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Integration of benchwork, clinical trials, and real world data to 

investigate drug interactions 

 

Bianca Vora 

 

ABSTRACT 

 

Real world data (RWD), data from various sources other than clinical trials, is increasingly being 

integrated into the research setting. In particular, electronic health records (EHRs), which serve 

as a clinical record to document a patient’s medical history as well as support administrative 

functions, have been an invaluable resource rich with patient data. Here we present three projects 

spanning four chapters where EHRs, in combination with clinical trials and pharmacokinetic and 

pharmacodynamic (PKPD) modelling, were used to extend and complement studies and findings 

in the laboratory focusing on transporter-mediated drug interactions. Transporter-mediated drug 

interactions have the potential to influence both drug efficacy as well as toxicity. During the 

clinical development of the Janus Kinase 2 (JAK2) inhibitor fedratinib, several patients 

developed symptoms similar to Wernicke’s encephalopathy, a life-threating disease caused by 

Vitamin B1 (thiamine) deficiency; subsequent in vitro studies showed that fedratinib is a potent 

inhibitor of ThTR-2. Motivated by this drug-nutrient interaction (DNI) observed in the fedratinib 

trial, we investigated if commonly used prescription drugs can inhibit ThTR-2. Using a 

multifaceted approach, we started with an in vitro high-throughput screen which was further 

complemented by quantitative structure activity relationship (QSAR) modelling and real world 
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data. Our comprehensive analysis suggested that several marketed drugs inhibit ThTR-2 and may 

contribute to thiamine deficiency, especially in at-risk populations. In order to further explore the 

impact of these potential inhibitors in humans, we designed and conducted a clinical study in 

healthy volunteers. Interestingly, we observed that thiamine concentrations were higher when co-

administered with trimethoprim, one of the potent, clinically relevant inhibitors identified in our 

screen. The maximum concentration achieved (Cmax) and area under the curve from 0 to 24 hours 

(AUC0-24) were 2.7- and 4.6-fold higher in the combination arm, respectively. We hypothesized 

that trimethoprim may inhibit OCT1, a hepatic uptake transporter, in addition to ThTR-2, which 

was supported using EHR data by comparing laboratory values of endogenous OCT1 biomarkers 

in patients prescribed trimethoprim versus patients not prescribed trimethoprim. Next, we shifted 

our focus to pharmacogenomics, that is, genetic factors that affect drug response. Response to 

allopurinol, the first line treatment for gout, is highly variable; the reduced function variant 

BCRP p.Q141K has been associated with poor response to allopurinol. Thus, we aimed to 

characterize the relationship between BCRP p.Q141K, allopurinol/oxypurinol, and serum uric 

acid (SUA) levels by performing a clinical trial, building a PKPD model, and mining EHRs. Our 

clinical study found that p.Q141K associated with longer half-life of oxypurinol and our PKPD 

model found that gender affected oxypurinol volume of distribution while BCRP genotype and 

kidney function were significant covariates for baseline SUA levels. Additionally, using RWD, 

we found that drugs that were clinical inhibitors of BCRP associated with increased SUA levels, 

suggesting the potential of these drugs to cause hyperuricemia. Finally, given the ongoing 

COVID19 pandemic, we conducted extensive in vitro experiments aimed at predicting the 

potential for 25 small molecule drugs in clinical trials for COVID19 to cause transporter-

mediated drug-drug interactions (DDIs). We found that 21 of the drugs were predicted to cause a 
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clinically relevant DDI, and we were able to provide preliminary validation of these in vitro 

findings using EHR data, including a database representing nearly 120,000 COVID19 patients.  

 

Collectively, my dissertation research demonstrates how the integration of benchwork, clinical 

trials, and real world data provides us a new approach to translational research, bridging findings 

from the laboratory to patients.  
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CHAPTER 1 

A New Era in Pharmacovigilance: Towards real world data and 

digital monitoring 

 

 

1.1 ABSTRACT 

 

Adverse drug reactions (ADRs) are a major concern for patients, clinicians, and regulatory 

agencies. The discovery of serious ADRs leading to substantial morbidity and mortality has 

resulted in mandatory Phase IV clinical trials, black box warnings, and withdrawal of drugs from 

the market. Real World Data, data collected during routine clinical care, is being adopted by 

innovators, regulators, payors, and providers to inform decision making throughout the product 

life cycle. We outline several different approaches to modern pharmacovigilance, including 

spontaneous reporting databases, electronic health record monitoring and research frameworks, 

social media surveillance, and the use of digital devices. Some of these platforms are well 

established while others are still emerging, or experimental. We highlight both the potential 

opportunity, as well as the existing challenges within these pharmacovigilance systems that have 

already begun to impact the drug development process, as well as the landscape of postmarket 

drug safety monitoring. Further research and investment into different and complementary  

_______________________ 

*Modified from the publication: Lavertu A and Vora B, Giacomini KM, Altman R, Rensi S. 

(2021) “A New Era in Pharmacovigilance: Towards real world data and digital monitoring.” 

Clinical Pharmacology and Therapeutics. doi: 10.1002/cpt.2172. 
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pharmacovigilance systems is needed to ensure the continued safety of pharmacotherapy.  

 

1.2 INTRODUCTION 

 

The safety of a drug continues to be monitored after approval and marketing in an ongoing 

process of pharmacovigilance (1). This postmarket drug safety monitoring is especially 

important with regards to ADRs that are rare, only occurring in certain subgroups, and/or only 

develop after long-term drug exposure. In some cases, serious ADRs are not recognized until 

long after a drug has been approved for market, as seen in the case of thalidomide where its use 

in pregnant women led to congenital malformations. Accordingly, the importance of postmarket 

monitoring is highlighted by the finding that one-third of newly identified safety issues in the 

postmarketing period are added to the Warnings and Precautions section of the label, the second 

highest tier of severity, indicating the serious nature of newly identified ADRs (2). 

 

The passage of the 21st Century Cures Act has modernized clinical trials and requires the 

evaluation of the potential use of Real World Data (RWD), data collected during routine clinical 

care in the form of EHRs, medical billing, and other data generating activities, in the regulatory 

decision making and approval process. Real World Evidence (RWE) is the evidence of the 

potential benefits of the medical product in a clinical setting derived from RWD. Results from 

various study designs and analyses, both prospective and retrospective, that use RWD are 

accepted as RWE. The US Food and Drug Administration (FDA) guidance on RWE describes 

several contexts in which it can be used during the product life cycle, such as proving an unmet 

medical need, substituting for a control group, as supporting evidence for a label expansion, and 
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as a part of postmarketing studies. The multiple emergency use authorizations EUAs granted to 

drugs during the COVID19 pandemic highlights a situation where postmarket pharmacovigilance 

becomes pivotal to maintaining long-term patient safety. Collectively, the legislative acts and 

regulatory practices have led to an increased reliance on postmarket pharmacovigilance to inform 

drug safety. Innovation in pharmacovigilance is needed to address these challenges and 

complement clinical trials by improving the sensitivity and specificity of ADR detection and 

streamlining the process of refining real world data into real world evidence that supports 

regulatory decision-making.  

 

1.3 ESTABLISHED PHARMACOVIGILANCE SYSTEMS 

 

Published case reports have been circulated among physicians since the late 1960s and continue 

to serve an important role in pharmacovigilance. They are typically rich in information because 

physicians are trained in the rigorous evaluation of medical histories, drug exposures, and 

outcomes; additionally, peer review provides a form of quality control. However, case reports are 

fundamentally anecdotal data points, and as such cannot support conclusions in broader 

populations. The digitization of written media and advent of databases and search engines make 

it possible to collect, store, and rapidly retrieve relevant and comprehensive case series, but the 

data are unstructured text, which is not suitable for rigorous quantitative analysis. Despite these 

limitations, case reports published in journals are useful for generating hypotheses, and 

pharmacovigilance studies often start with a search of the relevant case literature.   
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Medwatch has been the principal means of collecting and analyzing information about ADRs 

since 1993 and is used by the FDA to collect information on both small molecule drugs and 

biologics. Data are collected using standardized individual case safety reports forms, which are 

submitted physically or electronically to the FDA Adverse Event Reporting System (FAERS). 

The aggregate data are then mined for safety signals, which generate hypotheses for further 

investigation. FAERS has successfully identified previously unreported ADRs, with FAERS data 

contributing to more than 50% of all postmarket safety-related label changes (3). Table 1.1 lists 

a selection of additional pharmacovigilance studies in which FAERS or other ADR databases 

have played a prominent role. In addition to FAERS, the FDA has event reporting systems for 

(1) foods, dietary supplements, and cosmetics, (2) medical devices, and (3) vaccines, via 

CAERS, MAUDE, and VAERS, respectively.   

 

However, FAERS case reports as a source of data are limited by incompleteness, bias, and 

inconsistency. Prescribing decisions are often influenced by factors that affect clinical outcomes 

such as comorbidities, insurance, and access to primary care, information that is not available in 

the publicly available FAERS data. The Institute for Safe Medical Practices (ISMP) found that 

over half of the reports in FAERS were missing basic information, such as age, gender, exposure 

date, and outcome. Additionally, FAERS does not measure the total number of exposures in the 

population, so there is no “denominator” to estimate the frequency of adverse events. While 

adverse events are generally underreported, stimulated reporting driven by news, social media, 

and advertising can increase reporting rates for certain drugs. Incorrect hypotheses generated 

from erroneous or incomplete adverse event report data can be costly, with false positives 



 5 

resulting in resources wasted on unnecessary studies and false negatives leading to harm to 

patients. 

 

1.4 EMERGING PHARMACOVIGILANCE SYSTEMS 

 

Another component of the data revolution within healthcare has been the adoption of information 

technology by the health insurance industry and the adoption of electronic health records (EHRs) 

by healthcare systems as a result of the 2009 HITECH Act (Figure 1.1). Insurance claims 

capture prescription and medical diagnoses across healthcare providers, with the caveat that they 

do not directly measure outcomes. EHRs contain rich information, such as clinical notes, images, 

and lab test values; however, they are often locked within institutional silos on systems that are 

unique for each provider institution and suffer from bias related to their primary purpose, a 

clinical and legal record. 

 

The Sentinel initiative extends the pharmacovigilance capabilities of the FDA by leveraging 

EHR systems and insurance claims data in distributed data networks of partner institutions 

(4).The Sentinel system is used to study specific drug-event outcomes and, more recently, is 

being used to generate drug safety signals. Analyses can be submitted to the partner network and 

run independently at each site and results can then be combined to provide comprehensive safety 

profiles. The integration of these various data sources has allowed for a more comprehensive and 

synergistic pipeline and capabilities. A general workflow is presented in the top row of Figure 

1.2. Sentinel required the development and implementation of a common data model and data 

quality assurance standards to ensure interoperability of data and reliability of analytical 
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findings. Current efforts have been primarily focused on billing and claims data. Several new 

data partnership networks and consortia have emerged, such as PedsNet and the Open Health 

Data Science Informatics (OHDSI) network, that are improving and extending the governance, 

interoperability, and data stewardship frameworks pioneered by Sentinel. For example, the 

OHDSI network has adopted the OMOP’s Common Data Model for standardizing identifiers for 

diseases, procedures, drugs, and other components of a patient health record and has created a 

network of hospitals standardized to this data model. This enables an analysis designed at one 

member institution to be quickly replicated in other healthcare systems within the OHDSI 

network with minimal need to readjust the analysis. For instance, an analysis designed at 

Stanford could be run at hospitals in Israel, South Korea, and Australia, quickly finding support 

for or discrepancies in the findings of a single institution. Patient Centered Outcome Research 

Institute, PCORI, is establishing data networks, as well as procedures for evaluating and ensuring 

the relevance and reliability of data. The FDA is piloting demonstration cases for the use of 

RWE in regulatory decision making. 

 

An example of a new drug approval that relied on RWE, is Avelumab, a monoclonal antibody 

directed against PD-L1, programmed death ligand 1. Avelumab was approved based on a single 

arm, Phase II trial where historical controls were identified from electronic health records and 

were used to characterize the natural history of the disease (5). Additionally, ADAPTABLE 

(Aspirin Dosing: A Patient-Centric Trial Assessing Benefits and Long-Term Effectiveness), a 

clinical trial evaluating the optimal dose of aspirin in patients with atherosclerotic cardiovascular 

disease, has utilized PCORnet EHRs and claims data at multiple stages of their study, from 

identifying patients which meet the inclusion/exclusion criteria to capturing primary and 
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secondary study endpoints (6). The ADAPTABLE trial represents the first randomized trial 

within PCORnet and as such, has also developed new methodologies to take advantage of the 

data with the PCORnet data infrastructure. 

 

The primary purpose of EHRs is to inform clinical decisions and/or support administrative 

functions (i.e. documentation to support billing). As a result, issues such as human/coding errors 

or bias may affect how information is captured prior to analysis. Additionally, the fractionalized 

nature of the U.S. healthcare system makes it difficult to track patients across different healthcare 

systems resulting in incomplete data entries.  

 

Clinical definitions, terminology, and note-taking style vary between and within healthcare 

systems, making the extraction and transformation of clinical information to standardized 

elements, such as SNOMED codes, technically difficult. The challenging nature of clinical note 

processing has resulted in the majority of analyses to-date primarily focusing on the billing 

related ICD10 codes. Lastly, unpredictability about patient compliance (i.e. even if a prescription 

is written does not mean the patient will pick it up) limits the use and extension of this data. 

These represent major obstacles to wide-spread pharmacovigilance using EHRs and future work 

will need to overcome these issues before the benefits of EHR data can be fully realized.   

 

1.5 EXPERIMENTAL PHARMACOVIGILANCE SYSTEMS 

 

Though Sentinel, PCORI, and OHDSI have greatly improved pharmacovigilance efforts, they 

rely on a constrained set of information within the healthcare system, that is, information in the 
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EHR or in billing and claims data (7). Outside the healthcare system, data from social media 

represent another key opportunity for pharmacovigilance. Social media data contains various 

data streams, potentially enabling us to identify patterns in behavior, environment, drug use, 

drug-drug interactions, and ADRs. A general workflow for pharmacovigilance in social media 

data is presented in the bottom row of Figure 1.2. The broad usage of social media by the public 

yields a massive dataset that is continuously growing and has huge potential for generating 

public health benefits. Individual experiences with a particular drug are often posted directly to 

social media. These testimonials can be found on both general platforms like Twitter and Reddit, 

as well as health-oriented websites, such as AskaPatient.com, drugs.com, and iodine.com. Social 

media data often contain information critical to postmarket pharmacovigilance, such as 

individual experiences of adverse drug reactions, information about environmental factors, 

reports of pill diversions, and polypharmacy (both recreational and prescribed) that is often 

missed by other postmarketing surveillance systems. 

 

There has been progress in developing new methods for postmarketing surveillance in social 

media data through the use of statistical models, machine learning, and deep neural network 

architectures. The annual Social Media Mining for Health Applications (SMM4H) workshop has 

resulted in algorithms capable of identifying drug mentions with high precision and recall, even 

in situations where these mentions are informal slang terms or misspelled drug names. However, 

high performance of ADRs continues to present a challenge as text descriptions of a particular 

ADR might vary greatly in written language, for instance “stomach” may be expressed as 

“stomach ache”, “stomach pain”, “abdominal pain”, “tummy ache”, etc. Additionally, classifying 

a particular tweet for first-person vs. secondary reports of medication ingestion presents another 
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challenge and has also been featured as challenges for the community with varying levels of 

success. Ideally, these efforts will culminate in systems capable actively monitoring social media 

data and generating real-time statistics relevant to pharmacovigilance efforts.  

 

While social media can provide a large volume of easily accessible data, the nature of social 

media presents several challenges for the extraction of signals related to pharmacovigilance. The 

first set of these challenges are that (1) very few social media posts are relevant to 

pharmacovigilance, ~0.2% of tweets mention a medication (8), (2) information is represented in 

unstructured text, (3) drugs and medical conditions are often misspelled, abbreviated, or 

discussed using slang (9), and (4) mentions of medical events may not be firsthand accounts, (5) 

social media reports will contain false positives, but often provide less information than clinical 

case reports and so the reliable identification of true drug side effects from this data will be 

difficult. Recent work, as mentioned above, indicates that many of these problems may be 

overcome in the near future. Once these systems can produce robust ADR event statistics, further 

work may extend their functionality through analysis of the individual testimonies found within 

social media data. Social media data often contains lifestyle information like exercise patterns, 

eating habits, socio-economic issues, and/or drug abuse behavior that will be missing from the 

EHR for the foreseeable future. For example, systems may find indications of relative quality of 

life improvements given a particular medication, patient preferences, or capture additional 

demographic information that could be key to protecting at risk populations, such as pregnant 

women and children.  
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In a demonstration of the value of general social media, recent efforts using Twitter have focused 

on vulnerable populations, such as pregnant women, that are often excluded from clinical trials, 

and as a result, drug safety is not typically established in these groups in the premarket space. 

Although there are methods to gather this information post-approval, such as pregnancy 

registries, these databases are often constrained by issues such as attrition, cost, and patient 

compliance. A recent study using data from Twitter accounts of pregnant women observed a 

higher medication intake in women who reported birth defects (10). Similarly, another study 

developed a natural language processing method to identify tweets by users whose child had a 

birth defect (11). These preliminary studies demonstrate how social media, such as Twitter, 

might help supplement existing resources, especially in vulnerable populations. Thus, it 

represents an exciting source of potentially complementary information for postmarket 

pharmacovigilance efforts.  

 

A recent effort questioned the overall value proposition of social media data, citing the low 

prevalence of posts relevant to pharmacovigilance and low coverage for many drugs (12). The 

analysis compared ADR signals from social media to Vigibase report statistics, focusing on FDA 

drug labeling changes or “validated” safety signals, where there is evidence the drug has a causal 

relationship with the ADR. However, Vigibase report statistics may not be an appropriate 

evaluation baseline because FDA labeling changes and/or the “validated” safety signal may have 

resulted from signals within the spontaneous reporting systems, likely inflating the baseline 

performance. Additionally, this evaluation effort did not adequately address the noisy nature of 

social media drug reports, failing to include drug misspellings or slang terms in their search 

queries, potentially missing a substantial number of reports (9). It is likely that more advanced 
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report identification methods would increase the value of social media data. The overall lack of 

social media discussions surrounding some drugs will continue to pose a challenge. While the 

authors did not recommend the use of general social media data for pharmacovigilance, they 

indicated that social media generated in the context of a drug or health-oriented platform (e.g. 

drugs.com) vs a general platform (e.g. Twitter) may still hold value. 

 

Beyond the technical challenges of working with social media data, its pseudonymous, open, and 

ephemeral nature creates new challenges in ethics, law, and reproducibility that must be 

navigated. Many platforms limit the sharing of data collected from their users and require that 

content be deleted upon user request. Social media posts experience high deletion rates with 

more than 40% of posts from one study being deleted from the platform after the study was 

published (13). Researchers must preserve their own copies of data used for a particular study to 

ensure reproducibility. The publishing the contents of social media posts in scientific journals 

may disclose potentially sensitive information about users such as illicit drug use or mental 

health issues. Researchers must balance between making research reproducible and the ethical 

concerns of risk of making research datasets freely available, which might increase the risk of 

abuse.  

   

Mobile devices are a recent innovation in capturing information about ADRs, again providing 

another avenue of data collection in an uncontrolled setting. A general workflow for 

pharmacovigilance using mobile devices is presented in the middle row of Figure 1.2. MyHeart 

Counts is used to do a six minute walk test which can be done daily in an in-home setting. 

MedWatcher was a mobile application version of the FDA 3500 form for medical devices and is 
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currently undergoing implementation in the European Union. Hugo platform for postmarket 

surveillance is under development at the Yale-Mayo Center of Excellence in Regulatory Science 

and Innovation, Yale-Mayo, which can collect electronic patient reported outcomes outside of 

the hospital (14). Next steps include interfacing with connected devices to measure endpoints; 

however, the strides made in this more recent area of pharmacovigilance are very promising. 

 

These are two modalities among many that researchers are investigating as potential new means 

of pharmacovigilance. Through the FDA funded Centers of Excellence in Regulatory Science 

and Innovation (CERSI), other databases and methodologies are being studied as potential 

pharmacovigilance systems, for examples see https://pharm.ucsf.edu/cersi/research.   

 

1.6 CONCLUSION  

 

Clearly, the development of these massive sources of data for future pharmacovigilance efforts 

creates an opportunity for capitalizing on recent advances in deep learning and anomaly 

detection. A continuously learning AI system could not only learn to integrate these 

heterogeneous data sources for real-time ADR detection, but could help identify potential cases 

and interface with members of the pharmacotherapy community to gather more information 

when needed. The field of pharmacovigilance is rapidly evolving, however the resources we 

have highlighted are only part of the solution; the FDA and NIH will need to continue their 

funding of research that focuses on how to effectively analyze these data streams. Ideally, 

funding mechanisms will ensure interdisciplinary teams of experts from epidemiology, 

sociology, statistics, and computer science among others. Collaborative interdisciplinary efforts 

https://pharm.ucsf.edu/cersi/research
https://pharm.ucsf.edu/cersi/research
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will ensure both institutional buy-in as well as methodological rigor. Ultimately, the combination 

of various data sources and expertise will result in safer and more effective pharmacotherapy for 

everyone.  

 

1.7 STATEMENT OF PURPOSE 

 

In this dissertation, we aim to highlight how real world data, specifically electronic health 

records (EHRs), can complement in vitro and clinical studies investigating approved compounds. 

Although there are shortcomings as highlighted above, the increasing availability of de-identified 

EHR data for research purposes as well as the richness of information contained in them have 

made EHRs a valuable resource.  

 

In each of the subsequent chapters, real world data from EHRs are used to complement and 

potentially validate findings in the laboratory or from clinical trials related to transporter-

mediated drug interactions. In Chapter 2, we implement a multifaceted approach by performing a 

high-throughput in vitro primary screen, building an in silico model, and leveraging real world 

data from EHRs to investigate the impact and clinical relevance of drug-induced thiamine 

deficiency via inhibition of ThTR-2. The EHR data were consistent with a drug-nutrient 

interaction for several of the drugs that were determined to inhibit ThTR-2 in the in vitro screen 

and predicted to cause a clinical drug-nutrient interaction. Chapter 3 expands on Chapter 2 where 

we designed and executed a prospective randomized, two-arm drug-nutrient interaction (DNI) 

clinical study in healthy volunteers to evaluate the inhibition potential of trimethoprim, a potent 

and predicted clinically relevant ThTR-2 inhibitor identified in Chapter 2. In vitro studies and 
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electronic health records were used to complement and investigate our preliminary clinical 

findings, again providing support for the findings. In Chapter 4, we aimed to characterize the 

relationship(s) between BCRP p.Q141K, the pharmacokinetics and pharmacodynamics of 

oxypurinol, and serum uric acid levels. Real world data were used to determine whether clinical 

inhibitors of BCRP could phenocopy the missense variant in patients. Again, RWD substantiated 

our findings. Lastly, given the ongoing COVID19 pandemic during which time this dissertation 

work was performed, Chapter 5 focuses on prediction of the potential of 25 small molecule drugs 

being evaluated in clinical trials for COVID19 to cause clinically relevant drug-drug interactions. 

EHRs, from the general population and COVID19 patients, were used to provide preliminary 

validation of our in vitro predictions. 

 

Taken together, these studies demonstrate how mining data from electronic health records 

complements and extends findings on transporter-mediated drug interactions from the laboratory 

and from clinical trials.     
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1.8 FIGURES 

 

 
 

 

Figure 1.1 Overview of pharmacovigilance methods at varying stages of development. 

Established (green, left), emerging (yellow, middle), and experimental (red, right) 

pharmacovigilance data sources and systems are presented. Examples of methodological areas 

that are currently used and under active development for the analysis of these different data types 

are included in the bottom box.      
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Figure 1.2 General pharmacovigilance workflows for emerging and experimental systems. 

EHR based pharmacovigilance workflow is shown in the purple top row. A mobile device based 

pharmacovigilance workflow is shown in the orange middle row. The social media based 

pharmacovigilance workflow is shown in the blue bottom-row. These data can then be used 

separately or in combination to perform pharmacovigilance research and analysis. 
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1.9 TABLES  

 

Table 1.1 Select examples of successful pharmacovigilance studies in which ADR and RWD 

database studies played a prominent role. 

 

Drug(s) Effect(s) Source(s) Citation 

Acetaminophen Liver injury EHR (15) 

Agomelatine Liver injury Lit Review (16) 

Gabapentin, Pregabalin 
Liver injury, 

Hematological disorders 
ADR database (17) 

Apixaban Liver injury Case report, ADR database (18) 

Ketoconazole Liver injury Lit review, ADR database (19) 

Methadone Arrhythmia Lit review, ADR database (20) 

Ranolazine Seizure Sentinel (21) 

Levetiracetam, Phenytoin Angioedema OHDSI (22) 

Citalopram Arrhythmia EHR (23) 

Hydroxyzine Arrhythmia Lit review, ADR database (24) 
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CHAPTER 2 

Drug-Nutrient Interactions: Discovering prescription drug 

inhibitors of the thiamine transporter ThTR-2 (SLC19A3) 

 

 

2.1 ABSTRACT 

 

Transporter-mediated drug-nutrient interactions have the potential to cause serious adverse 

events. However, unlike drug-drug interactions, these drug-nutrient interactions receive little 

attention during drug development. The clinical importance of drug-nutrient interactions was 

highlighted when a phase III clinical trial was terminated due to severe adverse events resulting 

from potent inhibition of thiamine transporter 2 (ThTR-2; SLC19A3). In this study, we tested the 

hypothesis that therapeutic drugs inhibit the intestinal thiamine transporter ThTR-2, which may 

lead to thiamine deficiency. For this exploration, we took a multifaceted approach, starting with 

a high-throughput in vitro primary screen to identify inhibitors, building in silico models to 

characterize inhibitors, and leveraging real world data from electronic health records to begin to 

understand the clinical relevance of these inhibitors. Our high-throughput screen of 1360 

compounds, including many clinically used drugs, identified 146 potential inhibitors at 200 μM. 

Inhibition kinetics were determined for 28 drugs with half-maximal inhibitory concentration  

_______________________ 

*Modified from the publication: Vora B and Green EAE, Khuri N, Bällgren F, Sirota M, 

Giacomini KM. (2020) “Drug-nutrient interactions: discovering prescription drug inhibitors of 

the thiamine transporter ThTR-2 (SLC19A3).” American Journal of Clinical Nutrition. doi: 

10.1093/ajcn/nqz255. 
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(IC50) values ranging from 1.03 μM to >1 mM. Several oral drugs, including metformin, were 

predicted to have intestinal concentrations that may result in ThTR-2 mediated drug-nutrient 

interactions. Complementary analysis using electronic health records suggested that thiamine 

laboratory values are reduced in individuals receiving prescription drugs found to significantly 

inhibit ThTR-2, particularly in vulnerable populations (e.g., individuals with alcoholism). Our 

comprehensive analysis of prescription drugs suggests that several marketed drugs inhibit ThTR-

2, which may contribute to thiamine deficiency, especially in at-risk populations. 

 

2.2 INTRODUCTION 

 

In 2012, a phase III clinical trial involving the development of the Janus kinase 2 (JAK2) 

inhibitor fedratinib was terminated when several patients developed Wernicke's encephalopathy 

(WE) (1). WE is a serious, life-threatening neurologic condition which occurs as a result of 

vitamin B1 (thiamine) deficiency (2, 3). Following termination of the fedratinib trial, subsequent 

studies indicated that fedratinib potently inhibits the primary intestinal absorptive transporter for 

thiamine, thiamine transporter 2 (ThTR-2; SLC19A3). 

 

Thiamine is a water-soluble vitamin that is obtained from exogenous sources and primarily from 

the diet (4, 5). The vitamin is absorbed in the small intestine via facilitated transport and is 

rapidly converted via thiamine kinases into thiamine monophosphate, thiamine pyrophosphate 

(TPP), and thiamine triphosphate (6). TPP accounts for approximately 80% of total thiamine 

stores in the human body and is the active form of the vitamin, acting as a coenzyme for various 

enzyme complexes (6). 
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Membrane transporters are known sites for drug–drug interactions (DDIs), especially in the 

small intestine, kidney, and liver (7-9). Transporter-mediated DDIs occur when one drug induces 

or inhibits a transporter, which results in a change in the influx or efflux of another drug and 

potentially leads to drug toxicities and adverse events (9, 10). As a result, DDIs are thoroughly 

investigated throughout drug development and impact drug dosing and labeling (8). 

 

In sharp contrast, transporter-mediated drug–nutrient interactions (DNIs) had been largely 

ignored during drug development until the fedratinib trial. It was suggested that the toxicity 

observed in this clinical trial was a result of a DNI in a population vulnerable for thiamine 

deficiency, patients with myelofibrosis (11-15). This incident raised awareness in the drug 

development and regulatory communities about the potential for transporter-mediated DNIs. 

Although thiamine deficiency has been primarily associated with alcoholism, malnutrition, and 

various disease states such as infection with HIV, the catastrophic event brought to light a new 

mechanism for thiamine deficiency, drug-induced deficiency (3, 5, 16-18). 

 

Using a multifaceted approach to determine the impact and clinical relevance of drug-induced 

thiamine deficiency beyond the fedratinib trial, we were able to do the following: 1) identify 146 

inhibitors of ThTR-2, some of which were predicted to cause a DNI based on current FDA DDI 

guidelines, by conducting a high-throughput screen of 1360 FDA-approved compounds, 2) 

elucidate key descriptors of ThTR-2 inhibition by building a quantitative structure activity 

relationship (QSAR) model with machine learning methodology which could serve as a tool for 

drug discovery programs to evaluate the potential for ThTR-2 inhibition for novel compounds, 
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and 3) identify thiamine deficiency in both a general patient population and in patients who have 

been diagnosed with malnutrition, alcoholism, or HIV and are taking 1 or more of the clinically 

relevant inhibitors identified in our prescription drug library screen using real world data from 

electronic health records (EHRs). 

 

2.3 METHODS 

 

2.3.1 Chemicals and reagents 

Radiolabeled thiamine was purchased from American Radiolabeled Chemical Incorporations. 

The specific activity of the tritium-labeled thiamine hydrochloride was 20 Ci/mmol. Unlabeled 

chemicals were purchased from Sigma Aldrich. Fedratinib was purchased from Med Chem 

Express. Cell culture supplies were purchased from the cell culture facility at the University of 

California, San Francisco (UCSF), and Life Tech. The ThTR-2 stable HEK 293 cell line used 

was created by the Giacomini laboratory and described in Liang et al. (13). Cell lines were 

obtained from -80°C storage at the UCSF Cell Culture Facility for the purposes of this study. 

The compound library, the US Drug Collection, was purchased from Microsource Discovery 

Systems. The starting concentration of each drug was 10 mM in 100% DMSO. 

 

2.3.2 Radiometric cell uptake screen 

The ThTR-2 cell line [stably transfected HEK293 cells (13)], was maintained in DMEM 

supplemented with penicillin (100 U/mL), streptomycin (100 mg/mL), puromycin (5 µg/mL), 

and 10% FBS. Penicillin, streptomycin, and puromycin were included in the growth media and 

removed prior to the radiometric study. All 3 compounds were tested in our screen and did not 
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induce more than a 10% inhibition of thiamine uptake compared to control. Cells were seeded at 

70,000 cells per well and cultured on poly-d-lysine-coated 96-well plates for 24 h to reach 90% 

confluence. Uptake assay solutions were prepared at 2 times their final assay concentrations. The 

inhibitor compound solution and the substrate (thiamine) solution were combined at a 1:1 ratio to 

allow for throughput assay design. The inhibitor compound solution was prepared by transferring 

20 µL of the US Drug Collection into 180 µL of HBSS, pH 7.4, in a 96-well plate, producing a 

stock solution of 1 mM. On the day of the assay, the compound stock solutions were used to 

make compound assay solutions at a concentration of 400 µM. The thiamine solutions were 

prepared at a concentration of 500 nM thiamine hydrochloride in HBSS, with 450 nM unlabeled 

thiamine and 50 nM tritium labeled thiamine. The plates were designed to test 80 compounds in 

columns 2–11. The negative control, DMSO, and the positive control, fedratinib, were assayed in 

alternating wells in columns 1 and 12. The results from the negative control on each plate were 

used to determine hits for that plate. Each compound was tested at 200 µM against a thiamine 

concentration of 250 nM, except for 2 of the 17 plates, for which the compounds were screened 

at 500 µM. The exact concentrations of substrate, inhibitor, and the positive control can be found 

in Supplemental Table 2.1. To initiate the assay, the cells were washed once in 80 µL of warm 

HBSS, and then incubated in 80 µL of the assay buffer at 37°C for 5 min. Following the 

incubation, the cells were washed twice with 80 µL ice-cold HBSS buffer. MicroScint-20 

(Perkin Elmer) was added to the 96-well plates and sealed with an adhesive plastic cover. 

Following radiometric uptake assays, the plates were placed on a shaker overnight. The plates 

were read in a MicroBeta2 (Perkin Elmer) using the dual counting mode. 
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2.3.3 Radiometric cell uptake dose-response curves 

The ThTR-2 cell line was cultured in the same manner as for the screen. Compounds selected for 

potency validation were assessed in dose-response curves with concentrations ranging from 2.5 

nM to 200 µM at a substrate concentration of 250 nM thiamine. The compound and substrate 

buffers were made at 2 times their assay concentration and then combined at a 1:1 ratio to reach 

the final assay concentrations as in the primary screen. The compound buffer was made by serial 

dilutions in HBSS. The substrate buffer was made with 450 nM unlabeled thiamine and 50 nM 

tritium-labeled thiamine, which was subsequently diluted to reach final thiamine concentrations 

of 225 nm unlabeled thiamine and 25 nM tritium-labeled thiamine. Each plate contained control 

wells with no inhibitor which were used for normalization in data analysis. To initiate the assay, 

the cells were washed once in 80 µL warm HBSS, and then incubated in 80 µL of the assay 

buffer at 37°C for 5 min. Following the incubation, the cells were washed twice with 80 µL ice-

cold HBSS buffer. MicroScint-20 (Perkin Elmer) was added to the 96-well plates and sealed 

with an adhesive plastic cover. Following radiometric uptake assays, the plates were placed on a 

shaker overnight. The plates were read in a MicroBeta2 (Perkin Elmer) using the dual counting 

mode. 

 

2.3.4 Data analysis for radiometric cell uptake assays 

Hit calling for the primary screen was conducted and Z-prime scores were calculated within each 

plate using the positive and negative controls (19). The mean ± SD of the vehicle negative 

control for each plate was determined and all compounds were normalized to this control. A hit 

threshold was set as 3 SDs below the average of the negative control respective to each plate. 

Compounds were classified as hits if they were below this cutoff. All the hits and nonhits from 
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each plate were compiled together and the normalized values were plotted (with respect to plate) 

using ggplot. Data from half-maximal inhibitory concentration (IC50) curves were exported to 

Excel for normalization and entered into GraphPad Prism 8.0 for graphing and nonlinear fitting. 

 

2.3.5 Clinical relevance ratios 

One-point thiamine inhibition values for each compound from the primary screen were used in 

combination to determine the predicted IC50 (prIC50) (20) with the equation V = V0/{1 + 

[(I)/prIC50]}, where V and V0 are the activity with and without inhibitor, respectively, and I is 

the inhibitor concentration of 200 μM. Dosing information for each of the primary screen hit 

compounds was reviewed from the clinical databases IBM Micromedex and Lexicomp, and a 

maximal reported single dose was documented. The maximal intestinal concentration for each 

drug was determined by dividing the maximal dose by 250 mL (21). A ratio was calculated using 

the prIC50 and the maximal intestinal concentration. 

 

2.3.6 Data preparation for the QSAR model 

Compound names (n = 1360) were used as queries to the PubChem database (22) to retrieve 

compound identification numbers and structure data files (SDFs). Four compounds were 

removed due to failure to compute SDF files. SDF files were processed with PaDEL software 

(23) to compute 770 molecular descriptors for each screened compound. Molecular descriptors 

were filtered to remove descriptors with missing values (n = 595) and descriptors with zero 

variance (n = 60). To identify highly correlated features (correlation coefficient > 0.95), pairwise 

descriptor correlations were computed and, from each highly correlated pair, 1 randomly chosen 

feature was removed (n = 41), leaving 74 molecular descriptors for 1356 compounds. Feature 
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selection was implemented using the caret R package (24). Correlation-based feature selection 

was performed, in which a greedy heuristic is employed to pick a subset of features that are 

independent of each other but are correlated with a class label (25). In vitro screening data were 

used to label 144 compounds as hits (label = 1) and 1212 as nonhits (label = 0). 

 

2.3.7 Analysis of physicochemical properties for QSAR model 

MayaChemTools package (26) was used to compute 8 physico-chemical descriptors, namely, 

molecular weight, molecular volume, number of rotatable bonds, number of heavy atoms, 

number of hydrogen bond donors and acceptors, octanol-water partition coefficient (SLogP), and 

total polar surface area. Distributions of physicochemical properties for hit and nonhit 

compounds were analyzed in the R statistical package. Pairwise Student's t-test was performed, 

using t.test in R, for the 8 physicochemical properties to identify those that differed significantly. 

Results were plotted using the boxplot function in R. 

 

2.3.8 QSAR model development with machine learning 

Four machine learning algorithms from the caret package in R (k-nearest neighbors, partial least 

squares regression discriminant analysis, support vector machine, and random forest), were 

employed to build binary classifiers. A double loop cross-validation (20) was used to assess the 

predictive power of each algorithm. First, the train function in the caret R package was used to fit 

predictive models for the 4 algorithms for 75% of the original data (training data set; n = 1017). 

Parameter tuning was done with 10-fold cross-validation as follows. The training set was divided 

into 10 subsets with each subset comprising the same ratio of hits (∼90%) and nonhits (∼10%) 

as the original data set. Model parameters were optimized by fitting classifiers to 9 out of 10 
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subsets and assessing them with the 1 out of 10 subsets. Next, the performance of each tuned 

model was assessed on 25% of the data (holdout set; n = 340) using the area under the receiver 

operating characteristic curve (auROC) (27) as the performance measure. Double-loop cross-

validation was repeated 10 times for both full and reduced feature sets. First, classifiers were 

built with 74 molecular descriptors (full feature set). Second, feature reduction was performed 

with the cfs filtering algorithm in the FSelector R package for each of the training data sets. We 

identified a subset of 18 features that overlapped between different training sets to create a 

reduced feature set. Finally, cross-validation of models trained with these 18 features was 

performed. ROC curves were plotted with the ROCR package in R (28). 

 

2.3.9 Substructure similarity search 

The ChemBioServer web service (29) was used to search for compounds containing fragments 

similar to the 2,4-diaminopyrimidine fragment. To that end, the structure of 2,4-

diaminopyrimidine in SDF format was queried against the 1356 SDF files using an online 

interface with default settings. 

 

2.3.10 EHR data and analysis 

We used the UCSF Research Data Browser to search for patients who had a reported numeric 

thiamine pyrophosphate laboratory (measured in whole blood by the UCSF Health Clinical 

Laboratories) test value < 1200 nM, which gave us a total of 1433 patients and 2016 laboratory 

values. Thiamine laboratory values reported as < 7 nM were assigned the value of 0 nM. Only 

patients with 1 thiamine laboratory value were included in the analysis, which reduced our 

sample size to 1133 individuals. 
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Patients were divided into 2 groups depending on their medication use. Patients prescribed 1 or 

more of the orally dosed drugs that were identified as potentially clinically relevant hits in the 

primary screen and analysis (metformin, verapamil, amitriptyline, sertraline, amoxapine, 

penicillamine, quinidine, quinapril, and/or hydroxychloroquine) were grouped into the “on” drug 

group, which resulted in 236 patients. In addition, sulfamethoxazole-trimethoprim was an 

inclusion criterion for the on group only in the HIV analysis since this drug is not chronically 

taken among the general population but can be chronically used in HIV patients as a prophylaxis 

for pneumonia. Fedratinib was not included in any of the analyses since it was not an approved 

therapeutic agent. The 897 remaining patients (i.e. individuals who were never prescribed any of 

the clinical hits mentioned above) were grouped into the “off” drug group. Patients in the on 

group were further filtered based on their laboratory collection date relative to their first 

medication order start date. Thiamine laboratory values measured before the on group patient's 

first medication order start date or within 30 days after their first medication order start date were 

excluded. A minimum of 30 days between medication start date and the thiamine laboratory 

value measurement was chosen since it can take a few weeks for thiamine stores to deplete. In 

total, 155 patients met this criterion and were in the on group. 

 

For patient population-specific analyses, patients were further assigned to subgroups based on a 

diagnosis of malnutrition, alcoholism, or HIV. Malnutrition diagnosis was defined using the 

International Classification of Diseases (ICD) as ICD10 level 1 “endocrine, nutritional and 

metabolic diseases” (E00-E89) and ICD10 level 2 “malnutrition” (E40-E46). Alcoholism 

diagnosis was defined as ICD10 level 3 “alcohol related disorders,” “alcoholic liver disease,” 
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“evidence of alcohol involvement determined by blood alcohol level,” and “toxic effect of 

alcohol.” HIV diagnosis was defined as ICD10 level 1 “certain infectious and parasitic diseases 

(A00-B99)” and ICD10 level 2 “human immunodeficiency virus [HIV] disease.” There were 

221, 121, and 19 patients with 1 reported thiamine laboratory value and a malnutrition, 

alcoholism, and HIV diagnosis, respectively, without any regard to medication use. Patients 

which met the inclusion criteria for 2 or more diagnoses were included in both patient 

population-specific analyses. 

 

We further subdivided the patient groups in each respective patient population based on their 

laboratory collection date relative to their first diagnosis date. Laboratory values taken any time 

before diagnosis were considered for patients diagnosed with malnutrition. For patients with 

alcoholism, laboratory values taken within 1 year of diagnosis were used. Lastly, for patients 

diagnosed with HIV, laboratory values taken 1 year prior to or any time after diagnosis were 

considered. This resulted in 45 patients with malnutrition, 76 patients with alcoholism, and 16 

patients with HIV before filtering for medication use/prescriptions was performed. The total 

number of patients in the on and off groups after filtering based on medication order start date 

and prescriptions is listed in the Results section. All analyses were performed relative to only the 

date of initial diagnosis, laboratory value collection dates, and medication start dates; no other 

covariates were included in the analysis. 

 

Welch's 2-sample t-test was performed to evaluate if there was a significant difference in 

laboratory values when comparing both groups and ggplot was used to plot the data using R 

(version 3.4.0). 
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2.4 RESULTS 

 

2.4.1 Overview 

The overview of our study design is presented in Figure 2.1. Our first goal was to perform a cell-

based high-throughput screen to identify prescription drugs and other bioactive compounds that 

inhibit ThTR-2. Using the data from the primary screen, we validated a subset of the most potent 

compounds as well as investigated several drugs to assess their potential to cause clinically 

relevant DNIs at ThTR-2 (Figure 2.1). Additionally, we leveraged computational methods to 

identify features specific to hits and nonhits from our screen. To complement our screen and 

model, we investigated and compared thiamine laboratory values in patient populations that are 

prone to thiamine deficiency. Specifically, we compared thiamine pyrophosphate plasma 

concentrations from patients taking 1 or more of the clinically relevant inhibitors that had been 

identified in our high-throughput screen with concentrations from patients who were not on any 

of those inhibitors. Our goal here was to explore the hypothesis that these inhibitors may 

exacerbate thiamine deficiency in vulnerable populations. 

 

2.4.2 In vitro radiometric thiamine inhibition screen identified 146 potential thiamine inhibitors 

A radiometric screen to identify marketed drugs that inhibit ThTR-2-mediated thiamine uptake 

was performed using tritium-labeled thiamine hydrochloride. Prior to the screen, the optimal 

conditions for thiamine uptake in cells overexpressing ThTR-2 were determined (i.e. duration of 

uptake, concentration of thiamine, and plating density of cells, see the Methods section). Most 

compounds were screened once in a 96-well plate using a 5-minute uptake assay. To determine 
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the inhibitor concentration to use for the screen, the single maximum doses for commonly 

prescribed drugs were collected and used to predict intestinal concentrations (Supplemental 

Figure 2.1). This informal in silico review guided the selection of the final drug concentration of 

prescription drugs and other compounds in the library (200 μM) used in the primary screen. 

 

The drug library used for the primary screen comprised 1360 diverse compounds with various 

mechanisms of action and from many therapeutic classes (Figure 2.2). Inhibitors, or hits, were 

defined by a decrease in thiamine uptake greater than 3 SDs from the thiamine only (no 

inhibitor) control (Supplemental Figure 2.2). Slight enrichment of hits was seen in certain 

therapeutic classes, including drugs used in the treatment of gastrointestinal and central nervous 

system disorders (Figure 2.3). Out of the 1360 compounds screened, 146 were determined to be 

ThTR-2 inhibitors (z-prime: 0.44-0.81) (Supplemental Table 2.1) (19). 

 

2.4.3 Potency studies of top inhibition hits validate primary screen 

As the primary screen was conducted with single point determinations, the top 11 compounds, 

based on percentage inhibition of 3H-thiamine uptake, were selected to test in 8-point dose 

response curves to validate the accuracy of the primary screen. Ten of the 11 compounds were 

validated as hit compounds (Supplemental Table 2.2). Citric acid was determined to be a false 

positive. In general, the 10 validated hits have IC50 values, the half-maximal inhibitory 

concentration, < 100 µM (Figure 2.4 and Supplemental Figure 2.3). Additionally, randomly 

selected compounds that were identified as noninhibitor compounds were also tested and 

confirmed to not inhibit the transporter. 
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2.4.4 Selected clinically relevant screen hits maintain predicted potency 

As screening of the top hit compounds validated the primary screen, a clinical relevance ratio, 

calculated using the predicted intestinal concentration following a single dose divided by the 

IC50, was employed to identify which of the 146 hits from the primary screen would be clinically 

relevant. These compounds were chosen based on their clinical relevance ratios (≥ 10), 

availability in oral dosage forms, chronic dosing schedules, which could result in prolonged 

inhibition of intestinal ThTR-2, and use in patient populations at-risk for thiamine deficiency. Of 

the 146 hits, 88 were orally administered drugs. Out of the 88 orally administered compounds, 10 

compounds were selected for further validation by utilizing the additional selection criteria, 

noted above (Supplemental Table 2.3). Of the 10 compounds, 5 were identified as potent 

inhibitors of ThTR-2 with low nanomoles per liter IC50 (Figure 2.4 and Supplemental Figure 

2.4). Five inhibitors with predicted clinical relevance, and 3 of the other selected inhibitors, 

despite higher IC50 values, were estimated to reach intestinal concentrations 10 times greater than 

their IC50 values, suggesting the potential to cause a DNI at ThTR-2 (Table 2.1 and Figure 2.1). 

 

2.4.5 Computational characterization of properties of hit compounds 

We used several methods to characterize and differentiate properties of hit and nonhit 

compounds identified by high-throughput screening. 

 

First, we computed and analyzed 8 physicochemical properties of hits and nonhits, such as 

molecular weight, molecular volume, number of heavy atoms, number of rotatable bonds, 

number of hydrogen bond donors and acceptors, SLogP, and topological polar surface area 

(Table 2.2 and Supplemental Figure 2.5). No statistical differences were observed in molecular 
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weight, volume, number of heavy atoms, or number of rotatable bonds. The values for the 

number of hydrogen bond donors and acceptors and total polar surface area were significantly 

lower among hit compared to nonhit compounds (P < 0.0001). Moreover, hit compounds were 

more lipophilic as evidenced by significantly higher SLogP values (P < 0.0001) compared to 

those of nonhits. 

 

Second, we developed machine learning classifiers to differentiate between hit and nonhit 

compounds from the high-throughput screen. The performance of 4 machine learning algorithms 

was estimated by means of double-loop cross-validation, consisting of internal 10-fold cross-

validation and external validation using 10 test sets consisting of 25% of samples (see Methods 

section). We evaluated 4 machine learning algorithms, namely k-nearest neighbors, partial least 

squares regression discriminant analysis, support vector machines, and random forest (RF). For 

each algorithm, we trained each classifier with 770 and 18 molecular descriptors, respectively. 

The 18 descriptors were identified via a recursive feature selection method (Supplemental 

Table 2.4). These descriptors represent a common subset of features selected from different 

training sets during the cross-validation. The receiver operating characteristic (ROC) curves for 

external validation experiments of 4 algorithms are shown in Supplemental Figure 2.6 for 18 

features and for 770 features. The RF classifier outperformed the other 3 models as assessed by 

the average auROC for the 10 external validation tests. Performance of all models was 

considered better than random. Notably, the auROC of RF classifier with 770 features was 0.71 

± 0.03 and with 18 features 0.74 ± 0.05, respectively. The performances of the other models, 

though slightly worse than that of the RF model (Supplemental Figure 2.6), improved with use 

of the 18 descriptors over the full 770 features (Supplemental Figure 2.6). Analysis of the 18 
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selected features revealed that the lipophilicity, descriptors of topological and chemical diversity, 

and descriptors of hydrogen bond counts were important for the accuracy of differentiating 

between hit and nonhit compounds. More specifically, the number of nitrogen atoms and number 

of CrippenLogP descriptors were ranked as the 2 most important descriptors for the RF classifier 

(Supplemental Table 2.4). Four discrepancies in hit calling between screen and the RF QSAR 

model were observed (Supplemental Tables 2.5 and 2.6). To analyze the tradeoff between the 

precision and recall of the RF classifier with 18 features, we computed the average F1 measure, 

which was 0.58. The average precision and recall were 0.7 and 0.5, respectively. The lower 

recall indicates that the model is less successful at filtering out false negatives than false 

positives. 

 

2.4.6 EHRs validate identified clinically relevant inhibitors 

To investigate the clinical relevance of the inhibitors identified, we mined EHRs from UCSF and 

identified drug-induced decreases in thiamine laboratory values associated with the use of the 

drugs identified in our screen in both the general population and distinct patient populations. 

Specifically, we compared thiamine laboratory values in patients prescribed 1 or more of the 9 

(10 for HIV patients) clinically relevant inhibitors identified in the primary screen (Table 2.1) 

with thiamine laboratory values in patients who were never prescribed any of the respective 

inhibitors. Based on the inclusion and exclusion criteria described in the Methods, we were able 

to classify patients as “on” drug (i.e. on 1 or more of the clinically relevant inhibitors) or “off” 

drug. 
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In the general population, we observed a significant difference in thiamine laboratory values 

between the 2 groups (P = 0.02; n = 154 on drug; n = 878 off drug). If we add thiamine 

medication orders as an exclusion criterion, we still observed a significant difference (P = 0.003) 

in thiamine laboratory values between the on drug (n = 36) and off drug (n = 215) groups, 

demonstrating the robustness and sensitivity of our analysis. Population demographics, such as 

age and sex, as well as number of medication orders based on unique pharmaceutical class (i.e. 

each pharmaceutical class is counted only once per patient irrespective of number of 

prescriptions), were comparable between both groups (Supplemental Table 2.7). 

 

Three distinct patient populations: malnourished, alcoholic, and HIV patients, which have been 

associated with thiamine deficiency (3, 5, 16-18), were used to further investigate and elucidate 

drug-induced decreases in thiamine laboratory values. In all 3 patient populations, patients in the 

on drug group had lower thiamine pyrophosphate blood concentrations than those in the off drug 

group (Figure 2.5). In malnourished patients, when comparing thiamine laboratory values from 

samples taken any time before diagnosis, we observed lower concentrations of thiamine 

pyrophosphate for individuals on drug (n = 8) than individuals off drug (n = 30) at a statistically 

significant level (P = 0.015) (Figure 2.5). In patients diagnosed with alcoholism, there were 

significantly lower concentrations (P = 0.000002) in the on than the off drug groups when we 

compared thiamine laboratory values taken within 1 year of diagnosis (n = 2 on drug; n = 68 off 

drug) (Figure 2.5). Lastly, although we did not observe a significant difference between the 2 

groups in HIV patients when including thiamine laboratory values taken within 1 year before 

diagnosis or any time after diagnosis (P = 0.20; n = 9 on drug; n = 4 off drug), we still observed 

lower thiamine laboratory values in on patients compared to off patients, which was consistent 
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with our other patient populations (Figure 2.5). If we combine all 3 patient populations with the 

same inclusion and exclusion criteria used in the individual analyses, we observe a statistically 

significant difference, as previously observed (P = 0.0004; n = 18 on drug; n = 96 off drug) 

(Figure 2.5). 

 

Finally, if we added thiamine medication orders (i.e. prescribed thiamine or vitamin B1 

supplements and/or given thiamine intravenously) as an exclusion criterion, we still observed a 

significant difference between the 2 groups (on drug and off drug) in the alcoholic patient 

population (P = 0.00008 for laboratory values within 1 year of diagnosis, n = 2 on drug, n = 24 

off drug) and we still observed a downward trend in malnourished and HIV patients; that is, 

thiamine laboratory values were lower in malnourished and HIV patients on a ThTR-2 inhibitor 

than in those not on a ThTR-2 inhibitor (P = 0.056 and P = 0.27 respectively). 

 

2.5 DISCUSSION 

 

DDI studies are a routine and necessary component of clinical drug development. In contrast, 

DNI studies are rarely performed. The clinical trial of fedratinib, with the development of WE in 

a handful of patients, underscored the importance of DNIs and the effect of drugs on transporter-

mediated nutrient absorption in clinical drug development (1, 30, 31). The current study explored 

the idea that DNIs mediated by intestinal ThTR-2 occur with clinically used drugs and that such 

interactions may contribute to thiamine deficiency, especially in vulnerable populations. 
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This study resulted in 4 major findings and highlighted the potential for commonly prescribed 

drugs to contribute to thiamine deficiency. First, we identified many prescription drug inhibitors 

of ThTR-2-mediated thiamine uptake, representing a surprising fraction (approximately 10%) of 

the prescription drug library that was screened. Second, 4 key molecular descriptors were 

identified that can aid in distinguishing ThTR-2 inhibitors from noninhibitors, including 

increased hydrophobicity, lower polar surface area, and reduced ability to form hydrogen 

bonding as acceptors or donors. Third, many of the prescription drug ThTR-2 inhibitors are 

predicted to inhibit intestinal ThTR-2-mediated thiamine absorption at clinically relevant 

intestinal concentrations. Finally, a thiamine deficient signature was observed in patients 

diagnosed with HIV, malnutrition, and alcoholism taking 1 or more of the drugs predicted to 

inhibit intestinal ThTR-2-mediated thiamine uptake. The results suggest the potential of these 

drugs to cause DNIs and contribute to thiamine deficiency and WE in susceptible patient 

populations. 

 

Thiamine deficiency has been repeatedly associated with a cascade of events linked to cognitive 

decline, many of which are commonly observed in Alzheimer disease and Parkinson disease, 

where thiamine has been suggested as a potential therapeutic modality (32-36). Thiamine 

deficiency is a treatable condition when recognized, as seen in global populations where 

malnutrition is a major concern (37-40). Additionally, the dire consequences of thiamine 

deficiency have repeatedly been observed in children of developing countries where thiamine 

deficiency disorders, often triggered by infectious diseases, are a major cause of infant mortality 

(41-46). Though severe outcomes of thiamine deficiency can lead to a clear diagnosis, mild to 

moderate thiamine deficiency symptoms are frequently overlooked or misdiagnosed (3, 18, 47-
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51). Furthermore, even in conditions known to predispose patients to thiamine deficiency, the 

variability in the presentation of the disorder suggests that unknown confounding factors may 

also contribute to the deficiency syndrome. Unfortunately, recent studies echo the complexity of 

recognizing thiamine deficiency and suggest that thiamine deficiency even in developed 

countries is underdiagnosed and undertreated (52-54). Unrecognized thiamine deficiency is a real 

problem as the neurologic sequelae may increase the burden on healthcare systems and reduce 

the general health of world populations. 

 

This study represents one of the first studies to evaluate the broad potential of approved drugs to 

contribute to nutrient deficiency syndromes, and to our knowledge, is one of the first high-

throughput in vitro screens for ThTR-2. Hit compounds from our primary screen did not show 

enrichment for any 1 therapeutic class, suggesting that drug-thiamine interactions may occur 

across drug classes. The broad inhibitor specificity identified in this study is consistent with 

recent studies from our laboratory, which have indicated that human ThTR-2 may be more 

promiscuous in terms of its substrate selectivity than rodent orthologs, which narrowly transport 

thiamine (13).  

 

Previous studies have indicated that ThTR-2 inhibitors share a common structural feature, a 2,4-

diaminopyrimidine, specifically within the Janus kinase inhibitor class (11, 12). To assess if 

ThTR-2 inhibition could be caused by compounds without this structure, we utilized a diverse 

compound library. Preliminary computational analysis of our screen results revealed that 

inhibitors were significantly smaller, less polar, and more hydrophobic. Prediction of a 

compound's inhibitory potential based on these broad molecular descriptors alone would be 
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difficult given the large molecular and structural diversity of our library and would likely result 

in many false positives. Therefore, we attempted to use machine learning and the identified 

descriptors to build models that may more reliably predict compounds that may inhibit the 

transporter. The models built with the RF algorithm performed better than random, as 

determined by the cross-validated auROC of about 0.7. Our RF model differs from published 

computational models that predict drug-food interactions and/or food bioactivities in that it aims 

to identify properties of molecules that inhibit ThTR-2 and may lead to thiamine deficiency (55). 

 

The aim of this study was not only to assess the extent to which ThTR-2 may be inhibited by 

marketed prescription drugs but to also determine their potential to contribute to thiamine 

deficiency clinically. Current FDA DDI guidelines provide a ratio, previously described in the 

Methods sections, for which > 10 indicates a dedicated healthy volunteer DDI study may be 

warranted (21). Eleven of the 14 selected orally prescribed drugs were predicted to reach this 

benchmark, by estimating the ratio of predicted intestinal concentration following maximum 

single dose to experimental IC50, suggesting that they may result in clinically relevant inhibition 

of ThTR-2. Metformin was among the drugs deemed clinically relevant and mirrored previous 

suggestions about its ability to cause DNI at ThTR-2 (13). Additionally, some of the clinically 

relevant drugs identified in our study are used chronically in patients who may already be at risk 

for thiamine deficiency (56-64).  

 

By examining the EHRs for patients at risk for thiamine deficiency, we were able to use real 

world data to support the idea that prescription drugs may contribute to thiamine deficiency, and 

indeed may be major risk factors for WE or beriberi in vulnerable populations. Additionally, 
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inhibition of ThTR-2 may contribute to adverse events associated with some of the therapeutics. 

For example, a common adverse event associated with metformin use is lactic acidosis (65), a 

potentially fatal adverse event also associated with thiamine deficiency. If, as our results suggest, 

metformin inhibits intestinal ThTR-2-mediated thiamine transport, the resulting low 

concentrations of thiamine and TPP could contribute to metformin-induced lactic acidosis (18, 

50, 66-68).   

 

The limitations of this study include the high concentrations used in the initial screen, which 

were much higher than concentrations used in typical drug discovery screens (69-71). A high 

screening concentration was used to reflect the concentrations predicted to be achieved in the 

intestine after therapeutic doses of drugs. Another limitation of the high-throughput screen was 

that each compound was evaluated in a single well. This approach was taken due to the fact that 

no fluorescent probe was available and may have resulted in false negatives. Another limitation 

was the performance of the machine learning classifier, which was constrained due to the large 

structural diversity of the compound library, limited number of compounds (< 2000), and lack of 

novel molecular structures currently in development. Screening a larger library with many 

molecules having particular structural backbones may help refine the structure-activity 

relationships as well as improve the prediction capability of the model. Furthermore, although 

we used FDA guidance as a benchmark to select compounds which have the potential to cause 

clinically relevant DNIs, this guidance is meant for drugs and not nutrients and for efflux 

transporters (and not influx transporters) that are targets for DDIs. Since inhibition of efflux 

transporters requires inhibitors to access the intracellular compartment, which is not required for 

inhibition of an influx transporter, the guidelines may have been overly stringent for our study. 
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In addition, our EHR analysis was limited by small sample sizes. Finally, the use of publicly 

available data rather than a designated clinical trial allowed us to show an association between 

these drugs and low thiamine laboratory values but prevented us from differentiating between the 

role of disease and role of the drug, assessing the effect of nutritional status on thiamine 

laboratory values, and determining whether these drugs inhibit intestinal ThTR-2-mediated 

thiamine uptake. Additional samples or designated clinical studies powered to detect drug-related 

differences as well as assess nutritional status are needed to make broader conclusions. 

 

Overall, our comprehensive study was able to identify 146 inhibitors of ThTR-2, most of which 

were not previously known. These compounds aided in elucidating structural and chemical 

features of ThTR-2 inhibitors and, though further screens are needed, provided a preliminary in 

silico model for identifying compounds that inhibit ThTR-2. Compounds that may cause 

clinically relevant drug-nutrient interactions were predicted, and real world data from the EHR in 

vulnerable patient populations were consistent with our predictions. Future work includes 

investigating the effects of ThTR-2 genetic variants on the plasma concentrations of both 

thiamine as well as prescription drugs and conducting prospective DNI studies of prescription 

drugs and thiamine. This study has led to the largest available dataset of ThTR-2 inhibitors and 

underscores the potential importance of transporter-mediated drug-nutrient interactions at ThTR-

2 as well as other vitamin transporters. 
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2.6 FIGURES 
 

 
 

Figure 2.1 Workflow of experimental and computational methods for primary screen and 

identification of clinically relevant hits. Schematic of workflow used to identify, validate, and 

determine the potential clinical relevance of ThTR-2 inhibitors (A). Shown on the left are the 4 

major stages to identify marketed drug inhibitors of ThTR-2. These major stages are 

accompanied by substages of each effort (on the right) with the selection criteria in the colored 

box and the number of compounds selected for progression to the next stage below each colored 

box. Detailed methods used to select compounds at each stage can be found in the Methods 

section. Detailed workflow used to identify and validate clinically relevant hits (B). Parallel steps 

were applied to the hits identified from the primary screen to determine the clinical relevance 

and potential to cause a drug-nutrient interaction. The number of compounds entering each step 

is noted above and the criteria that filtered that collection of compounds is summarized in the 

box below it. *12 compounds were validated using experimental IC50 values and 2 compounds 

(metformin hydrochloride and trimethoprim) were validated using literature derived IC50 values 

(12, 13). IC50, concentration which causes 50% inhibition of uptake; pr[I], predicted inhibitor 

concentration in the small intestine following maximum single dose; ThTR-2, thiamine 

transporter 2. 
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Figure 2.2 Classification of drug library by therapeutic class. The US drug collection library 

used for the high-throughput screen comprised a diverse set of compounds which ranged across 

various pharmacological classes. CNS, central nervous system. 
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Figure 2.3 Total number of hits and nonhits in each therapeutic class. Although the diversity 

of the hits trended similarly to the diversity of the prescription drug library, there was enrichment 

of certain pharmacological classes such as drugs used in the treatment of gastrointestinal and 

CNS disorders. Numbers above bars represent raw count of hits and non-hits in each therapeutic 

class respectively. Percent represents enrichment of hits in a therapeutic class (i.e. hits which fall 

in a class/total number of compounds in that same class). CNS, central nervous system. 
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Figure 2.4 IC50 curves of a subset of (A) potent and (B) clinically relevant hits. IC50 values 

were determined for selected drugs in HEK293 cells stably overexpressing ThTR-2. Eight-

point curves were conducted on 96-well plates with inhibitor concentrations ranging from 200 

µM to 2.5 nM and 250 nM thiamine. Data points and error bars are presented as means ± SEMs, 

respectively. Each curve is representative of 3 experiments and each concentration was tested in 

duplicate within each experiment. IC50 values range from 2.56 to 100 µM in panel A and 1.03 to 

4.04 mM in panel B and are listed in detail in Supplemental Tables 2.2 and 2.3. IC50, 

concentration which causes 50% inhibition of uptake; ThTR-2, thiamine transporter 2. 
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Figure 2.5 Thiamine laboratory values in patients on 1 or more clinically relevant 

inhibitors compared with concentrations in patients in vulnerable populations but not on a 

clinically relevant inhibitor. Boxplots of thiamine laboratory values in malnourished, P = 0.015 

(A); alcoholic, P = 0.000002 (B); and HIV, P = 0.20 (C) patients, as well as all 3 patient 

populations combined, P = 0.0004 (D), comparing laboratory values of individuals on 1 or more 

of the clinically relevant inhibitors identified in the primary screen with patients who were not. 

Inhibitors are noted in Table 2.1 (based on the DDI recommended column). *P ≤ 0.05, ***P ≤ 

0.001 following a Welch's 2-sample t-test. Sulfamethoxazole-trimethoprim was an inclusion 

criterion for the on group only in the HIV analysis since this drug is not chronically taken among 

the general population but can be chronically used in HIV patients as a prophylaxis for 

pneumonia. DDI, drug-drug interaction. 

  

*

0

300

600

900

On
(n=8)

Off
(n=30)

T
h
ia

m
in

e
 P

y
ro

p
h
o

s
p
h

a
te

 L
e
v
e
l 
(n

M
)

Malnourished

***

0

300

600

900

On
(n=2)

Off
(n=68)

T
h
ia

m
in

e
 P

y
ro

p
h
o

s
p
h

a
te

 L
e
v
e
l 
(n

M
)

Alcoholic

NS.

0

300

600

900

On
(n=9)

Off
(n=4)

T
h
ia

m
in

e
 P

y
ro

p
h
o

s
p
h

a
te

 L
e
v
e
l 
(n

M
)

HIV

***

0

300

600

900

On
(n=18)

Off
(n=96)

T
h
ia

m
in

e
 P

y
ro

p
h
o

s
p
h

a
te

 L
e
v
e
l 
(n

M
)

Combined DiagnosesBA C DB A C D 



 49 

 

 

Supplemental Figure 2.1 Frequency distribution of predicted intestinal concentrations for 

175 commonly used drugs. Histogram of the predicted intestinal concentration of 175 drugs. 

Predicted intestinal concentration was calculated using the maximum single dose for each given 

drug and 250 mL as recommended by the FDA (21).  
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Supplemental Figure 2.2 Distribution of inhibition of thiamine uptake across all plates in 

primary screen. Boxplot of percent uptake of all hits and non-hits by plate. All uptake values 

are represented as percentages normalized to thiamine only negative control respective to each 

plate. Compounds were classified as hits if they caused a decrease in thiamine uptake greater 

than three standard deviations from the thiamine only negative control. All other compounds 

were considered non-hits at the screening concentration of 200 µM. Hits are colored in pink and 

non-hits are colored in blue. 
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Supplemental Figure 2.3 Additional dose response curves of top hits from primary screen. 

IC50 values were determined for selected drugs in HEK293 cells stably overexpressing ThTR-2. 

Eight-point curves were conducted on 96 well plates with inhibitor concentrations ranging from 

200 µM to 2.5 nM and 250 nM thiamine. Data points and error bars are presented as mean ± 

SEM respectively. Each curve is representative of three experiments and each concentration was 

tested in duplicate within each experiment. IC50 values ranged from 2.56 to 100 µM and are 

listed in detail in Supplemental Table 2.2. 
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Supplemental Figure 2.4 Additional dose response curves of top hits with high clinical 

interaction ratios. IC50 values were determined for selected drugs in HEK293 cells stably 

overexpressing ThTR-2. Eight-point curves were conducted on 96 well plates with inhibitor 

concentrations ranging from 200 µM to 2.5 nM and 250 nM thiamine. Data points and error bars 

are presented as mean ± SEM respectively. Each curve is representative of three experiments and 

each concentration was tested in duplicate within each experiment. IC50 values ranged from 1.03 

µM to 4.04 mM and are listed in detail in Supplemental Table 2.3.  
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Supplemental Figure 2.5 Differences in physicochemical properties between hits and 

nonhits. Boxplots of physicochemical properties are shown: molecular weight (MW), number of 

heavy atoms (HA), number of rotatable bonds (RB), molecular volume (MV), number of 

hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), Crippen’s log of the 

octanol/water partition coefficient, including implicit hydrogens (SLogP) and total polar surface 

area (TPSA). Statistically significant differences (p-value < 0.005, pairwise Student’s t-test) 

between inhibitor and noninhibitor properties are denoted by blue boxplots and non-significant 

differences are denoted by orange boxplots.
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Supplemental Figure 2.6 Receiver Characteristic Operating (ROC) curves of double-loop 

cross-validation experiments using (A) 18 features and (B) 770 molecular descriptors. Four 
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machine learning classifiers, namely k-Nearest Neighbor (kNN, top left quadrant), Partial Least 

Squares Regression Discriminant Analysis (PLS, top right quadrant), Support Vector Machines 

(SVM) and Random forest (RF) were validated with A) 18 features and B) 770 molecular 

descriptors. Boxplots show the spread of auROC (area under ROC curve) values computed for 

ten repeated validation experiments on withheld data (25% of samples). Red diagonal line in 

each plot denotes the performance of a classifier with auROC of 0.50.   
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2.7 TABLES 

 

Table 2.1 Prescription drug inhibitors predicted to be clinically relevant based on 

experimental and computational methods.  

 

Drug Name 

Max 

Single 

Dose 

(mg) 

IC50 (µM) 
[Predicted 

Intestinal]/IC50 

DDI study 

recommended?1 

Trimethoprim2 320 5.6 ± 0.59 793 Yes 

Fedratinib 500 7.50 ± 0.883 600 Yes 

Hydroxychloroquine 

Sulfate 
400 17.0 ± 5.24 217 Yes 

Sertraline Hydrochloride 200 1.03 ± 0.255 201 Yes 

Amitriptyline 

Hydrochloride 
100 11.3 ± 2.85 116 Yes 

Metformin Hydrochloride2 2500 680 ± 372 88.8 Yes 

Amoxapine 300 46.6 ± 14.7 81.4 Yes 

Penicillamine Ethanolamine 

Salt 
2000 857 ± 372 62.6 Yes 

Verapamil  480 141 ± 46  27.7  Yes  

Quinidine Gluconate 648 181 ± 52.8 27.5 Yes 

Quinapril 80 34.0 ± 7.36 19.8 Yes 

Didanosine 400 4040 ± 5740 8.29 No 

Posaconazole 400 1896 ± 1767 1.80 No 

Telmisartan 160 
Not 

Convergent 
- No 

 

Based on the workflow detailed in Figure 2.1, 14 compounds were predicted to be clinically 

relevant hits and selected for further validation. Hit inhibitors were defined as clinically relevant 

if the ratio of the compound's predicted intestinal concentration (following maximum single dose 

given at one time) divided by its IC50 was > 10. DDI, drug-drug interaction; IC50, half maximal 

inhibitory concentration; [Predicted Intestinal], predicted intestinal concentration. 
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1A subset of these compounds would be recommended for a DDI trial based on current FDA 

guidelines. 
2Trimethoprim and metformin hydrochloride IC50 values were obtained from published literature 

(12, 13).  
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Table 2.2 Physicochemical descriptors of hit and nonhit compounds identified in a screen 

of ThTR-2. 

 

Descriptors Hits Non-hits P-Value 

Molecular Weight (Da) 330 ± 116 343 ± 194 2.24E-01 

Molecular Volume (Å3) 304 ± 105 309 ± 180 6.14E-01 

Heavy Atoms (n) 23.0 ± 8.02 23.5 ± 13.3 4.51E-01 

Rotatable Bonds (n) 5.07 ± 4.35 5.05 ± 4.50 9.60E-01 

Hydrogen Bond Donors (n) 1.06 ± 1.13 2.04 ± 2.42 1.04E-15 

Hydrogen Bond Acceptors (n) 4.32 ± 2.70 5.96 ± 4.60 1.19E-09 

SLogP 4.02 ± 1.90 2.90 ± 2.44 6.48E-10 

Total Polar Surface Area (Å2) 56.1 ± 42.2 88.5 ± 74.3 7.57E-14 

 

Mean ± SD values for 8 physicochemical descriptors are shown for 144 hits and 1213 nonhits. P 

< 0.005 for differences in distributions of physicochemical properties of hits compared with 

those of nonhits, estimated with the Student's pairwise t-test. SLogP, log of the octanol-water 

partition coefficient, including implicit hydrogens; ThTR-2, thiamine transporter 2. 
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Supplemental Table 2.1 Z-prime and number of hits for each plate. 

 

Plate 
Thiamine 

(µM) 

Fedratinib 

(µM) 

Z-prime  

(100µM) 

Z-prime  

(250µM) 

Z-prime  

(500µM) 
# of Hits 

1 250 100 & 250 0.705 0.666 - 11 

2 250 100 & 250 0.563 0.611 - 2 

3 250 100 & 250 0.479 0.521 - 3 

4 250 100 & 250 0.474 0.556 - 6 

5 250 500 - - 0.469 16 

6 250 100 & 250 0.497 0.517 - 4 

7 250 100 & 250 0.415 0.437 - 0 

8 250 100 & 250 0.587 0.395 - 2 

9 250 100 & 250 0.569 0.512 - 6 

10 250 100 & 250 0.502 0.576 - 5 

11 250 100 & 250 0.781 0.714 - 7 

12 250 100 & 250 0.675 0.684 - 13 

13 250 100 & 250 0.606 0.673 - 1 

14 250 500 - - 0.669 27 

15 250 100 & 250 0.676 0.812 - 13 

16 250 100 & 250 0.755 0.806 - 25 

17 250 100 & 250 0.633 0.630 - 5 

 

Hit calling for the primary screen was conducted and Z-prime scores were calculated within each 

plate using the positive and negative controls (19). The average and standard deviation of the 

vehicle negative control for each plate was determined and all compounds were normalized to 

this control. A hit threshold was set as three standard deviations below the average of the 

negative control respective to each plate. Hits were defined by a decrease in thiamine uptake 

greater than three standard deviations from the thiamine only negative control. 
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Supplemental Table 2.2 Detailed dose response curve parameters for a subset of top hits 

from primary screen. 

 

  IC50 (µM) 

  Value SEM 95% CI 

Benzalkonium Chloride Hydrate 19.9 4.79 12.3, 32.9 

Nonoxynol-9 29.0 6.23 18.7, 44.6 

Hexylresorcinol 45.9 8.07 31.1, 65.0 

Aminacrine 4.69 1.34 2.69, 8.51 

Benzethonium Chloride 100 9.87 82.3, 123 

Chlorohexidine Dihydrochloride 2.56 0.439 1.81, 3.69 

Bithionol 45.1 13.4 25.5, 88.9 

Amprolium 7.17 1.04 5.32, 9.67 

Centrimonium Bromide 54.1 5.94 43.3, 67.4 

Amsacine* 4.37 0.703 3.14, 6.10 

Citric Acid* NA NA 17840, infinity 

 

IC50 were conducted on 96 well plates with inhibitor concentrations ranging from 200 µM to 2.5 

nM and a thiamine substrate concentration of 250 nM. Each inhibitor concentration was tested in 

duplicate in each experiment. Each IC50 curve was repeated 3 times except where an asterisks (*) 

notes only two experiments were conducted. All values are derived from Graph Pad Prism 8.0 

analysis setting of log(inhibitor) vs. normalized response -- Variable slope. IC50, half maximal 

inhibitory concentration; SEM, standard error of the mean; CI, confidence interval.  
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Supplemental Table 2.3 Detailed dose response curve parameters for selected hits with high 

clinical interaction ratios. 

 

  IC50 (µM) 

  Value SEM 95% CI 

Sertraline Hydrochloride 1.03 0.255 0.627, 1.73 

Posaconazole 1900 1770 450, 38300 

Videx 4040 5740 545, 1230000 

Quinapril 34.0 7.36 22.4, 52.8 

Penicillamine Ethanolamine Salt 857 372 428, 2900 

Quinidine Gluconate 181 52.8 106, 359 

Amitriptyline Hydrochloride 11.3 2.85 6.82, 18.8 

Amoxapine 46.6 14.7 25.7. 90.7 

Hydroxychloroquine Sulfate 17.0 5.24 9.17, 33.1 

Telmisartan NA NA 4160, infinity 

 

All values are derived from Graph Pad Prism 8.0 analysis setting of log(inhibitor) vs. normalized 

response -- Variable slope. IC50, half maximal inhibitory concentration; SEM, standard error of 

the mean; CI, confidence interval; NA, > 1 mM and considered relevant inhibition.
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Supplemental Table 2.4 Molecular descriptors used to train QSAR models. 

 

Descriptor Name Description 

RF Variable 

Importance 

1 BCUTp.1l Burden eigenvalue descriptor 20.84 

2 CrippenLogP Crippen octanol/water partition coefficient 73.99 

3 nHBint5 Hydrogen bonding descriptor 9.35 

4 SHssNH Atom type electrotopological state index 25.86 

5 SdssC Atom type electrotopological state index 61.81 

6 mindsCH Minimum atom-type E-State descriptor 39.28 

7 mindssC Minimum atom-type E-State descriptor 22.79 

8 mindsN Minimum atom-type E-State descriptor 100.00 

9 mindO Minimum atom-type E-State descriptor 0.00 

10 maxHBint3 

Maximum E-State descriptors of strength 

for potential hydrogen bonding 36.92 

11 maxHBint7 

Maximum E-State descriptors of strength 

for potential hydrogen bonding 24.92 

12 maxsCl 

Maximum E-State descriptors of strength 

for potential hydrogen bonding 0.00 

13 hmin 

Minimum hydrogen Estate value for all the 

atoms in the molecule 53.78 

14 gmin 

Minimum Estate value for all the atoms in 

the molecule 0.00 

15 ETA_Shape_P Extended topochemical atom descriptor 20.84 

16 ETA_EtaP_B Extended topochemical atom descriptor 52.85 

17 MDEC.22 Molecular distance edge descriptor 43.96 

18 MDEO.11 Molecular distance edge descriptor 0.00 

 

Eighteen molecular descriptors selected by feature selection algorithm that were used to train 

four machine learning classifiers. SDF files were processed with PaDEL software (23) to 

compute molecular descriptors for each screened compound. 
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Supplemental Table 2.5 Detailed dose response curve parameters for selected compounds 

from QSAR. 

 
 IC50 

 Value SEM 95% CI 

Loxapine 38400 89100 1570, infinity 

Cinchonidine 19.7 6.40 10.3, 41.5 

Tetramizole HCl  44.4 13.8 24.6, 90.0 

Pyrantel Pamoate 76.1 8.02 61.6, 95.1 

Levomilnacipran* NA NA infinity, infinity 

Clozapine* NA NA NA 

Cinchonine* 98.6 37.6 48.4, 269 

 

Drugs with a * represent values from two experiments. All values are derived from Graph Pad 

Prism 8.0 analysis setting of log(inhibitor) vs. normalized response -- Variable slope. IC50, half 

maximal inhibitory concentration; SEM, standard error of the mean; CI, confidence interval. 



 64 

Supplemental Table 2.6 Analysis of discrepancies between in vitro screen and QSAR model. 

 

 IC50 (µM) Results 

 Average SEM Screen QSAR 

Tetramizole HCl 44.4 13.8 Hit Non-Hit 

Pyrantel Pamoate 76.1 8.02 Hit Non-Hit 

Levomilnacipran* NC NC Hit Non-Hit 

Cinchonine* 98.6 37.6 Non-Hit Hit 

 

There were four discrepancies in hit calling between screen and the random forest QSAR model. 

Dose response curves were conducted for those compounds. Two of the four compounds were 

false negatives in the model, levomilnacipran was a false positive in the screen, and cinchonine 

was a false negative in the screen. NC = not convergent due to lack of inhibition; IC50, half 

maximal inhibitory concentration; SEM, standard error of the mean. *Represents compounds 

tested in two replicates instead of three.  
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Supplemental Table 2.7 Demographics for on and off groups used in EHR analysis. 

 

 On Off 

Gender 

     % Female 69 59 

     % Male 31 41 

Age 

     Median (range) 54 (16 - 90) 57 (0 - 90) 

Medication Orders based on unique Pharmaceutical Class 

     Median (range) 56.5 (4 - 113) 32 (1 - 132) 

 

Percent female and male as well as median age and range were computed for each group. 

Medication orders based on unique pharmaceutical classes (i.e. each pharmaceutical class is only 

counted once per patient irrespective of number of prescriptions) was also counted for both 

groups. 
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CHAPTER 3 

Intersection of Pre-Clinical, Clinical, and Real World Data: A 

multi-faceted approach to understand complex transporter-

mediated drug-nutrient interactions  

 

 

3.1 ABSTRACT 

 

In studies described in Chapter 2, trimethoprim, an antimicrobial agent, was predicted to be a 

potent, clinical inhibitor of thiamine transporter 2 (ThTR-2), the primary intestinal absorptive 

transporter of thiamine. Employing a multi-faceted approach using in vitro, clinical trial, and real 

world data, we aimed to determine the effect of trimethoprim on thiamine concentrations in 

healthy volunteers. A prospective randomized crossover clinical study was conducted where 

healthy volunteers were given a single oral dose of thiamine or thiamine + trimethoprim 

followed by intensive blood sampling. Because of the pandemic caused by COVID19, the 

clinical trial had to be curtailed, limiting the planned recruitment of 18 volunteers. However, 7 

healthy volunteers completed the study, and the results here represent our findings (termed 

preliminary) in 6 of these individuals. Our results in the 6 individuals showed that thiamine 

plasma concentrations increased following co-administration with trimethoprim. Thiamine 

maximum concentration achieved (Cmax) and area under the curve (AUC) were significantly 

higher when thiamine was co-administered with trimethoprim (paired t-test p-value: 0.015 and 
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0.017, respectively). In vitro transporter assays demonstrated that trimethoprim is a potent 

inhibitor of OCT1 (IC50: 4.2 ± 0.6 M), suggesting that in vivo, trimethoprim may inhibit 

thiamine uptake into the liver, resulting in reduced hepatic metabolism and higher thiamine 

levels. From the EHR data, we observed that HIV patients prescribed trimethoprim had 

significantly higher triglyceride, LDL cholesterol, and total cholesterol levels, a known 

consequence of OCT1 inhibition (p-values: < 2.2 x 10-16, 5.75 x 10-7, 5.82 x 10-7, respectively). 

Our preliminary findings in six volunteers suggest that in addition to OCT1 being an important 

target for drug-drug interactions, OCT1 may be a target for drug-nutrient interactions. 

 

3.2 INTRODUCTION 

 

In 2012, a clinical trial investigating fedratinib, a Janus Kinase 2 (JAK2) inhibitor, for the 

treatment of myelofibrosis was placed on clinical hold by the Food and Drug Administration 

(FDA) when several patients developed symptoms similar to Wernicke’s encephalopathy (WE), a 

life-threatening disease caused by Vitamin B1 (thiamine) deficiency (1-4). Since then, fedratinib 

has been approved; however, its package insert includes a boxed warning about serious and fatal 

encephalopathy, including Wernicke’s, and advises assessing thiamine levels prior and during 

treatment (5). 

 

Thiamine is a water-soluble vitamin which is obtained exclusively from our diet and is rapidly 

converted into thiamine monophosphate, thiamine pyrophosphate (TPP), and thiamine 

triphosphate (6-8). Thiamine is metabolized to TPP (thiamine + ATP ↔ TPP + AMP) by thiamine 

pyrophosphokinase (TPK1). TPP accounts for approximately 80% of total thiamine stores in the 
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human body and is the active form of the vitamin, acting as a coenzyme for various enzyme 

complexes (6). 

 

In vitro studies have shown that fedratinib is a potent inhibitor of thiamine transporter 2 (ThTR-

2; SLC19A3), the primary intestinal absorptive transporter of thiamine (9, 10). Subsequent 

studies have shown that other commonly prescribed drugs can also inhibit ThTR-2 (10-12). A 

recent highthroughput screen from our laboratory (Chapter 2) found that 146 prescription drugs 

(out of 1360 compounds screened) could inhibit ThTR-2 in vitro, several of which were 

predicted to inhibit ThTR-2 at clinically relevant intestinal concentrations (12). One of the drugs 

which was predicted to be a potent, clinical inhibitor was trimethoprim.  

 

Trimethoprim is an antibiotic, commonly combined with sulfamethoxazole, used in the treatment 

and prevention of various bacterial infections including but not limited to urinary tract infections, 

traveler’s diarrhea, pediatric otitis media, and shigellosis (13-15). Although it is given short term 

for many indications, trimethoprim (with sulfamethoxazole) can be taken chronically for certain 

indications including prevention of opportunistic infections such as Pneumocystis carinii 

pneumonia in patients diagnosed with human immunodeficiency virus (HIV) (13, 16-18). 

 

The goal of this study was to determine the effect of trimethoprim on thiamine concentrations in 

healthy volunteers and employ a multi-faceted approach using in vitro, clinical trial, and real 

world data to investigate our findings. More specifically, we designed and executed a 

prospective randomized, two-arm drug-nutrient interaction (DNI) clinical study in healthy 

volunteers to evaluate the inhibition potential of trimethoprim clinically and 1) performed in 
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vitro studies and 2) mined electronic health records to complement our clinical findings. As 

noted, because of the pandemic, only 7 individuals completed the trial, rendering the information 

presented here “preliminary.” 

 

3.3 METHODS 

 

3.3.1 Clinical study design 

This was a randomized, two-arm crossover study conducted in healthy volunteers. To be eligible, 

subjects had to provide written informed consent, be between the ages of 18 and 65 years, be in 

good health (determined by a screening questionnaires, physical examination, and clinical 

laboratory evaluations), and be willing to consume the study diet. Subjects who were excluded 

included those who were pregnant, breastfeeding, or unwilling to practice birth control during 

participation in the study; with self-reported severe food allergies or diet restrictions that would 

prevent consumption of study diets; with extreme obesity (BMI > 35); who were smokers or had 

smoked in the past year and/or had smoked or ingested THC/marijuana in the past week, or who 

were unwilling to comply with a 1-week washout; with alcohol use of > 2 servings/day or > 14 

servings/wk (on average) or self-reported binge drinking; on vitamin B supplements or multi-

vitamins or who had taken vitamin B supplements or multi-vitamins in the past 30 days and were 

not willing to comply with a 30 day washout of vitamin B supplements; with a possible folate 

deficiency; taking any other clinically significant drugs as judged by the investigator; undergoing 

treatment for infertility or hormone replacement therapy; who had taken antimalarials in the past 

60 days; who were participating in another research study while participating in this study; and 

who were Non-English speaking.  
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This study protocol was approved by the Health Sciences Campus Institutional Review Board at 

Tufts University and was registered on clinicaltrials.gov (NCT03746106). Subjects who meet all 

inclusion criteria and none of the exclusion criteria were enrolled into the study.  

 

The clinical study was performed at the Jean Mayer USDA Human Nutrition Research Center on 

Aging at Tufts University. There were two cycles in this study, each separated by at least 5 days 

but no more than two weeks. Subjects arrived on Day 0 of each cycle to pick-up three thiamine 

deficient meals (prepared by the site) which they were asked to consume throughout the day 

without any other food intake. Female subjects were asked to provide a urine sample to ensure 

non-pregnant status. On Day 1, subjects arrived at the site following an overnight fast and 

weight, vitals, and a health history questionnaire were used to review any change in medications 

or health status. Baseline blood and urine samples were taken before administration of 

vitamin/drug. A dose of either a) 5 mg thiamine or b) 5 mg thiamine and 300 mg trimethoprim 

were administered with 500mL of water. No food or additional water was provided for up to 4 

hours post-dose to avoid dilution of the dose or a food-drug interaction. After the 4-hour period, 

subjects were provided their first meal and water ad libitum. Subjects were provided three 

thiamine deficient meals during their visit on Day 1. Subjects were permitted to leave after the 

12-hour post-dose sample collection and were asked to fast overnight. On Day 2 of each cycle, 

subjects arrived at the site, submitted their urine collection kit, and had one more blood 

collection. 
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Plasma and red blood cell samples were collected at pre-dose and 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 

4, 6, 8, 10, 12, and 24 hours post-dose and urine samples were collected in intervals at 0-4, 4-8, 

8-12, and 12-24 hours post-dose. Plasma was immediately separated from red blood cells upon 

collection to avoid contamination from red blood cells.  

 

3.3.2 Bioanalytical methods 

Plasma thiamine was measured by the Newman lab at the Western Human Nutrition Research 

Center by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). 

Briefly, plasma aliquots (10 µL) were transferred to 96 well plates and enriched with 10 µL of 

thiamine-d3 and trimethoprim-d9. Plasma proteins were then precipitated by mixing with 80 µL 

of chilled 0.1% acetic acid with 0.55 mM ammonium acetate, and plates were agitated for 1 min 

and centrifuged for 15 min at 2247 g and 4C. Supernatants were then filtered through 0.2 µm 

PVDF filters plates (Agilent Technologies, Santa Clara CA) for 2 min under the same centrifugal 

conditions. Samples (10 µL) were injected on an H-class Acquity UPLC (Waters Corp, Milford 

MA) interfaced with an API Sciex 4000 QTRAP (Sciex, Framingham MA) mass spectrometer. 

Thiamine and trimethoprim were separated on a 2 x 150 mm, 3 µm Luna Silica column attached 

to a 0.5 µm depth x 0.004 in i.d. in-line KrudKatcher filter (Phenomenex, Torrance CA) at 35ºC. 

Mobile phases consisting of 0.1% acetic acid in water (solvent A) and 0.1% acetic acid in 

acetonitrile (solvent B) were used to create the following gradient at 0.4 mL/min: 2%B from 0-

0.5 min, to 13%B at 2.5 min, to 100%B at 3.0 min held to 4.5 min, and followed by re-

equilibration to initial condition at 2%B from 4.6-6.5 min. Analytes were detected by positive 

mode electrospray ionization using multi-reaction monitoring of precursor-product mass 

transitions for thiamine (265.0 > 122.1 m/z), thiamine-d3 (268.0 > 125.0 m/z), trimethoprim 
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(291.3 > 230.1 m/z), and trimethoprim-d9 (300.0 > 234 m/z) and quantified using internal 

standard methodology against 6-pt calibration curves.  

 

Red blood cell (RBC) thiamine pyrophosphate was also measured by the Newman lab at the 

Western Human Nutrition Research Center by high performance liquid chromatography with 

fluorescence detection after thiochrome derivatization using minor modifications of previously 

published methods (19). Briefly, RBCs (~50 mg) were weighed into 1.5 mL amber Eppendorf 

tubes and enriched with 10 µL of 264 µM of the internal standard 4-deoxypyridine (DPN). 

Proteins were then precipitated by mixing with 13 µL 70% perchloric acid, agitating for 2 min, 

and centrifuging for 10 min at 15000g and 4C. In a polypropylene 96-well plate, supernatant 

sub-aliquots (60 µL) were enriched with 5 µL universal pH indicator (Home Science Tools, 

Billings MT), and the thiochrome reactions were initiated by mixing with 35 µL of 12mM 

potassium ferricyanide in 3.35M sodium hydroxide. Samples were agitated for 1 min, incubated 

for 10 min, neutralized with 1M phosphoric acid, and then processed through 0.2 µm PVDF 

filter plates (Agilent Technologies) by spinning for 2 min at 2247g and 4C. The analyte in the 

25 µL injections was eluted on an Agilent 1200 HPLC equipped with a 4.6 x 150 mm, 5 µm 

Kinetex EVO C18 protected by 4 x 30 mm SecurityGuard C18 column (Phenomenex) using the 

following gradient of 0.15M dibasic potassium phosphate at pH7 (Solvent A) and methanol 

(Solvent B) at 45C and 1.75 mL/min: 0 min 10%B to 20%B at 2 min, to 60% B at 4.5 min, and 

to initial conditions to 90%B at 4.8 min to re-equilibrate for 2.3 min to for a total run time of 7.1 

min. Detection of the TPP derivative was accomplished by fluorescent detection with 367 

nm/435 nm excitation/emission, while DPN was monitor by photo diode array detector 

absorption at 320 nm. Residues were quantified against 6-pt calibration curves after correction 
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for matrix associated influence of derivatization efficiency assessed in each analytical batch 

using a common pooled RBC reference material. Intraday precision was 33.0+/-8%, while inter-

day coefficient of variation was 33.0% over six different days.  

 

3.3.3 Data cleaning and pharmacokinetic analyses 

Data cleaning and imputation were performed using Jmp Pro 14.1 (SAS Institute, Carry, 

NC). Outliers identified by Huber M robust fit procedure were removed. Missing values were 

imputed using multivariate normal imputations. One of 180 plasma thiamine and 7 of 180 RBC 

TPP measures were imputed in the final data set. 

 

Due to intra- and inter-subject variability in baseline thiamine concentrations, before any 

analyses were conducted, thiamine concentrations were adjusted by subtracting baseline 

thiamine concentrations (i.e. concentration at t = 0 hours) from thiamine concentrations at 

subsequent timepoints, respective to subject and cycle. Thiamine concentration at t = 0.25 hours 

was used for adjustment for one subject in one cycle since the concentration at t = 0 hours 

exceeded concentrations at all subsequent timepoints, and presumably represented a 

measurement error. Thiamine concentrations less than 0.005 nM post-adjustment were set to 0 

nM. 

 

Concentration-time profiles of thiamine were plotted using the ggplot2 package in R (version 

3.4.0). PK parameters were determined by non-compartmental analysis using the PKNCA 

package (20) in R. Data are expressed as mean ± standard error unless otherwise noted. 

Differences in PK parameters were analyzed in R using paired t-tests. 
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3.3.4 Transporter inhibition studies 

The OCT1 cell line stably transfected with SLC22A1 cDNA to HEK293 FlpIn cells (21) was 

cultured in DMEM supplemented with penicillin (100 U/mL), streptomycin (100 mg/mL) and 

10% FBS. Cells were seeded at 80,000 cells per well onto poly-d-lysine coated 96-well plates for 

16-24 hours to reach 95% confluence. To initiate the inhibition study, the cells were washed 

once in 100 µL warm HBSS and then incubated in 90 µL of the HBSS buffer containing trace 

amount of radiolabeled thiamine, [3H]-thiamine (American Radiolabeled Chemicals) with 1 µM 

unlabeled thiamine together with various concentrations of trimethoprim at 37°C for 10 min. 

Each plate contained control wells with quinidine as canonical inhibitor of OCT1 which were 

used for normalization in data analysis. Following the incubation, the cells were washed twice 

with 200 μL ice-cold HBSS buffer. MicroScint-20 (Perkin Elmer) (100 µL) was added to the 96-

well plate and sealed with an adhesive plastic cover. The plate was placed on a shaker for 1-2 

hours. The plates were read in a MicroBeta2 (Perkin Elmer) using the dual counting mode. 

 

3.3.5 Prediction of transporter-mediated inhibition 

The DNI potential for trimethoprim at OCT1 was evaluated in accordance to the 2020 FDA 

Drug-Drug Interaction Guidance (https://www.fda.gov/media/134582/download). The estimated 

maximum plasma trimethoprim concentration at the inlet to the liver was calculated using the 

following equation: Iin,max = Imax +(Fa×Fg×ka×Dose)/Qh/RB. Fa and Fg were both estimated to be 1 

since the bioavailability of trimethoprim is approximately 90-100% (22, 23). Additionally, ka, 

RB, and Qh were assumed to be 0.1 min-1, 1, and 1.62 L/min, respectively. Lastly, the average 

maximum trimethoprim plasma concentration achieved (Cmax) from our study was used for Imax.    

https://www.fda.gov/media/134582/download
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Inhibition potency for OCT1 was determined using equation and cut-off: R = 1+ ((fu,p × 

Iin,max)/IC50) ≥ 1.1, where fu,p was estimated to be 0.56 (24). 

 

3.3.6 Thiamine Pyrophosphokinase 1 (TPK1) enzyme assay 

To determine if trimethoprim is an inhibitor of human TPK1, adenosine monophosphate (AMP), 

a by-product of the enzymatic reaction between TPK1 and thiamine, levels were determined in a 

TPK1 enzyme reaction using AMP-Glo™ Assay (Promega). The 0.5 mL enzyme reaction 

mixture (pH 7.4), which contained 100 M MgCl2, 500 M ATP, 15 g human TPK1 (Novus 

Biologics, NBP19910210), and a substrate (with or without inhibitor), was incubated for 30 min 

at 37°C (25). Substrates that were tested in the enzyme reaction included 0.1 mM thiamine, 1 

mM thiamine, and 1 mM pyrithiamine. Trimethoprim was tested as a substrate (1 mM) and 

inhibitor (1, 5, and 10 mM) in the enzyme reaction. A negative control (NC) reaction was 

prepared similarly to the enzyme reaction, however without TPK1.  

 

After incubating the reaction in a 37°C water bath, samples were immediately transferred to ice 

and a 25 L aliquot was transferred to a 96-well white plate. The reaction was terminated by 

adding an equal volume (25 L) of AMPGlo™ Reagent I and incubated for 1 hour at room 

temperature. 50 L of AMP Detection Solution was added to each sample and incubated for 1 

hour at room temperature and luminescence was measured with a GloMax luminometer 

(Promega) (https://worldwide.promega.com/-/media/files/resources/protocols/technical-

manuals/101/amp-glo-assay-protocol.pdf?la=en).  

 

https://worldwide.promega.com/-/media/files/resources/protocols/technical-manuals/101/amp-glo-assay-protocol.pdf?la=en
https://worldwide.promega.com/-/media/files/resources/protocols/technical-manuals/101/amp-glo-assay-protocol.pdf?la=en
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Data are expressed as mean ± standard deviation unless otherwise noted. 

 

3.3.7 Real world data analyses 

The UCSF Research Data Browser was utilized to search for patients diagnosed with HIV who 

had at least one laboratory test value reported for 1) triglyceride (“Triglycerides, serum”, 

“Triglycerides, Serum”; 5,079 patients), 2) LDL cholesterol (“LDL Cholesterol”, “Cholesterol, 

LDL”; 4,315 patients), or 3) total cholesterol (“Cholesterol, total”; 5,580 patients). ICD10 code 

B20 (which is associated with “human immunodeficiency virus [HIV] disease”) was used to 

identify and filter for HIV patients. Diagnoses with missing diagnosis start dates were excluded.  

 

Laboratory values reported as an inequality were changed to a numerical value (i.e. < 0.5 mg/dL 

= 0.5 mg/dL). Laboratory values with missing values (i.e. DE-IDENTIFIED) and laboratory 

values without a laboratory collection date were excluded. Laboratory values taken before the 

initial HIV diagnosis start date were excluded (i.e. laboratories taken on or after diagnosis start 

date were included). Additionally, patients who did not have sex or date of birth recorded in the 

EHR were excluded from the analysis.  

 

For each analysis, patients were divided into two groups depending on their medication 

prescriptions. Specifically, patients prescribed trimethoprim were grouped into the “on” drug 

group. Search terms for trimethoprim were as follows: “Bactrim”, “Cotrim”, “Polytrim” 

“Primsol”, “Proloprim”, “Septra”, “Sulfamethoprim”, “Sulfatrim”, “Sulmeprim”, “Trimeth”, 

“Trimethoprim”, “Trimpex”, “Uroplus”. There were 2,367 patients in the database with an HIV 

diagnosis and at least one medication order to trimethoprim (irrespective to timing or 
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laboratories). Only medication orders with an oral route of administration and with a medication 

order start date were included in the analysis. Medication orders with a start date prior to initial 

HIV diagnosis start date were excluded. The remaining patients (i.e. individuals who were never 

prescribed trimethoprim) were grouped into the “off” drug group. Only patients with one 

laboratory value reported in their electronic health record were included in the “off” drug group.  

 

Patients in the “on” drug group were further filtered based on their laboratory collection dates 

relative to their first and last medication order start dates. Laboratories collected after the 

patient’s last medication order start date were excluded. Additionally, laboratories collected 

before the patient's first medication order start date or within 7 days after their first medication 

order start date were excluded. A minimum of 7 days between first medication order start date 

and laboratory collection date was chosen to allow drug levels to reach steady-state and for an 

effect to be seen. For patients with more than one laboratory value, only the laboratory value 

closest to the first medication order start date was included. Lastly, patients were age- and sex- 

matched using the MatchIt package (26) in R to be comparable in both groups (Supplemental 

Table 3.1). 

 

Two-sample Mann-Whitney U test were performed to evaluate if there was a significant 

difference in laboratory values when comparing “on” and “off” drug groups and ggplot2 was 

used to plot the data in R. 
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3.4 RESULTS  

 

The results described here are largely obtained from six of the seven individuals who completed 

the clinical study. Original recruitment goals could not be met as a result of the impact of the 

COVID19 pandemic on shutting down clinical research operations at Tufts University. 

 

3.4.1 Thiamine concentrations increase when co-administered with trimethoprim  

A randomized, two-arm crossover DNI study was conducted in 7 healthy volunteers to determine 

the effect of trimethoprim on the absorption and disposition of thiamine. All subjects completed 

the study and no adverse events were reported. One subject was not included in the analysis due 

to incomplete sampling in the combination arm; thus, all analyses will be based on n = 6 

subjects. The demographic and baseline characteristics of the healthy volunteers are shown in 

Table 3.1. 

 

Results in these six volunteers showed that thiamine plasma concentrations increased following 

co-administration with trimethoprim (Figure 3.1). The maximum concentration achieved (Cmax) 

and area under the curve from 0 to 4 hours (AUC0-4) were significantly higher when thiamine 

was co-administered with trimethoprim (paired t-test p-value: 0.015 and 0.017, respectively). 

(Table 3.2 and Figure 3.1).  

 

Additionally, the ratio of unadjusted thiamine pyrophosphate to unadjusted thiamine 

(TPP/Thiamine) was increased in the thiamine only arm at every timepoint (Supplemental 
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Figure 3.1), suggesting increased parent (thiamine), decreased metabolite (TPP), or a 

combination of both. 

 

3.4.2 Trimethoprim prevents metabolism of thiamine by inhibiting OCT1 and potentially TPK1 

Organic cation transporter 1, OCT1 (SLC22A1), is a major hepatic uptake transporter for 

thiamine. In vitro data demonstrated that trimethoprim is a potent inhibitor of OCT1 (IC50: 4.2 ± 

0.6 M) (Figure 3.2). Using the FDA guidance for evaluating transporter-mediated drug 

interactions, trimethoprim was predicted to cause a clinically relevant drug-nutrient interaction at 

OCT1 (R = 11.4) following a single 300 mg oral dose, which suggests that trimethoprim may 

inhibit OCT1-mediated thiamine uptake into the liver in vivo, thus reducing metabolism of 

thiamine to its metabolites, and elevating its plasma levels. 

 

Preliminary data showed that thiamine (1 mM) and pyrithiamine significantly increased AMP 

luminescence in the TPK1 enzyme assay by 9.21  0.158 and 11.4  0.218-fold respectively, 

suggesting that both are substrates of TPK1, as noted in previous literature (6, 27). Trimethoprim 

(at 1 mM) did not increase AMP luminescence and is unlikely to be a substrate of TPK1. 

However, trimethoprim at high concentrations (1, 5, and 10 mM) reduced TPK1 activity by 30.7 

 3.82, 46.0  0.871, and 47.0  0.931% respectively (Figure 3.3).   

 

3.4.3 Electronic health record analyses complement in vitro OCT1 inhibition findings 

To investigate the clinical relevance of trimethoprim, we mined the electronic health records 

(EHRs) database at UCSF. In particular, we compared specific laboratory values in HIV patients 

prescribed trimethoprim to the respective laboratory values in HIV patients not prescribed 
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trimethoprim. Based on the inclusion and exclusion criteria described in the methods, we were 

able to classify patients as “on” drug (i.e. prescribed trimethoprim) or “off” drug. Triglyceride 

(p-value < 2.2 x 10-16, n =  464 “on” drug, n =  928 “off” drug), LDL cholesterol (p-value: 5.75 x 

10-7, n =  313 “on” drug, n =  1149 “off” drug), and total cholesterol (p-value: 5.82 x 10-7, n = 

483 “on” drug, n = 966 “off” drug) levels were significantly increased in HIV patients prescribed 

trimethoprim compared to age- and sex-matched HIV patients not prescribed trimethoprim, when 

comparing laboratories taken on or after initial HIV diagnosis start date, consistent with 

inhibition of OCT1 (Figure 3.4 and Table 3.3).  

 

Since statin use can influence lipid levels and be a confounding factor, we performed sub-

analyses where we excluded patients who had at least one prescription to drugs (classified as 

antihyperlipidemic-HMG-CoA reductase inhibitors (statins)) in his/her electronic health record. 

In all three analyses, patients in the “on” drug group had significantly higher triglycerides, LDL 

cholesterol, and total cholesterol levels (respectively) compared to the “off” drug group (Table 

3.3). 

 

3.5 DISCUSSION  

 

Although membrane transporters are known targets for drug-drug interactions and are thoroughly 

investigated throughout the drug development process, DNIs with thiamine have been largely 

ignored until the fedratinib trial (28-30). Using multiple levels of evidence, this study suggests 

that in addition to OCT1 being an important target for drug-drug interactions, OCT1 may be a 

target for drug-nutrient interactions. 
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Though our study was interrupted by the COVID19 pandemic, and only seven volunteers 

completed the clinical study, the data from these individuals, which was complemented with real 

world data, are consistent with three major findings. First, systemic thiamine concentrations 

increase when the vitamin is co-administered with trimethoprim. Second, trimethoprim inhibits 

OCT1, and is predicted to inhibit the transporter at clinically relevant plasma concentrations.  

Finally, trimethoprim use is associated with increased lipid levels in data from EHRs, which is 

consistent with the drug inhibiting OCT1.   

 

An unexpected finding was that thiamine concentrations increased when thiamine was co-

administered with trimethoprim. Our initial hypothesis had been that trimethoprim would behave 

like fedratinib and inhibit intestinal ThTR-2, leading to reduced thiamine plasma levels. 

Although time to maximum thiamine concentration (Tmax) was similar in both arms and to values 

reported in previous studies (31-34), Cmax and AUC were significantly higher when thiamine was 

co-administered with trimethoprim. These data suggest that another mechanism was at play, 

which resulted in increased, rather than decreased,  thiamine levels. Additionally, our 

preliminary data show that, contrary to our initial hypothesis, trimethoprim may be beneficial for 

patients who are diagnosed or at-risk for thiamine deficiency and should be considered when 

prescribing antibiotics to this patient population. 

 

Thiamine is a known substrate of OCT1 (35); Oct1 knockout mice have increased plasma 

thiamine levels and reduced hepatic thiamine levels (21, 35). However, to our knowledge, before 

this study, the potential of trimethoprim to inhibit hepatic OCT1-mediated thiamine uptake has 
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not been described. Based on the experimental IC50 determined in this study, trimethoprim is 

predicted to cause a clinically relevant drug-nutrient interaction at OCT1 in the liver. Although a 

recent study by Jensen et al did not find a significant difference in plasma thiamine 

concentrations relative to OCT1 genotype, this may have been because of the high dose of 

thiamine used in the study. A 200 mg dose of thiamine may have been too high to detect 

genotype-mediated differences in thiamine concentrations in their intensive PK study (i.e. 

thiamine concentrations in the portal vein exceeded the Km). Further, differences in trough 

concentrations may have been missed in the second study due to intersubject variability (33).  

 

Transporter interactions may be complex. For example, drugs such as fedratinib and 

trimethoprim inhibit multiple transporters and enzymes. Preclinical studies have shown that rats 

chronically dosed with clinically equivalent doses of fedratinib do not demonstrate neurological 

changes consistent with thiamine deficiency (36, 37). Further retrospective analyses of patients 

treated with fedratinib in the clinical trial suggest that pre-existing and underlying conditions (i.e. 

malnutrition) may have led to the symptoms observed since the mean thiamine levels from 161 

patients were normal (38). Together, these data suggest that drug-induced thiamine deficiency 

may be complicated, affected by a patient’s baseline health (e.g. patients suffering from 

malnutrition or alcoholism) and baseline thiamine levels as well as by the ability of drugs to 

interact with multiple transporters and enzymes.   

 

Using electronic health records, we were able to use real world data to demonstrate that HIV 

patients prescribed trimethoprim had significantly higher triglycerides, LDL cholesterol, and 

total cholesterol levels, a known consequence to OCT1 inhibition (21), indicating that 
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trimethoprim may be phenocopying the effect of a reduced function transporter. Mandal et al 

(39) previously showed that administration of trimethoprim to rats caused a significant increase 

in total serum lipid and cholesterol levels as well as modulated lipid and glycogen contents in the 

liver. The results reported in this study are consistent with the known phenotype of an OCT1 

knockout mice, which exhibit higher triglycerides, LDL cholesterol, and total cholesterol levels 

(21).  The EHR data suggest that HIV patients prescribed trimethoprim may be at an increased 

risk for comorbidities related to high lipid levels (40-43). Furthermore, drugs which may cause 

increased lipid levels as a result of off-target effects should be reconsidered in patients taking 

trimethoprim concomitantly.  

 

There are a number of limitations to this study. First, trimethoprim was dosed orally, as we were 

interested in evaluating the effect of trimethoprim inhibition on intestinal SLC19A3-mediated 

thiamine absorption. Without an intravenous dose as well, we had no ability to detect the effects 

of trimethoprim on thiamine bioavailability. Additionally, our study design was modeled on the 

assumption that thiamine has a short half-life, which was not the case. Sampling time points past 

24 hours post-dose are needed for accurate estimation of half-life and clearance. Finally, our 

EHR analysis was limited by the lack of data on SLC19A3 and OCT1 genotype of the patients, 

how long patients were on trimethoprim, and patient compliance. As more EHR data becomes 

available for research purposes, we will be able to account for these variables and covariates and 

increase the sample size and robustness of our analysis. Controlled, randomized clinical trials in 

both healthy volunteers and in patients diagnosed with HIV are needed to help address these 

limitations. 

 



 92 

Overall, our study, though limited by the pandemic, demonstrates that trimethoprim increases 

thiamine concentrations. The mechanism probably involves inhibition of thiamine uptake via 

hepatic OCT1. Our study highlights that trimethoprim should be considered for patients who 

may be at-risk for thiamine deficiency; however, alternative anti-microbials should be considered 

for patients who may be predisposed to increased lipid levels and are chronically taking 

trimethoprim. This study suggests that although OCT1 is an established target for drug-drug 

interactions, OCT1 may be a target for drug-nutrient interactions as well. Additionally, this 

study, in combination with Chapter 2, highlights the importance of investigating transporter- 

mediated drug-nutrient interactions throughout drug development, both in vitro as well as in the 

clinic. 
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3.7 FIGURES 
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Figure 3.1 Average thiamine concentrations and pharmacokinetic parameters after 

administration of thiamine alone or in combination with trimethoprim in 6 healthy 

volunteers. (A) Thiamine concentrations were determined following a 5 mg oral dose of 

thiamine alone or with a 300 mg oral dose of trimethoprim. Data represent mean thiamine 

concentration ± standard error at each timepoint respective to arm. (B) Maximum concentration 

achieved (Cmax) and (C) area under the concentration-time curve from t = 0 hours to t = 4 hours 

(AUC0–4) were compared between both arms using a paired t-test. Median values are overlayed 

in green. One subject was not included in the analysis due to incomplete sampling in the 

combination arm; thus, the data shown here is from n = 6 subjects. 
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Figure 3.2 Inhibition of [3H]-thiamine uptake by trimethoprim in HEK293-FlpIn cells 

overexpressing human OCT1 (SLC22A1). Circles represent mean ± SD from triplicate wells. 

IC50 value (mean ± SD) shown was from two independent studies in triplicate wells.   
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Figure 3.3 Results of the thiamine pyrophosphokinase 1 (TPK1) activity assay. 

Luminescence was measured as a marker for adenosine monophosphate (AMP) production in 

human TPK1 reactions following incubation with known substrates (thiamine and pyrithiamine). 

Trimethoprim was tested at various concentrations as a substrate and inhibitor. NC, negative 

control.  
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Figure 3.4 Endogenous biomarker levels in patients prescribed trimethoprim compared 

with levels in patients not prescribed trimethoprim using electronic health record data. 

Boxplots comparing triglycerides, LDL cholesterol, and total cholesterol laboratory values in 

HIV patients prescribed trimethoprim versus HIV patients not prescribed trimethoprim (p-value: 

< 2.2 x 10-16, 5.75 x 10-7, 5.82 x 10-7, respectively). 
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Supplemental Figure 3.1 Average thiamine pyrophosphate to thiamine ratio after 

administration of thiamine alone or in combination with trimethoprim in 6 healthy 

volunteers. Data represent mean ratio at each timepoint respective to arm. Ratio represents 

unadjusted thiamine pyrophosphate to unadjusted thiamine (TPP/Thiamine). One subject was not 

included in the analysis due to incomplete sampling in the combination arm; thus, the data shown 

here is from n = 6 subjects. 
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3.8 TABLES 

 

Table 3.1 Demographics of study cohort analyzed as part of the clinical trial.  

 

Patient Demographics 

Number of patients (#) 6 

Sex 

Female (#) 

Male (#) 

 

4 

2 

Age (years) 47.8  6.36 

Race 

Caucasian (#) 

Other (#) 

 

4 

2 

Hispanic  

Yes (#) 

No (#) 

 

4 

2 

Weight (kg) 74.7  7.08 

Height (cm) 169  3.13 

BMI (kg/m2) 26.0  2.00 

Baseline Thiamine (nM) 9.91  5.23 

 

Age, weight, height, BMI, and baseline thiamine are reported as average ± standard error. 

Baseline thiamine was calculated using pre-dose thiamine concentrations from both treatment 

arms. Although seven individuals completed the clinical study, one subject was not included in 

the analysis due to incomplete sampling in the combination arm; thus, the data shown here is 

from n = 6 subjects. 
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Table 3.2 Summary of pharmacokinetic parameters of thiamine in six healthy volunteers 

with or without trimethoprim. 

 

 Thiamine only Thiamine + 

Trimethoprim 

p-value 

Thiamine 

Tmax (hr) 1.5 (1 - 3) 1.5 (1 - 2.5) 0.530 

Cmax (nM) 12.8  3.59 34.5  9.19 0.0154 

AUC0-4 (nM*hr) 23.1  7.66 87.6  24.8 0.017 

AUC0-24 (nM*hr) 44.4  10.9 206  58.6 0.0234 

 

All data are reported as mean ± standard error except for Tmax which is reported as median 

(range). P-values were determined using paired t-tests. Tmax, time to maximum plasma 

concentration; Cmax, maximum plasma concentration achieved; AUC0–4, area under the 

concentration-time curve from t = 0 hours to t = 4 hours; AUC0–24, area under the concentration-

time curve from t = 0 hours to t = 24 hours. 
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Table 3.3 Summary table of electronic health record analyses comparing laboratory values 

in patients prescribed trimethoprim versus patients not prescribed trimethoprim. 

 

  Triglycerides 
LDL 

cholesterol 

Total 

cholesterol 

Main analyses 

Total patients 
On drug (N) 464 313 483 

Off drug (N) 1278 1149 1410 

Matched 

patients 

Ratio 1:2 all 1:2 

On drug (N) 464 313 483 

Off drug (N) 928 1149 966 

Average On drug (mg/dL) 275 112 185 

Average Off drug (mg/dL) 165 98.7 169 

Median On drug (mg/dL) 176 107 177 

Median Off drug (mg/dL) 121 95 165 

p-value < 2.2 x 10-16 5.75 x 10-7 5.82 x 10-7 

Sub-analyses: patients with prescription to statin(s) excluded 

Total patients 
On drug (N) 391 248 402 

Off drug (N) 1089 959 1219 

Matched 

patients 

Ratio 1:2 all All 

On drug (N) 391 248 402 

Off drug (N) 782 959 1219 

Average On drug (mg/dL) 264 109 178 

Average Off drug (mg/dL) 162 99.7 169 

Median On drug (mg/dL) 171 105 172 

Median Off drug (mg/dL) 120 97 165 

p-value < 2.2 x 10-16 4.79 x 10-3 1.69 x 10-3 
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Supplemental Table 3.1 Demographics for on and off groups used in EHR analysis.  

 

 On Drug Off drug p-value 

Main analyses 

Triglycerides 

Number of patients (#) 464 928 NA 

Average age (years) 42.7 42.9 0.606 

% Male 89.0 90.4 0.469 

LDL cholesterol 

Number of patients (#) 313 1149 NA 

Average age (years) 44.2 45.6 0.079 

% Male 85.6 87.3 0.495 

Total cholesterol 

Number of patients (#) 483 966 NA 

Average age (years) 42.9 42.9 0.963 

% Male 87.2 88.6 0.473 

Sub-analyses: patients with prescription to statin(s) excluded 

Triglycerides 

Number of patients (#) 391 782 NA 

Average age (years) 42.0 42.2 0.679 

% Male 88.2 89.4 0.621 

LDL cholesterol 

Number of patients (#) 248 959 NA 

Average age (years) 43.4 43.5 0.980 

% Male 83.5 86.5 0.254 

Total cholesterol 

Number of patients (#) 402 1219 NA 

Average age (years) 42.3 42.9 0.362 

% Male 85.8 87.4 0.476 

 

Percent male and average age were computed for each group. NA, not applicable. 
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CHAPTER 4 

Oxypurinol Pharmacokinetics and Pharmacodynamics in 

Healthy Volunteers: Influence of BCRP Q141K polymorphism 

and patient characteristics 

 

 

4.1 ABSTRACT 

 

Pharmacogenomics is the study of how genetic factors affect drug response. The missense 

variant, breast cancer resistance protein (BCRP) p.Q141K, which encodes a reduced function 

BCRP, has been linked to poor response to allopurinol. Using a multi-faceted approach, we 

aimed to characterize the relationship(s) between BCRP p.Q141K, the pharmacokinetics and 

pharmacodynamics (PKPD) of oxypurinol (the active metabolite of allopurinol), and serum uric 

acid (SUA) levels. A prospective clinical study (NCT02956278) was conducted in which healthy 

volunteers were given a single oral dose of 300 mg allopurinol followed by intensive blood 

sampling. Data were analyzed using non-compartmental analysis and population PKPD 

modeling. Additionally, electronic health records were analyzed to investigate whether clinical 

inhibitors of BCRP phenocopied the effects of the p.Q141K variant with respect to SUA.  

_______________________ 

*Modified from the publication: Vora B and Brackman DJ, Zou L, Garcia-Cremades M, Sirota 

M, Savic RM and Giacomini KM. (2021) “Oxypurinol Pharmacokinetics and 

Pharmacodynamics in Healthy Volunteers: Influence of BCRP Q141K polymorphism and 

patient characteristics.” Clinical and Translational Science. 
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Subjects homozygous for p.Q141K had a longer half-life (34.2 ± 12.2 hours vs 19.1 ± 1.42 

hours) of oxypurinol. The PKPD model showed that females had a 24.8% lower volume of 

distribution. Baseline SUA was affected by p.Q141K genotype and renal function; that is, it 

changed by 48.8% for every 1 mg/dL difference in serum creatinine. Real world data analyses 

showed that patients prescribed clinical inhibitors of BCRP have higher SUA levels than those 

that have not been prescribed inhibitors of BCRP, consistent with the idea that BCRP inhibitors 

phenocopy the effects of p.Q141K on uric acid levels. This study identified important covariates 

of oxypurinol PKPD that could affect its efficacy for the treatment of gout as well as a potential 

side effect of BCRP inhibitors on increasing uric acid levels, which has not been described 

previously. 

 

4.2 INTRODUCTION 

 

Gout, an inflammatory arthritis associated with high serum uric acid (SUA) levels, is a painful 

disease that is associated with comorbidities. Although there are several drugs on the market for 

the treatment of gout, such as febuxostat, allopurinol is recommended as first line treatment due 

to its tolerability, safety, and lower cost (1). As a xanthine oxidase inhibitor, allopurinol inhibits 

the formation of uric acid; however, response to the drug is highly variable, with studies showing 

as few as 21% of patients reaching an acceptable treatment endpoint (2). Thus, recognizing 

features and covariates that affect allopurinol response is vital in determining the right dose, 

schedule, and patient population. 
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Many studies have been performed to investigate the relationship between allopurinol and anti-

hyperuricemic response. A spectrum of covariates, such as baseline SUA, diuretic use, creatinine 

clearance, and body weight, have been examined for use in predicting pharmacodynamic (PD) 

response, but results have been conflicting (3-5). Recently, breast cancer resistant protein 

(BCRP) p.Q141K (rs2231142) has been shown to associate with poor response to allopurinol 

(i.e. greater than the rheumatologist recommended SUA levels of < 6 mg/dL) (6-8).  

 

Both allopurinol and oxypurinol, the active metabolite of allopurinol, are substrates of BCRP, 

which acts as an efflux pump on the apical membrane of the renal proximal tubule and intestinal 

epithelia and on the canalicular membrane of hepatocytes (7). Allopurinol is rapidly and 

extensively metabolized to oxypurinol, as reflected by its short half-life (1.2 hours). While the 

major route of elimination for allopurinol is metabolism to oxypurinol, oxypurinol is eliminated 

in the urine almost entirely as unchanged drug (9). Thus, BCRP can affect the pharmacokinetics 

of allopurinol and/or oxypurinol by reducing absorption of allopurinol following an oral dose, 

limiting distribution of allopurinol and oxypurinol, and aiding in the elimination of both. BCRP 

p.Q141K has been shown to alter the PK and PD of many substrates, such as rosuvastatin, and is 

typically associated with increased systemic levels and improved pharmacologic response. Thus, 

it is difficult to understand the mechanisms by which the variant associates with poor response to 

allopurinol (10). 

 

Using a multi-faceted approach, we aimed to characterize the relationship(s) between BCRP 

p.Q141K, oxypurinol PKPD, and SUA levels. Specifically, we: (1) characterized the PKPD 

relationship of oxypurinol and SUA; (2) quantified the effects of covariates affecting the PKPD 
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of oxypurinol, including the effects of BCRP p.Q141K; and (3) determined whether clinical 

inhibitors of BCRP phenocopy the effects of the p.Q141K variant on SUA levels. 

 

4.3 METHODS 

 

4.3.1 Study participants 

Healthy human volunteers between 18 and 50 years of age were recruited for this study and 19 

subjects were enrolled. All subjects were evaluated to be healthy on the basis of medical history 

provided by a study questionnaire. Volunteers were excluded if they were taking any 

medications that are known to interact with uric acid levels, BCRP function, or allopurinol PK. 

Individuals with elevated liver enzymes (>1.5x normal range), elevated creatinine concentrations 

(>1.5x normal range), and abnormal platelet and/or white blood cell count levels were also 

excluded. Individuals carrying the HLA-B*58:01 allele were excluded from this study because 

of the increased risk for allopurinol-induced Stevens-Johnson syndrome. All participants gave 

written, informed consent and the study was registered on clinicaltrials.gov (NCT02956278). 

 

4.3.2 Genotyping 

BCRP p.Q141K (rs2231142) was genotyped by TaqMan assay (Applied Biosystems, assay ID 

C__15854163_70, Foster City, CA) in DNA extracted from a cheek swab. The reaction mixture 

consisted of 5-10 ng DNA, 12.5μL of TaqMan Genotyping Master Mix (Applied Biosystems, 

Foster City, CA), 1.25μL of TaqMan genotyping assay mix, and 11.25μL of distilled water. The 

cycling conditions were as follows: 95°C for 10 minutes and 40 cycles of 95°C for 15 seconds 

then 60°C for 1 minute. The reaction was run on a BioRad MyCycler (Bio-Rad, Hercules, CA) 
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and allele discrimination determined by ABI 7900 Fast HT Sequence Detection Systems 

(Applied Biosystems, Foster City, CA). 

 

4.3.3 Clinical study design 

This study protocol was reviewed and approved by Western Institutional Review Board. Healthy 

individuals of European or Asian heritage were recruited into this study and informed consent 

was obtained from each subject. Prior to their enrollment in the study, subjects were screened. 

The screening included two stages: (1) a questionnaire on health, medications, and self-reported 

ethnicity as well as a cheek swab to determine BCRP p.Q141K genotype and (2) a blood sample 

to measure complete blood count (CBC), hepatic function, renal function, uric acid, and HLA-

B*58:01 genotype.  

 

Subjects were enrolled under two protocols. The first protocol incorporated a multi-dose design, 

in which subjects were asked to arrive at the site following an overnight fast. An initial blood 

sample was taken to establish baseline SUA and serum creatinine before drug was administered. 

An oral dose of 300 mg of allopurinol was administered to all subjects, followed by blood 

sampling at: 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, and 24 hours post-dose. The subjects were then asked 

to take allopurinol 300 mg once daily and return to the site on Day 6 for their final dose of 

allopurinol. Blood samples were drawn at 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 24, 48, and 72 hours 

after the final dose. 

 

For the second protocol, subjects were asked to arrive at the site following an overnight fast. An 

initial blood draw was taken to establish baseline SUA and serum creatinine before drug was 
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administered. A single dose of 300 mg of allopurinol was administered to all subjects, followed 

by blood sampling at: 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 24, 48, and 72 hours post-dose. 

 

Samples collected following a single dose of allopurinol (from both protocols) were used for 

subsequent analyses. 

 

Serum was isolated from blood samples using clotting and centrifugation and stored at -80°C for 

analysis of uric acid, creatinine, allopurinol, and oxypurinol concentrations. 

 

4.3.4 Bioanalytical methods 

Allopurinol and oxypurinol were analyzed by Quintara Discovery (Hayward, CA) using a 

validated liquid chromatography tandem mass spectrometry (LC/MS-MS) method. Samples were 

diluted as needed. An aliquot of 20 L of serum samples was treated with 200 L of 25% 

Methanol 75% acetonitrile containing internal standard (Fulvestrant). The mixture was vortexed 

on a shaker for 15 minutes and subsequently centrifuged at 4000rpm for 15 minutes. The 

supernatant was transferred to a microtiter plate for the injection to the LC-MS/MS. Calibration 

standards and quality control samples were prepared by spiking the test compound into 

corresponding blank matrix and processed with the unknown samples. The quantification limit 

was 2 ng/mL for serum.  

 

Uric acid and creatinine levels were analyzed by Open Medicine Institute according to standard 

spectrophotometry protocol. 
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4.3.5 Non-compartmental PK analysis 

The concentration-time profiles of allopurinol and oxypurinol were plotted using GraphPad 

Prism 8.4 (GraphPad Software, San Diego, CA). PK parameters of allopurinol and oxypurinol 

were determined by non-compartmental analysis using the PKNCA package (11) in R (version 

3.4.0). Values below the limit of quantification were excluded from the analysis. 

 

Data are expressed as mean ± standard error unless otherwise noted. Differences in 

demographics, clinical characteristics, and PK parameters relative to genotype were analyzed in 

R using a one-way ANOVA followed by Tukey’s post-hoc test for multiple test correction 

(TukeyHSD). P-values less than 0.05 were considered statistically significant. 

 

4.3.6 Collection of mouse luminal contents 

All animal experiments were approved by the University of California, San Francisco (UCSF) 

IACUC. Experiments were performed using 12-week-old male C57BL/6 mice (Charles River). 

The method of collection was described previously (12) with modifications. In brief, mouse 

intestine was evenly divided into four segments and opened longitudinally. The contents were 

gently removed using forceps without scraping the surface and resuspended in 1 mL of solution 

(50 mM Tris-HCl (pH 7.0), 50 mM Mannitol, 2 mM EGTA, 8 g/ml Aprotinin, 10 g/ml 

Leupeptin, 2mM DTT). Protein concentration was quantified by the BCA assay (Thermo 

Scientific). 
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4.3.7 Xanthine oxidase assay 

Xanthine oxidase activities in the mouse luminal contents were determined according to the 

manufacture’s protocol (Abcam, ab102522). In brief, in a black wall 96-well plate, 10 L of 

sample solution was added in 50 L of Reaction Mix containing assay buffer, hypoxanthine, and 

OxiRed probe, with or without oxypurinol (1 mM), an inhibitor of xanthine oxidase. ddH2O was 

added to adjust the total volume to 100 L. 10 mU of xanthine oxidase enzyme was used as the 

positive control. The plate was incubated at 37°C for 1 hour, protected from light. The 

fluorescent signal was measured at Ex/Em= 535/590nm. 

 

4.3.8 Population PKPD model 

Longitudinal oxypurinol PK and SUA data were linked using the population approach using non-

linear mixed effects modeling software NONMEM version 7.3.0 (ICON Development Solutions, 

Ellicott City, Maryland). The analysis was performed sequentially. First, the PK analysis was 

performed. In this analysis, Fm was used to represent the fraction of the allopurinol dose 

systemically available as oxypurinol and Kfm denotes the formation rate constant, similar to a 

previous model for oxypurinol (13). Values below the limit of quantification were excluded from 

the analysis. Nine out of 250 samples were either missing/not collected or below the limit of 

quantification. 

 

Secondly, an Emax model was used to link the predicted individual oxypurinol PK concentration 

data with the SUA data (PD). Genotype (discrete), gender (discrete), race (discrete), serum 

creatine (continuous), and weight (continuous) were all assessed as potential covariates for every 

PKPD parameter in both the PK and PKPD model. Covariate selection was guided by using the 
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stepwise covariate modelling (SCM) approach with the PsN software (version 4.8.1). This 

method consists of stepwise testing different covariate-parameter relationships with forward 

inclusion and backward exclusion approaches with significance levels of 0.05 and 0.01, 

respectively. The inclusion of covariates in the final model was done by considering scientific 

plausibility, significance, and clinical relevance following stepwise covariate selection. 

 

Model parameters were estimated using first order conditional estimation (FOCE) method with 

the option for interaction. Between subject variability (BSV) was modeled exponentially and 

residual variability was modeled using a combination of additive and proportional error. Model 

selection was based on goodness-of-fit (GOF) plots and the difference in the objective function 

value (OFV) between nested models. Final models were internally validated through simulation-

based diagnostics using visual predictive check plots (VPC) (1000 simulations). The precision of 

the final parameter estimates was evaluated using 1000 simulated bootstrap datasets using PsN 

software (14). 

 

Model development, diagnostics, and graphing were done using R (version 3.4.0) including 

packages such as ggplot2 and Xpose (15). Percent CV was calculated as follows: sqrt(OMEGA) 

* 100.  The final PKPD model was used to simulate (n = 500) SUA profiles after 30 days of once 

daily dosing of 300 mg of allopurinol as a post-hoc analysis of covariate effects. 
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4.3.9 Electronic health record analyses to evaluate uric acid levels in patients prescribed 

clinical inhibitors of BCRP  

To investigate whether drugs that are clinical inhibitors of BCRP can phenocopy the effect of 

p.Q141K on baseline SUA, we mined the electronic health records (EHRs) at UCSF and 

identified subjects both on and off BCRP inhibitors with SUA levels in the database. The UCSF 

Research Data Browser was utilized to search for patients who had a numeric serum/plasma uric 

acid laboratory test value reported, giving a total of 26,328 patients and 120,570 laboratory 

values. Values reported as an inequality were changed to a numerical value (i.e. < 0.5 mg/dL = 

0.5 mg/dL). Lab values with missing values (i.e. DE-IDENTIFIED) and lab values without a lab 

collection date were excluded. 

 

Patients were divided into two groups depending on their medication prescriptions. Specifically, 

patients prescribed cyclosporine and/or eltrombopag, both of which are identified as clinical 

inhibitors of BCRP by the Food and Drug Administration (https://www.fda.gov/drugs/drug-

interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-

inducers), were grouped into the “on” drug group. Search terms included: “Cyclosporine”, 

“Sandimmune”, “Neoral”, “Gengraf”, “Eltrombopag”, and “Promacta”. Only medication orders 

with an oral route of administration and with a medication order start date were included in the 

analysis, which resulted in 1,785 patients. The remaining patients (i.e. individuals who were 

never prescribed cyclosporine or eltrombopag) were grouped into the “off” drug group. Only 

patients with one uric acid level reported in their electronic health record were included in the 

“off” drug group, which reduced the sample size to 15,042 individuals. Additionally, for both 
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groups, patients with a prescription to any uric acid lowering medication were excluded from the 

analysis. 

 

Patients in the “on” drug group were further filtered based on their laboratory collection date 

relative to their first medication order start date. Serum/plasma uric acid laboratory tests 

collected before the patient's first medication order start date or within 7 days after their first 

medication order start date were excluded. A minimum of 7 days between medication order start 

date and laboratory value collection date was chosen to allow drug levels to reach steady-state 

and for an effect to be seen. For patients with more than one lab value, only the lab value closest 

to the first medication order start date was included. In total, 273 patients met these criteria and 

were in the “on” drug group. Lastly, patients were age- and sex- matched using the MatchIt 

package (16) in R to be comparable in both groups which resulted in a final sample sizes of 273 

patients “on” drug and 2,730 patients “off” drug (Figure 4.4 and Supplemental Table 4.1). 

 

In order to address the possibility that underlying disease or drug class contributed to the 

differences seen in uric acid levels, for the therapeutic class-specific analysis looking at 

immunosuppressants, patients were further assigned to subgroups. More specifically, patients in 

the “on cyclosporine” drug group were filtered to only include patients with a prescription to 

cyclosporine and exclude patients with prescriptions for any other immunosuppressants. 

Conversely, the “on other immunosuppressants” drug group was filtered to only include patients 

with at least one prescription for an immunosuppressant, but exclude patients with a prescription 

to cyclosporine. In addition to the inclusion/exclusion criteria above, patients with prescriptions 

to eltrombopag were also excluded from both groups. This resulted in 174 patients in the “on 
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cyclosporine” drug group and 3,503 patients in the “on other immunosuppressants” drug group 

who met the medication order inclusion/exclusion criteria and had at least one serum/plasma uric 

acid level reported. Patients in both groups were further filtered based on their laboratory 

collection date relative to their first medication order start date for cyclosporine for the “on 

cyclosporine” drug group and any other immunosuppressant (except cyclosporine) for the “on 

other immunosuppressants” drug group, respectively. The rest of the analysis was performed as 

described for the “on” drug group above; after age- and sex- matching the groups, we had 119 

patients in the “on cyclosporine” drug group and 833 patients in the “on other 

immunosuppressants” drug group (Figure 4.4 and Supplemental Table 4.1). 

 

Wilcoxon rank sum test with continuity correction was performed to evaluate if there was a 

significant difference in laboratory values when comparing both groups and ggplot2 was used to 

plot the data in R (version 3.4.0). 

 

4.4 RESULTS 

 

4.4.1 Study cohort  

Healthy volunteers of European or Asian ancestry were screened for participation in this study. 

These ethnicities were chosen due to the high minor allele frequencies of BCRP p.Q141K in 

individuals of Asian (29%) and European (9%) ancestries (17). Of the 178 subjects screened, 19 

completed the study and allopurinol was well tolerated. Most subjects were excluded based on 

ABCG2 genotype, some were excluded based on HLA-B*58:01 genotype and concomitant 

medications. Demographics of the study subjects by genotype can be found in Table 4.1. There 
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was a significant difference in serum creatinine (SCr) concentrations between the homozygous 

reference (CC) and heterozygous (CA) groups (adjusted p-value: 2.99 x 10-7) and homozygous 

reference (CC) and homozygous variant (AA) groups (adjusted p-value: 1.19 x 10-6). 

Additionally, baseline SUA was significantly different between the homozygous reference (CC) 

and heterozygous (CA) groups (adjusted p-value: 5 x 10-4). If we exclude females from this 

comparison given the higher ratio of females to males in the CC group compared with the other 

groups (CA and AA), we continue to see a significant difference in serum creatinine (SCr) 

concentrations between the CC and CA groups (adjusted p-value: 0.00338) and CC and AA 

groups (adjusted p-value: 1.73 x 10-5) as well as a slight difference between the CA and AA 

groups (adjusted p-value: 0.0474). In addition, excluding females from the analysis results in a 

greater significant difference in baseline SUA among the various genotype groups: CC and CA 

(adjusted p-value: 5.29 x 10-13), CC and AA (adjusted p-value: 0.00176), and CA and AA 

(adjusted p-value: 0.0163). 

 

4.4.2 BCRP p.Q141K associates with a longer half-life of oxypurinol and the concentration-time 

profile of oxypurinol demonstrates enterohepatic recycling 

Plasma concentration-time profiles and the non-compartmental PK parameters were similar for 

allopurinol regardless of genotype (Table 4.2 and Figure 4.1). Oxypurinol half-life was 

significantly longer in patients homozygous for the p.Q141K variant compared to patients 

homozygous for the reference allele when using a one-way ANOVA followed by Tukey’s post-

hoc test for multiple test correction (34.2 ± 12.2 hours vs 19.1 ± 1.42 hours, adjusted p-value: 

0.047) (Table 4.2 and Figure 4.1). However, BCRP p.Q141K genotype had no statistically 
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significant effect on any other PK parameter such as maximum concentration achieved (Cmax), 

area under the curve (AUC), and time to maximum concentration (Tmax) (Table 4.2). 

 

Additionally, multiple peaks were observed in the individual concentration-time profiles of 

oxypurinol, suggesting that enterohepatic recycling may be occurring (Supplemental Figure 

4.1). Experimental studies showed that xanthine oxidase activity is present in mouse intestinal 

lumen (Supplemental Figure 4.2), suggesting that the intestinal lumen is a potential site of 

action for oxypurinol.  

 

4.4.3 PKPD covariate model shows a significant effect of gender on oxypurinol volume of 

distribution and genotype and SCr on baseline SUA 

A one compartment PK model with first order absorption was found to best fit the oxypurinol 

concentration-time data. Parameter and BSV estimates (noted in parentheses) for clearance 

(CL/Fm), volume of distribution (V/Fm), and the formation rate constant (Kfm) were 1.74 L/hr 

(23.6%), 57.0 L (18.7%), and 0.771 hr-1(55.2%) respectively (Table 4.3). In the PKPD model, 

BSV was estimated for baseline SUA (13.3%). The rest of parameter estimates can be found in 

Table 4.3. 

 

Gender, genotype, race, serum creatinine, and weight were tested for their effects on the PK 

parameters of oxypurinol as well as the effects of oxypurinol on SUA. The final PKPD model 

included gender as a significant covariate on apparent volume of distribution. BCRP p.Q141K 

genotype and SCr were also included as significant covariates for baseline SUA (Table 4.3). 

Females had a 24.8% lower V/Fm compared to males. Baseline SUA changed by 48.8% for every 
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1 mg/dL difference in SCr. Additionally, baseline SUA increased by 35.4% and 24.4% for the 

genotypes of CA or AA, respectively, as compared to reference BCRP p.Q141K (CC). Based on 

the results from our non-compartmental analysis where half-life was significantly longer in 

patients homozygous for the BCRP p.Q141K variant, we were interested in exploring the effect 

of genotype on clearance and volume of distribution. In our model, apparent clearance also 

appeared to correlate with genotype; however, it was not significant and thus BCRP p.Q141K 

genotype was not included as a covariate for clearance nor volume of distribution in the final 

model. Visual predictive checks and goodness of fit plots confirmed that the final PKPD model 

adequately described the observed data (Figure 4.2, Supplemental Figure 4.3, and 

Supplemental Figure 4.4).  

 

Simulations were performed to visualize the role of genotype and SCr on the pharmacodynamic 

effects of oxypurinol after 30 days of once daily dosing of 300 mg of allopurinol. Simulations 

confirmed that individuals who have at least one variant allele or SCr levels > 0.78 mg/dL (the 

average SCr value in our dataset) have 1) higher baseline SUA levels on average and 2) are less 

likely to achieve and maintain the target concentration of < 6 mg/dL given a flat dose of 

allopurinol (Figure 4.3).  

 

4.4.4 Electronic health record analyses show clinical inhibitors of BCRP can phenocopy the 

p.Q141K variant 

To investigate whether drugs that are clinical inhibitors of BCRP can phenocopy the effect of 

p.Q141K on baseline SUA, we mined the electronic health records (EHRs) at UCSF and 

identified subjects both on and off BCRP inhibitors with SUA levels in the database. 
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Specifically, we compared uric acid levels in patients prescribed cyclosporine and/or 

eltrombopag, both of which are identified as clinical inhibitors of BCRP by the Food and Drug 

Administration (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-

drug-interactions-table-substrates-inhibitors-and-inducers), to uric acid levels in patients not 

prescribed either of those drugs. Based on the inclusion and exclusion criteria described in the 

methods, we were able to classify patients as “on” drug (i.e., prescribed cyclosporine and/or 

eltrombopag) or “off” drug (Figure 4.4). 

 

A significant difference in uric acid levels was observed between the two groups (p-value: 1.74 x 

10-6; n = 273 “on” drug, n = 2730 “off” drug), with patients prescribed at least one clinical 

inhibitor of BCRP having higher levels compared to age- and sex-matched patients not 

prescribed either (5.95 mg/dL vs 5.36 mg/dL) (Figure 4.4). To test the sensitivity of this analysis 

and selection of controls, 10 iterations were performed of randomly selected 273 age- and sex- 

matched patients from the “off” drug group to allow for a 1:1 ratio between the “on” drug and 

“off” drug groups; the “on” drug group had significantly higher uric acid levels compared to the 

“off” drug group in every iteration tested (Supplemental Figure 4.5). Additional analyses with a 

maximum separation date of one year between the first medication order start date and lab 

collection date still showed a significant difference (p-value = 0.00074) in uric acid levels 

between the “on” drug (n = 199) and “off” drug (n = 1990) groups, further demonstrating the 

robustness of our analysis. 

 

In order to address the possibility that underlying disease or drug class contributed to the 

differences seen in uric acid levels, additional analyses were performed within the class of 
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immunosuppressants. Uric acid levels in patients prescribed cyclosporine were compared to 

those prescribed other immunosuppressants (Figure 4.4). Individuals prescribed cyclosporine 

(and no other immunosuppressants) had significantly higher uric acid levels (p-value: 0.00462; n 

= 119 “on cyclosporine”, n = 833 “on other immunosuppressants”) compared to age- and sex-

matched individuals prescribed other immunosuppressants (5.98 mg/dL vs 5.58 mg/dL) (Figure 

4.4). 

 

4.5 DISCUSSION 

 

BCRP p.Q141K has the potential to affect the pharmacokinetics and pharmacodynamics of many 

drugs by reducing efflux and increasing systemic levels. However, interestingly, p.Q141K has 

been associated with poor response to allopurinol in two GWAS (6, 7) and in candidate gene 

studies (8, 18). The current study provides the first investigation into the relationship between 1) 

BCRP p.Q141K and allopurinol/oxypurinol PKPD in a prospective clinical trial and 2) BCRP 

inhibition and uric acid levels using real world data. 

 

This study resulted in three major findings. First, we found that p.Q141K associated with a 

longer half-life of oxypurinol. Second, we showed that gender was a significant covariate for 

oxypurinol volume of distribution and higher baseline SUA levels caused by factors such as 

BCRP genotype and kidney function may lead to inadequate response to allopurinol. Finally, we 

found that clinical inhibitors of BCRP (cyclosporine and eltrombopag) associated with increased 

SUA levels, suggesting the potential of these drugs to cause hyperuricemia and increased risk for 

gout in susceptible patient populations.  



 125 

 

One of our major findings was that the half-life of oxypurinol was significantly longer in 

subjects who were homozygous for the reduced function variant compared to those who were 

homozygous for the reference allele of BCRP. Since half-life is dependent on CL and V, this 

effect may have been driven by slight (albeit not significant) decreases in CL/F and increases in 

V/F in individuals homozygous for the variant allele compared to those homozygous for the 

reference allele (Table 4.2). CL of oxypurinol is determined to a large extent by kidney function. 

Data from BioBank Japan suggest that the reduced function allele, p.Q141K, associates with 

reduced kidney function (lower eGFR and thus increased serum creatinine levels) in Asian 

subjects (19), consistent with a trend towards reduced CL in the individuals homozygous for 

p.Q141K, which was observed in both our non-compartmental analysis and PK model. The slight 

increases in V/F in individuals homozygous for the variant allele may reflect increased 

distribution of oxypurinol into tissues in which BCRP is expressed (e.g., intestine, colon, liver, 

kidney, brain, and thyroid (20)), consistent with a reduced ability of the variant transporter to 

protect these tissues. Despite this finding, the overall exposure and Cmax of oxypurinol remained 

similar between genotype groups (Table 4.2). Further, the finding that oxypurinol half-life is 

increased with BCRP genotype may be confounded by the limited sampling time in some 

subjects (24 hours) compared to the oxypurinol half-life; however, the trend remains when 

excluding these subjects.  

 

To our knowledge, no other study has demonstrated enterohepatic recycling of oxypurinol and 

these findings need to be confirmed in additional PK studies. Preliminary studies identified 

xanthine oxidase activity in the contents obtained from the mouse intestinal lumen 
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(Supplemental Figure 4.2). This result is consistent with a previous electron microscopic study 

showing the presence of the enzyme in the mucous of the duodenum (21) and reports suggesting 

that the enzyme may be secreted into the intestinal lumen (22, 23) or be expressed and secreted 

by gut microbiota (24). Though speculative, intestinal lumen xanthine oxidase may be a target of 

oxypurinol, and enterohepatic recycling of oxypurinol may contribute to its overall 

pharmacological effects on reducing SUA. An intestinal lumen target for oxypurinol is consistent 

with GWAS results suggesting that individuals who harbor the reduced function variant of 

BCRP (who would have less enterohepatic recycling) have a poorer response to the drug (6-8).  

 

Employing EHRs as real world evidence, clinical inhibitors of BCRP associated with increased 

SUA levels, demonstrating that prescription drug inhibitors of BCRP may phenocopy the BCRP 

p.Q141K variant. Our therapeutic-class analysis suggested that these observations were a result 

of inhibition of BCRP and not due to a drug class or underlying disease effect. The list of drugs 

used in the “on other immunosuppressants” drug group were: azathioprine, mycophenolic acid, 

mycophenolate mofetil, tacrolimus, and sirolimus, and the literature suggests that none of these 

drugs appear to interact with BCRP at clinically relevant concentrations; however, limited to no 

information was found about clinical inhibition of BCRP by mycophenolate mofetil, 

mycophenolic acid, and azathioprine or its metabolite, 6-mercaptopurine (25-27).    

 

Simulations after 300 mg once daily dosing of allopurinol showed that subjects with higher 

baseline SUA due to BCRP p.Q141K genotype or SCr levels were less likely to maintain healthy 

(< 6 mg/dL) uric acid levels.  Baseline SUA is an important determinant of allopurinol response, 

as shown in previous studies (28-31). The results of this current study suggest that concomitant 
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BCRP inhibitors may also contribute to increases in SUA levels and may contribute to 

hyperuricemia, and therefore allopurinol response. Subjects with higher baseline SUA for any 

reason may require higher doses of allopurinol to achieve and maintain healthy uric acid levels. 

However, effect sizes observed in these simulations are based on a small sample size and need to 

be further investigated and validated.  

 

There are a number of limitations to this study. First, allopurinol was dosed orally, as allopurinol 

for IV injection is only indicated for prevention of tumor lysis syndrome (32). Oral dosing 

limited our ability to precisely detect effects of BCRP p.Q141K on bioavailability, and therefore 

on clearance and volume of distribution of the drug. Additionally, sample size of this trial was 

small, which was powered to detect large differences in oxypurinol clearance. Thus, there may 

be differences in oxypurinol PK parameters among genotype groups that went undetected in our 

study. Similarly, our model was limited due to the small sample size and study design; a larger 

study with a multiple dose regimen in patients diagnosed with gout is needed to better compare 

genotype groups, identify significant covariates, capture the multiple peaks in the concentration-

time profile, and improve our simulations. Although we attempted to include enterohepatic 

circulation in the model by evaluating different previously published modeling approaches (33), 

this addition was not significant in terms of objective function and did not adequately capture the 

multiple peaks, most likely due to the limited data and large variation observed.  Finally, our 

EHR analysis was limited by lack of data on the BCRP genotype of the patients, the indication 

for which the patients were prescribed the respective medications, and how long they were on 

each medication. As more EHR data becomes available for research purposes, we will be able to 
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account for these variables and covariates, increase the sample size and robustness of our 

analysis, and potentially perform a joint GWAS and EHR analysis in the future.  

 

The renewed interest in the treatment of gout stems from its growing prevalence and associated 

morbidities. Allopurinol remains the first-line treatment, but recent GWAS have indicated that 

subjects harboring the BCRP p.Q141K variant may not respond as well to allopurinol (6-8). 

Overall, our comprehensive study was able to identify covariates important in the PK and PD of 

oxypurinol and use real world data to phenocopy the p.Q141K variant using clinical inhibitors of 

BCRP. Additionally, this study provides evidence that individuals who harbor the reduced 

function variant of BCRP may have lower levels of oxypurinol in their intestine. If further 

studies show the intestine to be an important site of action for oxypurinol, this could help explain 

the poor response seen in these individuals, despite the similar systemic exposure of oxypurinol. 

This study highlights how genetic variants can influence the pharmacodynamics of a drug 

through transporter-mediated drug-variant interactions.  
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4.6 FIGURES 

 

 
Figure 4.1 Concentration time profiles for (A) allopurinol and (B) oxypurinol after a single 

dose of allopurinol to healthy volunteers. Allopurinol and oxypurinol concentrations were 

determined following a 300 mg single oral dose of allopurinol. (0) CC, homozygous reference; 

(1) CA, heterozygous; (2) AA, homozygous variant. Data represent the mean ± standard error 

from 19 individuals of various genotypes (see Table 4.1); note that data were missing or below 

the limit of quantification at several timepoints so not all mean ± standard error are 

representative of all (n = 19) subjects. No error bars are present if the standard error is 

encompassed within the point. 
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A B 

  
Figure 4.2 Evaluation of oxypurinol PK and PKPD models through visual predictive 

checks. PK and PKPD model evaluation of oxypurinol concentrations and serum uric acid 

concentrations after single dose administration of allopurinol. Visual predictive checks show the 

observed data (grey dots), the median (solid line) and 5th and 95th percentiles (dashed lines) of 

the observed data, and the 95% confidence intervals of the model simulated data (shaded areas) 

for (A) plasma oxypurinol concentrations and (B) serum uric acid concentrations. 
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Figure 4.3 Simulated plasma concentrations of serum uric acid (SUA) at (A) baseline and 

(B) following allopurinol administration. Model predicted (A) baseline serum uric acid 

concentrations and (B) percentage of patients with SUA levels greater than 6 mg/dL on Day 31 

after 30 days of once daily dosing of 300 mg of allopurinol stratified by serum creatinine and 

genotype. Simulations were run using 1000 patients per genotype + SCr group (total n = 6000). 

Percentages reported were calculated for each of the six genotype + SCr groups. 
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Figure 4.4 Uric acid levels in patients prescribed at least one clinical inhibitor of BCRP 

compared with levels in patients not prescribed a clinical inhibitor of BCRP from 

electronic health record data. (A) Flow chart describing the inclusion/exclusion criteria for the 

analyses and (B) boxplots comparing uric acid laboratory values in patients prescribed 

cyclosporine and/or eltrombopag versus patients not prescribed cyclosporine and/or eltrombopag 

(p-value: 1.74 x 10-6) and (C) patients prescribed cyclosporine (and no other 

immunosuppressant) versus patients prescribed other immunosuppressants (except cyclosporine) 

(p-value: 0.00462). 
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Supplemental Figure 4.1 Individual concentration-time profiles for oxypurinol up to 8 

hours post-dose after a 300mg single dose of allopurinol in 19 healthy volunteers. The 

numbers at the top of each plot are the subject identification number. 
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Supplemental Figure 4.2 Xanthine oxidase activity in mouse intestinal contents. (A) 

Xanthine oxidase activity in reaction buffer (white bar) and a reaction mix with 10 mU of 

xanthine oxidase (black bar). (B) Fluorescence signal generated by intestinal contents obtained 

from different segments of the intestine without (white bar) or with (black bar) 1 mM 

oxypurinol. The fluorescence intensity is normalized by the amount of protein added in reaction 

mixture. The difference between the white bar and the black bar represents the xanthine oxidase 

activity. 
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Supplemental Figure 4.3 Goodness of Fit (GoF) plots for (A) oxypurinol PK and (B) serum 

uric acid levels. DV, observed concentration; PRED, predicted concentration; IPRED, 

individual predicted concentration; CWRES, conditional weighted residuals. 
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Supplemental Figure 4.4 Visual predictive checks (VPCs). VPCs show the observed data 

(grey dots), the median (solid line) and 5th and 95th percentiles (dashed lines) of the observed 

data and the 95% confidence intervals of the model simulated data (shaded areas) for plasma 

oxypurinol concentrations stratified by (A) gender and serum uric acid concentration stratified by 

(B) genotype and (C) serum creatinine. 
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Supplemental Figure 4.5 Sensitivity analysis comparing patients prescribed at least one 

clinical inhibitor of BCRP vs patients not prescribed a clinical inhibitor of BCRP at a 1:1 

ratio. Ten iterations of sampling the “off” drug group at a 1:1 ratio showed that the “on” drug 

group had significantly higher serum/plasma uric acid levels in each of the ten iterations. 
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4.7 TABLES 

 

Table 4.1 Demographics and clinical characteristics of study cohort. 

 

 Genotype 

Demographics & Clinical 

Characteristics 
(0) CC (1) CA (2) AA 

Number of patients (#) 9 7 3 

Male/Female (#) 4/5 6/1 2/1 

Weight (kg) 71.5 ± 6.25 69.9 ± 7.31 73.4 ± 4.54 

Male (kg) 72.3 ± 8.89 71.7 ± 8.37 73.8 ± 7.82 

Female (kg) 70.9 ± 9.63 59.0 72.6 

Race    

East Asian (#) 4 5 1 

South Asian (#) 2 1 0 

Filipino (#) 0 1 1 

European (#) 1 0 0 

Mixed (#) 2 0 1 

Serum creatinine (mg/dL) 0.716 ± 0.010 0.819 ± 0.016* 0.844 ± 0.023* 

Baseline serum uric acid (mg/dL) 4.62 ± 0.284 6.70 ± 0.368** 6.07 ± 0.133 

 

Weight, serum creatinine, and baseline serum uric acid are reported as average ± standard error. 

All statistical tests were done using one-way ANOVA followed by Tukey’s post-hoc test for 

multiple test correction. *Serum creatinine was significantly different between (0) CC and (1) 

CA (adjusted p-value: 2.99 x 10-7) and between (0) CC and (2) AA (adjusted p-value: 1.19 x 10-

6). **Baseline serum uric acid was significantly different between (0) CC and (1) CA (adjusted 

p-value: 5 x 10-4). (0) CC, homozygous reference; (1) CA, heterozygous; (2) AA, homozygous 

variant. 
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Table 4.2 Summary of the effect of the BCRP p.Q141K variant allele on the 

pharmacokinetic parameters of allopurinol and oxypurinol computed by non-

compartmental analysis. 

 

Parameter (0) CC (1) CA (2) AA 

Number of patients (#) 9 7 3 

Allopurinol    

Cmax (ng/mL) 1370 ± 130 1930 ± 617 1550 ± 453 

Tmax (hr) 1.5 (0.5 - 2) 1 (0.5 - 2) 2 (1 - 2) 

AUC0-10 (μg*hr/mL)a 3.78 ± 0.346 3.47 ± 0.549 2.76 ± 0.637 

CL/F (L/hr) 94.5 ± 9.73 97.8 ± 12.5 92.8 ± 26.6 

V/F (L) 149 ± 17.0 160 ± 22.3 148 ± 40.9 

t1/2 (hr) 1.10 ± 0.060 1.14 ± 0.078 1.11 ± 0.025 

Oxypurinol    

Cmax (ng/mL) 5930 ± 409 6440 ± 592 6380 ± 1350 

Tmax (hr) 4 (1.5 - 10) 4 (1.5 - 6) 6 (3 - 6) 

AUC0-24 (μg*hr/mL) 93.9 ± 8.07 93.4 ± 9.99 105 ± 20.6 

CL/F (L/hr)b 1.89 ± 0.227 1.81 ± 0.276 1.38 ± 0.466 

V/F (L)b 49.9 ± 4.53 61.9 ± 9.58 56.6 ± 11.6 

t1/2 (hr)b 19.1 ± 1.42 23.9 ± 1.35 34.2 ± 12.2* 

 

All data are reported as mean ± standard error except for Tmax which is reported as median 

(range). *Half-life was significantly longer in the homozygous variant group compared to the 

homozygous reference group when using an ANOVA comparison followed by Tukey’s post-hoc 

test for multiple test correction (adjusted p-value: 0.047). a n = 16 for AUC0-10 since three 

subjects had concentrations below the limit of quantification at t = 10 hours. b n = 18 since 

terminal half-life could not be accurately estimated for one subject. (0) CC, homozygous 

reference; (1) CA, heterozygous; (2) AA, homozygous variant; Cmax, maximum plasma 

concentration; Tmax, time to maximum concentration; AUC0-10, area under the concentration-time 

curve from t = 0 hours to t = 10 hours; CL/F, apparent clearance; V/F, apparent volume of 

distribution; t1/2, half-life; AUC0-24, area under the concentration-time curve from t = 0 hours to t 

= 24 hours. 
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Table 4.3 Parameter estimates in the final oxypurinol PKPD covariate model. 

 

Parameter 
Estimate (%RSE)  

[95% CI] 

BSV (%RSE)  

[95% CI] 

PK model   

Kfm (1/hr) 
0.771 (17.8) 

[0.535, 1.06] 

55.2% (38.1) 

[29.0, 69.6] 

CL/Fm (L/hr) 
1.74 (7.18) 

[1.51, 2.00] 

23.6% (41.5) 

[9.61, 29.5] 

V/Fm (L) = 𝜃𝑉/𝐹𝑚
 x (1 + 𝜃𝑔𝑒𝑛𝑑𝑒𝑟 ) 

𝜃𝑉/𝐹𝑚
 = 57.0 (8.05)  

[48.1, 65.6] 

18.7% (41.7) 

[7.53, 22.9] 
 𝜃𝑔𝑒𝑛𝑑𝑒𝑟 (𝑚𝑎𝑙𝑒) = 0 - 

 𝜃𝑔𝑒𝑛𝑑𝑒𝑟 (𝑓𝑒𝑚𝑎𝑙𝑒) = -0.248 (35.7)  

[-0.395, -0.067] 
- 

PKPD model   

Emax 1 - 

C50 (ng/mL) 
2590 (11.6) 

[2170, 3330] 
- 

Baseline SUA (mg/dL) = 

𝜃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝑈𝐴 x (1 + 𝜃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) x  

(1 + 𝜃𝑆𝐶𝑅 x (SCr – 0.78)) 

𝜃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝑈𝐴 = 4.61 (5.64)  

[4.19, 5.23] 

13.3% (61.4) 

[4.07, 18.6] 

 𝜃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (𝐶𝐶) = 0 - 

 𝜃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (𝐶𝐴) = 0.354 (29.3) 

[0.139, 0.543] 
- 

 𝜃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (𝐴𝐴) = 0.244 (40.4) 

[0.047, 0.452] 
- 

 𝜃𝑆𝐶𝑅 = 0.488 (24.6) 

[0.246, 0.717] 
- 

Residual variability   

Proportional error for PK (%CV) 
25.4 (11.1) 

[19.6, 30.7] 
- 

Proportional error for PD (%CV) 
7.67 (5.54) 

[6.81, 8.45]  
- 

 

BSV is reported as percent coefficient of variation (%CV). CL/Fm, apparent clearance of 

oxypurinol; V/Fm, apparent volume of distribution; Kfm, formation rate constant; BSV, between 

subject variability; Emax, maximum effect; C50, concentration needed to achieve 50% effect; 

SUA, serum uric acid; SCr, serum creatinine; Fm refers to the fraction of the allopurinol dose 

which can be converted into oxypurinol. The additive part of the combined residual error model 

was fixed to 0 mg/dL (PD model) and to 0.01 ng/mL (PK model). Residual standard errors 

(%RSE) and 95% confidence intervals (95% CI) and were obtained from the bootstrap analyses.  
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Supplemental Table 4.1 Demographics for on and off groups used in EHR analysis.  

 

  
On drug Off drug p-value 

Prescribed a clinical inhibitor of BCRP vs not 

     % Male 58.6 58.6 1.0 

     Average age  42.4 42.4 0.999 

Prescribed a clinical inhibitor of BCRP vs not (cut-off of 365 days) 

     % Male 57.3 57.3 1.0 

     Average age   41.3 41.3 1.0 

  
On cyclosporine 

On other 

immunosuppressants 
p-value 

Prescribed cyclosporine vs other immunosuppressants 

     % Male 55.5 51.9 0.524 

     Average age   39.4 41.7 0.222 

 

Percent male and average age were computed for each group. 
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CHAPTER 5 

Drugs in COVID19 Clinical Trials: Predicting transporter-

mediated drug-drug interactions using in vitro assays and real 

world data  

 

 

5.1 ABSTRACT 

 

Numerous drugs are currently under accelerated clinical investigation for the treatment of 

COVID19; however, well-established safety and efficacy data for these drugs are limited. The 

goal of this study was to predict the potential of 25 small molecule drugs in clinical trials for 

COVID19 to cause clinically relevant drug-drug interactions (DDIs), which could lead to 

potential adverse drug reactions (ADRs) with the use of concomitant medications. We focused 

on 11 transporters, which are targets for DDIs. In vitro potency studies in membrane vesicles or 

HEK293 cells expressing the transporters coupled with DDI risk assessment methods revealed 

that 21 of the 25 drugs met the criteria from regulatory authorities to trigger consideration of a 

DDI clinical trial. Analyses of real world data from electronic health records, including a 

database representing nearly 120,000 COVID19 patients, were consistent with several of the  

_______________________ 

*Modified from material under review: Yee SW and Vora B, Oskotsky TT, Zou L, Jakobsen S, 

Enogieru OJ, Koleske ML, Kosti I, Rödin M, Sirota M, Giacomini KM. “Drugs in COVID19 

clinical trials: Predicting transporter-mediated drug-drug interactions using in vitro assays and 

real-world data.” 
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drugs causing transporter-mediated DDIs (e.g., sildenafil, chloroquine, and hydroxychloroquine). 

This study suggests that COVID19 patients, who are often older and on various concomitant 

medications, should be carefully monitored for ADRs. 

 

5.2 INTRODUCTION 

 

Adverse drug reactions (ADRs) are often a result of drug-drug interactions (DDIs), especially in 

patients for whom polypharmacy is common. It is estimated that the prevalence of clinically 

relevant drug-drug interactions is about 50% in those taking five, and almost 100% in those 

taking ten, medications (1, 2). DDIs can influence drug efficacy and toxicity by affecting 

pharmacokinetics through the inhibition or induction of drug metabolizing enzymes and 

transporters in the intestine, liver, and kidney (3, 4).  

 

As the COVID19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV2), continues to plague the world, approved drugs and new molecular entities are 

being evaluated at an unprecedented pace. Patients diagnosed with COVID19 may be 

increasingly vulnerable to incur a significant DDI, especially older patients who are more 

susceptible to comorbidities associated with COVID19 and in whom pre-existing multimorbidity 

and polypharmacy (5) are most common.  

 

Membrane transporters are important targets for DDIs as they play critical roles in the 

absorption, distribution, and elimination of drugs and nutrients (6). Recently, the U.S. Food and 

Drug Administration (FDA) released two guidances for drug developers, which include 
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recommendations for conducting in vitro and clinical studies of transporter-mediated DDIs.  

Further, they provided a list of substrates and/or inhibitors for characterizing interactions 

mediated by nine membrane transporters: two efflux (P-gp and BCRP) and seven influx 

(OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1 and MATE2) 

(https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-

table-substrates-inhibitors-and-inducers#major). These transporters not only play an important 

role in the disposition of drugs but also endogenous metabolites, such as creatinine (OCT2, 

MATE1, and MATE2) and uric acid (OAT1, OAT3, and BCRP).  

 

In this study, we conducted extensive in vitro experiments aimed at predicting the potential for 

25 small molecule drugs in clinical trials for COVID19 to cause transporter-mediated DDIs 

(Figure 5.1). More specifically, we 1) performed in vitro studies to determine the inhibition 

potential of the 25 drugs against 11 membrane transporters, and 2) predicted the likelihood for 

these drugs to cause a clinical transporter-mediated DDI using literature reported plasma 

concentrations and criteria suggested by the FDA. Finally, using electronic health records 

(EHRs), we demonstrated that the levels of endogenous compounds that are known substrates of 

specific transporters are significantly elevated in individuals on the drugs that are predicted 

inhibitors of the transporters. Overall, these findings suggest that individuals with COVID19 

who may be prescribed these medications are at risk for transporter-mediated DDIs.  

 

 

 

 

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#major
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#major
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5.3 METHODS 

 

5.3.1 Selection of COVID19 drugs used in clinical trials 

The following three website and databases were searched between March 17th and April 1st, 2020 

to select drugs being evaluated in clinical trials for COVID19: clinicaltrials.gov 

(https://clinicaltrials.gov/ct2/results/details?cond=COVID19), DRUGBANK 

(https://www.drugbank.ca/covid-19), IUPHAR/BPS Guide to Pharmacology 

(https://www.guidetopharmacology.org/GRAC/CoronavirusForward). Twenty-five small 

molecule drugs, which were in clinical trials as of April 1st, 2020, were selected for studying 

transporter-mediated drug-drug interactions. 

 

5.3.2 Cell lines used for inhibition studies 

Transient cells were used for determining the transporter inhibition at one concentration, 100 

µM, unless mentioned otherwise. HEK293 Flp-In cells stably overexpressing human OATP2B1 

(7), OCT1 (8), OCT2 (9), OAT1 (10), OAT3 (11), MATE1 (12), and MATE2 (13) were used for 

determining the inhibition potencies, IC50 values, of selected drugs (see next section). See 

Supplementary Information for more information, including methods to establish transient cells 

expressing OATP1B1, OATP1B3, OATP2B1, OCT1, OCT2, OAT1, OAT3, MATE1, and 

MATE2 in HEK293 Flp-In cells.  

 

5.3.3 Transporter inhibition studies 

Twenty-five COVID19 drugs were screened against 11 transporters at a concentration of 100 

μM, except for azithromycin (50 µM), baricitinib (50 μM) and tetrandrine (10 μM) due to 

https://clinicaltrials.gov/ct2/results/details?cond=COVID19
https://www.drugbank.ca/covid-19
https://www.guidetopharmacology.org/GRAC/CoronavirusForward
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solubility. The substrate used for each transporter is listed in Supplemental Table 5.1. For 

OATP1B1, OATP1B3, OATP2B1, OCT1, OCT2, OAT1, OAT3, MATE1, and MATE2, drugs 

were screened in cells transiently overexpressing each of the transporters. For P-gp and BCRP, 

membrane vesicles were used and the vesicular transport assays were performed as reported 

previously (14) with modifications. See Supplementary Information for detailed methods.  

 

5.3.4 Prediction of transporter-mediated inhibition 

The DDI potential for each drug was evaluated in accordance to the 2020 FDA Drug-Drug 

Interaction Guidance (4) by calculating the ratio of predicted clinically relevant drug 

concentration (I) to IC50 (I/IC50). See Supplementary Information for description on the formulas 

and cutoff values used to predict in vivo DDI potential. Clinical pharmacokinetic characteristics 

(such as Cmax, plasma protein binding percentage, and Rb) were collected from PubMed and 

FDA-approved labeling (Drugs@FDA) (Supplemental Table 5.2). If no information was 

available, fu,p and Rb were both estimated to be 1. The highest possible single dose, and 

respective Cmax value, was used for all calculations. If a Cmax value following the highest possible 

single dose was not available, the Cmax was scaled linearly to fit the dose. 

 

5.3.5 Electronic health record analyses 

Two electronic health record databases were used to extract information about patient medication 

use as well as perform real world data analyses, UCSF Research Data Browser and Cerner’s Real 

World COVID19 Database.  
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The UCSF Research Data Browser with UCSF patient data from 1982 to September 2020 was 

utilized to search for patients (both inpatients and outpatients) who had at least one laboratory 

test value reported for 1) serum/plasma uric acid, 2) triglyceride, 3) LDL cholesterol, 4) total 

cholesterol or 5) bilirubin. For each analysis, patients were divided into the “on” or “off” drug 

group depending on their medication prescriptions for sildenafil, ritonavir, darunavir, and/or 

lopinavir. See Supplementary Information for detailed methods.  

 

The Cerner COVID19 database includes EMR data from 62 healthcare facilities across the 

United States from January 2015 to July 2020 of patients who were in an Emergency Room (ER) 

or admitted to a hospital for COVID19. We searched for patients who had (a) at least one 

positive lab test result for SARS-CoV2 and (b) at least two laboratory test values reported for 

serum creatinine (Supplemental Figure 5.1). Patients were divided into the “on” or “off” drug 

group depending on their medication prescription(s) for chloroquine (CQ) or 

hydroxychloroquine (HCQ). See Supplementary Information for detailed methods  

 

In all analyses comparing patient groups, patients were matched by covariates, including age and 

sex, using the MatchIt package (15) in R to be comparable in both groups.  

 

The Cerner COVID19 database was also utilized to search for the number of patients who have 

prescriptions for drugs that are known substrates or inhibitors of the transporters, P-gp, BCRP, 

OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2, OAT1 and OAT3 

(https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#major
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table-substrates-inhibitors-and-inducers#major). See Supplementary Information for detailed 

methods. 

 

5.3.6 Statistical analyses 

Two-sample two-sided Mann–Whitney U tests with continuity correction were performed to 

compare “on” and “off” drug groups. Among patients without elevated “pre” creatinine levels, 

enrichment of elevated “post” creatinine level for those on HCQ or CQ in comparison to the 

matched control group was calculated by Chi-squared test with Yates correction. ggplot2 was 

used to plot the data in R (version 3.4.0).  

 

5.4 RESULTS 

 

5.4.1 In vitro studies determine inhibition potencies of 25 drugs used in clinical trials for 

COVID19 

Among the 25 drugs screened, 14 (56%) were anti-microbial agents and 10 (40%) were anti-

inflammatory drugs. Eleven or more compounds reduced transport activity of P-gp, OATP2B1, 

OATP1B1, OATP1B3, OCT1, MATE1, MATE2, and OAT3 by > 50% (Supplemental Table 

5.1). In contrast, five or fewer compounds inhibited BCRP, OCT2, and OAT1 by > 50%.  

Twenty drugs, which showed greater than 50% inhibition of transporter activity in our initial 

screen, were characterized further to estimate their IC50 (inhibitor concentration at which 

transporter activity is reduced to 50%) (Table 5.1). For drugs with transporter inhibition of < 

50%, IC50 was predicted based on a single point determination; however, for those that showed 

no transporter inhibition when screened at 100 µM, IC50 was not estimated. When inhibition 

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#major
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potency data were available in the literature, those values were recorded and used in predicting 

the potential to cause clinical transporter-mediated DDI (Supplemental Table 5.1 and 

Supplemental Table 5.4). In general, experimentally estimated IC50 values (Table 5.1) were in 

agreement with published data (Supplemental Table 5.4).  

 

Substrate-dependent inhibition of OATP1B1 and OATP1B3 

We compared differences in potency of inhibition of various drugs using EG and ES or 

cholecystokinin (CCK) as probe substrates for OATP1B1 and OATP1B3, respectively. In 

general, inhibition potencies of the drugs tested were lower when [3H]-EG was used as the probe 

substrate in comparison to [3H]-ES as the probe substrate (Table 5.1), as also reported by Izumi 

et al. (16). Darunavir, losartan, remdesivir, and ritonavir all were estimated to inhibit [3H]-EG at 

concentrations one-tenth (or lower) than those that inhibited [3H]-ES; that is, potency differences 

of the inhibitors for the two probes were greater than 10-fold. Differences in inhibition potency 

of compounds were not as stark when [3H]-EG and [3H]-CCK were used as probe substrates for 

OATP1B3 (Table 5.1). Seven drugs had potency differences within 2-fold; however, remdesivir 

showed a 14-fold lower IC50 with [3H]-EG as a substrate compared with [3H]-CCK whereas 

darunavir was 5-fold more potent in inhibiting the uptake of [3H]-CCK in comparison to that of 

[3H]-EG (Table 5.1).  

  

Similarity and differences in potencies between transporters of close homology  

In general, experimental IC50 values for OATP2B1, OATP1B1, and OATP1B3 were 

significantly correlated for the 10 drugs where IC50 values were experimentally determined 

(Spearman correlation coefficient, r, ranges from 0.74 to 0.82, p < 0.02). Triazavirin is the only 
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drug that was selective for OATP2B1 (IC50 = 17 ± 4 µM), showing no inhibition of OATP1B1 

and OATP1B3 at 100 µM. For MATE1 and MATE2, nine drugs (out of 15) had IC50 values 

within 5-fold of each other; however, three drugs (ritonavir, remdesivir, and tofacitinib) had IC50 

values that were greater than 25-fold different. In contrast, larger differences in IC50 values were 

observed when comparing the two organic cation transporters, OCT1 and OCT2, or the two 

organic anion transporters, OAT1 and OAT3 (Table 5.1). Camostat, chloroquine, colchicine, 

darunavir, hydroxychloroquine, prazosin, remdesivir, ritonavir, and umifenovir inhibited OCT1 

≥ 10-fold more potently relative to OCT2, when comparing predicted or actual IC50 values. 

Similarly, baricitinib (17), leflunomide, piclidenoson, remdesivir, ruxolitinib, and sildenafil 

inhibited OAT3 ≥ 10-fold more potently relative to OAT1 when comparing predicted or actual 

IC50 values. 

 

5.4.2 Clinically relevant transporter-mediated drug-drug interactions are predicted for 21 drugs  

Using the FDA guidance for evaluating transporter-mediated drug interactions, a total of 86 

potentially clinically relevant drug-transporter interactions were identified (Table 5.2, 

Supplemental Table 5.5, and Figure 5.2). Twenty-one out of the 25 drugs screened were 

predicted to inhibit at least one of the studied transporters at clinical concentrations. Favipiravir, 

ritonavir, darunavir, and umifenovir were the most promiscuous clinical inhibitors, with each 

compound predicted to inhibit at least six transporters at clinically achievable drug levels. In 

contrast, baricitinib, colchicine, fingolimod, and prazosin were not predicted to cause any 

transporter mediated DDIs. Intestinal and hepatic transporters appeared to be more easily 

inhibited compared to renal transporters, reflecting higher drug concentrations and exposure in 

the intestine and liver compared with the kidney. Additionally, intestinal P-gp appeared to be 
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highly inhibitable with 16 of the 25 drugs predicted to inhibit the transporter at estimated 

intestinal concentrations.  

 

Since the first whitepaper by the International Transporter Consortium (ITC) was published (6), 

many drug labels include information on whether a drug is a substrate or inhibitor of certain 

transporters. For the drugs in this study that were approved prior to 2010 (n = 14), many 

clinically relevant transporter interactions were predicted. In particular, 54 interactions were 

predicted for these drugs. Five drugs approved during or after 2010 were predicted to have 

limited potential to inhibit these transporters in vivo with the exception remdesivir (approved in 

October 2020). Remdesivir inhibited five transporters at clinically relevant concentrations 

(Table 5.2). Interestingly, for the six drugs that have not been approved by the FDA (Table 5.2), 

25 potentially relevant drug-transporter interactions were identified. For example, favipiravir, 

umifenovir, and triazavirin each were predicted to cause five or more clinically relevant drug-

transporter interactions. Camostat and leflunomide are rapidly converted to their active 

metabolites, precluding I/IC50 calculations for hepatic and renal transporters. 

 

5.4.3 Electronic health record analyses complement in vitro findings on clinically relevant 

transporter-mediated DDIs  

To investigate the clinical relevance of the inhibitors identified in vitro, we mined the electronic 

health record (EHR) database from the UCSF Research Data Browser (n = 2,888,884 total 

patients from the general population). Specifically, we compared specific lab values in patients 

prescribed commonly used drugs (i.e. sildenafil, darunavir, ritonavir, lopinavir) to lab values in 
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patients not prescribed the respective drug. Endogenous biomarkers chosen and compared for 

each of these analyses were driven by literature-based evidence (Supplemental Table 5.6).  

 

To assess whether sildenafil, which was predicted to inhibit BCRP at clinical concentrations, 

actually inhibited the transporter in patients, we used uric acid levels from the UCSF database as 

a biomarker of BCRP activity; higher uric acid levels have been previously associated with 

reduced BCRP activity. Patients prescribed sildenafil had significantly higher uric acid levels 

(average: 6.84 mg/dL vs 5.94 mg/dL) compared to age- and sex- matched controls not prescribed 

sildenafil (p-value < 2.2 x 10-16, n = 636 “on” drug, n = 3,180 “off” drug), consistent with 

inhibition of BCRP (Figure 5.3 and Table 5.3). Additional sensitivity analyses including (1) a 

maximum separation date of one year between the first medication order start date and lab 

collection date, (2) limiting our analysis to patients diagnosed with pulmonary hypertension and 

(3) further filtering to only include lab values taken on or after initial diagnosis start date, (4) 

only including Sildenafil (i.e. excluding Viagra and Revatio) medication orders with a dose 

greater than 25mg in the medication name, and (5) excluding male patients, showed a significant 

difference between the two groups, where patients “on” drug had higher uric acid levels 

compared to patients “off” drug (Table 5.3). Furthermore, to test the sensitivity of these analyses 

and selection of controls, multiple iterations were performed for each analysis where the ratio 

used to sex- and age- match the two groups was varied; in every iteration, the “on” drug group 

had significantly higher uric acid levels compared to the “off” drug group (Supplemental Table 

5.7).  
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To assess the potential of ritonavir and darunavir to inhibit OCT1 at clinical concentrations, we 

used pharmacodynamic endpoints using data from the UCSF database. That is, reduction in the 

function of OCT1 has been associated with higher lipid levels (18). Triglyceride, LDL 

cholesterol, and total cholesterol levels were significantly increased in HIV patients prescribed 

ritonavir compared to age- and sex- matched HIV patients not prescribed ritonavir, when 

comparing labs taken on or after initial HIV diagnosis start date, consistent with inhibition of 

OCT1 (Figure 5.3 and Table 5.3). A similar, significant increase was seen in HIV patients 

prescribed darunavir (Table 5.3). Percentage of patients with at least one statin prescription was 

higher in the “on” drug group or comparable between both groups for all ritonavir & darunavir 

analyses when comparing prescriptions to drugs (classified as antihyperlipidemic-HMG-CoA 

reductase inhibitors (statins)) with a medication order start date within one year before the lab 

collection date (Supplemental Table 5.3). 

 

HIV patients prescribed ritonavir and/or lopinavir had significantly higher total bilirubin levels 

compared to HIV patients not prescribed ritonavir and/or lopinavir, when comparing labs taken 

on or after initial HIV diagnosis start date, consistent with inhibition of OATP1B1 and 

OATP1B3 (Table 5.3). 

 

Serum creatinine levels are determined by renal function, but also by secretion via renal 

transporters including MATE1 (19). Thus, we used the change in creatinine level over time in 

patients prescribed hydroxychloroquine (HCQ) and chloroquine (CQ), which are predicted to 

inhibit MATE1, to determine whether these drugs may actually inhibit this transporter clinically 

(Table 5.4). We used the Cerner COVID19 database (n = 117,496 total COVID19 patients) to 
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identify patients prescribed HCQ and CQ (Table 5.4 and Supplemental Figure 5.1). The Cerner 

database contains data about medication order status (e.g. 'complete’, ‘incomplete’) that informs 

about medication administration as well as timestamps for labs and medications that provide a 

temporal relationship between events of interest, and thus used for this analysis instead of the 

UCSF Research Data Browser.  

 

In the analysis of COVID19 patients in the Cerner database who have “pre” creatinine levels 

within the upper limit of normal range, the “on drug” cohort had a significantly higher 

prevalence of “post” creatinine levels that were elevated above the normal range than the “off 

drug” control cohort matched using a propensity score that included age, sex, race, ethnicity, and 

outcome (death), with a 1:2 ratio (15.41% vs 11.47%. Chi-square test, p-value = 0.024) (Table 

5.4). As serum creatinine levels can be confounded by underlying kidney disease and by chronic 

conditions such as systemic lupus erythematosus (SLE) for which long-term therapy with HCQ 

or CQ can be prescribed, we conducted a sensitivity analysis which excluded those with chronic 

renal disease and matched patients in the “on drug” and “off drug” cohorts by medication 

indication for HCQ and CQ. For the COVID19 patients with “pre” creatinine levels within the 

upper limit of normal range and without chronic renal disease, the “on drug” cohort had a 

significantly higher prevalence of “post” creatinine levels elevated above the normal range than 

the “off drug” control cohort matched using a propensity score which included age, sex, race, 

ethnicity, outcome (death), and medication indication (SLE, discoid lupus, and rheumatoid 

arthritis, and malaria), with a 1:2 ratio (14.23% vs 8.37%. Chi-square test, p-value = 4.6 x 10-4, 

Table 5.4 and Supplemental Table 5.3). Creatinine elevations are consistent with inhibition of 

MATEs.   
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5.5 DISCUSSION 

 

In the present study, we determined the inhibition potency of 25 drugs (18 approved drugs, six 

investigational drugs, and one recently approved) in COVID19 clinical trials against 11 

transporters and evaluated their potential to cause transporter-mediated DDIs. COVID19 patients 

are often older and taking multiple medications, many of which are substrates of transporters and 

thus, subject to transporter-mediated DDI. For example, furosemide (OAT1 and OAT3 

substrate), atorvastatin (OATP1B1 and OATP1B3 substrate), and morphine (OCT1 substrate) are 

known substrates of transporters and are commonly used in COVID19 patients to treat co-

existing conditions (Supplemental Table 5.8).  

 

This study resulted in three major findings. First, many of the drugs tested, which are in clinical 

trials for COVID19, inhibited transporters in cellular assays with certain transporters being 

sensitive to inhibition by multiple drugs. Second, most of the drugs (21 out of 25) were predicted 

to cause at least one clinical DDI; that is, the concentrations of these drugs that inhibited the 

transporters in cellular assays were equal to or greater than drug levels known to result in clinical 

DDIs. Finally, real world data from EHRs were consistent with our predictions of transporter-

mediated DDIs. In particular, recorded levels of certain solutes (such as creatinine and uric acid), 

which are endogenous substrates of particular transporters, were significantly elevated in 

individuals taking drugs predicted to inhibit the transporters clinically, in comparison to matched 

subjects not taking the drugs (Table 5.3 and Table 5.4). Below, we discuss each of these 

findings.  
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5.5.1 Drugs in clinical trials for COVID19 inhibited membrane transporters that are targets for 

clinical DDIs  

Seventeen of the 25 drugs tested in this study have been reported to be substrates or inhibitors of 

one or more of the eleven membrane transporters that are targets for DDIs (Supplemental Table 

5.1); however, none of them have been assessed against all eleven transporters in a single study. 

Although the FDA recommends transporter studies for nine of these transporters, we included 

OCT1 based on the recommendation by the European Medicine Agency (EMA) and OATP2B1 

because of increasing evidence for its role in mediating intestinal drug absorption (20). There 

were eight drugs where no information was available about their interactions with any of the 

eleven transporters, including: 1) three drugs (HCQ, ribavirin and thalidomide) which were 

approved before 2000 and have no information about transporter inhibition reported in their FDA 

approved labels, their product inserts, or the literature, 2) two drugs (fingolimod and ruxolitinib) 

which were approved after 2010 but have limited information about their IC50 values in their 

labels and product inserts, and 3) three drugs (piclidenoson, triazavirin and umifenovir) which 

have not been approved. Examination of the data suggest that hepatic uptake transporters 

including OATP1B1, OATP1B3, and OCT1 are subject to inhibition by multiple drugs in 

clinical trials for COVID19. These hepatic transporters are known to interact with structurally 

diverse molecules from a range of pharmacologic classes and play critical roles in xenobiotic 

detoxification (21, 22). OATP2B1, also in the liver and intestine, similarly interacts with 

multiple drugs. In the kidney, MATE1 and MATE2 were inhibited by several drugs (Figure 5.2 

and Table 5.2). These transporters are known to interact with many drugs (23), and clinically 

relevant DDIs have been reported between inhibitors of MATE1 such as cimetidine and the 
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commonly prescribed anti-diabetic drug, metformin (24). In contrast, the renal transporters 

OCT2 and OAT1, and the intestinal efflux transporter, BCRP, were not subject to inhibition by 

multiple drugs (Table 5.1 and Figure 5.2). The majority of the drugs on the market that inhibit 

OCT2 are more potent inhibitors of MATE1 and MATE2 at clinically relevant concentrations, 

such as pyrimethamine and trimethoprim (25). OAT1, which is responsible for the renal 

secretion of many acidic drugs such as tenofovir, is inhibited by a few prescription drugs such as 

probenecid, but is considered a less promiscuous paralog than OAT3, which interacts with a 

more diverse array of drugs and their metabolites (11). The fact that BCRP was not inhibited by 

most of the drugs tested (Table 5.1) is interesting. BCRP has an endogenous role in the 

elimination of uric acid (Supplemental Table 5.6), and drugs that inhibit this transporter may 

increase risk for hyperuricemia and gout.       

 

5.5.2 Most of the drugs (21 out of 25) tested were predicted to cause at least one transporter-

mediated clinical DDI  

A surprising finding of our study was that many of the drugs in clinical trials for COVID19 had 

the potential to cause at least one transporter-mediated DDI. In particular, 21 out of the 25 drugs 

screened were predicted to inhibit at least one of the eleven transporters at clinically achievable 

concentrations (Table 5.2). Ten of the 21 drugs have supporting information in the literature 

suggesting that they cause DDIs in humans or mice or have reported adverse events that are 

consistent with transporter inhibition (Supplemental Table 5.6). The finding that the drugs may 

cause DDIs mediated by one or more transporters is consistent with the notion that these 

transporters work together with drug metabolizing enzymes to detoxify a plethora of xenobiotics 

including environmental toxins, exogenous chemicals, and prescription drugs. Thus, transporters 
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and enzymes interact with structurally diverse molecules and are subject to inhibition 

interactions. For example, azithromycin, a known in vivo P-gp inhibitor, increases plasma levels 

of the non-sedating antihistamine, fexofenadine, and the anticoagulant, ximelagatran, both of 

which are substrates of P-gp (26, 27). The anti-viral combination drugs, lopinavir/ritonavir or 

lopinavir/darunavir, are known in vivo inhibitors of OATP1B1, OATP1B3, and P-gp. As such, 

they are associated with increase plasma levels of rosuvastatin, which is a substrate of 

OATP1B1/B3 and BCRP (28, 29), and fexofenadine, which is a P-gp substrate (30). The 

effectiveness and cardiac safety of hydroxychloroquine, chloroquine, and azithromycin in 

COVID19 patients have been the subject of considerable discussion in the literature (31-34). One 

of the major adverse events of these drugs is prolongation of the QT interval. This study and 

others have shown that azithromycin, hydroxychloroquine, and chloroquine are substrates and 

inhibitors of P-gp (26, 27, 35, 36). Therefore, the use of azithromycin in combination with 

chloroquine or hydroxychloroquine needs to be carefully assessed and monitored. 

 

5.5.3 Real world data from electronic health records were consistent with our predictions of 

transporter-mediated DDIs  

Human genetic association studies and knockout mouse studies have shown that reduced 

function genetic variants of BCRP, OAT1, and OAT3 are associated with higher uric acid levels 

(10, 37, 38). Similarly, genetic variants in OCT2 and MATE1 are associated with higher serum 

creatine levels and hence, reduced estimated glomerular filtration rate (eGFR) (39-41). Finally, 

genetic variants of OATP1B1 and OATP1B3 are associated with increased bilirubin levels (42). 

All of these metabolites are also substrates of the respective transporters. Additionally, reduced 

function polymorphisms in OCT1 and Oct1 knockout mice have been shown to have increased 
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plasma levels of LDL cholesterol, total cholesterol, and triglycerides (18). Since levels of uric 

acid, creatinine, bilirubin, and various lipids are routinely measured and recorded in the EHR, 

these levels may be exploited to validate predictions from in vitro transporter assays of clinically 

relevant DDIs. Sildenafil has been shown to increase risk of gout (Supplemental Table 5.6), and 

we found that patients who were prescribed sildenafil, a potent inhibitor of BCRP, had 

significantly elevated serum uric acid levels relative to patients not prescribed sildenafil (Table 

5.3 and Figure 5.3). In our study, average serum uric acid levels in the “on” drug group ranged 

from 6.8 - 7.4 mg/dL whereas the average levels for the “off” drug group ranged from 5.0 - 6.3 

mg/dL, across all analyses. Previous studies have reported incidents of sildenafil-induced gouty 

arthritis (43, 44). In contrast, other inhibitors of phosphodiesterase 5 (PDE-5), such as vardenafil 

and tadalafil, are weak inhibitors of BCRP (45) and serum uric acid levels have been shown to 

significantly decrease following a one year treatment with vardenafil (46).  

 

In addition to exploiting uric acid as an endogenous substrate of BCRP, we used lipid levels as 

biomarkers of OCT1 activity. That is, patients prescribed ritonavir and/or darunavir, both of 

which are OCT1 inhibitors (Table 5.1 and Table 5.2), had significantly higher triglyceride, LDL 

cholesterol, and total cholesterol levels, compared with patients not prescribed either of these 

drugs (Table 5.3 and Figure 5.3). Increases in cholesterol and triglyceride levels are listed as 

possible side effects in the FDA product label for ritonavir, as well as the Warnings and 

Precautions section to ensure these levels are monitored before and during therapy (47). Though 

multiple mechanisms may account for the observed increases in lipid levels associated with these 

drugs, reduced OCT1 activity is consistent with the elevated lipid levels (18). 
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The in vitro studies and in vivo DDI risk predictions were focused on 25 drugs, selected during 

the beginning of the COVID19 shelter-in-place; therefore, the numbers of drugs were limited. 

The EHR analyses were limited by lack of data on how long patients were on each respective 

medication, patient compliance (i.e. picking up medication from pharmacy, abiding by dosing 

schedule), and robust controls (i.e. other PDE-5 and protease inhibitors) as well as difficulty in 

getting measurable outcomes and noisy data. As more EHR data become available for research 

purposes, we will be able to account for these variables and covariates as well as increase the 

sample size and robustness of our analysis. Importantly, the endogenous solutes and lipids 

measured may be elevated for other reasons beyond transporter inhibition (e.g. creatinine 

elevation can result from dehydration and elevation of lipids, in particular triglycerides, can be 

detected for hours after high fat meals); thus, the EHR results need to be interpreted cautiously 

and only as supporting information. Additional studies such as controlled randomized clinical 

trials of DDIs or use of validated biomarkers for transporter-mediated DDIs need to be 

conducted (48, 49). 

 

This study highlights that many of the currently used drugs for COVID19 have the potential to 

cause transporter-mediated DDIs. Our study suggests that COVID19 patients, who are often 

older and on various concomitant medications, should be carefully monitored for known ADRs. 
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Figure 5.1 Overall study approach to assess the risks for transporter-mediated drug-drug 

interactions (DDI) of 25 drugs in clinical trials to treat COVID19 patients. (A) Multiple 

approaches were used in this study, starting with in vitro assays to determine transporter 

inhibition (1-3), followed by applying predictive methods to evaluate the potential for DDIs (4-

5), and leveraging real world data from electronic health records (6) to validate drug-transporter 

interactions clinically. (B, C) Chemical structures of 25 drugs, which include 14 anti-microbial 

and 10 anti-inflammatory drugs. 
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Figure 5.2 Results of predictions of 25 drugs in COVID19 clinical trials to cause in vivo 

transporter-mediated drug-drug interactions (DDIs). Predictions are based on in vitro 

inhibition potency data and are expressed as the clinical drug concentration (e.g., intestinal, 

portal vein, or systemic unbound concentration) relative to the in vitro IC50 value for each 

transporter. The stippled lines indicate the FDA recommended values above which sponsors are 

asked to consider conducting a clinical DDI trial. Drugs that have negligible inhibition and have 

[I]/IC50 ratio < 0.001 are not shown. To illustrate the interpretation of these figures, consider 

ritonavir (marked A in the upper left panel). Its estimated concentration in the intestine after a 

therapeutic dose is 10,000 times greater than the ritonavir concentration required to inhibit 50% 

of P-gp activity in an in vitro experiment.   
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Figure 5.3 Endogenous levels of transporter biomarkers in patients prescribed drugs that 

are predicted to cause a transporter-mediated DDI. Levels of each biomarker were obtained 

from patient electronic health records. Boxplots compare (A) levels of uric acid, a biomarker of 

BCRP activity, in patients prescribed sildenafil versus patients not prescribed sildenafil (p-value 

< 2.2 x 10-16) and (B-D) levels of triglycerides, LDL cholesterol, and total cholesterol, 

biomarkers of OCT1 activity, in HIV patients prescribed ritonavir versus HIV patients not 

prescribed ritonavir (p-value: 7.8 x 10-12, 0.0033, 3.1 x 10-13, respectively). Figure 5.3B is 

plotted on a log scale. 

 

  

A B C D 
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Supplemental Figure 5.1 Schematic for Cerner Real World COVID19 data mining and real 

world data analysis. The Cerner Real World COVID19 dataset was queried for patients who 

had at least two serum creatinine lab test values (“pre” and “post”) within specific timeframes 

relative to the time of the first positive COVID19 lab test (red line). For the “on drug” cohort, the 

serum creatinine value that was reported 7 to 30 days after the earliest HCQ or CQ medication 

start date was used for the “post” creatinine. When multiple lab values were found within a 

defined time frame, the result closest to the time of the first positive COVID19 lab test (red line) 

was included. 

  

d
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day 30
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day 7
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Figure S1: The Cerner Real World COVID-19 dataset was queried for patients who had at least two serum creatinine lab test values (”pre” and
“post”) within specific timeframes relative to the time of the first positive COVID-19 lab test (red line). For the “on drug” cohort, the serum
creatinine value that was reported 7 to 30 days after the earliest HCQ or CQ medication start date was used for the “post” creatinine. When
multiple lab values were found within a defined time frame, the result closest to the time of the first positive COVID-19 lab test (red line) was
included.

“On drug” cohort

Control (“off drug”) cohort
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5.7 TABLES 

 

Table 5.1 Summary table showing the inhibition potencies of drugs in COVID19 clinical 

trials against transporters that are mediators of drug-drug interactions (DDIs).  

 

A) Major intestinal transporters: P-gp, BCRP, and OATP2B1 

COVID19 Drug P-gp BCRP OATP2B1 

Azithromycin 18 314 414 

Baricitinib 175 107 217 

Camostat 35 238 NI 

Chloroquine 20.0 596 1332 

Colchicine 42 320 NI 

Darunavir 16 103 30.6 ± 7.7  

Favipiravir 55 890 NI 

Fingolimod 89 NI 298 

Hydroxychloroquine 51.8 ± 20.6 1484 1084 

Leflunomide 629 4.53a 81.9 ± 36.1  

Lopinavir 1.7a 7.66a 0.72a 

Losartan 128 4.8 ± 1.1  2.5 ± 0.7  

Oseltamivir 44 1286 6593 

Piclidenoson 50 105 12.3 ± 4.7  

Prazosin 70.7a 221 137 

Remdesivir 14 25 ± 6.0  3.5 ± 0.4  

Ribavirin 47 675 1628 

Ritonavir 36, 0.24a 19.5, 6.6a 3.7 ± 1.1  

Ruxolitinib NI NI 17.4 ± 8.6  

Sildenafil 16 3.1 ± 2.5 39.0 ± 12.8 

Tetrandrine 3.8 ± 1.1  113 NI 

Thalidomide 65 427 NI 

Tofacitinib 178 295 NI 

Triazavirin 72 325 17.4 ± 4.0  

Umifenovir (Arbidol) 16.0 ± 2.0  186 3.5 ± 1.2  
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B) Major liver transporters: OATP1B1, OATP1B3, and OCT1 

COVID19 Drug 
OATP1B1  

(ES) 

OATP1B1  

(EG) 

OATP1B3  

(CCK) 

OATP1B3  

(EG) 
OCT1 

Azithromycin 211 69 98 137 NI 

Baricitinib 124 30 55 47 22.9 ± 18.0  

Camostat 251 152 90 135 20.3 ± 21.3  

Chloroquine 326 289 192 251 10.7 ± 10.4  

Colchicine 345 42 147 365 29.7 ± 38.6  

Darunavir 82.5 ± 21.0 6.2 ± 1.4  7.6 ± 1.3 42.9 ± 12.9  6.0 ± 6.6  

Favipiravir 635 323 187 182 NI 

Fingolimod 228 204 180 254 543 

Hydroxychloroquine 475 580 159 820 20.0 ± 15.9  

Leflunomide 247 33.3 ± 4.9  21.2 ± 2.0 128 490 

Lopinavir 0.6 ± 0.1 0.3 ± 0  4.2 ± 0.6 2.7 ± 1.7  209 

Losartan 26.3 ± 14.8 1.4 ± 0.5  4.0 ± 1.0 1.8 ± 2.1  NI 

Oseltamivir 933 217 134 203 390 

Piclidenoson 17.0 ± 0.1 6.3 ± 0.5  12.9 ± 5.0 9.0 ± 3.9  16.5 ± 10.9  

Prazosin 78.9 ± 22.8 47.1 ± 6.2  36.7 ± 2.8 40.6 ± 4.8  1.8 ± 2.0  

Remdesivir 36.1 ± 24.4 1.4 ± 0.02  5.5 ± 1.2 0.4 ± 0.04  10.1 ± 0.01 

Ribavirin 929 1190 219 NI NI 

Ritonavir 18.7 ± 1.7 0.6 ± 0.15  1.6 ± 0.6 0.7 ± 0.2  3.8 ± 0.1  

Ruxolitinib 47.9 ± 3.6 12.7 ± 1.4  19.1 ± 2.9 23.9 ± 11.8  9.7 ± 4.3  

Sildenafil 13.3 ± 2.2 3.0 ± 0.8  12.8 ± 0.04 20.7 ± 1.4  19.8 ± 6.4  

Tetrandrine 25 24 79 31 8.6 

Thalidomide 717 464 NI 448 1776 

Tofacitinib 126 39 NI 423 41.4 ± 13.0  

Triazavirin 1140 190 102 318 1071 

Umifenovir (Arbidol) 17.5 ± 11.9 5.1 ± 0.6  NI 6.5 ± 1.7  1.2 ± 0.1  
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C) Major kidney transporters: OCT2, MATE1, MATE2, OAT1, and OAT3 

COVID19 Drug OCT2 MATE1 MATE2 OAT1 OAT3 

Azithromycin NI 700 511 58 923 

Baricitinib 48 36.0 ± 24.0  6.7 ± 5.6 233 12.7 ± 5.0 

Camostat 161 3.4 ± 2.9  2.0 ± 1.3  102 550 

Chloroquine 103 ± 45.7  0.8 ± 0.8  0.7 ± 0.2  NI 5923 

Colchicine 1015 394 NI 69 942 

Darunavir 279 43.8 ± 14.4  30.7 ± 20.2  95 37.9 ± 9.5  

Favipiravir NI 822 914 52 84.2 ± 19.5  

Fingolimod 2287 1862 6164 64 1000 

Hydroxychloroquine 187 1.9 ± 0.3  0.8 ± 0.1  202 841 

Leflunomide 730 9.5 ± 5.5  12.6 ± 4.0  325 4.1a 

Lopinavir 385 22.5 ± 4.0  25.1 ± 9.6  141 NI 

Losartan NI 484 752 12a 1.6a 

Oseltamivir 445 347 934 90 211 

Piclidenoson 40.7 ± 9.4  29.2 ± 19.6  15.2 ± 6.7  NI 8.7 ± 0.9  

Prazosin 140 0.5 ± 0.2  2.4 ± 0.9  NI 29.8a 

Remdesivir 183 0.4 ± 0.1  15.2 ± 9.7  NI 14.0 ± 1.7  

Ribavirin NI 338 NI 99 1248 

Ritonavir 101 0.5 ± 0.3  12.6 ± 8.2  89 99 

Ruxolitinib 10.7 ± 3.7  0.7 ± 0.01 3.7 ± 2.3  NI 6.1 ± 0.6  

Sildenafil 68.0 ± 20.1  2.4 ± 0.1  14.4 ± 1.3  1002 20.5 ± 3.1  

Tetrandrine 1045 1.2 ± 0.2  81 11 45 

Thalidomide 335 318 NI 145 ± 26.8 54.6 ± 2.4  

Tofacitinib 209 1.0 ± 0.5  68.5 ± 6.2  89 51.6 ± 7.0  

Triazavirin 321 543 1042 4.1 ± 0.7 2.3 ± 0.4  

Umifenovir (Arbidol) 14.9 ± 4.9  0.7 ± 0.2  4.1 ± 1.6  187 58.6 ± 21.9  
 

 

IC50 (µM) <= 5 >5-20 >20-40 >40-60 >60-100 >60 or NI 

 
aIC50 from the literature. NI = No inhibition at the one concentration tested (and thus IC50 could 

not be predicted). Inhibition potencies are expressed as mean ± SD (µM). IC50 values for each 

transporter are based on experimental data (see Methods). Values shown are from two or more 

independent experiments. When only a single value is shown without a SD, the value represents 

a predicted IC50. Predicted IC50 (prIC50) was calculated using the equation: V = V0/{1 + 

[(I)/prIC50]}, where V and V0 are the activity with and without inhibitor, respectively, and I is 

the inhibitor concentration.     
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Table 5.2 Summary of drugs in clinical trials for COVID19 predicted to cause a 

transporter-mediated DDI.  

 

Intestinal transporters (Igut/IC50) 

COVID19 drug 

FDA 

approval 

date 

Dose, 

mg 

Transporters 

inhibited at 

clinical 

concentrations 

P-gp BCRP OATP2B1 

Azithromycin 1991 2000 5/11 593 34 26 

Baricitinib 2018 4 0/11 0.2 0.4 0.2 

Camostat 
Not 

approved 
400 2/11 115 17 NI 

Chloroquine 1949 1000 5/11 375 13 6 

Colchicine 1961 1.5 0/11 0.4 0.05 NI 

Darunavir 2006 800 6/11 365 57 191 

Favipiravir 
Not 

approved 
2400 8/11 1111 69 NI 

Fingolimod 2010 0.5 0/11 0.1 NI 0.02 

Hydroxychloroquine 1955 800 4/11 143 5 7 

Leflunomide 1998 100 2/11 2 327a 18 

Lopinavir 2000 800 5/11 2994a 664a 7068a 

Losartan 1995 150 5/11 10 268 518 

Oseltamivir 1999 300 3/11 87 3 1 

Piclidenoson 
Not 

approved 
2 1/11 0.3 0.1 1.3 

Prazosin 1976 10 0/11 1.5a 0.5 1 

Remdesivir 2020 200 5/11 NA NA NA 

Ribavirin 1998 1200 4/11 418 29 12 

Ritonavir 2000 600 7/11 13871a 504a 907 

Ruxolitinib 2011 25 1/11 NI NI 19 

Sildenafil 1998 100 4/11 53 270 22 

Tetrandrine 
Not 

approved 
60 3/11 102 3 NI 

Thalidomide 1998 400 4/11 95 15 NI 
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COVID19 drug 

FDA 

approval 

date 

Dose, 

mg 

Transporters 

inhibited at 

clinical 

concentrations 

P-gp BCRP OATP2B1 

Tofacitinib 2012 10 1/11 1 0.4 NI 

Triazavirin 
Not 

approved 
250 5/11 61 13 252 

Umifenovir 
Not 

approved 
200 6/11 105 9 481 
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Liver transporters (Iu,in,max/IC50) 

COVID19 drugs OATP1B1 OATP1B3 OCT1 P-gp BCRP OATP2B1 

Azithromycin 2.1 1.1 NI 8.2 0.47 0.36 

Baricitinib 0.01 0.01 0.01 0.002 0.003 0.001 

Camostat NC NC NC NC NC NC 

Chloroquine 0.03 0.04 0.88 0.47 0.02 0.01 

Colchicine 0.004 <0.001 0.005 0.004 <0.001 NI 

Darunavir 1.36 0.2 1.4 0.53 0.08 0.28 

Favipiravir 2.18 3.9 NI 12.8 0.79 NI 

Fingolimod <0.001 <0.001 <0.001 <0.001 NI <0.001 

Hydroxychloroquine 0.02 0.01 0.46 0.18 0.01 0.01 

Leflunomide NC NC NC NC NC NC 

Lopinavir 13.2 1.46 0.02 2.32a 0.52a 5.48a 

Losartan 0.21 0.16 NI 0.002 0.06 0.12 

Oseltamivir 0.11 0.12 0.06 0.55 0.02 0.004 

Piclidenoson 0.05* 0.03* 0.02* 0.006 0.003 0.11* 

Prazosin 0.002 0.002 0.04 0.001a <0.001 0.001 

Remdesivir 0.78 2.72 0.11 0.08 0.04 0.31 

Ribavirin 0.01 NI NI 0.34 0.02 0.01 

Ritonavir 12.7 11.2 2.03 31.9a 1.16a 2.08 

Ruxolitinib 0.01 0.008 0.02 NI NI 0.01 

Sildenafil 0.1 0.01 0.01 0.02 0.09 0.01 

Tetrandrine 0.11* 0.09* 0.31* 0.7* 0.02* NI 

Thalidomide 0.1 0.1 0.03 0.71 0.11 NI 

Tofacitinib 0.03 0.003 0.03 0.01 0.004 NI 

Triazavirin 0.02 0.01 0.004 0.06 0.01 0.26 

Umifenovir 0.57 0.44 2.39 0.18 0.02 0.83 
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Kidney transporters (Cu,max/IC50) 

COVID19 drug OCT2 MATE1 
MATE2-

K 
OAT1 OAT3 P-gp BCRP 

Azithromycin NI 0.004 0.005 0.04 0.003 0.14 0.01 

Baricitinib 0.001 0.002 0.01 <0.001 0.005 <0.001 0.001 

Camostat NC NC NC NC NC NC NC 

Chloroquine 0.003 0.46 0.5 NI <0.001 0.02a 0.001 

Colchicine <0.001 <0.001 NI <0.001 <0.001 <0.001 <0.001 

Darunavir 0.002 0.01 0.02 0.007 0.02 0.04 0.006 

Favipiravir NI 0.33 0.3 5.2 3.21 4.9 0.3 

Fingolimod <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 NI 

Hydroxychloroquine 0.007 0.64 1.57 0.006 0.001 0.02 0.001 

Leflunomide NC NC NC NC NC NC NC 

Lopinavir 0.001 0.02 0.01 0.003 NI 0.22a 0.05a 

Losartan NI <0.001 <0.001 0.003a 0.02a <0.001 0.007 

Oseltamivir <0.001 <0.001 <0.001 0.002 0.001 0.004 <0.001 

Piclidenoson 0.001* 0.001* 0.003* NI 0.005* 0.001* <0.001* 

Prazosin <0.001 0.01 0.002 NI <0.001a <0.001a <0.001 

Remdesivir 0.006 2.48 0.05 NI 0.08 0.08 0.04 

Ribavirin NI 0.03 NI 0.11 0.01 0.23 0.02 

Ritonavir 0.005 0.66 0.02 0.02a 0.003 1.27a 0.05a 

Ruxolitinib 0.003 0.04 0.01 NI 0.005 NI NI 

Sildenafil 0.001 0.02 0.003 <0.001 0.002 0.003 0.02 

Tetrandrine <0.001* 0.09* 0.001* 0.01* 0.002* 0.03* 0.001* 

Thalidomide 0.01 0.01 NI 0.03 0.08 0.07 0.01 

Tofacitinib 0.001 0.12 0.002 0.001 0.002 0.001 <0.001 

Triazavirin 0.003 0.002 0.001 0.26 0.45 0.01 0.003 

Umifenovir 0.006 0.13 0.02 0.001 0.002 0.006 0.001 

 
aIC50 is from literature. 

*Protein binding not reported so fu,p assumed to be 1.  
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I/IC50 for each organ (intestine, liver, and kidney) and their respective transporters. Values shown 

in bold meet FDA criteria to consider a clinical DDI study. Predictions are expressed as 

estimated clinical concentration relative to in vitro inhibition potency. NI, no inhibition; NA, not 

applicable; NC, not calculated due to missing Cmax values. 
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Table 5.3 Summary table of electronic health record analyses comparing endogenous 

biomarkers in patients prescribed predicted clinical inhibitors of transporters versus 

patients not prescribed predicted clinical inhibitors. 

 

Analysis Total patients Matched patients 

Sildenafil 

On 

drug 

(N) 

Off 

drug 

(N) 

Ratio 

On 

drug 

(N) 

Off 

drug 

(N) 

Average 

SUA 

On/Off 

drug 

(mg/dL) 

Median 

SUA 

On/Off 

drug 

(mg/dL) 

p-value 

Main analysis 636 53808 1:5 636 3180 
6.84 / 

5.94 
6.6 / 5.7 < 2.2E-16 

1) Criteria: 

exclude lab 

values taken 

more than one 

year after first 

medication order 

start date 

319 53808 1:5 319 1595 
6.97 / 

5.91 
6.7 / 5.7 2.2E-13 

2) Criteria: 

exclude patients 

without a 

diagnosis of 

pulmonary 

hypertension 

175 1483 1:5 175 875 
7.35 / 

6.19 
6.9 / 5.6 6.1E-07 

3) Criteria: 

exclude lab 

values taken 

before diagnosis 

of pulmonary 

hypertension 

152 1017 1:5 152 760 
7.41 / 

6.31 
7.2 / 5.7 6.1E-06 

4) Criteria: only 

include 

Sildenafil 

medication 

orders with dose 

> 25mg in 

medication name 

183 53808 1:5 183 915 
6.86 / 

6.1 
6.8 / 5.9 1.2E-08 

5) Criteria: 

exclude male 

patients 

76 27659 1:5 76 380 
7.29 / 

5.04 
7 / 4.6 2.9E-11 
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Analysis Total patients Matched patients 

Ritonavir 

On 

drug 

(N) 

Off 

drug 

(N) 

Ratio 

On 

drug 

(N) 

Off 

drug 

(N) 

Average 

On/Off 

drug 

(mg/dL) 

Median 

On/Off 

drug 

(mg/dL) 

p-value 

Triglyceride 782 1249 1:1 782 782 
252 / 

162 

156 / 

124 
7.8E-12 

LDL cholesterol 719 1058 1:1 719 719 
106 / 

99.5 
101 / 96 0.0033 

Total cholesterol 803 1410 1:1 803 803 
190 / 

168 

182 / 

165 
3.1E-13 

Darunavir 

On 

drug 

(N) 

Off 

drug 

(N) 

Ratio 

On 

drug 

(N) 

Off 

drug 

(N) 

Average 

On/Off 

drug 

(mg/dL) 

Median 

On/Off 

drug 

(mg/dL) 

p-value 

Triglyceride 386 1407 1:2 386 772 
180 / 

160 

137 / 

118 
0.00022 

LDL cholesterol 357 1234 1:2 357 714 
105 / 

98.7 
100 / 95 0.0077 

Total cholesterol 364 1572 1:2 364 728 
183 / 

170 

180 / 

166 
5.18E-06 

Ritonavir 

and/or 

Lopinavir 

On 

drug 

(N) 

Off 

drug 

(N) 

Ratio 

On 

drug 

(N) 

Off 

drug 

(N) 

Average 

On/Off 

drug 

(mg/dL) 

Median 

On/Off 

drug 

(mg/dL) 

p-value 

Total bilirubin 1089 1697 1:1 1089 1089 
1.39 / 

0.91 
0.9 / 0.7 < 2.2E-16 

 

SUA, serum uric acid; LDL, low-density lipoproteins. Sildenafil is predicted to be a clinical 

inhibitor of BCRP; ritonavir and darunavir are predicted to be clinical inhibitors of OCT1; 

ritonavir and lopinavir are predicted to be clinical inhibitors of OATP1B1 and OATP1B3. 
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Table 5.4 Table of electronic health record analyses comparing serum creatinine levels in 

patients prescribed hydroxychloroquine (HCQ) and chloroquine (CQ) versus patients not 

prescribed hydroxychloroquine and chloroquine (control).   

 

Analysis  
Creatinine 

above normal 

level 

total 

% Creatinine 

above normal 

level 

X-squared P-value 

Main 
on 

HCQ/CQ 
90 584 15.41% 5.07 0.024 

Main control 134 1168 11.47%   

1 
on 

HCQ/CQ 
74 520 14.23% 12.26 4.6E-04 

1 control 87 1040 8.37%   

 

In the main analysis, patients were matched by age, sex, race, ethnicity, and outcome (mortality). 

In analysis 1, patients with chronic kidney disease were excluded and patients were matched by 

age, sex, race, ethnicity, outcome (mortality), and medication indication. Chi-squared tests were 

performed to compare the percent of patients who have creatinine levels within the upper limit of 

normal range in the on drug group and the control (off) drug group. 
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Supplemental Table 5.1 Results of screening 25 drugs used in COVID19 clinical trials at 

one concentration across eleven transporters.  
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Values shown are average percent inhibition from two or three independent studies. Negative 

values indicate no inhibition, where the uptake was greater than DMSO vehicle only. Green 

indicates that the drug has been shown to be a substrate of the transporter in the literature. Blue 

indicates that the drug has reported IC50 values or has been shown to be an inhibitor of the 

transporter in the literature. 
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Supplemental Table 5.2 Pharmacokinetic characteristics for the 25 drugs used in 

computing the [I] value for I/IC50 determinations. 

 

Drug 
Dose 

(mg) 

Protein 

binding 

(%) 

Rb 
Igut 

(µM) 

Iin,max 

(µM) 

Cmax 

(µM) 
References/PMID 

Azithromycin 2000 12 
ND 

(1) 
10681 168 2.80 

2154441, 

17328583 

Baricitinib 4 50 1.32 43 0.64 0.14 

Drug label, 

24965573, 

31832202 

Camostat 400 25.8 
ND 

(1) 
4016 ND ND Drug label 

Chloroquine 1000 61 5 7503 24.1 0.92 
24687509, 

6753885, 6849768 

Colchicine 1.5 39 
ND 

(1) 
15 0.25 0.02 

Drug label, 

8930773 

Darunavir 800 95 0.58 5843 168 12.7 

Drug label, 

24644095, 

24951533 

Favipiravir 2400 54 
ND 

(1) 
61106 1530 587 

30724789, 

26798032 

Fingolimod 0.5 99 
ND 

(1) 
7 0.10 0.002 

Drug label, 

15089811 

Hydroxy-

chloroquine 
800 50 7.2 7384 18.3 2.44* 

19188392, 

3179169, 8803904 

Leflunomide 100 99 
ND 

(1) 
1480 ND ND Drug Bank 

Lopinavir 800 98 0.44 5089 197 18.8 
Drug label, 

15497688 

Losartan 150 98.7 
ND 

(1) 
1298 22.7 2.65* 

Drug label, 

17220048 

Oseltamivir 300 42 1.42 3841 42.0 0.28 

Drug label, 

17456583, 

23507284 

Piclidenoson 2 ND 
ND 

(1) 
16 0.29 0.04 15516022 

Prazosin 10 97 0.7 104 2.47 0.17* 

7398734, 

11782904, 

7285477 

Remdesivir 200 87.9 
ND 

(1) 
NA 9.0 9.0 

Drug label, EMA 

compassionate use 

summary 



 189 

Drug 
Dose 

(mg) 

Protein 

binding 

(%) 

Rb 
Igut 

(µM) 

Iin,max 

(µM) 

Cmax 

(µM) 
References/PMID 

Ribavirin 1200 0 60 19656 16.1 11.0 

Drug label, 

18931138, 

2444379 

Ritonavir 600 98 0.14 3329 382 15.3 
Drug label, 

9812178 

Ruxolitinib 25 97 
ND 

(1) 
326 5.97 0.93 

Drug label, 

21257798 

Sildenafil 100 96 2.12 843 7.32 1.18 

Drug label, 

11879255, 

11879254 

Tetrandrine 60 ND 2.33 385 2.66 0.11 
25746132, 

29100757 

Thalidomide 400 60.5 0.91 6196 117 10.9 
9499573, 

11402635 

Tofacitinib 10 40 1 128 2.17 0.20 
Drug label, 

27129117 

Triazavirin 250 95 
ND 

(1) 
4382 88.7 21.0 Drug website 

Umifenovir 200 89.2 
ND 

(1) 
1676 26.7 0.87 

32166483, 

19446151 

 

*Cmax scaling factors were used for losartan (1.5), hydroxychloroquine (2), and prazosin (2). ND, 

not determined; NA, not applicable. 

 

  



 190 

Supplemental Table 5.3 Demographics for on and off groups used in EHR analyses.  

 

Analysis 

On 

drug 

Off 

drug 

p-

value 

Sildenafil 

     Main analysis 

          % Male 88.1 89.6 0.281 

          Average age (years) 58.8 58.1 0.22 

     1) Criteria: exclude lab values taken more than 1 year after first medication order start date 

          % Male 87.1 88.5 0.546 

          Average age (years) 57.8 57.1 0.429 

     2) Criteria: exclude patients without a diagnosis of pulmonary hypertension 

          % Male 58.3 57.8 0.978 

          Average age (years) 53.9 53.9 0.954 

     3) Criteria: exclude lab values taken before diagnosis of pulmonary hypertension 

          % Male 52.6 52.8 1 

          Average age (years) 53.2 54.6 0.324 

     4) Criteria: only include Sildenafil medication orders with dose > 25mg in medication name 

          % Male 99.5 99.5 1 

          Average age (years) 61.3 61.3 1 

     5) Criteria: exclude male patients 

          Average age (years) 52.7 52.7 1 

  

Ritonavir 

     Triglyceride 

          % Male 83.8 85.9 0.259 

          Average age (years) 45.9 46.4 0.441 

          % of patients with statin prescription 7.29 6.65 NA 

     LDL cholesterol 

          % Male 82.6 84 0.524 

          Average age (years) 46.2 46.5 0.634 

          % of patients with statin prescription 8.21 8.07 NA 

     Total cholesterol 

          % Male 83.3 85.9 0.167 

          Average age (years) 45.6 46.1 0.302 

          % of patients with statin prescription 7.10 6.48 NA 
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Analysis 

On 

drug 

Off 

drug 

p-

value 

Darunavir 

     Triglyceride 

          % Male 88.1 85.9 0.344 

          Average age (years) 51.2 50.2 0.137 

          % of patients with statin prescription 20.5 8.68 NA 

     LDL cholesterol 

          % Male 88 85.3 0.273 

          Average age (years) 51.3 50.3 0.131 

          % of patients with statin prescription 21.3 9.66 NA 

     Total cholesterol 

          % Male 87.9 85.7 0.365 

          Average age (years) 51.2 50.8 0.593 

          % of patients with statin prescription 20.9 9.07 NA 

Ritonavir and/or Lopinavir 

     Total bilirubin 

          % Male 83.2 83.7 0.818 

          Average age (years) 45.7 45.7 0.882 

Hydroxychloroquine, Chloroquine 

     Main Analysis 

          % Male 53.3 55.7 0.240 

          Average age (years) 63.4 64.0 0.299 

     1) Criteria: exclude patients with chronic renal disease 

          % Male 56.3 56.3 0.513 

          Average age (years) 62.4 61.9 0.601 

 

Percent male and average age were computed for all analyses. Percent of patients with a statin 

prescription was computed for ritonavir and darunavir analyses. 
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Supplemental Table 5.4 Comparison of IC50 values from this study to data in the literature. 

 

Drug 

Transporter 

(substrate 

used for this 

study) 

IC50 from 

this study 

(µM) 

IC50 from the 

literature (substrate 

used) 

PMID 

Darunavir 
OATP1B1 

(ES) 
82.5 ± 21.0 3.5 µM (CGamF) 20102298 

Lopinavir 
OATP1B1 

(ES) 
0.6 ± 0.1 0.5 µM (CGamF) 20102298 

Ritonavir 
OATP1B1 

(ES) 
18.7 ± 1.7 1.6 µM (CGamF) 20102298 

Sildenafil 
OATP1B1 

(ES) 
13.3 ± 2.2 1.5 µM (Bosentan) 17496208 

Tofacitinib 
OATP1B1 

(ES) 

126 

(predicted) 
low potential inhibition NDA 203214 

Darunavir 
OATP1B1 

(EG) 
6.2 ± 1.4 3.5 µM (CGamF) 20102298 

Lopinavir 
OATP1B1 

(EG) 
0.3 ± 0 0.5 µM (CGamF) 20102298 

Ritonavir 
OATP1B1 

(EG) 
0.6 ± 0.15 0.71 µM (CGamF) 12490595 

Sildenafil 
OATP1B1 

(EG) 
3.0 ± 0.8 1.5 µM (Bosentan) 17496208 

Tofacitinib 
OATP1B1 

(EG) 

39 

(predicted) 
low potential inhibition NDA 203214 

Darunavir 
OATP1B3 

(CCK) 
7.6 ± 1.3 4.8 µM (CGamF) 20102298 

Lopinavir 
OATP1B3 

(CCK) 
4.2 ± 0.6 2 µM (CGamF) 20102298 

Ritonavir 
OATP1B3 

(CCK) 
1.6 ± 0.6 3.6 µM (CGamF) 20102298 

Sildenafil 
OATP1B3 

(CCK) 
12.8 ± 0.04 4 µM (Bosentan) 17496208 

Darunavir 
OATP1B3 

(EG) 
42.9 ± 12.9 4.8 µM (CGamF) 20102298 

Lopinavir 
OATP1B3 

(EG) 
2.7 ± 1.7 2 µM (CGamF) 20102298 

Ritonavir 
OATP1B3 

(EG) 
0.7 ± 0.2 3.6 µM (CGamF) 20102298 

Sildenafil 
OATP1B3 

(EG) 
20.7 ± 1.4 4 µM (Bosentan) 17496208 
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Drug 

Transporter 

(substrate 

used for this 

study) 

IC50 from 

this study 

(µM) 

IC50 from the 

literature (substrate 

used) 

PMID 

Chloroquine 
OCT1 

(Metformin) 
10.7 ± 10.4 

20% inhibition (ASP+) 

at 50 µM 
29061131 

Darunavir 
OCT1 

(Metformin) 
6.0 ± 6.6 15.9 µM (TEA) 25914645 

Ritonavir 
OCT1 

(Metformin) 
3.8 ± 0.1 

5.18 µM (TEA); 

14 µM (MPP+) 

10681378; 

18490433 

Prazosin 
OCT1 

(Metformin) 
1.8 ± 2.0 1.56 µM (YM155) 19833842 

Chloroquine 
OCT2 

(Metformin) 
103 ± 45.7 1096 µM (MPP+) 19002438 

Prazosin 
OCT2 

(Metformin) 

140 

(predicted) 
80.4 µM (YM155) 19833842 

Tofacitinib 
OCT2 

(Metformin) 

209 

(predicted) 
150 µM (creatinine) 27129125 

Chloroquine 
MATE1 

(Metformin) 
0.8 ± 0.8 2.5 µM (Metformin) 21518836 

Ritonavir 
MATE1 

(Metformin) 
0.5 ± 0.3 

13.9 µM (TEA); 

15.4 µM (Metformin); 

3.1 µM (MPP+); 

4.4 µM (ASP+); 

0.08 µM (Metformin) 

20053795; 

31034908; 23241029 

Ritonavir 
MATE2 

(Thiamine) 
12.6 ± 8.2 

90 µM (MPP+); 

23.7 µM (ASP+) 
31034908; 23241029 

Camostat 
MATE1 

(Metformin) 
3.4 ± 2.9 2.9 µM (ASP+) 23241029 

Camostat 
MATE2 

(Thiamine) 
2.0 ± 1.3 12.7 µM (ASP+) 23241029 

Prazosin 
MATE1 

(Metformin) 
0.5 ± 0.2 1.6 µM (ASP+) 23241029 

Prazosin 
MATE2 

(Thiamine) 
2.4 ± 0.9 38.4 µM (ASP+) 23241029 
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Supplemental Table 5.5 Expansion of Table 5.2, showing DDI predictions for each drug 

with I/IC50 for each organ (intestine, liver, and kidney) and their respective transporters. 

 

U
m

if
en

o
v
ir

 

N
o
t 

ap
p
ro

v
ed

 

2
0
0
 

1
0
5
 

9
 

4
8
1
 

0
.5

7
 

0
.4

4
 

2
.3

9
 

0
.1

8
 

0
.0

2
 

0
.8

3
 

0
.0

0
6
 

0
.1

3
 

0
.0

2
 

0
.0

0
1
 

0
.0

0
2
 

0
.0

0
6
 

0
.0

0
1
 

6
/1

1
 

T
ri

a
za

v
ir

in
 

N
o
t 

ap
p
ro

v
ed

 

2
5
0
 

6
1
 

1
3
 

2
5
2
 

0
.0

2
 

0
.0

1
 

0
.0

0
4
 

0
.0

6
 

0
.0

1
 

0
.2

6
 

0
.0

0
3
 

0
.0

0
2
 

0
.0

0
1
 

0
.2

6
 

0
.4

5
 

0
.0

1
 

0
.0

0
3
 

5
/1

1
 

T
o
fa

ci
ti

n
ib

 

2
0
1
2
 

1
0
 

1
 

0
.4

 

N
I 

0
.0

3
 

0
.0

0
3

 

0
.0

3
 

0
.0

1
 

0
.0

0
4

 

N
I 

0
.0

0
1

 

0
.1

2
 

0
.0

0
2

 

0
.0

0
1

 

0
.0

0
2

 

0
.0

0
1

 

0
.0

0
0
4

 

1
/1

1
 

T
h

a
li

d
o
m

id
e 

1
9
9
8

 

4
0
0

 

9
5

 

1
5

 

N
I 

0
.1

 

0
.1

 

0
.0

3
 

0
.7

1
 

0
.1

1
 

N
I 

0
.0

1
 

0
.0

1
 

N
I 

0
.0

3
 

0
.0

8
 

0
.0

7
 

0
.0

1
 

4
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1
 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 



 195 

T
et

ra
n

d
ri

n
e
 

N
o
t 

ap
p
ro

v
ed

 

6
0
 

1
0
2

 

3
 

N
I 

0
.1

1
*

 

0
.0

9
*

 

0
.3

1
*

 

0
.7

*
 

N
I 

0
.0

8
*

 

0
.0

0
0
1
*

 

0
.0

9
*

 

0
.0

0
1
*

 

0
.0

1
*

 

0
.0

0
2
*

 

0
.0

3
*

 

0
.0

0
1
*

 

3
/1

1
 

S
il

d
en

a
fi

l 

1
9
9
8
 

1
0
0
 

5
3
 

2
7
0
 

2
2
 

0
.1

 

0
.0

1
 

0
.0

1
 

0
.0

2
 

0
.0

9
 

0
.0

1
 

0
.0

0
1
 

0
.0

2
 

0
.0

0
3
 

0
.0

0
0
0
5
 

0
.0

0
2
 

0
.0

0
3
 

0
.0

2
 

4
/1

1
 

R
u

x
o
li

ti
n

ib
 

2
0
1
1
 

2
5
 

N
I 

N
I 

1
9
 

0
.0

1
 

0
.0

0
8
 

0
.0

2
 

N
I 

N
I 

0
.0

1
 

0
.0

0
3
 

0
.0

4
 

0
.0

1
 

N
I 

0
.0

0
5
 

N
I 

N
I 

1
/1

1
 

R
it

o
n

a
v
ir

 

2
0
0
0
 

6
0
0
 

1
3
8
7
1

a
 

5
0
4

a
 

9
0
7
 

1
2
.7

 

1
1
.2

 

2
.0

3
 

3
1
.9

a
 

1
.1

6
a
 

2
.0

8
 

0
.0

0
3
 

0
.6

6
 

0
.0

2
 

0
.0

0
3
 

0
.0

0
3
 

1
.2

7
a
 

0
.0

5
a
 

7
/1

1
 

R
ib

a
v
ir

in
 

1
9
9
8

 

1
2
0
0

 

4
1
8

 

2
9

 

1
2

 

0
.0

1
 

N
I 

N
I 

0
.3

4
 

0
.0

2
 

0
.0

1
 

N
I 

0
.0

3
 

N
I 

0
.1

1
 

0
.0

1
 

0
.2

3
 

0
.0

2
 

4
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1
 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 



 196 

R
em

d
es

iv
ir

 

O
ct

o
b
er

 2
0
2
0

 

2
0
0

 

N
A

 

N
A

 

N
A

 

0
.7

8
 

2
.7

2
 

0
.1

1
 

0
.0

8
 

0
.0

4
 

0
.3

1
 

0
.0

0
6

 

2
.4

8
 

0
.0

7
 

N
I 

0
.0

8
 

0
.0

8
 

0
.0

4
 

5
/1

1
 

P
ra

zo
si

n
 

1
9
7
6
 

1
0
 

1
.5

a
 

0
.5

 

1
 

0
.0

0
2
 

0
.0

0
2
 

0
.0

4
 

0
.0

0
1

a
 

0
.0

0
0
3
 

0
.0

0
1
 

0
.0

0
0
0
4
 

0
.0

1
 

0
.0

0
2
 

N
I 

0
.0

0
0
2

a
 

0
.0

0
0
1

a
 

0
.0

0
0
0
2
 

0
/1

1
 

P
ic

li
d

en
o
so

n
 

N
o
t 

ap
p
ro

v
ed

 

2
 

0
.3

 

0
.1

 

1
.3

 

0
.0

5
*
 

0
.0

3
*
 

0
.0

2
*
 

0
.0

0
6
 

0
.0

0
3
 

0
.1

1
*
 

0
.0

0
1
*
 

0
.0

0
1
*
 

0
.0

0
3
*
 

N
I 

0
.0

0
5
*
 

0
.0

0
1
*
 

0
.0

0
0
4
*
 

1
/1

1
 

O
se

lt
a
m

iv
ir

 

1
9
9
9
 

3
0
0
 

8
7
 

3
 

1
 

0
.1

1
 

0
.1

2
 

0
.0

6
 

0
.5

5
 

0
.0

2
 

0
.0

0
4
 

0
.0

0
0
4
 

0
.0

0
0
5
 

0
.0

0
0
2
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
4
 

0
.0

0
0
1
 

3
/1

1
 

L
o
sa

rt
a
n

 

1
9
9
5

 

1
5
0
 

1
0
 

2
6
8
 

5
1
8
 

0
.2

1
 

0
.1

6
 

N
I 

0
.0

0
2

 

0
.0

6
 

0
.1

2
 

N
I 

0
.0

0
0
1

 

0
.0

0
0
0
5

 

0
.0

0
3

a
 

0
.0

2
a
 

0
.0

0
0
3

 

0
.0

0
7

 

5
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1
 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 



 197 

L
o
p

in
a
v
ir

 

2
0
0
0
 

8
0
0
 

2
9
9
4

a
 

6
6
4

a
 

7
0
6
8

a
 

1
3
.2

 

1
.4

6
 

0
.0

2
 

2
.3

2
a
 

0
.5

2
a
 

5
.4

8
a
 

0
.0

0
1
 

0
.0

2
 

0
.0

1
 

0
.0

0
3
 

N
I 

0
.2

2
a
 

0
.0

5
a
 

5
/1

1
 

L
ef

lu
n

o
m

id
e 

1
9
9
8
 

1
0
0
 

2
 

3
2
7

a
 

1
8
 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

2
/1

1
 

H
y
d

ro
x
y
ch

lo
ro

q
u

in
e
 

1
9
5
5
 

8
0
0
 

1
4
3
 

5
 

7
 

0
.0

2
 

0
.0

1
 

0
.4

6
 

0
.1

8
 

0
.0

1
 

0
.0

1
 

0
.0

0
7
 

0
.6

4
 

1
.5

7
 

0
.0

0
6
 

0
.0

0
1
 

0
.0

2
 

0
.0

0
1
 

4
/1

1
 

F
in

g
o
li

m
o
d

 

2
0
1
0

 

0
.5

 

0
.1

 

N
I 

0
.0

2
 

0
.0

0
0
0
1

 

0
.0

0
0
0
0
4

 

0
.0

0
0
0
0
2

 

0
.0

0
0
0
1

 

N
I 

0
.0

0
0
0
0
3

 

0
.0

0
0
0
0
0
0
1

 

0
.0

0
0
0
0
0
0
1

 

0
.0

0
0
0
0
0
0
0
3

 

0
.0

0
0
0
0
0
3

 

0
.0

0
0
0
0
0
0
2

 

0
.0

0
0
0
0
0
2

 

N
I 

0
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1

 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 



 198 

F
a
v
ip

ir
a
v
ir

 

N
o
t 

ap
p
ro

v
ed

 

2
4
0
0

 

1
1
1
1

 

6
9
 

N
I 

2
.1

8
 

3
.9

 

N
I 

1
2
.8

 

0
.7

9
 

N
I 

N
I 

0
.3

3
 

0
.3

 

5
.2

 

3
.2

1
 

4
.9

 

0
.3

 

8
/1

1
 

D
a
ru

n
a
v
ir

 

2
0
0
6
 

8
0
0
 

3
6
5
 

5
7
 

1
9
1
 

1
.3

6
 

0
.2

 

1
.4

 

0
.5

3
 

0
.0

8
 

0
.2

8
 

0
.0

0
2
 

0
.0

1
 

0
.0

2
 

0
.0

0
7
 

0
.0

2
 

0
.0

4
 

0
.0

0
6
 

6
/1

1
 

C
o
lc

h
ic

in
e
 

1
9
6
1
 

1
.5

 

0
.4

 

0
.0

5
 

N
I 

0
.0

0
4
 

0
.0

0
0
4
 

0
.0

0
5
 

0
.0

0
4
 

0
.0

0
0
5
 

N
I 

0
.0

0
0
0
1
 

0
.0

0
0
0
3
 

N
I 

0
.0

0
0
1
 

0
.0

0
0
0
1
 

0
.0

0
0
2
 

0
.0

0
0
0
3
 

0
/1

1
 

C
h

lo
ro

q
u

in
e 

1
9
4
9
 

1
0
0
0
 

3
7
5
 

1
3
 

6
 

0
.0

3
 

0
.0

4
 

0
.8

8
 

0
.4

7
 

0
.0

2
 

0
.0

1
 

0
.0

0
3
 

0
.4

6
 

0
.5

 

N
I 

0
.0

0
0
1
 

0
.0

2
 

0
.0

0
1
 

5
/1

1
 

C
a
m

o
st

a
t 

N
o
t 

ap
p
ro

v
ed

 

4
0
0
 

1
1
5
 

1
7
 

N
I 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

N
C

 

2
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1
 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 



 199 

B
a
ri

ci
ti

n
ib

 

2
0
1
8
 

4
 

0
.2

 

0
.4

 

0
.2

 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

0
2
 

0
.0

0
3
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
2
 

0
.0

1
 

0
.0

0
0
3

 

0
.0

0
5
 

0
.0

0
0
4

 

0
.0

0
1
 

0
/1

1
 

A
zi

th
ro

m
y
ci

n
 

1
9
9
1
 

2
0
0
0
 

5
9
3
 

3
4
 

2
6
 

2
.1

 

1
.1

 

N
I 

8
.2

 

0
.4

7
 

0
.3

6
 

N
I 

0
.0

0
4
 

0
.0

0
5
 

0
.0

4
 

0
.0

0
3
 

0
.1

4
 

0
.0

1
 

5
/1

1
 

 

F
D

A
 a

p
p

ro
v
a
l 

d
a
te

 

D
o
se

, 
m

g
 

P
-g

p
1
 

B
C

R
P

1
 

O
A

T
P

2
B

1
1
 

O
A

T
P

1
B

1
2
 

O
A

T
P

1
B

3
2
 

O
C

T
1

2
 

P
-g

p
2
 

B
C

R
P

2
 

O
A

T
P

2
B

1
2
 

O
C

T
2

3
 

M
A

T
E

1
3
 

M
A

T
E

2
-K

3
 

O
A

T
1

3
 

O
A

T
3

3
 

P
-g

p
3
 

B
C

R
P

3
 

#
 o

f 
tr

a
n

sp
o
rt

er
s 

in
h

ib
it

ed
 a

t 
cl

in
ic

a
l 

co
n

ce
n

tr
a
ti

o
n

s 

 
aValue from literature. 

*Protein binding not reported in the literature so fu,p was assumed to be 1. 
1Igut/IC50 
2Iu,in,max/IC50 
3Cu,max/IC50

 

Values in blue are based on predicted IC50 values. Values in bold meet FDA criteria to consider a 

clinical DDI study. NI, no inhibition; NA, not applicable; NC, not calculated due to missing Cmax 

value. 
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Supplemental Table 5.6 Evidence from the literature on potential biomarkers of 

transporter-mediated DDIs. 

 

Drug 

Predicted to cause 

DDI for which 

transporters? 

(I=intestine; L=Liver; 

K=Kidney) 

Evidence for transporter 

mediated DDI 
Reference 

Azithromycin P-gp (I, L, K), BCRP (I, 

L), OATP2B1 (I, L), 

OATP1B1, OATP1B3 

Increased plasma levels of 

drugs that are substrates of P-gp 

(e.g. fexofenadine and 

ximelagatran) 

(26, 50) 

Chloroquine P-gp (I, L), BCRP (I), 

OCT1, MATE1, 

MATE2 

(i) Increased toxicity of 

azithromycin (P-gp substrate) 

(ii) Increased metformin level 

(MATE1, MATE2 substrate) 

(iii) Decreased creatinine 

clearance. Potentially due to 

inhibition of MATE1 and 

MATE2. 

(i) (36);  

(ii) (51);  

(iii) (52, 

53) Hydroxychloroquine P-gp (I, L), OCT1, 

MATE1, MATE2 

Darunavir P-gp (I, L), BCRP (I), 

OATP2B1 (I, L), 

OATP1B1, OATP1B3, 

OCT1 

(i) Lopinavir/ritonavir or 

lopinavir/darunavir increased 

plasma levels of rosuvastatin 

(OATPs and BCRP substrates) 

and fexofenadine (P-gp 

substrate). 

(ii) Increased bilirubin levels. 

Potentially due to inhibition of 

OATP1B1, OATP1B3.  

(iii) Lopinavir, ritonavir and 

darunavir increased cholesterol, 

LDL and triglyceride levels.  

Potentially phenocopying the 

effect of OCT1 reduce function 

variants and knockout mice. 

(iv) Remdesivir increased 

serum creatinine, reduced 

creatinine clearance. Potentially 

due to inhibition of MATE1. 

(v) Remdesivir increased 

bilirubin levels. Potentially due 

to inhibition of OATP1B1, 

OATP1B3. 

(i) (28-30) 

(ii) (54-

57) 

(iii) (58-

60) 

(iv, v) 

(61) 

Lopinavir P-gp (I, L, K), BCRP (I, 

L), OATP2B1 (I, L), 

OATP1B1, OATP1B3 

Ritonavir P-gp (I, L, K), BCRP (I, 

L), OATP2B1 (I, L), 

OATP1B1, OATP1B3, 

OCT1, MATE1 

Remdesivir OATP2B1 (L), 

OATP1B1, OATP1B3, 

OCT1, MATE1 

Umifenovir  

(Arbidol) 

P-gp (I, L), OATP2B1 

(I, L), OATP1B1, 

OATP1B3, OCT1, 

MATE1 

Sildenafil P-gp (I), BCRP (I), 

OATP2B1 (L), 

OATP1B1 

Increased uric acid. Potentially 

due to inhibition of BCRP. 

(43, 44, 

62) 
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Drug 

Predicted to cause 

DDI for which 

transporters? 

(I=intestine; L=Liver; 

K=Kidney) 

Evidence for transporter 

mediated DDI 
Reference 

Favipiravir P-gp (I, L, K), BCRP (I, 

L, K), OATP1B1, 

OATP1B3, MATE1, 

MATE2, OAT1, OAT3 

Increased uric acid. Potentially 

due to inhibition of BCRP, 

OAT1 and OAT3. 

(63, 64)  
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Supplemental Table 5.7 Sensitivity analyses comparing patients prescribed sildenafil vs 

patients not prescribed sildenafil at a 1:5, 1:10, and 1:20 ratio between the “on” drug and 

“off” drug groups.  

 

Analysis Total patients 1:5 1:10 1:20 

Sildenafil 
On 

drug 

Off 

drug 
On drug Off drug On drug Off drug On drug Off drug 

Main 

analysis 
636 53808       

P-value   < 2.2E-16 < 2.2E-16 < 2.2E-16 

Number of 

patients (#) 
  636 3180 636 6360 636 12720 

Average 

SUA 

(mg/dL) 

  6.84 5.94 6.84 5.94 6.84 5.94 

Sub-

analysis #1 
319 53808       

P-value   2.16E-13 5.85E-14 1.86E-15 

Number of 

patients (#) 
  319 1595 319 3190 319 6380 

Average 

SUA 

(mg/dL) 

  6.97 5.91 6.97 5.94 6.97 5.92 

Sub-

analysis #2 
175 1483       

P-value   6.12E-07 NA NA 

Number of 

patients (#) 
  175 875 NA NA NA NA 

Average 

SUA 

(mg/dL) 

  7.35 6.19 NA NA NA NA 

Sub-

analysis #3 
152 1017       

P-value   6.14E-06 NA NA 

Number of 

patients (#) 
  152 760 NA NA NA NA 

Average 

SUA 

(mg/dL) 

  7.41 6.31 NA NA NA NA 
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Analysis Total patients 1:5 1:10 1:20 

Sub-

analysis #4 
183 53808       

P-value   1.15E-08 9.11E-09 2.76E-09 

Number of 

patients (#) 
  183 915 183 1830 183 3660 

Average 

SUA 

(mg/dL) 

  6.86 6.1 6.86 6.14 6.86 6.1 

Sub-

analysis #5 
76 27659       

P-value   2.88E-11 2.91E-12 6.91E-13 

Number of 

patients (#) 
  76 380 76 760 76 1520 

Average 

SUA 

(mg/dL) 

  7.29 5.04 7.29 4.99 7.29 4.98 

 

The “on” drug group had significantly higher serum/plasma uric acid levels in each of the 

analyses, despite the ratio used. Sub-analysis #1 excludes lab values taken more than one year 

after first medication order start date. Sub-analysis #2 excludes patients without a diagnosis of 

pulmonary hypertension. Sub-analysis #3 excludes lab values taken before diagnosis of 

pulmonary hypertension. Sub-analysis #4 only includes Sildenafil medication orders with dose > 

25mg in medication name. Sub-analysis #5 excludes male patients. NA, not applicable. 
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Supplemental Table 5.8 Prescription frequencies of drugs that are substrates for 

transporters listed in the FDA Drug Development and Drug Interactions: Table of 

Substrates, Inhibitors, and Inducers.  

 

Drug Drug_generic_and_trade count total % Transporter 

furosemide ['furosemide', 'lasix'] 4055 27130 14.95 
OAT1, OAT3  

substrate 

atorvastatin 
['atorvastatin', 'lipitor', 

'caduet'] 
2139 27130 7.88 

OATP1B1, OATP1B3  

substrate 

morphine 

['morphine', 'avinza', 

'ms contin', 'roxanol', 

'mitigo', 'arymo', 

'kadian', 'morphabond', 

'oramorph'] 

1687 27130 6.22 OCT1 substrate 

famotidine 
['famotidine', 'pepcid', 

'dyspep', 'fluxid'] 
1633 27130 6.02 

OAT1, OAT3  

substrate 

metformin 

['metformin', 'glucophage', 

'fortamet', 'glumetza', 

'riomet'] 

1336 27130 4.92 
OCT12, MATE1,  

MATE2 substrate 

simvastatin 
['simvastatin', 'zocor', 

'flolipid'] 
347 27130 1.28 

OATP1B1, OATP1B3  

substrate 

digoxin ['digoxin', 'digitek'] 332 27130 1.22 P-gp substrate 

rosuvastatin 
['rosuvastatin', 'crestor', 

'ezallor'] 
249 27130 0.92 

BCRP, OATP1B1,  

OATP1B3 substrate 

pravastatin 
['pravastatin', 'pravachol', 

'selektine'] 
196 27130 0.72 

OAT3, OATP1B1,  

OATP1B3 substrate 

tramadol ['tramadol', 'conzip'] 177 27130 0.65 OCT1 substrate 

atenolol ['atenolol', 'tenormin'] 156 27130 0.58 OCT1 substrate 

oseltamivir ['oseltamivir', 'tamiflu'] 146 27130 0.54 
OAT1, OAT3  

substrate 

methotrexate 

['methotrexate', 'otrexup', 

'rasuvo', 'rheumatrex', 

'trexall', 'mtx', 'amethopterin'] 

39 27130 0.14 
OAT1, OAT3  

substrate 

glyburide 

['glyburide', 'diabeta', 

'glynase', 'glycron', 

'micronase'] 

38 27130 0.14 
OATP1B1,  

OATP1B3 substrate 

fexofenadine ['fexofenadine', 'allegra'] 33 27130 0.12 
P-gp, OATP1B1,  

OATP1B3 substrate 

dabigatran ['dabigatran', 'pradaxa'] 22 27130 0.08 
P-gp  

substrate 

sulfasalazine 
['sulfasalazine', 'azulfidine', 

'salazopyrin', 'sulazine'] 
15 27130 0.06 

BCRP substrate,  

inhibitor 

 

 

 



 205 

Drug Drug_generic_and_trade count total % Transporter 

sumatriptan 

['sumatriptan', 'imitrex', 

'onzetraxsail', 'zembrace', 

'tosymra'] 

15 27130 0.06 
OCT1  

substrate 

repaglinide ['repaglinide', 'prandin'] 13 27130 0.05 
OATP1B1,  

OATP1B3 substrate 

nateglinide ['nateglinide', 'starlix'] 4 27130 0.01 
OATP1B1,  

OATP1B3 substrate 

pitavastatin 
['pitavastatin', 'livalo', 

'nikita', 'zypitamag'] 
4 27130 0.01 

OATP1B1,  

OATP1B3 substrate 

ganciclovir 
['ganciclovir', 'cytovene', 

'cymevene', 'vitrasert'] 
2 27130 0.01 

OATP1B1,  

OATP1B3 substrate 

adefovir ['adefovir'] 0 27130 0.00 
OAT1, OAT3  

substrate 

cefaclor ['cefaclor', 'ceclor'] 0 27130 0.00 
OAT1, OAT3  

substrate 

ceftizoxime ['ceftizoxime', 'cefizox'] 0 27130 0.00 
OAT1, OAT3  

substrate 

 

Extracted from the CERNER database during the COVID19 period defined previously. FDA 

Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers: 

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-

table-substrates-inhibitors-and-inducers. 

 

  

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
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5.8 SUPPLEMENTARY INFORMATION  

 

This supplementary text describes the methods used in this study expanding from the main 

methods section of the manuscript.  

 

Establishment of transient cells 

Genes encoding human OATP1B1, OATP1B3, OATP2B1, OCT1, OCT2, OAT1, OAT3, 

MATE1, and MATE2 were transfected in HEK293 Flp-In cells (ThermoFisher Scientific, 

Waltham, MA) using Lipofectamine LTX (Life Technologies, Carlsbad, CA) according to the 

manufacturer’s protocol. In brief, 100 ng of DNA and 0.2 μL of Lipofectamine LTX were used 

for transfection into each well of a 96-well plate (seeding density 40,000 – 45,0000 cells/well). 

After 48 hours, transiently transfected cells were used for the transporter inhibition studies.  

Transient cells were used for determining the transporter inhibition at one concentration, 100 

µM, unless mentioned otherwise. 

 

Culture of stable cell lines 

HEK293 Flp-In cells stably overexpressing human OATP2B1 (7), OCT1 (8), OCT2 (9), OAT1 

(10), OAT3 (11), MATE1 (12), and MATE2 (13) were grown in DMEM supplemented with 

10% fetal bovine serum, penicillin (100 U/ml), streptomycin (100 μg/ml), sodium pyruvate (110 

μg/ml), and hygromycin B (100 μg/ml) at 37°C in a humidified incubator with 5% CO2. HEK293 

Flp-In stable cells overexpressing OATP1B1 and OATP1B3 were created using the expression 

vector, pCMV6-AC-GFP (Catalog number RG222130 for OATP1B1 and RG222317 for 
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OATP1B3), from OriGene Technologies, Inc. (Rockville, MD). Stable cells were used for 

determining the inhibition potencies, IC50 values, of selected drugs (see next section). 

 

Transporter inhibition studies 

Twenty-five COVID19 drugs were screened against 11 transporters at a concentration of 100 

μM, except for baricitinib (50 μM) and tetrandrine (10 μM) due to solubility. The substrate used 

for each transporter is listed in Supplemental Table 5.1. For OATP1B1, OATP1B3, OATP2B1, 

OCT1, OCT2, OAT1, OAT3, MATE1, and MATE2, drugs were screened in cells transiently 

overexpressing each of the transporters. For P-gp and BCRP, membrane vesicles were used and 

the vesicular transport assays were performed as reported previously (14) with modifications.  

 

Before the uptake, cell culture medium was removed, and cells were washed with warmed 

Hank’s balanced salt solution (HBSS). Inhibition studies were performed in triplicate at 37°C for 

10 minutes. Cells were then washed twice with 100 µL ice-cold HBSS buffer and lysed with 100 

µL of MicroScint-20 (Perkin Elmer). The 96-well plates were placed on a shaker at room 

temperature for 1-2 hours. The plates were then read in a MicroBeta2 (Perkin Elmer) using the 

dual counting mode. Drugs that reduced the uptake of the canonical substrates by more than 50% 

were considered inhibitors and were further analyzed for IC50 determination as described 

previously (11). Drugs that are known inhibitors of a specific transporter were not evaluated 

further. Stable cell lines overexpressing each of the 9 transporters were used for IC50 

determination. As recommended by the FDA guidance (fda.gov/media/134582/download), a pre-

incubation step was added with OATP1B1 and OATP1B3 cells when determining IC50 values. 

All values were determined in duplicate or triplicate. The IC50 values were determined by fitting 
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uptake results to the Hill equation by nonlinear regression (log (inhibitor) vs normalized 

response) assuming the Hill slope was -1.0 using GraphPad Prism 8. Predicted IC50 (prIC50) 

values were determined for some of the drugs using one-point inhibition data from the initial 

screen (65). The equation used to determine prIC50 was V = V/{1 + [(I)/prIC50]}, where V and 

V0 are the uptake with and without the inhibitor, respectively, and I is the inhibitor concentration 

(10, 50, or 100 µM accordingly).  

 

For P-gp and BCRP, membrane vesicles were used and the vesicular transport assays were 

performed as reported previously (14) with modifications. Membrane vesicles (50 μg) 

overexpressing P-gp or BCRP were added to the uptake buffer containing P-gp substrate (3H-N-

methylquinidine) or BCRP substrate (3H-CCK) with and without the inhibitor in a 96-well flat-

bottom uptake plate. The uptake buffer was prepared from 50 mM MOPS-Tris, pH 7.0, 70 mM 

KCl and 7 mM MgCl2. Uptake assays were initiated by adding ATP or AMP to a final 

concentration of 5 mM. Plates were incubated at 37°C for 5 min with orbital shaking (90 rpm). 

After 5 min, the uptake was quenched by adding 150 μL of ice-cold wash buffer to each well and 

the mixture (200 μL) was transferred to a 96-well filtration plate. Vacuum was applied and the 

vesicles were washed three times with wash buffer. Filters were removed from the filter plate 

and radioactivity was determined by liquid scintillation counting. Drugs that reduced transporter-

mediated substrate uptake by more than 50%, respective to the substrate alone, were considered 

inhibitors and were further analyzed for IC50 determination against P-gp and BCRP using 25 μg 

membrane vesicles. Drugs with known IC50 values were not evaluated. All values were 

determined in duplicate or triplicate. The IC50 values were determined by fitting uptake results to 

the Hill equation by nonlinear regression (log (inhibitor) vs normalized response) assuming the 
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Hill slope was -1.0 using GraphPad Prism 8. The Spearman correlation coefficient, r, was 

determined using GraphPad Prism 8, to compare the IC50 values between two transporters.  

 

Prediction of transporter-mediated inhibition 

The DDI potential for each drug was evaluated in accordance to the 2020 FDA Drug-Drug 

Interaction Guidance (https://www.fda.gov/media/134582/download) by calculating the ratio of 

predicted clinically relevant drug concentration (I) to IC50 (I/IC50). The following formulas and 

cutoff values were used to predict in vivo DDI potential: 

 

1) Igut/IC50 ≥ 10  

2) Iu,in,max/IC50 ≥ 0.1  

3) Cu,max/IC50 ≥ 0.1 

Igut = dose / 250mL 

Iu,in,max = fu,p x (Cmax + (Fa x Fg x ka x dose/Qh/Rb))   

Cu,max = Cmax x fu,p 

 

Where fu,p, Cmax, Fa, Fg, ka, Qh, and Rb represent fraction of drug unbound in plasma, maximum 

plasma concentration, fraction absorbed, intestinal availability, absorption rate constant, hepatic 

blood flow rate, and blood-to-plasma concentration ratio, respectively. Fa, Fg, ka, and Qh were 

estimated to be 1, 1, 0.1 min-1, and 1.62 L/min respectively.  

 

 

 

https://www.fda.gov/media/134582/download
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Electronic health record analyses 

1) UCSF Research Data Browser 

The UCSF Research Data Browser was utilized to search for patients (irrespective of diagnosis) 

who had at least one laboratory test value reported for 1) serum/plasma uric acid (“Uric Acid, 

Serum/Plasma”; 95,207 patients), 2) triglyceride (“Triglycerides, serum”, “Triglycerides, 

Serum”; 236,990 patients), 3) LDL cholesterol (“LDL Cholesterol”, “Cholesterol, LDL”; 

201,965 patients), 4) total cholesterol (“Cholesterol, total”; 249,388 patients), or 5) bilirubin 

(“Bilirubin, Total”; 428,992 patients). Values reported as an inequality were changed to a 

numerical value (i.e. < 0.5 mg/dL = 0.5 mg/dL). Lab values with missing values (i.e. DE-

IDENTIFIED) and lab values without a lab collection date were excluded. Additionally, patients 

who did not have sex information or date of birth recorded in the EHR were excluded from the 

analysis. 

 

For each analysis, patients were divided into two groups depending on their medication 

prescriptions. Specifically, patients prescribed the drug(s) of interest were grouped into the “on” 

drug group, respective to each analysis. Search terms for each drug were as follows: “Sildenafil”, 

“Revatio”, “Viagra”; “Ritonavir”, “Kaletra”, “Norvir”, “Technivie”, “Viekira”; “Darunavir”, 

“Prezcobix”, “Prezista”, “Symtuza”; “Lopinavir”, “Kaletra”. Only medication orders with an oral 

route of administration and with a medication order start date were included in the analysis. The 

remaining patients (i.e. individuals who were never prescribed the drug(s) of interest) were 

grouped into the “off” drug group. Only patients with one lab value reported in their electronic 

health record were included in the “off” drug group.  
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Patients in the “on” drug group were further filtered based on their laboratory collection dates 

relative to their first and last medication order start dates. Labs collected before the patient's first 

medication order start date or within 7 days after their first medication order start date were 

excluded. Additionally, labs collected after the patient’s last medication order start date were 

excluded. A minimum of 7 days between first medication order start date and lab collection date 

was chosen to allow drug levels to reach steady-state and for an effect to be seen. For patients 

with more than one lab value, only the lab value closest to the first medication order start date 

was included. Lastly, patients were age- and sex- matched using the MatchIt package (15) in R to 

be comparable in both groups (Supplemental Table 5.3). 

 

For patient population-specific analyses, the UCSF Research Data Browser was utilized to 

search and extract patients who were diagnosed with pulmonary hypertension and/or human 

immunodeficiency virus (HIV) since sildenafil and ritonavir/darunavir/lopinavir can be 

chronically used in these patient populations at doses predicted to cause a clinically relevant 

DDI, respectively. Patients associated with the following ICD10 codes were included in our 

analyses: I27.0, I27.2, I27.20, I27.21, I27.22, I27.23, I27.24, and I27.29 for the sildenafil 

analyses (pulmonary hypertension) and B20 for all other analyses (HIV). Diagnoses with 

missing diagnosis start dates were excluded. For all analyses involving ritonavir, darunavir, and 

ritonavir/lopinavir, lab values taken before the initial HIV diagnosis start date were excluded (i.e. 

labs taken on or after diagnosis start date were included). 
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2) CERNER Database 

The Cerner HealtheDataLab database was used to search Cerner’s Real World COVID19 

dataset, which includes EMR data from 62 healthcare facilities across the United States from 

January 2015 to July 2020, for patients who were in the Emergency Room (ER) or admitted to a 

hospital for COVID19. Deidentified Cerner Real World Data is extracted from the EHR of 

hospitals in which Cerner has a data use agreement. Encounters include pharmacy, clinical and 

microbiology laboratory, admissions, and billing information. All admissions, medication orders 

and dispensing, laboratory orders and specimens are date and time stamped, providing a 

temporal relationship between treatment patterns and clinical information. 

 

The Cerner Real World COVID19 dataset was utilized to search for the number of patients who 

have prescriptions for the following drugs, which are known substrates or inhibitors of the 

transporters, P-gp, BCRP, OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2, OAT1 and 

OAT3 (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-

interactions-table-substrates-inhibitors-and-inducers#table5-1). Search terms included 

‘Adefovir'; ‘Atenolol', 'Tenormin'; ‘Atorvastatin', 'Lipitor', 'Caduet'; ‘Cefaclor', 'Ceclor'; 

‘Ceftizoxime', 'Cefizox'; ‘Dabigatran', 'Pradaxa'; ‘Digoxin', 'Digitek'; ‘Famotidine', 'Pepcid', 

'Dyspep', 'Fluxid'; ‘Fexofenadine', 'Allegra'; ‘Furosemide', 'Lasix'; ‘Ganciclovir', 'Cytovene', 

'Cymevene', 'Vitrasert'; ‘Glyburide', 'Diabeta', 'Glynase', 'Glycron', 'Micronase'; ‘Metformin', 

'Glucophage', 'Fortamet', 'Glumetza', 'Riomet'; ‘Methotrexate', 'Otrexup', 'Rasuvo', 'Rheumatrex', 

'Trexall', 'Mtx', 'Amethopterin'; ‘Morphine', 'Avinza', 'MS Contin', 'Roxanol', 'Mitigo', 'Arymo', 

'Kadian', 'Morphabond', 'Oramorph'; ‘Nateglinide', 'Starlix'; ‘Oseltamivir', 'Tamiflu'; 

‘Pitavastatin', 'Livalo', 'Nikita', 'Zypitamag'; ‘Pravastatin', 'Pravachol', 'Selektine'; ‘Repaglinide', 

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table5-1
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table5-1
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'Prandin'; ‘Rosuvastatin', 'Crestor', 'Ezallor'; ‘Simvastatin', 'Zocor', 'Flolipid'; ‘Sulfasalazine', 

'Azulfidine', 'Salazopyrin', 'Sulazine'; ‘Sumatriptan', 'Imitrex', 'Onzetraxsail', 'Zembrace', 

'Tosymra'; ‘Tramadol', 'Conzip'. Medication orders with any route of delivery (e.g. oral, 

intravenous, intramuscular) were included.  

 

The Cerner Real World COVID19 dataset was also queried for patients who had who had at least 

one positive lab test result for SARS-COV2 by serum, plasma, nasal or other specimens and at 

least two laboratory test values reported for serum creatinine: one value 0 to 90 days before 

patient’s first positive SARS-CoV2 lab test result (“Pre”), and another value 7 to 60 days after 

patient’s first positive SARS-CoV2 lab test result (‘Post’). LOINC code “2160-0” was used to 

search for serum creatinine values, and only results with a unit of measure of "milligram per 

deciliter" or "mg/dL" were included. Patients were divided into two groups depending on their 

medication order history. Specifically, patients were grouped into the “on” drug group if they 

had an active or complete medication order with “oral”, “intramuscular” or “intravenous” route 

and the medication order start date that was 0 to 30 days after the date of the first positive SARS-

CoV2 lab test result. Those with no record of an order for the medications of interest were 

assigned to the ‘off’ drug group. Search terms for medications were as follows: 

“Hydroxychloroquine”, “Chloroquine”, “Aralen”, and “Plaquenil”. For the “on” drug cohort, the 

serum creatinine value that was reported during a period of 7 to 30 days after the earliest 

medication start date was used (“Post”). When multiple lab values were found within a defined 

time frame, the result closest to the time of the first positive SARS-CoV2 lab test was included 

(Supplemental Figure 5.1).  Patients with chronic renal disease were filtered out by excluding 

those with ICD10 codes that begin with “N17” or “N19” or ICD9 codes that start with “584” or 
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“586”. To identify patients whether patients had creatinine levels that were elevated above the 

normal range, we used the threshold > 1.1 mg/dL (the upper limit of normal of creatinine for 

women) > 1.2 mg/dL (the upper limit of normal of creatinine for men) depending on patients’ 

sex. The MatchIt package (15) in R was used to match patients in the drug and control cohorts on 

propensity score which included age, race, ethnicity, sex, and outcome (mortality) for the main 

analysis, and the aforementioned covariates as well as medication indication for the analysis on 

patients without chronic renal disease (Supplemental Table 5.3). Indications for treatment with 

hydroxychloroquine (HCQ) or chloroquine (CQ) include systemic lupus erythematosus (SLE), 

discoid lupus, rheumatoid arthritis (RA), and malaria, thus the following ICD codes were used to 

identify patients with these conditions: SLE: ICD10 codes “M32.1”, “M32.8” or “M32.9” or 

ICD9 code “710.0”; discoid lupus: ICD10 code “695.4” or ICD 9 code “L93.0”; RA: ICD10 

code “M06.9” or ICD9 code “714.0”; malaria: ICD10 codes that begin with “B51”, “B52”, 

“B53”, or “B54” or ICD9 codes that begin with “084”. 
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CHAPTER 6  

Conclusions and Perspectives 

 

 

This dissertation provides an excellent example of how laboratory experiments, clinical trials, 

and real world data can be integrated to investigate drug interactions. Here, we present three 

separate projects across a spectrum of scientific topics, drug-nutrient interactions (DNIs), drug-

variant interactions (DVIs), and drug-drug interactions (DDIs), where preliminary in vitro data 

was extended past the bench using clinical trials, pharmacological modelling, and real world 

data. 

 

In Chapter 2, we focused on characterizing inhibitors of the primary intestinal absorptive 

transporter for thiamine (ThTR-2) using a multi-faceted approach. A common shortcoming to in 

vitro findings is their translatability to humans; a drug which may inhibit a transporter in cells 

may not inhibit the transporter clinically. We were able to start addressing this gap by querying 

electronic health records (EHRs) and observing a drug-induced thiamine deficient signature in 

patients prescribed inhibitors identified in our screen. However, we were limited by small sample 

sizes; thiamine pyrophosphate is not a commonly ordered laboratory test. Additionally, 

comorbidities as well as a lack of a controlled diet confounds our results and makes it difficult to 

tease apart drug-induced changes versus changes driven by other factors.  
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Thus, to address some of these concerns and drawbacks, we performed a prospective clinical 

study in Chapter 3. Prospective clinical trials represent the gold standard for studies of drug 

interactions. By recruiting healthy volunteers and implementing a thiamine deficient diet, we 

were able to control covariates which eluded us in the real world analysis in Chapter 2. A 

randomized crossover design allowed each person to serve as their own control increasing the 

power of the study. Our findings were contrary to our initial hypothesis, which was that 

trimethoprim would lower thiamine levels as a result of inhibition of intestinal ThTR-2 mediated 

thiamine absorption. Instead, we found that trimethoprim increased thiamine levels, possibly as a 

result of inhibition of the hepatic uptake transporter, OCT1. This finding is one of great interest 

since inhibition of OCT1 has been associated with increased lipid levels. Once again, we were 

able to support our in vitro findings using EHR data; however, further studies in healthy 

volunteers and patients diagnosed with HIV are needed to control for variables such as disease 

state, patient compliance, and genetic variants. Importantly, the study underscores the 

complexity of drug-transporter interactions, in which drugs may inhibit more than one 

transporter causing variable effects.   

 

In Chapter 4, we shifted our focus from DNIs to pharmacogenomics, specifically investigating 

the association between BCRP p.Q141K, allopurinol/oxypurinol, and serum uric acid (SUA). 

Our study revealed that patients homozygous for the p.Q141K variant had a longer half-life than 

patients who were homozygous for the reference allele. Additionally, we were able to suggest 

that enterohepatic circulation of oxypurinol may be affecting the pharmacodynamics of 

allopurinol. In addition to the costs and length of clinical trials, recruiting patients who were 

homozygous variant for BCRP p.Q141K was difficult and limited our sample size. However, we 
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were able to build a preliminary PKPD model to identify covariates significantly affecting 

oxypurinol and SUA concentrations, respectively; this model can be leveraged for future studies 

and models. Lastly, we were able to use real world data to demonstrate that clinical inhibitors of 

BCRP associated with increased SUA levels, suggesting the potential of these drugs to cause 

hyperuricemia and increased risk for gout in susceptible patient populations. A caveat in our 

EHR analysis that plays a crucial role for this study is that the BCRP genotype of these patients 

was unknown. Unfortunately, most EHR databases do not currently include genotype 

information; however, with increasing ease and cost-effectiveness of genetic testing, we are 

hopeful that patients will be screened for variants in major transporters and enzymes, including 

BCRP, and this data will be recorded in EHRs for use in patient care as well as research. The 

study suggested that a pharmacodynamic, rather than a pharmacokinetic, mechanism was 

responsible for the finding (in several genome-wide association and candidate gene studies) that 

BCRP p.Q141K associates with poor response to allopurinol.   

 

Lastly, given the time of this dissertation work and the COVID19 pandemic, Chapter 5 focused 

on elucidating the potential of drugs in clinical trials for COVID19 to cause clinically relevant 

DDIs, which could lead to potential adverse drug reactions with the use of concomitant 

medications. Although DDIs are thoroughly investigated throughout the drug development 

process, the COVID19 pandemic brought upon uncharted territory with the use of drugs in 

vulnerable patient populations or with concomitant medications that have not been previously 

studied. Our study identified 21 (out of 25) drugs which were predicted to cause a clinically 

relevant DDI in patients. Furthermore, we were able to use EHRs from patients not only in the 

general population but also patients diagnosed with COVID19 to complement our in vitro 
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findings. Once again, the use of real world, real patient data allowed us to investigate the 

applicability and translatability of our findings in the laboratory. Although we were limited by 

the number of COVID19 patients for our analyses, as more EHR data becomes available, we will 

be able to account for confounding variables and covariates as well as increase the sample size 

and robustness of our analyses. 

 

This dissertation focuses on building a bridge between findings in the laboratory and their 

translation to the clinic. Notably, EHRs are a relatively new source of rich data for research 

purposes that allows for not only extension of preliminary findings but also hypothesis 

generation and development. Although there is work to be done and obstacles to be overcome, as 

discussed in Chapter 1, before the full potential of EHR data can be unlocked and there can be 

widespread integration, the work presented in this dissertation demonstrates how with increasing 

standardization and availability, compounded with its low costs relative to clinical trials, EHRs 

represent a gold mine for patient data and can help bring a real world, real patient component to 

pharmacological research.   
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