al., 2015) or the 

top/bottom 5th percentile (see Dong et al., 2023), is common in the 
existing literature. Moreover, foreclosed properties frequently sell for 
below-market rates in non-competitive or non-traditional sales, and thus 
we drop these observations as well (Mian et al., 2015). To ensure that 
these sample restrictions are not significantly affecting our analysis, 
Appendix Table A3 presents the results of our preferred specification 
(Column 8 of Table 4) for our analytic sample in Column 1, for the full 
sample with the bottom and top percentile observations and the fore
closed properties included in Column 2, for the sample where we drop 
the top/bottom percentile observations but include foreclosed proper
ties in Column 3, and for the sample where we drop foreclosures but 
keep the top/bottom percentile in Column 4. The estimated coefficients 
are qualitatively, economically, and statistically similar across all 
samples. 

Given results by Dröes and Koster (2016) and Dong et al. (2023), 
which find greater impacts of wind farms in urban areas, in Columns 1 
and 2 of Table 5, we re-estimate equation [1] except we restrict our 
sample to projects located in counties in metro areas with populations of 
250,000 or more. In column 3 and 4, we restrict our sample to projects 
located in metro counties with a population of less than 250,000 and 
non-metro counties.9 Given that our identification strategy requires 
active housing markets with sufficient number of within-project housing 
transactions before and after the announcement of a project, 72.3% of 
our sample is located in highly urban counties with populations greater 

Fig. 8. Falsification Tests for homes located 1 to 2 Miles (N = 1100) 
Notes: Figure presents estimates from falsification tests where we randomly 
assign pseudo wind energy projects to the centroid of census tracts located in 
counties without wind energy projects and randomly draw from the empirical 
distribution of actual project start dates. Red line depicts actual treatment effect 
estimate from column 8 of Table 4 for homes located within 1–2 miles of the 
nearest wind turbine. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 9. Falsification Tests for homes located 2 to 3 Miles (N = 1100) 
Notes: Figure presents estimates from falsification tests where we randomly 
assign pseudo wind energy projects to the centroid of census tracts located in 
counties without wind energy projects and randomly draw from the empirical 
distribution of actual project start dates. Red line depicts actual treatment effect 
estimate from column 8 of Table 4 for homes located within 2–3 miles of the 
nearest wind turbine. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 5 
Results by urbanicity.   

Urban Sample (Counites with 
Pop ≥250,000) 

Non-Urban Sample 
(Counites with Pop 
<250,000) 

(1) (2) (3) (4) 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

Log of Sale 
Price 

0 to 1 Mile (tx1) -0.1471*** -0.1494*** -0.0157 -0.0071  
(0.0407) (0.0423) (0.0432) (0.0473) 

1 to 2 Miles (tx2) -0.0467** -0.0427* -0.0099 0.0059  
(0.0231) (0.0240) (0.0227) (0.0185) 

2 to 3 Miles (tx3) 0.0134 0.0094 0.0344 0.0324  
(0.0246) (0.0220) (0.0233) (0.0229) 

Observations 358,734 358,734 135,874 135,874 
R-squared 0.7294 0.7801 0.6020 0.7128 
Distance Bin- 

Project FE 
Y Y Y Y 

Tract FE N N N N 
Tract-by-Project 

FE 
N N N N 

Block Group FE N N N N 
Block Group-by- 

Project FE 
Y Y Y Y 

Year-Quarter-by- 
Project FE 

Y Y Y Y 

Controls N Y N Y      

Notes: Table presents estimates or the impact of proximity to wind turbines on 
housing values based on Equation (1) for the sample of transactions located in 
counties in metro areas with population of 250,000 or more people, i.e., urban- 
rural continuum 2003 codes of 1 or 2. All specifications include distance-bin-by- 
project fixed effects and year-by-quarter-by-project fixed effects. Specifications 
with controls include the full list of housing attributes reported in Table 1. 
Robust standard errors in parentheses, clustered at the project level. ***p <
0.01, **p < 0.05, *p < 0.1. 

9 Specifically, we restrict our sample to counties with a 2003 urban-rural 
continuum classification of “1,” which is “county in metro area with 1 
million population or more” and “2”, or a “county in a metro area of 250,000 to 
1 million population.” These urban-rural continuum codes are available from 
the Economic Research Services at the U.S. Department of Agriculture. 
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than 250,000. We find that our results are entirely driven by this urban 
sample. As shown in Columns 1 and 2, on average the announcement, 
construction, and operation of a wind project in an urban county causes 
a 14.94% decline in property values for homes that are within one mile 
of the nearest turbine. We also find a marginally statistically significant 
decline of 4.27% for homes located within 1–2 miles from the nearest 
turbine. We continue to find no impact on properties beyond 2 miles. In 
Fig. 10, we examine differences in treatment effects by quarter-mile 
distance bins, and we find statistically significant and negative effects 
of wind turbine announcement, construction, and operation on homes 
within 1.5 miles but no measurable impact beyond that distance.10 The 
estimated effects of proximity to turbines in less urban and non-metro 
counties (Columns 3 and 4 of Table 5) are near zero and statistically 
insignificant. These results are similar (i.e., much smaller than the 
highly urban sample and statistically insignificant) if we restrict exclu
sively to non-metro counties that have an urban population of 20,000 
people or fewer. Overall, these results suggest that the negative effects of 
proximity to turbines on home values dissipate quickly with distance, 
and most of these negative effects are driven by transactions in urban 
areas. 

6. Conclusion and policy implications 

Over the past 40 years, wind energy in the United States has grown 
from a relatively novel energy source in rural counties in the plains of 
North Dakota and the deserts of Southern California to now representing 
almost 40% of all new commercial energy installations in the United 
States (United States Energy Information Administration, 2022). This 
trend is expected to continue, with over 15 GW (GW) of land-based wind 
energy projects currently under construction, 9 GW in advanced 

development stages, and more than 170 GW of land-based wind projects 
with active grid interconnection requests across the U.S at the end of 
2022 (ACP, 2022; Rand et al., 2022). As wind energy has become an 
increasingly common energy source, wind turbines have, by extension, 
been sited increasingly closer to more populated areas and in proximity 
to more residential homes. While previous research examining the 
impact of wind turbines on property values in the United States has 
generally found small and statistically insignificant impacts of wind 
turbines on home prices (see Appendix Table A1), these studies have 
examined wind projects in relatively rural areas with comparatively 
fewer homes sales proximate to the wind turbines. Given the increasing 
encroachment of wind projects on residential areas, this study revisits 
this question using the most comprehensive dataset to date on wind 
turbines and nearby home sales. 

We find that homes located within one mile of a commercial wind 
turbine experience on average approximately an 11% decline in value 
following the announcement of a new commercial wind energy project, 
relative to counterfactual homes located 3 to 5 miles away. This impact 
is dynamic —it is largely driven by declines in sale prices following the 
announcement and during the construction of a wind project. Once a 
wind project becomes operational, home prices tend to rise with prop
erty value impacts becoming small and statistically insignificant 9 years 
or more after the announcement of the project (about 5 years after 
project operation). This suggests that the housing market is reacting 
negatively to the expectation of likely impacts (after announcement) 
and the heightened activity during construction, but after operation 
begins, those negative perceptions and related home price impacts 
appear to fade. These results align with previous hedonic analysis (Dong 
et al., 2023) and qualitative research finding that attitudes toward wind 
projects are the most negative after announcement yet prior to operation 
(Devine-Wright, 2005; Ellis et al., 2023), which might be capitalized 
into home values, at least in some cases (Mills et al., 2019). It also might 
be explained by sorting (Tiebout, 1956), as individuals with more 
favorable attitudes toward the wind project move into the area, which 
has been found elsewhere (Hoen et al., 2019). Finally, a third possibility 
is that, during the pre-construction period, the actual (i.e., long-term) 
impacts to home prices cannot be determined because the turbines are 
not yet constructed and operational, so home buyers are internalizing 
that risk with lower offers. 

We find the negative capitalization effect is localized to homes 
proximate to the wind projects and any negative effects decay quickly 
beyond 1.25 miles and these results are driven primarily by projects in 
highly urban counties, i.e., counties with a population greater than 
250,000 people. What is unique about projects or the neighbors of those 
projects in counties with higher population densities? Wind projects are 
not located in urban areas, but, in these counties, might be nearer to 
then, i.e., in the urban fringe. We find in our own sample they have, on 
average, fewer turbines than the projects in more rural counties, indi
cating they have less land area to fit into. It might be the case that 
landowners who live in these urban fringe areas place greater value on 
the aesthetic qualities of the land than those who live in more rural 
areas, and therefore are averse to changes to those qualities (see Jan
hunen et al., 2014; Devine-Wright, 2009; Bessette and Mills, 2021). 

We find the declines in property values induced by a wind project are 
borne by a geographically identifiable group of residents, suggesting 
policy mechanisms may exist to remedy these impacts.11 Brunner et al. 
(2022) and Brunner and Schwegman (2022a), demonstrate that wind 
energy installations lead to significant increases in local government 
revenues due to the property tax payments and payments in lieu of taxes 

Fig. 10. Differences in Treatment Effect by Bin Distance for Urban Counties 
Notes: Figure presents estimates from equation [1] for transactions belonging to 
wind project constructed in urban counties with populations greater than 
250,000. This urban classification is based on 2003 Rural-Urban Continuum 
Codes available from the Economic Research Services at the U.S. Department of 
Agriculture. The Urban restriction in this figure are counties with a “1” or “2” 
urban classification. The thin part of the lines is the edge of the 95% confidence 
interval, and the thicker part of the lines are the 90% confidence interval. 

10 In results available upon request, we examine potential heterogeneity in our 
average treatment effects by size or scale of wind energy projects, the height of 
the turbines, and by population and housing density. We find no evidence that 
the impact of wind turbines on property values varies by the size of wind 
projects, whether measured by number of turbines or nameplate capacity, the 
height of the turbines, or the density of the local area. 

11 Further, property value impacts represent a potential distributive injustice, 
where the neighbors of a project are being disproportionately burdened as 
compared to homes further away from the project (Schlosberg, 2007; Jørgensen 
et al., 2020), though, Dong et al. (2023) theorize those impacted are more 
affluent. 
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that wind energy developers pay. One possible way to compensate 
homeowners located near a wind energy installation would be to pro
vide them with a property tax abatement for a period after announce
ment and continuing for a period of years after operation begins, funded 
with the revenue generated from the wind project, that might offset any 
reduction in the value of their homes. Alternatively, compensation could 
be offered by developers directly to homeowners during this period as 
suggested by others (Jacquet, 2012; Walker et al., 2014; Garcia et al., 
2016; Fast et al., 2016).12 

On the other hand, because effects are found to begin prior to con
struction (and then fade), and therefore logically represent the pricing of 
future risk into the market (that is later not fully realized), possibly 
better efforts to describe the actual effects on communities can be 
employed. For example, simulations of the future views of turbines from 
individual homes are rarely, if ever, available. Instead, photo simula
tions from a relatively small set of prominent viewpoints in communities 
are provided, and, therefore, home buyers and sellers are left to specu
late what views of turbines from their homes might look like. Similarly, 
the sounds of turbines, especially those at night when the background 
sounds dissipate (Müller et al., 2023), are not ever simulated at indi
vidual home locations, though they are often regulated at those loca
tions (Haac et al., 2019). Providing views, both day and night, from 
many more viewpoints including homes throughout the community, and 
simulated sounds from different locations, might help to alleviate the 
practice of pricing in this risk. Opportunities for individuals to visit 
nearby projects and talk to existing homeowners near those projects 
might additionally help provide greater certainty of actual effects during 
this period. Finally, much has been written about the connection be
tween local attitudes and perceptions of the planning process (e.g., see 
review by Rand and Hoen, 2017), and those perceptions and property 
values (Vyn, 2018). Therefore, if greater efforts are made to improve 
that process to give local stakeholders more say in the process, property 
values might be less impacted. 

Further, the results of Brunner et al. (2022) and Brunner and 
Schwegman (2022a) suggest that local jurisdictions use the property tax 
revenue and PILOTS from wind energy installations to increase spending 
on public services, reduce property taxes, or both. A large literature 
starting with Oates (1969) demonstrates that reductions in local taxes 
and/or increases in public services are capitalized into housing values. 
Consistent with that notion Brunner and Schwegman (2022a) and 
Brunner and Schwegman (2022b) find that property values in counties 
with large wind energy installations tend to rise after the turbines 
become operational. This suggests another avenue through which wind 
energy installations may increase the local tax base and hence provide 
another stream of revenue to compensate homeowners in close prox
imity to turbines for any property value losses. Because this study 
compares values of sets of homes all within 5 miles of the same wind 
project, this capitalization effect, if it exists, would be experienced by all 
homes in the local jurisdiction. These potential positive effects are, 
therefore, not exhibited in our results. 

Given these results, a number of areas of further research are 

encouraged. Conducting an analysis where views of turbines are 
explicitly accounted for would be valuable, building on the previous 
literature (e.g., Lang et al., 2014; Jensen et al., 2018; Gibbons, 2015; 
Sunak and Madlener, 2016; Hoen et al., 2011). Further, examining 
positive impacts wind energy projects might have, such as within school 
district and county boundaries, would be valuable. Finally, qualitative 
work, with an attempt to unpack housing preferences among a large set 
of buyers and sellers, especially those in urban areas, would provide 
more insight into the largely heterogenous set of findings in this litera
ture and this paper. Combining that with longitudinal data collection 
would be particularly valuable to further investigate how and why 
sentiment toward local projects evolves over time in different locations. 
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Appendix Figures and Tables 

12 One anonymous reviewer suggested a property value guarantee similar to the one offered in Denmark. Though, this approach has been criticized as not 
addressing key concerns (Jørgensen et al., 2020) and would require an appraisal of individual properties, which is highly susceptible to spurious results because of the 
small sample sizes. 
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Appendix Fig. A1. County-Level Installed Wind Energy Capacity in 2005 and 2022 (MW).   
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Appendix Fig. A2. Example Project (Herkimer County, New York) 
Notes: Figure presents a representative wind energy project from our analytic sample. Black crosses represent wind turbines, blue triangles denote homes located 
within 1 mile of the nearest wind turbine, homes within 1–2 miles are depicted using green squares, and homes within 2–3 miles are depicted as purple pentagons. 
Our comparison homes are represented by black dots while transactions greater than 5 miles (excluded observations) are depicted as red dots. 

Appendix Fig. A3. Sun and Abraham (2021) Event Study Specification, 0 to 1 Mile 
Notes: Figure presents event study estimates based on the estimator developed by Sun and Abraham (2021). Estimates are for homes located within 1 mile of the 
nearest wind turbine. Specification includes distance bin, census block-group, and quarter-by-year fixed effects. Dotted red line denotes year prior to the 
announcement of a wind project. The thin vertical blue lines denote the 95% confidence intervals, whereas the thicker vertical blue lines denote the 90% confi
dence intervals. 

Appendix Fig. A4. Sun and Abraham (2021) Event Study Specification, 1 to 2 Mile 
Notes: Figure presents event study estimates based on the estimator developed by Sun and Abraham (2021). Estimates are for home located within 1–2 miles of the 
nearest wind turbine. Specification includes distance bin, census block-group, and quarter-by-year fixed effects. Dotted red line denotes year prior to the 
announcement of a wind project. The thin vertical blue lines denote the 95% confidence intervals, whereas the thicker vertical blue lines denote the 90% confi
dence intervals.  
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Appendix Fig. A5. Sun and Abraham (2021) Event Study Specification, 2 to 3 Mile 
Notes: Figure presents event study estimates based on the estimator developed by Sun and Abraham (2021). Estimates are for home located within 2–3 miles of the 
nearest wind turbine. Specification includes distance bin, census block-group, and quarter-by-year fixed effects. Dotted red line denotes year prior to the 
announcement of a wind project. The thin vertical blue lines denote the 95% confidence intervals, whereas the thicker vertical blue lines denote the 90% confi
dence intervals.  

Appendix Table A1 
Wind Energy Studies 
Notes: All studies citations can be found in the reference list. North American studies are in the top panel, while non-North American (primarily European) studies are in 
the bottom panel. All studies that find a negative impact (or association) between wind projects and home values are colored in red under the findings column. Studies 
that find no significant impacts or minimal impacts are colored black. 

Appendix Table A2 
Retention criteria for transactions  

Condition for retention Rationale 

Coordinate values are populated Coordinates are needed to obtain distances between homes and wind turbines. 
Land area, year built, and home square footage are populated Land area, year built, and home square footage are essential property characteristics to 

control for in analysis 
Coordinates appear 20 times or less Repeated, identical coordinates for multiple properties may indicate data quality issue 

(continued on next page) 
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Appendix Table A2 (continued ) 

Condition for retention Rationale 

Property type is residential (including single family residence, condominium, duplex, 
apartment) 

Analysis only considers homes (i.e. residential properties) sold in arms-length transactions 
after the year 2000 

Transaction is categorized as arms-length 
Year of sale between 2000 and December 2020 
Sale amount is greater than $5000 or the 1st percentile of sale price (whichever value is 

higher) and less than the 99th percentile of sale amount values within a given state 
Removing outliers from analysis 

Sale amount per unit area of living space is greater than the 1st percentile and less than 
the 99th percentile of sale amount per unit area of living space values within a given 
state 

Land area is greater than the 1st percentile and less than the 99th percentile of land area 
values within a given state 

Property was built before 2020, and after the 1st percentile of values for year built within 
a given state 

Sale amount is greater than the mortgage amount, or mortgage amount is missing Any other relationship (between sale amount & mortgage amount, land area & living space 
area, sale year & year built, set of variables representing land area) may indicate data 
quality issues 

Land area is greater than living space area 
Age of property (sale year minus year built) is non-negative 
Both variables representing land area converge within 0.01 acres 
Deed is not categorized as foreclosure Sale amount in a foreclosure may not accurately represent the value of a home 
Sale occurred over one year after last recorded sale for that property Removes potentially “flipped” homes, or homes that undergo a rapid renovation and are 

re-sold, from dataset; for those homes, characteristics in CoreLogic dataset may not be 
representative of characteristics after renovation 

Property address was not determined from mail Address determined from mail may reflect the address of an absentee owner, not of the 
physical property location   

Appendix Table A3 
Robustness Checks to Sample Restrictions   

(1) (2) (3) (4) 

Log of Sale Price Log of Sale Price Log of Sale Price Log of Sale Price 

0 to 1 Mile (tx1) -0.1091*** -0.1036*** -0.1073*** -0.0978**  
(0.0388) (0.0380) (0.0379) (0.0395) 

1 to 2 Miles (tx2) -0.0306 -0.0239 -0.0329* -0.0228  
(0.0203) (0.0226) (0.0199) (0.0217) 

2 to 3 Miles (tx3) 0.0138 0.0154 0.0123 0.0165  
(0.0179) (0.0180) (0.0175) (0.0184) 

Sample Analysis Sample Full Sample – Including Top and Bottom 1% and Foreclosures Dropping Top and Bottom 1% Sample Dropping Foreclosures 
Observations 496,054 537,929 516,898 515,895 
R-squared 0.7784 0.7698 0.7764 0.7868 

Notes: Table presents separate estimates by different sample restrictions of the impact of proximity to wind turbines on housing values based on Equation (1). All 
models include distance-bin project fixed effects, block-group by project fixed effects, year-quarter-by-project fixed effects, and controls (i.e., the same model as 
Column 8 of Table 4). Standard errors clustered at the project level. ***p < 0.01, **p < 0.05, *p < 0.1. 
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