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ABSTRACT OF THE DISSERTATION 

 

PLSe: Efficient Estimators and Tests for Partial Least Squares 

 

 

By 

 

Wenjing Huang 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2013 

Professor Peter Bentler, Chair 

 

This dissertation extends Dijkstra’s (2011) consistent partial least squares estimator for 

structural equation models by deriving new estimators that are efficient. The new 

methods allow formal testing of models via chi-square statistics and evaluation of 

parameter estimates by deriving standard error estimates, which are previously not 

directly available. Two approaches are developed: (1) PLSe1: a one-step improvement 

methodology based on PLSc-estimated factor loadings and TSLS-estimated structural 

parameters; (2) PLSe2: an optimal generalized least squares methodology using PLSc-
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implied covariance matrix. The performances of the proposed methods are evaluated by 

Monte Carlo simulations. We generated data under a non-recursive structural equation 

model. We investigated the performances of the proposed estimators relative to the 

classical Maximum Likelihood estimator under a variety of sample sizes for both 

normal data (with PLSe1 and PLSe2) and non-normal data (with PLSe1 only). The 

results indicate that the proposed estimators provide estimates that are almost as good 

as the theoretically optimal ML estimator under normality. We also demonstrate that 

the standard error estimates closely correspond to the empirical Monte Carlo variation. 

Under non-normality, PLSe1 performs favorably with non-normal (i.e. robust) 

adjustments to model fit statistics and standard errors. The standard error estimates are 

consistent with corresponding sampling variance and the robust model fit chi-squares 

statistics are well calibrated. In particular, Satorra-Bentler’s (1994) scaled chi-square 

statistic stands out clearly.  
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CHAPTER 1 

INTRODUCTION 

 
1.1. Confirmatory Factor Analysis and Structural Equation Modeling  

Structural Equation Model (SEM) is widely used in many areas of social and 

behavioral sciences as a tool for multivariate data analysis (MacCallum & Austin, 2000), 

and is especially appropriate for theory testing (e.g., Bagozzi, 1980).  Unlike single-

equation regression models, SEM usually refers to a simultaneous equation system that 

involves multiple independent and dependent variables, some of which may be latent 

variables that are not directly observed but represented by observed/manifest variables. 

Together with appropriate estimation methods, SEM can account for measurement 

error in manifest variables so that the latent variable regression models are free from the 

influence of measurement error. In addition, SEM provides the advantage of an overall 

test of fit so the models become falsifiable. 

There are different approaches to SEM, for example, the traditional Jöreskog-

Keesling-Wiley model (Jöreskog, 1973, 1977; Jöreskog & Sörbom, 1994; Keesling, 1972; 

Wiley, 1973) developed in the LISREL program (Jöreskog & Sörbom, 1994), the Bentler-

Weeks model (Bentler & Weeks, 1980) implemented in the EQS program (Bentler, 2006) 

and a number of other related models (e.g. Brown & Arminger, 1995; McArdle & 

McDonald, 1984) implemented in several tools, such as RAMONA, AMOS, SePath, 



2 
 

COSAN, and Mplus. These different approaches can be understood as covariance 

structure models (e.g., models for variances and covariances), expressed as a function of 

a relatively small set of parameters. In some models, not discussed further in this 

dissertation, means also may be structured.  

The Jöreskog-Keesling-Wiley model (here we call it the LISREL model) makes a 

clear distinction between two main components of SEMs: the structural model that 

describes the potential causal relations among the endogenous and exogenous latent 

variables, and the measurement model that deals with the relations between latent 

variables (common factors) and their manifest indicators. The regression coefficients of 

manifest variables on latent variables are often referred to as factor loadings. The error 

terms associated with the observed indicators are called unique factors. While it is useful 

for learning and explanatory purposes, this approach requires the use of 8 equations 

and 12 parameter matrices to specify a model. As an alternative, the Bentler-Weeks 

model can handle all the linear structure of the LISREL model. As path analysis, it 

provides an equation for every dependent variable and covariances for independent 

variables, which is easy to understand and implement.  

In spite of the different modeling frameworks, standard models such as factor 

analysis, path analysis and multivariate regression can be viewed as special types of 

SEMs. For example, Exploratory Factor Analysis (EFA) and Confirmatory Factor 

Analysis (CFA) models can be viewed as SEMs that contain only the measurement part 
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(see Jöreskog, 1969), while path analysis (or simultaneous equations) can also be viewed 

as SEM that only has the structural part and involves only observed variables.   

The classical SEM approaches usually employ estimation methods that require 

minimizing some suitably chosen fit function. The fit functions are derived under 

different distributional assumptions. For example, the Maximum Likelihood (ML) 

estimator requires the assumption that the joint distribution of the observed indicators 

is multivariate normal. If such an assumption is made, the ML estimates maximize the 

likelihood of observed data given the model specified. ML enjoys the properties of 

consistency, asymptotic normality, and asymptotic efficiency.  

Despite the restrictive normality assumption, the ML parameter estimates are 

robust against violations of this assumption; although one needs to adjust the standard 

errors as well as the model fit chi-square when the data are non-normal. There are other 

estimation methods that require fewer assumptions, such as the “asymptotically 

distribution free” (ADF, see Browne, 1984) method. ADF is also known as AGLS or 

“arbitrary distribution Generalized Least Square” in the literature. ADF only requires 

the assumption of the existence of 8th-order moments for the observed variable 

distributions. The estimation procedure involves finding a sample-based weight matrix 

that depends on the sample third- and fourth-order moments.  Asymptotically ADF is 

efficient among the class of generalized least squares estimators, but due to the size of 

the weight matrix (polynomial in the number of manifest variables) and the inherent 
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instability of sample higher-order moments, ADF often requires excessively large 

sample size, sometimes thousands or more, to find stable parameter estimates. Thus this 

method almost never works well unless the sample size is very large or the model is 

very small (Browne, 1984; Savalei & Bentler, 2006). 

 

1.2. Partial Least Squares 

While most of the development of SEM started in the 1960’s and 1970’s, another 

line of work called Partial Least Squares (PLS) was developed by Herman Wold during 

the same period (Wold, 1966, 1975, 1982) for “soft models and soft data” in social 

sciences. PLS, as another approach to traditional SEM, is also known as PLS Path 

Modeling and its purpose is for the analysis of high-dimensional data when specificity 

of the structure of the model is low, with strong inclination toward the models’ use for 

prediction purposes.  

The general applicability of LISREL models were questioned by Wold (1966), 

because in empirical studies, the distributions are often unknown or it would be 

difficult to assume them to be normal. In empirical studies, a sufficiently large sample 

size would also be difficult to obtain so that one could not use any of the distributional 

free approaches, such as ADF.  In order to find a method that is free of distribution 

assumptions, that does not require a large sample size, and is relatively easy to apply in 
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practice, Wold and associates developed the Partial Least Squares (PLS) method with 

inspirations from principal component analysis and canonical correlation analysis.  

PLS is considered a soft modeling approach because no strong assumptions are 

made with respect to the distributions of the observed variables or the sample sizes. 

Compared to the covariance based approaches, such as the LISREL model, PLS can deal 

with a much larger number of indicators per latent variable.  In addition, PLS makes no 

assumptions about the population or scale of measurement (Fornell & Brookstein, 1982). 

PLS became more widely used in areas of marketing, political sciences and 

chemometrics where nominal and ordinal variables are common.  

As with all statistical methods, PLS does require certain assumptions to be 

fulfilled. The most important assumption as noted by Chin and Newsted (1999) is 

predictor specification. That is, PLS requires that the systematic part of the regression 

models must be equal to the conditional expectation of the dependent variables (see 

Wold, 1975).  This is no different from the specification assumptions made in any 

regression analysis. 

Perhaps the most important distinction between the traditional SEM methods 

(e.g. estimation with ML or ADF) and PLS is that those traditional SEM estimation 

procedures aim to reproduce the sample covariance matrices, and all the parameters are 

estimated simultaneously. PLS, on the other hand, aims to maximize the amount of 

variance in the dependent variables explained by the independent variables. As 
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illustrated by Wold’s (1975) NIPALS (nonlinear iterative partial least square) algorithm, 

the iterative procedure separately estimates the parameters in the measurement model 

in the first step and then estimates the regression coefficients in the structural model 

based on those parameter estimates obtained in the first step.  

Apart from its obvious advantages in many applied fields, PLS has a few 

disadvantages that cannot be ignored. First, it lacks a classical parametric inferential 

framework (Vinzi, Trinchera & Amato, 2010). One has to resort to empirical confidence 

intervals and hypothesis testing procedures based on resampling methods such as 

jackknife and bootstrap (Chin, 1998). It also suffers from undesirable statistical 

properties of the estimates, e.g. coefficients are known to be biased (Cassel, Hackl & 

Westlund, 1999, 2000).  

PLS researchers, e.g., Wold, Apel, Hui, and Lohmoller, have almost exclusively 

focused on the development of estimation algorithms for PLS. They have not addressed 

questions pertaining to the stochastic properties of the estimators. Exceptions do exist. 

For instance, Dijkstra (1983) summarized in broad terms what appears to be known 

about the asymptotic properties of ML and PLS estimators. 

The problem known under the term consistency at large is the major drawback of 

PLS. A consistent estimator can be described as “one that converges in probability to the 

value of the parameter being estimated as the sample size increases” (McDonald, 1996, 

p. 248). However, due to the fact that PLS does not account for measurement error 
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during estimation procedures, it does not yield consistent estimates of what are called 

‘‘latent variables’’ in formal structural equation modeling (Dijkstra, 1983, 1985). As a 

result, “the path coefficients estimated through PLS converge on the parameters of the 

latent-variable model [only] as both the sample size and the number of indicators of 

each latent variable become infinite” (McDonald, 1996). In most empirical studies, such 

consistency at large situations usually cannot be achieved.  With finite sample size and 

relatively few indicators per latent variable, PLS tends to underestimate the correlations 

between the latent variables and overestimate the loadings (Dijkstra, 1983). 

 

1.3. PLSc: A Consistent Correction Procedure for Partial Least Squares 

During the early years of PLS’ developments, Theo Dijkstra joined Herman 

Wold’s research team and was suggested to write a PhD thesis on LISREL versus PLS in 

the context of Wold’s basic design (Wold, 1982). Recently, Dijkstra (2011) proposed a 

new method which involves corrections to the PLS estimates to account for 

measurement error.  He called it PLS-consistent (PLSc) to distinguish it from the 

traditional PLS estimators. This procedure, as demonstrated through his simulation 

studies, is effective in reducing the bias in parameter estimates.  

While there are many later developments of PLS with different algorithms either 

for exploratory or confirmatory purposes, (see e.g., Hastie, Tibshirani & Friedman, 2001; 

Stone & Brooks, 1990; Frank & Friedman, 1993; Tenenhaus et al., 2005), this dissertation 
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study will follow the basic design due to Wold (1982) as implemented by Dijkstra 

(2011), where his new PLSc estimators are used for Confirmatory Factor Analysis (CFA) 

type of models.  

In the class of factor models that Dijkstra (2011) analyzed, each indicator loads on 

one latent variable only. In addition, each latent variable is measured by blocks of at 

least two indicators. The indicators may correlate with one another across the blocks, 

but only through correlations among the latent variables. When the structural model 

coefficients (i.e. causal relationships between the latent variables) are of interest, they 

can be estimated in a second step using the second order moment matrix of the latent 

variables already provided by PLSc.   

It is worth noting that SEM generally estimates all the parameters 

simultaneously, including factor loadings, factor covariance matrix, unique factor 

covariance matrix in the measurement model, the regression coefficients, and equation 

disturbance covariance matrix in the structural model. The use of PLSc in this study, 

however, focuses on the measurement model only. PLSc is used to obtain the 

correlations among the latent variables in the first step. In the second step, regression 

coefficients among the latent variables are estimated by Two-Stage Least Squares based 

on the PLSc estimates of the correlations among the latent variables.  

 

1.4. Two-Stage Least Squares for SEM 
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One way to think of PLSc is that it is a data condensation procedure that 

provides consistent estimates of latent variable correlations.  Once these correlations are 

known, one could essentially ignore the manifest indicators and treat the estimation of 

path coefficients in the structural regression models independently - using solely the 

PLSc estimates of factor correlations. According to the Continuous Mapping Theorem, 

if Tn is consistent for θ and g(·) is a real-valued function continuous at point θ, then g(Tn) 

will be consistent for g(θ) (Mann & Wald, 1943).  Thus parameter estimates of the 

regression coefficients obtained from the PLSc consistent estimates of the factor 

correlations will be consistent. One of the simplest and most widely used estimation 

methods available for consistently estimating simultaneous equations models is Two-

Stage Least Squares (TSLS).  

We could use Ordinary Least Squares (OLS) estimation for single-equation 

multivariate and/or multiple regression models.  However, when we have a system of 

simultaneous equations, it is difficult to assume that the endogenous variables 

appearing on the right-hand side of the equations are uncorrelated with the equation 

disturbances.  Such correlations lead to biased and inconsistent estimates. If 

instrumental variables are available, then TSLS estimation can correct the bias, which is 

a well-known result in econometrics (see, e.g., Mardia, Kent & Bibby, 1979). When 

applied to simultaneous equations estimation, TSLS essentially involves a sequence of 

single-equation instrumental variable estimation, using model-implied instruments. 
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1.5. Evaluating the Quality of the Estimates and the Fit of the Model 

Combining PLSc developed by Dijkstra (2011) and the classic TSLS for 

simultaneous equations leads to consistent parameter estimates for both the 

measurement and structural models. However, we still do not know how good these 

parameter estimates are or how well-fitting the overall model is. 

Dijkstra (2012) recently investigated these two issues with Monte Carlo 

experiments. According to his results, simulation-based methods such as the bootstrap 

are feasible considering the fact that PLSc usually converges quickly. An alternative 

approach would be the delta-method.  With the Jacobian matrix calculated numerically, 

one could obtain standard error estimates based on normal or distribution-free 

asymptotic theory.  

Regarding model fit, as described in Savalei and Bentler (2006), the goal of SEM 

is to see how well our proposed model, which is a set of specified causal and non-causal 

relationships among latent and observed variables, accounts for the observed 

relationships. The observed relationships are usually in the form of covariances, 

summarized in the sample covariance matrix of the observed variables, which we will 

call �.  The SEM specifies a certain hypothesized covariance structure model in the 

population, i.e., � = ����, where � is the population covariance matrix, and ���� is a 

matrix-valued function of SEM parameters in �. Under broad conditions � is a 
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consistent estimator of �. Fitting the model ����to � leads to a model-implied 

covariance matrix �	. The discrepancy between � and �	 provides a basis for model fit 

evaluation (Browne, 1974; Jöreskog, 1978; Bentler, 1983). With regards to model fit, the 

difference between PLS and SEM resembles the distinction between principal 

component analysis (PCA) and factor analysis. As a data condensation technique, PCA 

or PLS holds unique advantages over factor analysis or SEM. However, PCA or PLS 

does not specify a formally testable covariance structure model.  Adding the capability 

to evaluate the quality of the model to PLS would be a major desirable feature. 

In this dissertation, we propose to take PLSc-based consistent estimator �	
  of the 

unknown parameters �	of some covariance structure ���� model and improve the 

estimator to obtain efficient estimator �	 with minimum asymptotic variances. At the 

same time, we obtain standard errors for the efficient estimator and provide a statistical 

test of the null hypothesis	�:	� = ����. Specifically, we extend Dijkstra’s (2011) 

consistent partial least squares estimator for structural equation models to derive 

estimators that are efficient and allow evaluation of models via chi-square statistics and 

evaluation of parameter estimates via standard errors. Two approaches are developed: 

(1) a one-step improvement methodology and (2) an optimal generalized least squares 

methodology. The proposed methods are evaluated by Monte Carlo simulations with 

an SEM that involves confirmatory factor analysis measurement model and non-

recursive latent structural model.  
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CHAPTER 2 

THEORY 

 

2.1. An Overview of SEM 

For the purpose of simplicity in demonstration, let us use the terminology of 

LISREL models to introduce SEM and let us assume the structural part of SEM deals 

only with causal relations between and among the latent variables, while the 

measurement part deals only with how the latent variables are defined by the observed 

variables.  

The measurement part of SEM describes how the latent variables, including the 

endogenous latent variables � and exogenous latent variables �, are defined by their 

indicators � and �, respectively. The vector of observed variables 	� is presumed to 

following a factor analytic measurement model: 

 � = ��� + �, (1)  

where	�� is a factor loading matrix that shows which indicators of � load on which 

endogenous latent variables �. Similarly, for the vector of observed variables �, the 

measurement model is: 

 � = ��� + �, (2)  

where	�� is a factor loading matrix that shows which indicators of � load on which 

exogenous latent variables �. In LISREL models’ terminology, � and � are vectors of 
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latent common factors, whereas 	�  and � are vectors of unique factors. The covariance 

matrices of the unique factors are denoted as ���� = �� and ���� = �� . Let us assume 

���, �� = � and let us use � to represent the covariance matrix of the unique factors:  

�  ��	! = � = "�� ��# . 

The structural component of SEM describes the relationship between the vectors 

of latent variables � and � in a set of simultaneous equations: 

 � = $� + %� + & = �'	– 	$�)*%� + �'	– 	$�)*&, (3)  

where �'	– 	$� is assumed to be nonsingular. The last equation is said to be in a reduced 

form. The covariance matrices of the common factors are denoted as ���� = + and  

��&� = , . Let us assume ���, &� = � and let us also assume the disturbance vector & has 

the property that  -�&|�� = 0 .  

Let �'	– 	$�)* = 0 . The covariance matrix of the latent variables is: 

 �  ��	! = "0�%+%1 +,�0′ 0%++%10′ + # = 3. (4)  

Let  � = "����# , the covariance matrix of the observed variables is therefore: 

 �  ��	! = � = �3�1 +�. (5)  

Without considering the mean structure, the LISREL model specification 

contains eight parameter matrices, five of which (��, ��, ��, ��  and+) are related to the 

measurement model and three of which (,, $ and %) are related to the structural model. 

Let every one of these parameter matrices depend on a parameter vector �, then the 
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covariance structure of observed variable can be written as ����, where � ∈ 5 ⊆ ℝ8 and 

q is number of free parameters. 

 

2.1.1 Estimation 

Based on the sample variance and covariances of the observed variables 

(collectively in the sample covariance matrix ��, the parameter vector � containing the 

unknown parameters can then be estimated. In the estimation stage, a fitting function is 

chosen according to the distribution assumption of the observed variables. The fitting 

function is minimized to obtain parameter estimates through an iterative process. To 

start the iteration, the initial values for all the parameters are plugged into the function 

so that the function can be evaluated. The parameter estimates are then modified to 

make the function smaller. The function is reevaluated in the same manner from one 

iteration to the next iteration until the value of the function changes by a very small 

designated number (this is called convergence). 

Different assumptions about the distributions of the observed variables lead to 

different estimators. For example, the ordinary least squares (OLS) estimator is defined 

by minimizing the discrepancy function  

9:;<��, �� = *� =>[�� − ���], 
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where =>�∙� represents the trace operator (sum of the diagonal elements). The OLS 

discrepancy function measures the sum of squared differences between the model 

implied covariance matrix ���� and the observed sample covariance matrix �. The OLS 

estimator is consistent and it does not require assuming a specific distributional form of 

the observed variables. However, it is not efficient because the estimator has larger 

sampling variability than a more efficient alternative, such as the maximum likelihood 

(ML) estimator. The ML estimator is obtained by minimize the ML fit function: 

 9C;��, �� = DEF|�| + =>���)*� − DEF|�| − G (6) 

where m is the number of observed variables. The ML estimator does require the 

observed variables to be multivariate normally distributed.  

An estimator with minimum variance will be considered optimal if it is 

consistent and asymptotically unbiased. It is known that estimators such as ML, 

Generalized Least Squares (GLS) or normal theory Weighted Least Squares (WLS) with 

correct weights are the optimal estimators among all linear asymptotically unbiased 

estimators, with the latter two, GLS and WLS, equivalent to ML asymptotically 

(Browne, 1974). 

Take WLS as an example. Let 	H��� = IJKℎ������, where IJKℎ�∙� is the half-

vectorization operator that stacks the unique elements in ���� into a vector H���. 
Similarly, let M = IJKℎ���. The WLS fit function is defined as: 
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 9N;<��� = [M − H���]′O)*[M − H���], (7) 

where O is a positive definite matrix. We can rewrite the above WLS fit function to 

show that it indeed involves a form of weighted least squares: 

 9N;<��� = PPPPQRS,TU[VRS − WRS�X�][VTU − WTU�X�]T
UY*

Z
TY*

R
SY*

Z
RY* , (8)  

where QRS,TU denotes a typical element of O)*. The WLS estimator is obtained by 

minimizing 9N;<���.  
The optimal weights turn out to be directly related to the variances and 

covariances of the sample moments (see, e.g., Browne, 1984; Hansen, 1982).  Let a 

typical element of O be denoted by QRS,TU and the subscripts ij and kl highlight that QRS,TU 
represents the covariance between VRS (the covariance between observed variables i and 

j) and VTU (the covariance between observed variables k and l). Thus the weights come 

from covariances of covariances. 

Let G∗ = G�G + 1�/2 denote the number of unique elements in the covariance 

matrix of the observed variables. One of the key theoretical results about WLS was 

developed by Browne (1984). He noted that M is asymptotically normal with mean 

vector H and asymptotic covariance matrix _: 

 √a�M − H� b→dZ∗��, _�. (9)  
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A typical element of _ is given by IRS,TU = WRSTU − WRSWTU , with WRSTU being the fourth order 

moment in the population, i.e., WRSTU = -�eR − fR�geS − fSh�eT − fT��eU − fU�, and 

WRS = -�eR − fR��eS − fS�, with fR = -�eR� (see Equation 2.1 in Browne, 1984). 

Browne (1984) noted that with a sample of size N, IRS,TU can be consistently 

estimated from the data as 

 IiRS,TU = VRSTU − VRSVTU, (10) 

where VRSTU is the sample fourth order moment for observed variables i, j, k, l, i.e., 

 VRSTU = a)*P�eRj − ekR�geSj − ekSh�eTj − ekT��eUj − ekU�l
jY* , (11) 

and VRS is the sample variance (biased estimate), i.e., 

 VRS = a)*P�eRj − ekR�geSj − ekShl
jY* , (12) 

with ekR = a)*∑ eRjljY*  denoting the sample mean for ith observed variable. In other 

words, let _< be a positive definite matrix that is a sample-based consistent estimate of 

the asymptotic covariance matrix _, then a typical element of _< is given by IiRS,TU. This 

result holds under the mild condition that the eighth order moments of the observed 

variables are finite, and it does not require that the observed variables be multivariate 

normally distributed. 

Taken together, as long as an asymptotically correct weight matrix can be 

provided, e.g., when _< is used as the weight matrix, one can proceed with WLS 
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estimation to obtain an asymptotically efficient estimator. This is Browne’s (1984) 

Asymptotically Distribution Free (ADF) estimator, which minimizes the WLS 

discrepancy function in Equation (7) with sample-based weights given by _<.  

 

2.1.2. Model Evaluation 

After minimization of the ML discrepancy function, we have obtained parameter 

estimates �	 and a minimum discrepancy function value 9nC;.  When distributional 

assumptions are met, Jöreskog (1969) showed that	�a − 1) times the minimized value of 

9C; is asymptotically distributed as a central chi-square variable with o = G∗ − p 

degrees of freedom under the null hypothesis that model fits exactly in the population. 

This is referred to as the minimum discrepancy function chi-square statistic: 

 K* = �a − 1�9nC; . (13) 

Under non-normality, K* is distributed as a mixture of one degree of freedom chi-square 

variates (see Yuan & Bentler, 2007). 

In cases when the model is not exactly correctly specified, Steiger, Shapiro and 

Browne (1985) showed that the model fit chi-square statistic is distributed as a 

noncentral chi-square variable. This is particularly useful for model-fit indices that 

directly depend on the minimized discrepancy function values, such as the Root Mean 

Square Error of Approximation (RMSEA; Steiger & Lind, 1980). When observed 
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variables are not normally distributed, N times the minimized ADF/WLS discrepancy 

function value is distributed in large samples as a chi-square random variable.  

With non-normal data, the ADF estimator appears to be a very useful choice over 

traditional ML, since it does not require strong distributional assumptions. However, 

the ADF estimator does not work well in practical settings, because it requires 

extremely large sample size (sometimes thousands, unless the model is very small) in 

order to estimate the weight matrix.  Sample higher-order moments can be highly 

unstable themselves, leading to biased estimates and inflated chi-squares (e.g., see 

results reported in Hu, Bentler, & Kano, 1992). 

Compared to ADF estimator which is often impractical in empirical studies, the 

traditional normal theory based ML remains a consistent estimator even under non-

normality. The main problem of using ML for non-normal data comes in the form of 

incorrect standard errors and test statistics. They may, however, be adjusted. 

Satorra and Bentler (1994) proposed such an adjustment. This is referred to as robust 

ML, which is a practical alternative to ADF in which one continues to estimate the 

structural parameters with standard estimator such as ML, and then adjusts the test 

statistic and the standard errors so that they become robust to non-normality. It is 

known that when model is correctly specified, the usual standard errors for ML 

estimates can be obtained from the inverse of Fisher information. However, when there 

is distributional misspecification, the covariance matrix of the ML estimates is of a 
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“sandwich” form (White, 1982). If we retain the consistent point estimates and replace 

the usual standard errors with adjusted standard errors, statistical inference will be 

robust against non-normality.  

Satorra and Bentler’s (1994) theoretical development can be illustrated as follows. 

When the observed variables are multivariate normally distributed, a typical element in 

the asymptotic covariance matrix _ simplifies to IRS,TU = WRTWSU − WRUWST. This is because 

the fourth order moment in the population WRSTU simplifies to the product of second 

order moments WRT and WSU when there is no excess kurtosis.   

Let us use _l to denote asymptotic covariance matrix of M derived under 

normality to distinguish it from the sample-based (ADF) weight matrix _<. In other 

words, _l has as a typical element IqRS,TU = VRTVSU − VRUVST. Classical normal theory 

covariance structure modeling with the GLS or ML discrepancy function relies on the 

fact that the sample moments M have an asymptotic covariance matrix of the above 

form. However, with non-normal data, using the ML or GLS discrepancy function 

amounts to using WLS estimation with an incorrectly specified weight matrix. 

Although the parameter estimates will still be consistent, the standard errors and 

goodness-of-fit statistics will be incorrect. 

Given a consistent estimator �	, let us denote the model-implied covariances 

evaluated at the parameter estimates as Hr = H��	�. Denote the Jacobian matrix evaluated 

at the parameter estimates as 
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 Hs = tuH���u�1 v�Y�	. (14) 

The following residual-based statistic K� is asymptotically chi-square distributed if the 

normality assumption holds: 

 K� = �a − 1��M − Hr�1Hs 
�Hs 
1_lHs 
�)*Hs 
1 �M − Hr�. (15) 

where Hs 
 is an orthogonal complement of Hs  so that Hs 
1Hs = �. This is referred to as the 

normal theory WLS chi-square statistic. 

The Satorra-Bentler (1994) correction is called a single-moment adjustment that 

re-scales the K� statistic so that when the weight matrix is incorrectly specified, the re-

scaled statistic can be better approximated by a chi-square variable in large samples. 

Specifically, it will have a correct asymptotic expected value. The correction takes the 

following form: 

 Kw = o=>[�Hs 
1_<Hs 
��Hs 
1_lHs 
�)*] K�, (16) 

The statistic Kw is referred to as the Satorra-Bentler scaled chi-square statistic. Note that 

this corrects K�, the residual based statistic, while the typical application of the Satorra-

Bentler is to correct K*, the ML chi-square statistic. 

The robust standard errors of the parameter estimates are given by the square 

roots of the diagonal elements of the following sandwich covariance matrix estimator:  

 gHs 1_l)*Hs h)*gHs 1_l)*_<_l)*Hs hgHs 1_l)*Hs h)*. (17) 
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Sandwich expressions identical to Equation (17) can be derived from the WLS 

discrepancy function (7), as in, e.g., Browne’s (1984) Proposition 2. 

As an aside, since ML or GLS can be understood as members of the WLS family 

with normal theory weight matrices, the WLS family provides the link between robust 

ML and ADF. In the case of ADF estimation, the weight matrix is O = _<. If we plug _< 

into equation (17), the entire expression simplifies to �Hs 1O)*Hs �)x. In this case, we say 

that the weight is correctly specified. Otherwise, the more general sandwich formula 

will lead to asymptotically correct standard errors as long as a consistent estimator of � 

is used.  

When the data are distributed non-normally, we propose to use the robust ML 

method, which is to use ML parameter estimates in conjunction with the robust 

standard errors obtained from the sandwich estimator in equation (17) and the Satorra-

Bentler Scaled Chi-Square Kw statistic. This approach turns out to work well for practical 

sample and model sizes and is recommended over distribution-free methods such as 

ADF. 

Finally, the following residual-based statistic Ky is asymptotically chi-square 

distributed for any consistent and asymptotically normal estimator, whether the 

observed variables are normally distributed or not: 

 Ky = �a − 1��M − Hr�1Hs 
�Hs 
1_<Hs 
�)*Hs 
1 �M − Hr�. (18) 
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This is referred to as Browne’s residual-based statistic corrected for non-nomality (see 

Browne, 1984, Proposition 4). Unfortunately, as with the ADF-based minimum WLS fit 

function statistic, Ky does not work well at smaller sample sizes. Yuan and Bentler (1997) 

proposed an adjustment to Ky that works well when the sample size is small: 

z{| = Ky 1 + Kya − 1!. (19) 

As sample size increases,  z{|  becomes equal to Ky. At the smallest sample size, 

the Yuan-Bentler F-statistic (Yuan & Bentler, 1999) in EQS is probably better. However, 

in situations when the sample size is too small and where ADF cannot be resurrected, 

the robust test statistics and standard errors are recommended as an alternative to ADF. 

See Bentler (2006) for suggestions on how to obtain the standard errors and test 

statistics under different distribution assumptions.  

 

2.2. Partial Least Squares for CFA Models 

Schneeweiss (1990) raised the idea that PLS is not just an estimation method, but 

rather a particular way of defining latent variables and their relations to the observed 

variables without assuming any specific model for the observed variables. PLS, as an 

estimation method, then estimates these variables and relations from given data. 

Although this idea is not shared by many adherents of the PLS approach, the basic 
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approach of using PLS for SEM is, in general, to create proxies that are constructed as 

linear composites of observed variables.  

This dissertation study focuses on the use of PLS for Confirmatory Factor 

Analysis (CFA) type of models. Apart from the many approaches to implement PLS, 

Wold’s (1982) basic design, as the origin of PLS for SEM is well suited for the CFA type 

of models. We use the procedure as described by Dijkstra (2011) to show how to obtain 

the PLS estimates in the basic design. This also makes it easier to explain how to follow 

up the procedure with the new PLS-consistent estimators proposed by Dijkstra (2011) 

and subsequently the TSLS method as implemented in Dijkstra (2012).   

In the basic design by Wold (1982), there are two basic types of algorithms called 

mode A and mode B, and a third type, mode C which is a mixture of the two (Dijkstra, 

2010). For each mode, the goal is to estimate a weight vector }r R in order to construct 

proxies from the observed variables. Based on the estimates of the weights, factor 

loading and factor correlations can then be obtained. The current approach falls under 

Mode A. 

For the purpose of model identification, we assume latent variables have been 

standardized.  Since we make no differentiation between endogenous variables and 

exogenous variables at this stage, let us use ~ to represent all observed variables and � 

to represent all latent variables:	~ =  ��	!, 	� =  ��	! . Let there be p latent variables and m 
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manifest variables in total. In discussions of PLS and PLSc, the observed variables are 

assumed to be standardized.  Then from equation (5), we have  

 ��~� = � = �3�1 +�, (20) 

where � standards for a correlation matrix with unit diagonals. 

Since we assume unit variance of the factor, the diagonal elements of the 3 

matrix are 1. We also assume no correlated residuals. Thus � is a diagonal matrix. 

When considering models in which every variable is influenced by only one factor, we 

can reorder the columns and rows of the loading matrix so that � has a form of 

“independent clusters,” a specific factor pattern in CFA: 

� =
�
��
�* �� ⋱ �R ⋱�

��. 
We use i as a notational device to index all manifest variables in the ith block. For 

example, �RR represents the covariance matrix of the ith block of unique factors. The 

variances of the ith block of observed variables can be written as �RR = ��~R� = �R�R′ +
�RR , where the first part represent the common variances and the second part represent 

the unique variances. Since we assume all the manifest variables are standardized 

before being analyzed, there is no need to estimate the unique variance, as they can be 

easily obtained from 1 minus the estimated common variances. Similarly, let us use j to 

index all such variables in the jth block, where 	� ≠ � . The covariances of the observed 
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variables can then be written as �RS = �g~R , ~Sh = g�R�S1h�RS, where �RS is the covariance 

between latent variable i and latent variable j, i.e., the (i,j)th element in 3.  
PLS produces estimates of the loadings and the factor correlations, all of which 

depend on the estimation of the weight vector }r R, which has to be the same order as �R 
and ~R . With these estimated weights, proxies can be estimated as inner product of }r R 
and ~R : �iR = }r R1~R . Suppose we have a sample of size N and let � represent the sample 

correlation matrix. �	is a consistent estimator of the population correlation matrix �, i.e., 

�D�G��� = � (Rice, 1995). A side condition for the weights is that  }r R1�RR}r R = 1 as the 

sample data are assumed to be standardized before being analyzed. 

There are several iterative fixed-point algorithms for PLS. According to Dijkstra 

(2011), the co-called “Mode A algorithm” is in general the most numerically stable 

algorithm and it typically converges quickly. Mode A is briefly described below. For 

technical details, see Wold (1982) or Dijkstra (1981, 1983). 

Recall that p is the number of latent variables. Let �RS represent the 

corresponding sub-matrix consisting of correlations of the indicators related to latent 

variables i and j. Let }r ���	represent a vector containing all the weights estimated at 

iteration t, i.e., }r ��� = �}r*���, }r����, … , }r R���, … ,}r�����.  
Iteration t of the Mode A algorithm consists of the following steps: 
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(1) For all	� ≠ �, � = 1, 2, … , � and  � = 1, 2, … , �, define a sign factor VRS��� =
VF��	}r R���′�RS}rS����, which returns the sign function of the sample covariances between 

the estimated proxies �iR = }r R1~R and �iS = }rS1~S  in iteration t. 

 (2) Update the weights: 

}� R��� = P VRS����
SY*,R�S �RS}rS���. 

(3) Normalize the weights and take absolute values: 

}r R���*� = �� }� R����}� R���1�RS}� R���
��. 

Now we can go back to step (1) with t incrementing by 1. Iterate until the 

convergence criterion is met (e.g. absolute weight change smaller than a certain 

number) or maximum number of iterations exceeded. The starting values for the weight 

vector are essentially arbitrary. In general, }� �� = �1, … ,1� is sufficient, such that after 

initial normalization, the starting values become 

}r R�� = �� }� R���}� R��1�RS}� R��
��. 

PLS iterations yields sample proxies �iR	and weights }r R for all the latent variables.  

Traditionally, we use the sample proxies to replace the latent variables to estimate the 

latent variable correlation matrix. However, this replacement can never be exhaustive 
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unless there are no measurement errors in the proxies (Dijkstra, 2010).  In the PLS 

literature, Jöreskog and Wold (1982) discussed the issue of PLS being consistent “at 

large.” That is, the inconsistency due to measurement error will tend to zero if more 

indicators of sufficient quality can be introduced, and when sample size tends to 

infinity. According to Dijkstra (2011), unless there are a large number of high quality 

indicators, the PLS-proxies will tend to underestimate the correlations between the 

latent variables. In addition, PLS also often overestimates the loadings in absolute 

value. Hence, some corrections are in order to make the PLS estimates consistent. 

 

2.3. Consistent Partial Least Squares (PLSc) 

Based on the PLS estimated weights  }r R, Dijkstra (2011) proposed a method to 

rescale the PLS estimates to reproduce sample correlation matrix � as well as possible. 

This leads to consistent estimates of factor loadings and latent variable correlations.  

Note that Mode A has the property that in the probability limit, the weights are 

proportional to the factor loadings: 

 }� R = �D�G�}r R� = �R��R1�RR�R. (21) 

That is to say, the factor loadings �R = KR̅}� R, where KR̅ may be understood as a correction 

factor.  According to Dijkstra (2011), the correction factor KR̅ can be consistently 

estimated by 
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 K̂R� = }r R1��RR − o��F��RR��}r R}r R1�}r R}r R1 − o��F�}r R}r R1��}r R . (22) 

The factor loading are corrected consistently as  �n R = K̂R}r R. The quality of a latent 

variable proxy can be measured by its squared multiple correlation with the true latent 

variable, ����R , �kR� = �}� R1�R�� = �}� R1}� R��KR̅� .  Therefore, we can correct the squared 

multiple correlations consistently by �n���R, �kR� = �}r R1}r R��K̂R�.  The correlations between 

the latent variables can then be corrected because 

�iRS� = �n�g�kR, �kSh�n���R, �kR��n�g�S, �kSh = 	 �}r R1�RS}rS���}r R1}r R��K̂R��}rS1}rS��K̂S�. 
Since corrected estimates are obtained from the PLS estimates, we call them PLS-

corrected (PLSc) parameter estimates. The estimated factor loadings and the factor 

correlations are corrected so that measurement errors are taken into account. With the 

corrections, PLSc yields a consistent estimate of the population unique factor covariance 

matrix � as �	
 = o��F�� − �	3	�	1�.  This implies that PLSc also yields a consistent 

estimate of the population correlation matrix as  

 �	
 = �	
3	
�	
1 +�	
 . (23) 

 

2.4. Two-Stage Least Squares 

With the above PLSc procedure, the parameters in the measurement model are 

consistently estimated.  The next step is to find the structural relationships between the 

latent variables, using the PLSc estimates of the factor correlations (3	
� as the input.  
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Returning to the structural model:  � = $� + %� + & , the exogenous latent 

variable  �  in the equation are assumed to be uncorrelated with the disturbance term &. 

However, since we have multiple simultaneous equations as a system, it is hard to 

assume that the disturbance terms between the equations are uncorrelated. Thus it is 

also impossible to assume that the endogenous variables � are uncorrelated with the 

disturbances, especially when they may also be serving as the predictors of the other 

endogenous latent variables in the equation system. When the predictors are correlated 

with the disturbances, one cannot use Ordinary Least Squares (OLS) regression to 

estimate the regression coefficients, because the OLS estimator is not consistent. One 

potential remedy is Two-Stage Least Squares (TSLS; see Mardia, Kent and Bibby, 1979). 

TSLS is a single-equation estimator. It involves two steps. For notational 

convenience, we will work with the ith structural equation. This equation can be written 

in the form of a regression model: 

 �R =  �R�1 ��R� + ¡R1� + ¢R  (24) 

where ��R� is a vector of endogenous latent variables excluding  �R. The vector  �R� 
represents the relationships between �R	and the other endogenous latent variables in 

��R�. The vector ¡R	represents relationships between �R 	and the exogenous latent 

variables. In other words, if we define  R as the ith row of the $ matrix,  �R� is equal to 

 R with the ith element £RR	removed.  This is because £RR is equal to 0. It is clear from 
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Equation (15) that due to the correlation between ��R� and ¢R, OLS estimation of  �R� will 

lead to inconsistent results. 

In the first stage of TSLS, we regress ��R� on � to obtain fitted values	��R�∗ .  This is 

valid because � is exogenous and hence uncorrelated with the random disturbance &. 

The equation implies that it can serve as its own instrument for ��R�. In the second stage 

of TSLS, substituting 	��R�∗  for ��R�	in equation (15), a new regression equation is defined, 

in which the variables on the right hand side are no longer correlated with the 

disturbance term 

 �R =  �R�1 ��R�∗ + ¡R1� + ¢R . (25) 

In other words, one may use OLS to solve Equation (25). 

Previously with the PLSc procedure, we already estimated the factor correlation 

matrix 3	
. The matrix 3	
 can be partitioned into four parts as follows: 

3	
 = ¤3	�� 3	��3	�� 3	��¥, 
where 3	�� = +	 , and 3	�� = 3	��1 .  The TSLS estimator of  �R� and ¡R can be written in terms 

of the blocks of the factor correlation/covariance matrix as 

 ¦ �R�¡R § = ¨3	���©�1 3	��)*	3	���©� 3	��©��3	���©� 3	�� ª)* ¨3	���©�1 3	��)*	3	��©3	��© ª, (26) 

where 3	���©� is equal to 3	�� with the ith column removed, and 3	��©�� = 3	���©�1 . 
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2.5. Issues Pertaining to Rescaling 

It is worth noting that PLS and PLSc requires sample correlation matrices as 

input.  However, in structural equation modeling, use of sample correlation matrices for 

covariance structural analysis can be potentially problematic. Cudeck (1989) discussed 

whether it would be appropriate to use sample correlation matrix for a covariance 

structure with three kinds of CFA models. Due to the model specification required by 

PLS estimation, PLSc uses common factor analysis models that fall into the third 

category where all the loadings are freely estimated and all the factors have variances of 

1. This kind of models, together those from the first category (a slight variation of 

category 3 where the factor variances are freely estimated and some of the loadings are 

constrained to be 1 for scaling indicators) are scale invariant and one could replace 

sample covariance matrix with sample correlation matrix with no loss of generality.  

The caveat, of course, has to do with how the PLSc and TSLS estimates are going 

to be used subsequently. In the new approaches that will be discussed in sections 2.6 

and 2.7, the theory of covariance structure analysis is used. Thus, some rescaling will be 

necessary. Recall that from Equation (4), the covariance matrix of the latent variables is 

�  ��	! = 3 = «3��3�� 3��¬. 
And the covariance matrix of the observed variables is � = �3�1 +�. As described in 

section 2.2 and 2.3, PLS and subsequently PLSc procedures require that all observed 
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variables be standardized, all the loadings freely estimated and all the latent factors 

(regardless whether they are exogenous or endogenous) have unit variances. That is, 

PLSc treats as its input a correlation matrix  = ®�)*	�®�)*	, where ®�	  is a diagonal 

matrix containing the observed variables’ standard deviations, i.e., the square roots of 

diagonal elements of �. As such, the PLS- or PLSc-obtained factor loadings are 

equivalent to standard regression coefficients.  From Equation (23), �	
 = �	
3	
�	
1 + �	
 , 
and �	
 has unit diagonals.  

Let ®	̄  be a diagonal matrix containing the observed variables’ sample standard 

deviations, i.e., the square roots of the diagonal elements of the sample covariance 

matrix �. ®�	  is a consistent estimate of ®�	 . Hence, ®�	 �	
®�	  is a consistent estimate of the 

the covariance matrix of manifest variables �. This can also be rewritten as  

 �	
 = ®�	 �	
®�	 = ®�	 �	
3	
�	
1 ®�1 +®�	 �	
®�1 . (27) 

Alternatively, if we take  �	 = ®�	 �	
 as the rescaled factor loading matrix estimate, PLSc 

can provide a consistent estimate of the observed variables’ covariance matrix even if 

the observed variables are not standardized. This will subsequently be important (see 

Section 2.6) as one of the two approaches requires �	
. 

On the other hand, TSLS takes as its input a PLSc-estimated factor correlation 

matrix 3	
. From Equation (26), the estimated regression coefficients are effectively 

standardized coefficients. While this may be convenient for interpretive purposes, it is 
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not entirely consistent with how identification conditions in typical covariance structure 

analysis software programs are implemented.  Take Equation (24) as an example:  

�R =  �R�1 ��R� + ¡R1� + ¢R . 
TSLS estimation treats �R and � as standardized variables, leaving open the possibility 

of estimating the residual variance of ¢R, which, in the current context, ��¢R� is 

effectively the proportion of unexplained variance in �R. In most covariance structure 

analysis software programs, it is customary to fix the variances of the equation 

disturbance terms in &, to, say, 1.0, and leaving open the possibility that the endogenous 

latent variables in � may be unstandardized. This requirement calls for another 

rescaling, of the TSLS estimates of regression parameters, as well as the factor loadings 

associated with the endogenous latent variables. 

Recall that in applying TSLS to PLSc-estimated factor correlation matrix, because 

the assumption is that ���R� = 1, we have 

��¢R� = ���R� − �C = ���R� − �C���R� = 1 − �C���R� = 1 − °R�, 
where �C represents modeled or explained variance in �R, and °R� is the proportion of 

modeled or explained variance in the ith structural equation.  As such, one might 

propose the use of the reciprocal of the proportion of unexplained variance as a scaling 

factor to rescale variance of the outcome variable	�R , in which case, the variance of the 

equation disturbance term becomes 1.  
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More formally, let ±RR  be the disturbance variance associated with equation i. Let  

 ®² =  diag�,� �� '! (28) 

be a � × �	diagonal matrix where the upper-left block contains the equation disturbance 

variances ±RR on the diagonal, and the remaining diagonal elements corresponding to 

the exogenous latent variables are identically equal to 1 (because the ¸’s are 

standardized). Let ®²*/� be a symmetric square root matrix of ®², i.e., ®² = ®²*/�®²*/�. 

The rescaling is first directly applied to the PLSc-estimated factor correlation: 

 3	∗ = ®²)*/�3	
®²)*/�, (29) 

and the resulting matrix 3	∗ will have non-unitary diagonals for the endogenous latent 

variables �. Running TSLS estimation for a second time using 3	∗ will produce 

regression coefficient estimates that are appropriately adjusted and the equation error 

variances will be unitary. 

The adjustment in (29) does change the scale of the endogenous latent variables, 

so for their corresponding factor loadings, another (final) rescaling is necessary. Recall 

that the rescaled PLSc-estimated factor loadings are given by �	 = ®�	 �	
. Using the same 

notation, the following rescaling 

 �	∗ = �	®²)*/� = ®�	 �	
®²)*/�, (30) 

will produce a factor loading matrix that is adjusted to correspond to the usual 

identification condition in covariance structure analysis that the equation disturbance 
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terms have unit variance. Note that the scaling of the exogenous latent variables does 

not change because they already have unit variances, i.e., 3	�� remains unaltered. 

 

2.6. One-Step Improvement (PLSe1) 

In this section and the following one, we describe two efficient PLS estimation 

methodologies. They are based on the PLSc estimates for the measurement model and 

the regression coefficients obtained via TSLS.  

The first efficient PLS estimator (PLSe1) utilizes a one-step improvement 

estimation methodology to obtain an efficient estimator and the associated parameter 

and model fit test statistics. Due to the consistency of functions of consistent estimators 

(Rao, 1973), this is equivalent to a single iteration of Newton-Raphson.   

There are different estimation methods one could use for the one-step 

improvement, such as ML, WLS, robust ML and ADF. As shown in Van der Vaart 

(1998), a one-step Newton-Raphson improvement can be written generally as: 

 �	 = �* − g���*�h)*F��*� (31) 

where the starting values �* should be a consistent but not necessarily efficient 

estimator. ����	is the Hessian (second-order derivative) matrix of the discrepancy 

function, e.g., u�9C;���/u�� or u�9N;<���/u��,		and F��� is the gradient of the 

discrepancy function. The gradient and the Hessian are evaluated at �*. 
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The one step improvement can also be motivated using Bentler and Dijkstra’s 

(1985) theory, which involves linearization.  We assume that the random vector �* is 

not necessarily asymptotic normal, but is consistent and have the property that 

�* = �� + ¹º�1/√a�, where �� represents the true parameter,  N is sample size and the 

symbol ¹º means that the sequence √a�* is bounded in probability. Overall, �* is a √a-

consistent estimator of �� .  

We can approximate a function H��� by using a finite number of terms in its 

Taylor-series expansion. We can expand H��� around �*, which yields, approximately,  

H��� ≈ H��*� + Hs ��*��� − �*�, where Hs ��� = uH���/u�′ is the Jacobian matrix of the 

model. Let H* = H��*� and H*s = Hs ��*�. The covariance structure model becomes 

H��� ≈ H* + H*s �� − �*�. Substituting the approximation H* + H*s �� − �*� for H���, the 

following WLS fit function is obtained: 

 9N;<��� = �M − H* − H*s � + H*s �*�1O)*�M − H* − H*s � + H*s �*�. (32) 

We can take the first derivative of 9N;<��� and set it to 0 to minimize the fit function:  

o9N;<o� = 2�M − H* − H*s � + H*s �*�1O)*H*s = �. 
This equation can be solved analytically, which shows that the one step improvement 

estimator can be written as: 

 �	 = �* − �Hs *1O)*H*s �)*Hs *1O)*�M − H*� (33) 
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If O is correctly specified, e.g., O =	_<, the covariance matrix of �	 can be estimated 

from the following result on the asymptotic normality of �	: 

 √a	g�	 − ��h b→ 	a��, �Hs *1O)*H*s �)*�. (34) 

Bentler and Dijkstra (1985, section 3.4) showed that one-step linearization 

estimator is asymptotically equivalent to ML under normality in which the optimal O 

depends on H. If M is replaced by H during the iteration, the ML estimator results. They 

also noted (see Bentler & Dijkstra, 1985, equation 3.4.4) that with elliptical distributed 

data, the efficient estimators remain efficient, but the estimates of the asymptotic 

covariance matrices must be multiplied by �1 + ¼̂) and the �� statistics must be divided 

by �1 + ¼̂)   Here, ¼̂ is a consistent estimator of ¼, a measure of common kurtosis of the 

variables.  

For LISREL type of SEM models, it is often difficult to obtain cheap initial 

estimators of the parameters. One approach was proposed by Jöreskog and Sörbom 

(1981). Bentler and Dijkstra (1985) proposed alternative approaches. With the PLSc and 

TSLS approaches we proposed, we can use these consistent estimators as the initial 

values for the one-step improvement procedure. This procedure can be implemented in 

the EQS or LISREL, which will also provide appropriate standard error estimates and 

chi-square test statistics according to the distribution assumption of the data.  

For example, if we assume arbitrary distribution of the continuous observed 

variables, we can implement the arbitrary distribution GLS method (this is the ADF 
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method described earlier).  The WLS fit function in equation (8) is minimized to obtain 

the optimal estimator �	. Based on 9N;<��� evaluated at �	, the standard errors can be 

obtained with the sandwich estimator from equation (17) and the ADF/AGLS test 

statistic can be obtained as z½¾;< = �a − 1�9nN;<���. 
In our simulation study, we use Satorra and Bentler’s (1994) robust ML 

estimation. The parameter estimates are the same regardless of whether the data are 

distributed normally or not. With non-normal data, robust ML adjusts the standard 

error estimates and the model evaluation test statistic. For example, instead of K* (i.e. 

the minimum discrepancy function chi-square statistic), one should use Kw the Satorra-

Bentler scaled chi-square statistic to evaluation model fit. One could also look into Ky 

(Browne’s residual-based statistic) or z{|when the sample size is small. 

 

2.7. Optimal Generalized Least Squares (PLSe2) 

The second efficient PLS estimation method (PLSe2) utilizes Browne’s (1974) 

generalized least squares (GLS) covariance structure estimation methodology to obtain 

an efficient estimator and the associated parameter and model evaluation methodology. 

We can also use Bentler’s (2006) adaptation of Jennrich’s (1970) generalized least 

squares correlation structure methodology for the parallel development of correlation 

structure statistics. 
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It was shown earlier that Dijkstra’s (2011) consistent PLS estimator PLSc yields 

an estimator �	
 of the population correlation matrix �.  Assuming that a sample of size 

N is drawn from a multivariate normal population and � is the sample covariance 

matrix, Browne (1974, Propositions 1-3) proved that when a consistent estimator O� of 

the population inverse covariance matrix �)*  is used and the normal theory GLS fit 

function: 

 9¾;<��� = 12 =>{[� − ����]O�}� 
(35) 

is minimized with respect to � to yield the minimizing value 9n¾;< under the assumption 

of multivariate normality of variables, the test statistic �a − 1�9n¾;< is asymptotically 

distributed as a �Z∗)8�  variate. With G∗ = G�G + 1�/2 nonredundant elements of � and 

p free parameters in the model, this statistic can be used to test the validity of the 

hypothesized model.  

Furthermore Browne (1974) showed that the estimator resulting from the 

minimization of 9¾;<��� is consistent, asymptotically normally distributed, and 

asymptotically efficient. He showed that estimates of the variances of the estimator can 

be obtained from the diagonal of �Hs 1Ol)*Hs �)*  evaluated at �	, where Hs  is the Jacobian 

matrix, Ol = .5®Z1 �Â� ⊗Â��®Z, and ®Z is the duplication matrix.  

In practical implementations of Browne’s theory, O� = �)* (for GLS) and 

O� = �	C;)*  (for normal theory GLS) are used, where the latter is based on an iteratively 
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updated estimator �	 under the model that leads to the normal theory maximum 

likelihood (ML) estimator (Lee & Jennrich, 1979). We propose to make use of Browne’s 

results by taking O� = �	
)*, the consistent PLS-based weight matrix. This provides a 

new member for the class of normal theory generalized least squares estimators, along 

with the associated statistical results summarized above.  When the assumption of 

multivariate normality is inappropriate, the test statistics and standard errors can again 

be corrected using the variety of robust methods available in the field. 

  



42 
 

CHAPTER 3 

MONTE CARLO SIMULATION STUDIES 

 
3.1. Previous Simulation Studies 

Past research has been focusing on comparing the PLS estimator with the ML-

based estimators (MLE) for structural equation modeling. Vilares, Almeida and Coelho 

(2010) conducted simulation studies to compare the performance of PLS with MLE for 

structural equation models with symmetric and skewed response data. Their results 

indicate that globally PLS is better than MLE in terms of bias and precision, particularly 

with skewed response data. Regarding the issue of “consistency at large”, their result 

showed that PLS seems to be robust even with a small number of indicators (2, 3 or 5 

indicators per latent variable) or with a sample sizes as small as 250 which is typical in 

customer satisfaction research.  

Other simulation studies have also shown the robustness of PLS estimators 

under various assumption violations. Hulland, Ryan, and Rayner (2010) found that 

PLS’ accuracy does not vary much when the multivariate normality assumption is 

violated, whereas MLE breaks down more frequently especially when sample size is 

small and when there are only two measures per latent variable. Cassel, Hackl and 

Westlund (1999) also showed with Monte Carlo simulations that PLS was robust with 
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regard to skewness, multicollinearity of the indicators, and misspecification of the 

structural model.  

Despite its robustness shown in previous simulation studies, PLS estimators still 

suffer from one problem. That is, it is only consistent at large, Dijkstra (2011) showed that 

traditional PLS tends to yield inconsistent estimates for the parameters of the 

underlying covariance structure. He proposed a consistent (PLSc) estimator to correct 

the biases associated with traditional PLS. The results of his simulation studies showed 

that PLSc estimates for the factor loadings and correlations are almost unbiased. Based 

on either PLS- or PLSc-generated factor correlations, Dijkstra (2011) used TSLS to 

estimate the structural parameters (e.g., regression coefficients). He compared estimates 

that are based on PLS estimated factor correlations and those that are based on PLSc-

corrected factor loadings. His results showed that PLS leads to structure parameters 

that deviate strongly from the true values even with normally distributed data. PLSc, on 

the other hand, can generate parameter estimates that are consistent. 

Dijkstra (2011) also used full-information maximum likelihood (FIML) estimator 

in further comparisons of the performance of PLSc (in conjunction with TSLS) for 

nonlinear and polynomial factor models. As with traditional ML, FIML generates 

estimates of the loadings and the structural parameters at the same time. Unlike 

traditional ML that use sample covariance matrix for estimation, one has to use raw 

data with FIML. This enables the use of direct numerical integration during the FIML 
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estimation process to handle nonlinear terms in latent variables. Dijkstra’s simulation 

results showed that both FIML and PLSc (in conjunction with TSLS) are virtually 

unbiased with normally distributed data.  

Dijkstra (2011) also studied the case of non-normal data by rescaling the 

indicators so that the kurtosis of the indicators were increased to 6. He found that both 

PLSc and FIML generate unbiased estimates of loadings. For estimates of the structural 

parameters, however, FIML estimates are slightly more biased than PLSc estimates 

from TSLS. The level of bias is not severe (raw bias < .02) even at sample size of 300 and 

the bias tends to decrease with less severe degree of non-normality (e.g., when kurtosis 

is increased by 1.7 as opposed to 6). 

One of the drawbacks of traditional PLS estimation is the lack of standard error 

estimates and model fit statistics. Based on PLSc estimation, Dijkstra (2011) proposed 

the use of the bootstrap method for estimating standard errors.  It appears to work well 

with normal data (with FIML’s standard error estimates being consistently smaller). 

With non-normal data, however, he pointed out that the bootstrap method may require 

fine-tuning as in Yuan and Hayashi (2003), and that adjustments are needed for FIML’s 

standard error estimates as well. 

The criticism against traditional covariance-based SEM methodology in previous 

research was largely based on normal theory ML estimation. Since methods designed 

specifically for handling with non-normality in SEM do exist, such as robust ML and 
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ADF (see section 2.1.2.), these methods (conveniently implemented in standard SEM 

software programs such as EQS and LISREL) should perform better than the normal 

theory counterpart when the multivariate normality assumption is violated.  

 

3.2. Simulation Study Design 

We use Monte Carlo simulations to study the performance of PLSe (PLSe1 and 

PLSe2) estimates for structural equation models. We used the software program R to 

simulate normally and non-normally distributed data. We also used R to obtain PLSc 

and TSLS estimates. We made use of an existing SEM software program (LISREL 8.8) to 

obtain PLSe parameter estimates, standard errors and model fit statistics. The PLSe 

estimators are compared against traditional ML estimation. 

For PLSe1, we use Satorra and Bentler’s (1994) robust ML estimator to derive the 

point estimates, standard errors, and fit statistics. Robust ML retains ML parameter 

estimates but corrects standard errors and model fit statistics for the impact of non-

normality. Previous studies (Hu, Bentler & Kano, 1992; Curran, West & Finch, 1996) 

have established its favorable performance under normality and non-normality. 

Since PLSe2 involves normal theory GLS estimation, we did not investigate its 

performance under non-normality in this simulation study. If PLSe2 were to be used 

with non-normal data, we would expect the parameter estimates to be correct, but the 

standard error estimates as well as the model fit test statistics would be incorrect.  
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We have three research questions. The first one is about the quality of the 

estimators. That is, whether the PLSe estimators are consistent and asymptotically 

unbiased. PLSe1 will be studied under both normal data and under non-normal data, 

whereas PLSe2 will be studied under normal data only. The second research question is 

about efficiency of the estimators, which will be measured with the variance of the 

estimates. We would like to see whether the PLSe estimators could attain minimum 

variance just as the traditional ML estimator under the ideal condition of normally 

distributed data. Under non-normal data, we would like to see how PLSe1 (with robust 

standard errors and fit statistics) would perform in comparison with standard ML. The 

third research question is to test whether the PLSe estimators could yield fit statistics 

that are chi-square distributed when the distribution assumptions are met and the 

models fits exactly. 

 

3.3. Generating Models 

The data generating model resembles the one from Maruyama and McGarvey 

(1980). Due to requirements imposed by PLS on the estimation of the measurement 

model, all latent variables and observed variables are assumed to be standardized and 

the free loadings are estimated without constraints (i.e., there is no scaling indicator). 

We took their sample correlation matrix and estimated a model as shown below. The 

parameter estimates are taken as true values to generate normally and non-normally 
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distributed data sets at sample sizes of 200, 500 and 1000. Under non-normality, we also 

generate data sets at sample size of 2500.  

Since PLS does not differentiate between endogenous latent variables and 

exogenous latent variables, the measurement model can be more compactly written as  

 ��! = «�� ��¬  ��! +  ��!, 
where the factor loading matrix is 13 × 5 and the true values are given by 

«�� ��¬ =

�
��
��
��
��
��
��
�Å*,*Å�,*Åw,* Åy,�ÅÆ,� ÅÇ,wÅÈ,wÅÉ,w ÅÊ,yÅ*,y Å**,ÆÅ*�,ÆÅ*w,Æ�

��
��
��
��
��
��
�

=

�
��
��
��
��
��
. 61. 69. 61 . 48. 36 . 66. 84. 17 . 63. 51 . 52. 79. 40�

��
��
��
��
��
. 

Note that there are 2 endogenous latent variables and 3 exogenous ones. There 

are two structural equations in the model: 

�* = £*�� + £�¸w + ¢*, 

�� = £w�* + £y¸* + £Æ¸� + ¢�. 

Written in matrix form, the structural model is: 

� = $� + %� + &, 
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where  

Ð = " 0 £*£w 0 # =  0 . 21. 30 0 ! , % = " 0 0 £�£y £Æ 0# =  0 0 . 25. 27 1.03 0!. 
This model is non-recursive. 

The covariance matrix of the equation disturbance terms ��&� = , is an identity 

matrix, and the covariance matrix of the exogenous factors is given by  

���� = + = Ñ 1Ò�* 1 1 Ó = Ñ 1. 38 1 1 Ó. 
The three exogenous latent variables are standardized, and only ¸* and ¸� covary, with 

correlation equal to Ò�*. The covariance matrix of the unique factors Ô and � is a 

diagonal matrix � whose diagonal elements are .51, .37, .50, .35, .63, .57, .29, .97, .60, .74, 

.73, .37 and .84. The generating model has 32 parameters. 

While we did not alter the degree of complexity of the structural model – the 

current non-recursive model is complex and is expected to be challenging for most SEM 

estimators – we instead studied the impact of the size of the measurement model on 

estimation and inferential quality. The size of the measurement model presented above 

is considered small with only 2 to 3 indicators per latent variable. We also generated a 

large model where we doubled the number of indicators per latent variable. The 26 ×
5	factor loading matrix for the large model is: 
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The covariance matrix of the unique factors Ô and � is a diagonal matrix � whose 

diagonal elements are .51, .37, .50, .51, .37, .50, .36, .63, .36, .63, .57, .29, .97, .57, .29, .97, 

.60, .74, .60, .74, .73, .37, .84, .73, .37 and .84. The large model has 58 parameters. 

 

3.4. Data Generation 
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We compute the model implied covariance matrix using the true parameters and 

model specification presented in Section 3.3 as  � = �3�1 +�. For the normal 

conditions, we generated multivariate normally distributed data using R’s mvtnorm 

package. The “rmvnorm” function in mvtnorm uses the Cholesky decomposition 

method to convert a matrix of independent and identically distributed standard normal 

variates into a sample with the desired population covariance structure. For a small 

model, 13 observed variables are generated and for a large model, 26 observed variables 

are generated.  

To generate non-normal data, we follow a procedure outlined in Hu, Bentler and 

Kano (1992). Among the non-normal conditions studied in Hu et al. (1992), we adopted 

a similar set up as condition 7. In this condition both common and unique factors are 

non-normally distributed, and in addition, the factors are not independently 

distributed, thereby (intentionally) violating the conditions for asymptotic robustness of 

ML estimation. 

We first generate non-normally distributed common factors and unique factors 

separately in R using the classical Vale and Maurelli (1983) method. Vale and Maurelli’s 

(1983) method improves upon Fleishman's (1978) method and it can produce 

multivariate random numbers with pre-specified intercorrlations and univariate means, 

variances, skewness, and kurtosis. The 2 equation disturbance terms in &	and the 3 

exogenous latent variables � are generated with means of 0 and unit variances. Their 



51 
 

true skewness coefficients are 1.00, 0.75, 0.75, 0, and -0.25, respectively. The true (excess) 

kurtosis coefficients are 3.75, 3.75, 2.00, 3.75 and 1.00, respectively. These random 

numbers are then inserted into the structural equations to generate the non-normally 

distributed endogenous variables in �. The unique factors are independently generated. 

They have means of 0, variances of 1 and skewness values of 0. The true kurtosis values 

for the 13 unique factors in the small model are -1.00, -0.75, 2.75, 0.25, 1.00, 1.75, 2.00, 

2.25, -0.50, 3.00, 5.00, 3.25, and 3.50, respectively. For the large model, the true kurtosis 

values for the 26 unique factors are -1.00, -0.75, 2.75, -1.00, -0.75, 2.75, 0.25, 1.00, 0.25, 

1.00, 1.75, 2.00, 2.25, 1.75, 2.00, 2.25, -0.50, 3.00, -0.50, 3.00, 5.00, 3.25, 3.50, 5.00, 3.25, and 

3.50, respectively.  

The second step is to make the common factors and unique factors dependent by 

dividing them with a common random variable Õ so that the asymptotic robustness of 

normal theory statistics is not to be expected under the non-normal condition. The 

common random variable Õ = ���Æ�� /3 is generated independent of both the common 

and unique factors. The division by √3 is made so that -�Õ)�� = 1, i.e., the variances 

and covariances of the factors remains unchanged by the division (Kano, 1990), and 

only the kurtosis is modified.  

To verify that the data are generated as expected, the averages of sample means, 

sample variances, sample skewness, and sample kurtosis coefficients are obtained for 
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the observed and latent variables across Monte Carlo replications. The sampling 

distributions all correspond well with the true moments in the data generating model. 

In particular, the observed variables have a wide range of skewness and kurtosis 

values. The empirical skewness of the observed variables lies between the range of .74 

and -.21. The kurtosis is between the range of 6.38 and 13.03, with 6 of the 13 variables 

having high kurtosis that exceeds 10. This latter observation is important since excess 

kurtosis is expected to severely impact the quality of normal theory standard error 

estimates and test statistics. 

For normal data, we will compare the performance of four estimators (PLSc with 

TSLS, PLSe1, PLSe2 and standard ML) at 3 sample sizes (200, 500 and 1000) and 2 model 

size conditions (a small model with 13 observed variables and a large model with 26 

observed variables). Thus there are a total of 6 conditions with normal data.   

For non-normal data, we will compare the performance of three estimators (PLSc 

with TSLS, PLSe1 and standard ML) at 4 sample sizes (200, 500, 1000 and 2500) and 2 

model size conditions, leading to a total of 8 conditions.  

We ran 300 replication for each condition, except for the non-normal condition 

with small model at N=200 where we encountered substantial convergence problems 

wherein we ran 600 replications instead. For each replication, we fitted the same model 

as the data generating model in section 3.3 (i.e., no model misspecification) with 

different estimators. If any one of the estimators should encounter any convergence or 
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numerical problem, we discard the results of that replication, even if the other 

estimators produced adequate estimates. This ensures the comparison across different 

estimators is based on the same set of replications and that the comparison would be 

fair under that specific condition.  

 

3.5. Methods for Summarizing Results 

For the evaluation of the quality of the estimators, we record the Monte Carlo 

average of the point estimates for each of the estimators so that they may be compared 

with the true value. 

 To evaluate the standard errors, the mean of the estimated standard errors for 

that parameter across the Monte Carlo replications should be compared with the Monte 

Carlo standard deviation of a given parameter estimate. Let 

Ö-gXnh = ×)*PÖ-gXnRhC
RY*  

represent the mean of the estimated standard errors, where Ö-gXnRh is the estimated 

standard error from replication i, and ×	is the number of Monte Carlo replications. Let 

ÖØgXnh = Ñ 1× − 1P�XnR − X̅�C
RY* Ó*/�

 

be the Monte Carlo standard deviation of the point estimates, where X̅ is the mean of 

point estimates.  
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We will also calculate Root Mean Square Error (RMSE), which can provide 

information of both the deviation of each parameter estimate from the true value and 

the variability of such distances:  

°×Ö- = 	 ¨ 1×P�XnR − X��C
RY* ª*�. 

In addition to the accuracy of parameter estimates, we will also record chi-square 

fit statistics and model convergence rate. Factors such as sample size and number of 

indicators per latent variable could contribute to the performance of these estimators. 

The model fit chi-square statistics we cover are the ones we discussed in section 2.1.2, 

including: K* minimum fit function chi-square statistic, Kw Satorra-Bentler scaled chi-

square statistic, Ky Browne’s residual-based statistic, and lastly z{|  which is Yuan and 

Bentler’s (1997) adjustment to Ky. 
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CHAPTER 4 

RESULTS 

 
4.1. Convergence and Proper Solutions 

 A theoretically good estimator has little empirical value if it runs into 

convergence problems too frequently. Non-convergence may happen with PLSc, ML or 

GLS given the number of iterations. The converged results, on the other hand, may still 

include improper parameter estimates, such as Heywood cases where estimates of 

unique factor variances are zero or negative. In addition, other parameter estimates 

could be out of their legitimate bounds. For example, the estimated equation 

disturbances’ variances are negative or correlations not between -1 and 1. When these 

improper solutions occur in any replication with any of the estimators, we count the 

replication as an invalid case for that estimator. Table 1 compares the number of invalid 

cases for each estimator. The total invalid case is the union of all the invalid cases. That 

is, if any estimator had an invalid case in any replication, that specific replication is not 

going to be counted for the total number of valid cases that we later use for summaries 

of point estimates, standard errors, or chi-square statistics. 

We observed no convergence issue with PLS and subsequently PLSc. However, 

we did encounter a number of invalid cases at the stage of TSLS when we estimate the 

structural parameters at the smallest sample size (a=200).  
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For a small model with normal data, TSLS produced improper estimates in 78 

out of 300 replications. In contrast, ML, PLSe1 and PLSe2 have roughly half the number 

of invalid cases. At a=500, the performance of TSLS is about the same with PLSe1 and 

PLSe2, with ML showing the fewest invalid cases. At a=1000, all four estimators are 

performing well and TSLS produced valid solutions for all 300 replications.  

For large model with normal data, all four estimators seem to benefit from 

having more indicators. At a=200, we observe much fewer invalid cases with TSLS than 

the corresponding condition for the small model. ML and PLSe1 seem to perform the 

best, with only 1 or 2 invalid cases. PLSe1 uses starting values obtained from PLSc and 

TSLS. We suspect that even with inferior starting values, PLSe1 with 1-step 

improvement should be able to recover from the poor initial estimates. PLSe2 seem to 

have more difficulty when compared with PLSe1 or ML. Such difference is obvious at 

a=200 with large model where PLSe2 generated 11 invalid cases, whereas ML and 

PLSe1 only resulted in 1 or 2 invalid ones. We suspect that with a large model, the size 

of the covariance matrix of the observed variables (26 × 26) is significantly larger than 

that of the small model (13 × 13). At the smallest sample size, the inherent instability in 

the covariance matrix (with 351 unique elements relative to sample size) might lead to a 

weight matrix that is less stable for PLSe2 estimation. However, when samples size 

increases to 1000, all four estimators produced valid cases in all replications. 
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Table 1: Comparison of convergence problems between different approaches 
 
Normal data 

 Small model  Large model  

 a=200 a =500 a=1000  a=200 a =500 a=1000  

TSLS 78 14 0  24 2 0  

ML 35 6 1  1 0 0  

PLSe1 21 13 3  2 0 0  

PLSe2 49 11 2  11 0 0  

Total #invalid 128 32 5  37 2 0  

Total #valid out 

of 300 
172 268 295  263 298 300 

 

 

Non-normal data 

 Small model  Large model  

 a=200 a =500 a=1000 a=2500 a=200 a =500 a=1000 a=2500 

TSLS 251* 58 19 3 61 15 5 0 

ML 241* 42 17 1 34 11 2 1 

PLSe1 52* 15 12 0 1 0 0 1 

Total #invalid 387* 92 44 4 85 24 5 2 

Total #valid out 

of 300 
213* 208 256 296 215 276 295 298 

Note: * At a=200 for non-normal data with small model, the numbers are based on 600 
replications. 
 

With non-normal data, we saw the same pattern as in normal data. We added 

two more conditions at a=2500, because we expected non-normality will pose more 

challenges to the estimation process. Note that the condition of small model at a=200 

seems to be the one that poses the most severe challenges for TSLS and ML, where more 

than 40% of the replications are invalid. PLSe1 seems to turn out better due to the 1-step 

nature, with less than 10% invalid cases. PLSe2 is not studied for the non-normal 

scenarios. Similar to the normal data conditions, TSLS, ML and PLSe1 all benefit from a 

larger model with more indicators. Unlike normal data, however, TSLS and ML still 

have a few invalid cases at a=1000. 
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For both normal and non-normal data, PLSe1 seems to encounter the least 

difficulty at the smallest sample size in terms of the frequency of invalid solutions. 

However, we should examine the quality of the parameter estimates and model fit 

statistics to determine whether it truly outperforms PLSc and TSLS sufficiently to justify 

the complexities involved in the one-step improvement.  At larger sample sizes, all 

estimators perform increasingly well in terms of the ability to produce valid solutions. 

When there are fewer convergence problems, we should be able to tell whether PLSe2 

can improve PLSc estimates and how it compares to ML.  

 

4.2. Parameter Recovery and Standard Errors 

We will first show results with normal data (Tables 2 and 3 for small model; 

Tables 4 and 5 for large model) and then non-normal data (Tables 6 and 7 for small 

model; Tables 8 and 9 for large model). We focus our discussion on RMSE, which can 

provide information on bias and variability. 

4.2.1. Results under Normality 

Table 2 compares the parameter estimates of factor loadings using PLSc, ML, 

PLSe1 and PLSe2 with normal data and the small model. At a=200, ML has the smallest 

bias and the lowest RMSE. When we compare RMSE across different estimators, RMSE 

for PLSc are higher than ML (almost twice as high for some loadings). PLSe1 and PLSe2 
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seem to perform as well as ML in terms of RMSE, although PLSe1 shows slightly higher 

bias than ML and PLSe2.  

When estimating loadings at a small sample size of a=200, the two PLSe 

estimators seem to improve PLSc estimated loadings. The quality of estimates is 

comparable to ML. When sample size increases to 500 and 1000, all four estimators 

show improvements in parameter estimates and standard error estimates, where ML, 

PLSe1 and PLSe2 are almost identical at a=1000. PLSc improved drastically at larger a, 

and the RMSE values are only slightly worse than ML. Thus at a large sample size, PLSc 

seems to perform well with small model and normal data. PLSe estimators do improve 

upon PLSc to the extent that the PLSe1 and PLSe2 estimates are as good as ML. In 

addition, PLSe produces standard error estimates that are as good as ML. 
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Table 2: Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with small model 

 

PLSc  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .60 N/A .11 .11 .61 N/A .06 .06 .61 N/A .05 .05 Å�,* .69 .67 N/A .10 .10 .68 N/A .06 .06 .69 N/A .05 .05 Åw,* .61 .60 N/A .10 .10 .61 N/A .07 .07 .61 N/A .05 .05 Åy,� .48 .56 N/A .12 .15 .51 N/A .11 .11 .50 N/A .07 .07 ÅÆ,� .36 .42 N/A .10 .12 .39 N/A .08 .08 .38 N/A .05 .05 ÅÇ,w .66 .66 N/A .11 .11 .65 N/A .07 .07 .65 N/A .05 .05 ÅÈ,w .84 .79 N/A .10 .12 .82 N/A .08 .08 .83 N/A .06 .06 ÅÉ,w .17 .20 N/A .13 .14 .19 N/A .11 .11 .18 N/A .08 .09 ÅÊ,y .63 .64 N/A .10 .10 .63 N/A .06 .06 .63 N/A .05 .05 Å*,y .51 .52 N/A .10 .10 .51 N/A .06 .06 .50 N/A .04 .04 Å**,Æ .52 .53 N/A .20 .20 .51 N/A .19 .19 .51 N/A .16 .16 Å*�,Æ .79 .63 N/A .21 .26 .69 N/A .18 .21 .72 N/A .16 .17 Å*w,Æ .40 .46 N/A .21 .22 .43 N/A .20 .20 .44 N/A .15 .16 

ML  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .61 .07 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Å�,* .69 .67 .07 .07 .07 .69 .04 .04 .04 .69 .03 .03 .03 Åw,* .61 .61 .07 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Åy,� .48 .49 .13 .10 .10 .46 .08 .08 .08 .47 .05 .05 .05 ÅÆ,� .36 .37 .09 .08 .08 .35 .05 .05 .06 .36 .04 .04 .04 ÅÇ,w .66 .67 .09 .09 .10 .66 .06 .06 .06 .66 .04 .04 .04 ÅÈ,w .84 .83 .11 .09 .09 .84 .07 .07 .07 .84 .05 .05 .05 ÅÉ,w .17 .18 .08 .07 .07 .17 .05 .05 .05 .17 .04 .04 .04 ÅÊ,y .63 .64 .10 .10 .10 .63 .06 .06 .06 .63 .04 .05 .05 Å*,y .51 .52 .09 .09 .10 .50 .06 .05 .05 .50 .04 .04 .04 Å**,Æ .52 .54 .10 .09 .09 .53 .06 .06 .06 .52 .04 .05 .05 Å*�,Æ .79 .79 .12 .11 .11 .79 .08 .07 .07 .80 .06 .06 .06 Å*w,Æ .40 .41 .09 .08 .09 .40 .06 .06 .06 .40 .04 .04 .04 

(continued on the next page) 

 

Table 2 (cont.): Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with small model 
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PLSe1 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .60 .07 .08 .08 .61 .04 .05 .05 .61 .03 .03 .03 Å�,* .69 .66 .07 .07 .08 .68 .04 .05 .05 .68 .03 .03 .03 Åw,* .61 .60 .07 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Åy,� .48 .54 .12 .12 .13 .51 .07 .09 .10 .50 .05 .07 .07 ÅÆ,� .36 .41 .08 .09 .10 .38 .05 .07 .07 .38 .04 .05 .05 ÅÇ,w .66 .67 .09 .09 .09 .66 .06 .06 .06 .66 .04 .04 .04 ÅÈ,w .84 .82 .10 .09 .10 .83 .07 .07 .07 .84 .05 .05 .05 ÅÉ,w .17 .18 .08 .07 .07 .17 .05 .05 .05 .17 .04 .04 .04 ÅÊ,y .63 .63 .10 .10 .10 .62 .06 .06 .06 .63 .04 .05 .05 Å*,y .51 .52 .09 .09 .09 .50 .06 .05 .05 .50 .04 .04 .04 Å**,Æ .52 .52 .10 .11 .11 .51 .06 .09 .09 .51 .04 .06 .06 Å*�,Æ .79 .73 .12 .12 .14 .75 .08 .10 .11 .78 .06 .08 .08 Å*w,Æ .40 .40 .09 .10 .10 .39 .06 .07 .07 .39 .04 .05 .05 

PLSe2 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .60 .07 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Å�,* .69 .67 .07 .07 .08 .69 .04 .05 .05 .68 .03 .03 .03 Åw,* .61 .60 .07 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Åy,� .48 .49 .13 .10 .10 .46 .08 .08 .08 .47 .05 .05 .05 ÅÆ,� .36 .36 .09 .08 .08 .35 .06 .05 .06 .36 .04 .04 .04 ÅÇ,w .66 .65 .10 .10 .10 .66 .06 .06 .06 .66 .04 .04 .04 ÅÈ,w .84 .82 .11 .10 .10 .84 .07 .07 .07 .84 .05 .05 .05 ÅÉ,w .17 .17 .08 .07 .08 .17 .05 .05 .05 .16 .04 .04 .04 ÅÊ,y .63 .62 .10 .11 .11 .62 .06 .06 .06 .63 .04 .05 .05 Å*,y .51 .51 .09 .10 .10 .50 .06 .05 .06 .50 .04 .04 .04 Å**,Æ .52 .52 .10 .09 .09 .52 .06 .06 .06 .52 .04 .05 .05 Å*�,Æ .79 .78 .14 .12 .12 .78 .08 .08 .08 .80 .06 .06 .06 Å*w,Æ .40 .40 .09 .08 .08 .40 .06 .06 .06 .40 .04 .04 .04 

 

Table 3 presents results on structural regression coefficients and the factor 

correlation. Note that TSLS is listed instead of PLSc, because these estimates are based 

on TSLS applied to PLSc generated factor correlations.  We noticed that the estimates of 
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the regression coefficients are generally more biased than the estimates of the loadings 

or the factor correlation. This happens to all four estimators. We suspect this is probably 

due to the complexity of the non-recursive model.  

At a=200, RMSE of the loading estimates are generally less than 0.10 whereas 

RMSE of the regression coefficients estimates are all larger than 0.10. For example, we 

observe a more pronounced bias in £w at a=200, where RMSEs for ML and the two PLSe 

estimators are around 0.22. For this specific parameter at a=200, TSLS seems to produce 

an estimate with RMSE that is twice as large as the other estimators.   However, when 

sample size increases to 1000, we no longer observe such a pronounced difference, and 

all estimators are performing well in terms of point estimates and standard error 

estimates. ML and PLSe2 produce almost identical results with smaller RMSE 

compared to TSLS and PLSe1. PLSe1 still improves TSLS-generated regression 

coefficients, but to a lesser extent than PLSe2.   
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Table 3. Comparison of results on structural regression coefficients and the factor 

correlation using TSLS, ML, PLSe1 and PLSe2 for normal data with small model 

 

TSLS  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .27 N/A .13 .15 .23 N/A .09 .09 .22 N/A .06 .06 £� .25 .29 N/A .11 .11 .26 N/A .07 .07 .25 N/A .05 .05 £w .30 .28 N/A .44 .44 .31 N/A .39 .39 .32 N/A .29 .29 £y .27 .26 N/A .19 .19 .25 N/A .13 .13 .27 N/A .09 .09 £Æ 1.03 .89 N/A .30 .33 1.01 N/A .26 .26 1.01 N/A .18 .18 Ò�,* .38 .39 N/A .11 .11 .39 N/A .07 .07 .38 N/A .05 .05 

ML  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .23 .12 .12 .12 .20 .07 .08 .08 .21 .05 .05 .05 £� .25 .29 .11 .10 .10 .25 .07 .07 .07 .25 .05 .05 .05 £w .30 .28 .24 .21 .21 .32 .16 .17 .17 .31 .10 .11 .11 £y .27 .26 .22 .21 .21 .27 .12 .12 .12 .28 .08 .09 .09 £Æ 1.03 1.04 .47 .34 .34 1.12 .30 .28 .30 1.06 .18 .18 .18 Ò�,* .38 .39 .11 .11 .11 .38 .07 .07 .07 .38 .05 .05 .05 

PLSe1 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .28 .13 .13 .15 .23 .07 .09 .09 .22 .05 .06 .06 £� .25 .33 .12 .11 .14 .28 .07 .07 .08 .27 .05 .05 .05 £w .30 .24 .22 .23 .24 .28 .14 .18 .18 .29 .10 .12 .12 £y .27 .24 .20 .19 .19 .24 .11 .12 .12 .26 .08 .09 .09 £Æ 1.03 .94 .37 .31 .32 1.03 .25 .26 .26 1.01 .17 .18 .18 Ò�,* .38 .40 .11 .11 .11 .39 .07 .07 .07 .38 .05 .05 .05 

PLSe2 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .22 .13 .12 .12 .20 .07 .08 .08 .21 .05 .05 .05 £� .25 .29 .11 .10 .11 .25 .07 .07 .07 .25 .05 .05 .05 £w .30 .29 .25 .22 .22 .33 .16 .17 .17 .31 .10 .11 .11 £y .27 .24 .23 .22 .22 .26 .13 .12 .12 .27 .08 .09 .09 £Æ 1.03 1.03 .50 .35 .35 1.13 .31 .29 .30 1.06 .18 .18 .18 Ò�,* .38 .39 .11 .12 .12 .38 .07 .07 .07 .38 .05 .05 .05 
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Table 4 presents the estimates of factor loadings from PLSc, ML, PLSe1 and 

PLSe2 when the model size is large. Similar to the case of small model when we 

compare RMSE across different estimators, RMSE for PLSc estimated loadings are again 

almost twice as high as the ML estimator at a=200. PLSe1 and PLSe2 seem to perform as 

well as ML at each sample size in terms of RMSE, although PLSe1 again shows slightly 

higher bias than ML and PLSe2. The two PLSe estimators seem to improve PLSc 

estimated loadings.  
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Table 4: Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with large model 

 

PLSc  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .59 N/A .10 .11 .60 N/A .06 .07 .61 N/A .05 .05 Å�,* .69 .66 N/A .09 .10 .68 N/A .06 .06 .68 N/A .04 .04 Åw,* .61 .59 N/A .11 .11 .60 N/A .07 .07 .61 N/A .05 .05 Åy,* .61 .59 N/A .11 .11 .60 N/A .07 .07 .61 N/A .05 .05 ÅÆ,* .69 .66 N/A .10 .10 .68 N/A .06 .06 .68 N/A .05 .05 ÅÇ,* .61 .59 N/A .10 .11 .61 N/A .07 .07 .61 N/A .05 .05 ÅÈ,� .48 .51 N/A .11 .11 .50 N/A .07 .07 .48 N/A .04 .04 ÅÉ,� .36 .39 N/A .08 .09 .38 N/A .06 .06 .37 N/A .03 .03 ÅÊ,� .48 .51 N/A .11 .11 .50 N/A .07 .08 .48 N/A .03 .04 Å*,� .36 .39 N/A .08 .09 .38 N/A .06 .06 .37 N/A .03 .03 Å**,w .66 .62 N/A .14 .15 .65 N/A .09 .09 .65 N/A .06 .06 Å*�,w .84 .80 N/A .11 .11 .82 N/A .06 .07 .84 N/A .05 .05 Å*w,w .17 .23 N/A .15 .16 .18 N/A .11 .11 .16 N/A .09 .09 Å*y,w .66 .64 N/A .12 .13 .64 N/A .09 .09 .65 N/A .06 .06 Å*Æ,w .84 .79 N/A .10 .11 .82 N/A .06 .07 .83 N/A .05 .05 Å*Ç,w .17 .22 N/A .14 .15 .18 N/A .11 .11 .17 N/A .08 .08 Å*È,y .63 .62 N/A .09 .09 .62 N/A .06 .06 .63 N/A .04 .04 Å*É,y .51 .51 N/A .09 .09 .51 N/A .07 .07 .50 N/A .04 .04 Å*Ê,y .63 .63 N/A .09 .09 .62 N/A .06 .06 .63 N/A .04 .04 Å�,y .51 .49 N/A .10 .10 .51 N/A .07 .07 .51 N/A .05 .05 Å�*,Æ .52 .45 N/A .21 .22 .50 N/A .21 .21 .49 N/A .17 .18 Å��,Æ .79 .65 N/A .22 .26 .68 N/A .18 .21 .74 N/A .13 .14 Å�w,Æ .40 .38 N/A .23 .23 .37 N/A .19 .19 .37 N/A .18 .18 Å�y,Æ .52 .47 N/A .24 .24 .47 N/A .20 .21 .49 N/A .16 .17 Å�Æ,Æ .79 .65 N/A .21 .25 .71 N/A .17 .19 .73 N/A .14 .15 Å�Ç,Æ .40 .39 N/A .23 .23 .39 N/A .20 .21 .39 N/A .18 .18 

(continues on the next page) 
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Table 4 (cont.): Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with large model 

 

ML  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .60 .06 .06 .06 .61 .04 .04 .04 .61 .03 .02 .02 Å�,* .69 .68 .06 .06 .06 .69 .04 .03 .03 .69 .03 .03 .03 Åw,* .61 .61 .06 .06 .06 .61 .04 .04 .04 .61 .03 .03 .03 Åy,* .61 .60 .06 .06 .06 .61 .04 .04 .04 .61 .03 .03 .03 ÅÆ,* .69 .68 .06 .06 .06 .69 .04 .04 .04 .69 .03 .03 .03 ÅÇ,* .61 .61 .06 .06 .06 .61 .04 .04 .04 .61 .03 .03 .03 ÅÈ,� .48 .47 .06 .06 .06 .47 .04 .04 .04 .48 .03 .03 .03 ÅÉ,� .36 .36 .06 .05 .05 .36 .03 .03 .04 .36 .02 .03 .03 ÅÊ,� .48 .47 .06 .06 .06 .48 .04 .04 .04 .48 .03 .03 .03 Å*,� .36 .36 .06 .06 .06 .36 .04 .04 .04 .36 .02 .03 .03 Å**,w .66 .66 .07 .06 .06 .66 .04 .04 .04 .66 .03 .03 .03 Å*�,w .84 .84 .06 .06 .06 .84 .04 .04 .04 .84 .03 .03 .03 Å*w,w .17 .17 .07 .07 .07 .17 .05 .04 .04 .17 .03 .03 .03 Å*y,w .66 .66 .07 .07 .07 .66 .04 .05 .05 .66 .03 .03 .03 Å*Æ,w .84 .85 .06 .06 .06 .84 .04 .04 .04 .84 .03 .03 .03 Å*Ç,w .17 .17 .07 .07 .07 .17 .05 .04 .04 .17 .03 .03 .03 Å*È,y .63 .63 .08 .07 .07 .63 .05 .05 .05 .63 .03 .03 .03 Å*É,y .51 .50 .08 .08 .08 .51 .05 .05 .05 .50 .03 .04 .04 Å*Ê,y .63 .64 .08 .07 .07 .63 .05 .05 .05 .63 .03 .03 .03 Å�,y .51 .51 .08 .08 .08 .51 .05 .05 .05 .51 .03 .03 .03 Å�*,Æ .52 .52 .07 .07 .07 .52 .05 .05 .05 .52 .03 .03 .03 Å��,Æ .79 .80 .07 .07 .07 .79 .04 .05 .05 .79 .03 .03 .03 Å�w,Æ .40 .39 .07 .07 .07 .40 .05 .05 .05 .40 .03 .04 .04 Å�y,Æ .52 .52 .07 .08 .08 .51 .05 .05 .05 .52 .03 .03 .03 Å�Æ,Æ .79 .79 .07 .07 .07 .79 .04 .04 .04 .79 .03 .03 .03 Å�Ç,Æ .40 .39 .07 .07 .08 .40 .05 .05 .05 .40 .03 .03 .03 

(continues on the next page) 
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Table 4 (cont.): Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with large model 

 

PLSe1 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .58 .06 .06 .07 .61 .04 .04 .04 .61 .03 .02 .02 Å�,* .69 .65 .06 .07 .07 .68 .04 .04 .04 .68 .03 .03 .03 Åw,* .61 .59 .06 .07 .07 .60 .04 .04 .04 .60 .03 .03 .03 Åy,* .61 .58 .06 .06 .07 .60 .04 .04 .04 .60 .03 .03 .03 ÅÆ,* .69 .65 .06 .07 .07 .68 .04 .04 .04 .68 .03 .03 .03 ÅÇ,* .61 .58 .06 .07 .07 .60 .04 .04 .04 .61 .03 .03 .03 ÅÈ,� .48 .49 .06 .08 .08 .49 .04 .05 .05 .49 .03 .03 .03 ÅÉ,� .36 .38 .06 .07 .07 .37 .03 .04 .05 .37 .02 .03 .03 ÅÊ,� .48 .49 .06 .08 .08 .50 .04 .05 .05 .49 .03 .03 .03 Å*,� .36 .38 .06 .07 .07 .37 .03 .05 .05 .37 .02 .03 .03 Å**,w .66 .65 .07 .07 .07 .66 .04 .04 .04 .66 .03 .03 .03 Å*�,w .84 .84 .06 .07 .07 .84 .04 .04 .04 .84 .03 .03 .03 Å*w,w .17 .17 .07 .07 .07 .17 .05 .04 .04 .17 .03 .03 .03 Å*y,w .66 .65 .07 .07 .07 .65 .04 .05 .05 .66 .03 .03 .03 Å*Æ,w .84 .84 .06 .06 .06 .84 .04 .04 .04 .84 .03 .03 .03 Å*Ç,w .17 .17 .07 .07 .07 .17 .05 .04 .04 .17 .03 .03 .03 Å*È,y .63 .63 .07 .07 .07 .63 .05 .05 .05 .63 .03 .03 .03 Å*É,y .51 .50 .08 .07 .08 .51 .05 .05 .05 .50 .03 .04 .04 Å*Ê,y .63 .63 .07 .08 .08 .63 .05 .05 .05 .63 .03 .03 .03 Å�,y .51 .50 .08 .08 .08 .51 .05 .05 .05 .51 .03 .03 .03 Å�*,Æ .52 .50 .07 .09 .09 .51 .05 .06 .06 .51 .03 .04 .04 Å��,Æ .79 .76 .07 .09 .09 .77 .04 .06 .06 .79 .03 .04 .04 Å�w,Æ .40 .37 .08 .09 .10 .39 .05 .06 .06 .39 .03 .04 .04 Å�y,Æ .52 .51 .07 .10 .10 .51 .05 .06 .06 .51 .03 .04 .04 Å�Æ,Æ .79 .77 .07 .10 .10 .78 .04 .06 .06 .79 .03 .04 .04 Å�Ç,Æ .40 .37 .08 .10 .10 .38 .05 .06 .07 .39 .03 .04 .04 

(continues on the next page) 
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Table 4 (cont.): Comparison of results on loadings using PLSc, ML, PLSe1 and PLSe2 for 

normal data with large model 

 

PLSe2 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .61 .06 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Å�,* .69 .68 .06 .07 .07 .69 .04 .04 .04 .69 .03 .03 .03 Åw,* .61 .61 .06 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 Åy,* .61 .60 .06 .07 .07 .61 .04 .04 .04 .61 .03 .03 .03 ÅÆ,* .69 .68 .06 .07 .07 .69 .04 .04 .04 .69 .03 .03 .03 ÅÇ,* .61 .61 .06 .07 .07 .62 .04 .04 .04 .61 .03 .03 .03 ÅÈ,� .48 .45 .07 .07 .07 .47 .04 .04 .04 .48 .03 .03 .03 ÅÉ,� .36 .35 .06 .06 .06 .36 .04 .04 .04 .36 .02 .03 .03 ÅÊ,� .48 .45 .07 .07 .07 .47 .04 .04 .04 .48 .03 .03 .03 Å*,� .36 .34 .06 .06 .06 .36 .04 .04 .04 .36 .02 .03 .03 Å**,w .66 .63 .07 .07 .08 .65 .04 .04 .04 .65 .03 .03 .03 Å*�,w .84 .82 .06 .07 .07 .84 .04 .04 .04 .84 .03 .03 .03 Å*w,w .17 .16 .07 .07 .07 .16 .05 .05 .05 .16 .03 .03 .03 Å*y,w .66 .64 .07 .08 .08 .65 .04 .05 .05 .65 .03 .03 .03 Å*Æ,w .84 .82 .06 .07 .08 .84 .04 .04 .04 .84 .03 .03 .03 Å*Ç,w .17 .16 .07 .08 .08 .17 .05 .04 .04 .17 .03 .03 .03 Å*È,y .63 .60 .08 .08 .09 .62 .05 .05 .05 .63 .03 .03 .03 Å*É,y .51 .48 .08 .08 .08 .50 .05 .05 .05 .50 .03 .04 .04 Å*Ê,y .63 .61 .08 .09 .09 .62 .05 .05 .05 .63 .03 .03 .03 Å�,y .51 .48 .08 .09 .10 .50 .05 .05 .05 .50 .03 .04 .04 Å�*,Æ .52 .50 .07 .08 .08 .51 .04 .05 .05 .52 .03 .03 .03 Å��,Æ .79 .77 .07 .07 .08 .78 .04 .05 .05 .79 .03 .03 .03 Å�w,Æ .40 .38 .07 .08 .08 .40 .04 .05 .05 .40 .03 .04 .04 Å�y,Æ .52 .51 .07 .09 .09 .51 .04 .05 .05 .52 .03 .03 .03 Å�Æ,Æ .79 .77 .07 .07 .08 .78 .04 .05 .05 .79 .03 .03 .03 Å�Ç,Æ .40 .37 .07 .08 .09 .39 .04 .05 .05 .40 .03 .03 .04 

 

Table 5 presents the results on structural regression coefficients and the factor 

correlation with large model and normal data. Overall, we observe the same pattern as 

in Table 3, where estimates of the regression coefficients are generally more biased than 

the estimates of the loadings or the factor correlation. The increased number of 

indicators seems to improve the estimation of structural regression parameter estimates 
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– as more observed information becomes available for each latent variable, the 

inferences about the latent structural equations are expected to improve.  

Across all sample sizes, RMSEs for all regression coefficient estimates are 

consistently smaller than their counterparts in the case of a small model, irrespective of 

the estimator used. At a=200, we observe about the same amount of bias with TSLS, ML 

and the two PLSe estimators. It seems that small sample size is a challenge for all four 

estimators. At a=1000, all estimators’ performance improves, with ML and PLSe2 

showing the smallest RMSEs. Similar to what we observed with a small model at 

a=1000, TSLS and PLSe1 are only slightly worse off than ML and PLSe2. We observed 

that PLSe1 improves the estimation of £w over TSLS. As with the small model, standard 

error estimates from ML and the two PLSe estimators improve as sample size increases. 

They are well-calibrated at a=1000. 
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Table 5. Comparison of results on structural regression coefficients and factor 

correlations using TSLS, ML, PLSe1 and PLSe2 for normal data with large model 

 

TSLS  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .25 N/A .10 .11 .23 N/A .07 .07 .21 N/A .04 .04 £� .25 .29 N/A .09 .09 .25 N/A .06 .06 .25 N/A .04 .04 £w .30 .30 N/A .38 .38 .32 N/A .30 .30 .33 N/A .20 .20 £y .27 .26 N/A .14 .14 .26 N/A .08 .08 .26 N/A .06 .06 £Æ 1.03 .99 N/A .23 .23 .99 N/A .15 .15 1.02 N/A .10 .10 Ò�,* .38 .39 N/A .08 .08 .39 N/A .05 .05 .38 N/A .04 .04 

ML  a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .21 .09 .09 .09 .21 .05 .06 .06 .21 .04 .04 .04 £� .25 .27 .09 .08 .09 .25 .06 .06 .06 .25 .04 .04 .04 £w .30 .32 .16 .17 .17 .31 .10 .10 .10 .30 .07 .07 .07 £y .27 .27 .13 .14 .14 .27 .08 .08 .08 .27 .06 .06 .06 £Æ 1.03 1.09 .23 .23 .24 1.04 .14 .14 .14 1.04 .10 .09 .10 Ò�,* .38 .37 .08 .09 .09 .38 .05 .05 .05 .38 .04 .04 .04 

PLSe1 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .27 .10 .11 .12 .24 .06 .06 .07 .22 .04 .04 .04 £� .25 .34 .10 .10 .13 .28 .06 .06 .07 .27 .04 .04 .04 £w .30 .26 .15 .19 .19 .28 .10 .11 .11 .29 .07 .07 .07 £y .27 .26 .13 .15 .15 .26 .08 .08 .08 .26 .06 .06 .06 £Æ 1.03 1.04 .22 .23 .23 1.00 .13 .15 .15 1.03 .09 .10 .10 Ò�,* .38 .40 .08 .09 .09 .39 .05 .05 .06 .38 .04 .04 .04 

PLSe2 a=200 a =500 a=1000 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .16 .08 .11 .13 .19 .05 .06 .07 .20 .04 .04 .04 £� .25 .23 .08 .11 .11 .23 .05 .06 .06 .24 .04 .04 .04 £w .30 .37 .20 .22 .24 .32 .10 .11 .12 .31 .07 .07 .08 £y .27 .26 .27 .31 .31 .26 .08 .09 .09 .26 .06 .06 .06 £Æ 1.03 1.07 .42 .38 .38 1.03 .14 .14 .14 1.04 .10 .09 .10 Ò�,* .38 .33 .08 .11 .12 .36 .05 .06 .06 .37 .04 .04 .04 

 

 

Overall with either small or large model, what we observed with normal data 

shows the following trend. All estimators including PLSc (in conjunction with TSLS), 

ML, PLSe1 and PLSe2 seem to improve as sample size increases. Another general trend 



71 
 

is that the parameter estimates of the structural regression coefficients show more bias 

than the parameter estimates of the loadings. Specifically, at a=200, we observe some 

large biases from all four estimators. The bias from TSLS is more pronounced with a 

small model than with a large model. At a=1000, performance of the four estimators is 

similar, where ML and PLSe2 are the best, followed by PLSe1 and TSLS. 

The conclusion with normal data is that PLSe1 and PLSe2 can improve PLSc- 

estimated loadings and can also improve TSLS-estimated regression coefficients, 

though to a lesser degree. Their performance is shown to be comparable to ML across 

all sample sizes, with PLSe2 closer to ML than PLSe1.  Based on results from PLSc (in 

conjunction with TSLS), the two proposed PLSe estimators not only provide 

improvement to PLSc and TSLS point estimates, they also provide adequate estimation 

of standard errors.  

 

4.2.2. Results under Non-normality 

 Under the non-normal conditions, we compared PLSc (in conjunction with 

TSLS), ML and PLSe1. PLSe2 is based on normal theory. Thus it is not studied for the 

non-normal conditions.  

 Table 6 compares the estimates of the loadings from a small model. Holding 

sample size constant, we observed that RMSE of the loading estimates are consistently 
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higher with non-normal data than under normality. A sample size of roughly 2500 is 

perhaps needed with non-normal data to achieve the same level of RMSE with normal 

data at a=1000.  

 When we compare RMSE across different estimators, RMSE for PLSc-estimated 

loadings are slightly higher than those from ML or PLSe1 at each sample size (with the 

majority of RMSEs from PLSc higher than ML by about 0.02). We observe a similar 

pattern of performance in PLSe1 with non-normal data as with normal data, where 

PLSe1 performs almost as well as ML at each sample size in terms of RMSE (with the 

majority of RMSEs from PLSe1 higher than ML by about 0.01). At a=2500, all three 

estimators are performing well in terms of parameter recovery, with ML having the 

lowest RMSE followed by PLSe1 and then PLSc. It seems that at each sample size PLSe1 

is able to improve parameter estimates from PLSc.  

 Table 7 compares the results on structural regression coefficients and the factor 

correlation from a small model. Overall, we observe the same pattern as in Table 3 with 

normal data where estimates of the regression coefficients are generally more biased 

than the estimates of the loadings or the factor correlation (indicated by the higher 

RMSEs). Non-normality poses a challenge for the estimation of the regression 

coefficients, especially at a=200 where large RMSEs are observed with all three 

estimators. It takes a larger sample with non-normal data (e.g. a=500) for these 
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estimators to have similar performance as normal data when a=200. Comparing ML 

against TSLS and PLSe1 at sample sizes of 500, 1000 and 2500, all three estimators’ 

performance improves as sample size increases. Similar to the results of the loading 

estimates, ML performs the best with the smallest RMSEs. PLSe1 seems to improve 

PLSc with slightly better RMSEs. 
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Table 6. Comparison of results on loadings using PLSc, ML and PLSe1 for non-normal data with small model 

PLSc  a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .59 N/A .14 .14 .59 N/A .10 .10 .60 N/A .08 .08 .61 N/A .05 .05 Å�,* .69 .64 N/A .14 .15 .67 N/A .10 .10 .66 N/A .07 .07 .68 N/A .05 .05 Åw,* .61 .58 N/A .16 .16 .60 N/A .10 .10 .61 N/A .07 .07 .61 N/A .05 .05 Åy,� .48 .54 N/A .16 .17 .53 N/A .14 .14 .52 N/A .12 .13 .50 N/A .07 .07 ÅÆ,� .36 .41 N/A .12 .13 .40 N/A .10 .11 .39 N/A .09 .09 .38 N/A .05 .05 ÅÇ,w .66 .61 N/A .14 .15 .63 N/A .12 .12 .64 N/A .08 .08 .65 N/A .05 .05 ÅÈ,w .84 .75 N/A .15 .17 .79 N/A .12 .13 .81 N/A .09 .09 .83 N/A .06 .06 ÅÉ,w .17 .29 N/A .16 .20 .22 N/A .13 .14 .21 N/A .12 .12 .17 N/A .08 .08 ÅÊ,y .63 .66 N/A .15 .15 .64 N/A .10 .10 .63 N/A .07 .07 .64 N/A .05 .05 Å*,y .51 .52 N/A .13 .13 .52 N/A .10 .10 .52 N/A .07 .07 .51 N/A .05 .05 Å**,Æ .52 .55 N/A .26 .26 .55 N/A .21 .21 .50 N/A .20 .20 .51 N/A .15 .15 Å*�,Æ .79 .62 N/A .22 .28 .64 N/A .24 .29 .68 N/A .20 .23 .74 N/A .15 .16 Å*w,Æ .40 .48 N/A .25 .26 .44 N/A .20 .20 .45 N/A .19 .20 .41 N/A .15 .15 

ML  a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .58 .07 .11 .11 .60 .04 .08 .08 .60 .03 .05 .05 .60 .02 .03 .03 Å�,* .69 .66 .07 .11 .11 .67 .04 .07 .08 .68 .03 .05 .05 .68 .02 .04 .04 Åw,* .61 .59 .07 .11 .11 .60 .04 .07 .07 .60 .03 .05 .05 .61 .02 .03 .03 Åy,� .48 .47 .14 .15 .15 .47 .08 .10 .10 .47 .06 .08 .08 .48 .03 .06 .06 ÅÆ,� .36 .35 .10 .10 .11 .35 .06 .08 .08 .35 .04 .06 .06 .36 .02 .04 .04 ÅÇ,w .66 .66 .09 .13 .13 .66 .06 .10 .10 .66 .04 .07 .07 .66 .03 .05 .05 ÅÈ,w .84 .81 .10 .13 .13 .82 .07 .10 .10 .85 .05 .07 .07 .84 .03 .05 .05 ÅÉ,w .17 .20 .08 .11 .12 .17 .05 .07 .07 .17 .04 .06 .06 .16 .02 .04 .04 ÅÊ,y .63 .65 .10 .14 .14 .64 .06 .11 .11 .63 .04 .08 .08 .64 .03 .05 .05 Å*,y .51 .51 .09 .14 .14 .51 .06 .10 .10 .51 .04 .07 .07 .51 .03 .05 .05 Å**,Æ .52 .56 .09 .14 .15 .53 .06 .09 .10 .52 .04 .06 .06 .52 .03 .05 .05 Å*�,Æ .79 .75 .11 .14 .15 .78 .08 .11 .11 .79 .06 .09 .09 .80 .04 .06 .06 Å*w,Æ .40 .43 .09 .13 .13 .41 .06 .08 .08 .40 .04 .07 .07 .40 .02 .04 .04 
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Table 6 (cont.) Comparison of results on loadings using PLSc, ML and PLSe1 for non-normal data with small 

model 

PLSe1 a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .57 .10 .11 .12 .59 .07 .08 .08 .59 .05 .05 .06 .60 .03 .04 .04 Å�,* .69 .63 .11 .11 .13 .65 .07 .08 .08 .67 .05 .05 .06 .68 .04 .04 .04 Åw,* .61 .57 .10 .12 .13 .59 .07 .07 .08 .60 .05 .06 .06 .61 .03 .03 .03 Åy,� .48 .51 .16 .15 .15 .51 .11 .12 .12 .51 .08 .11 .11 .50 .05 .07 .07 ÅÆ,� .36 .39 .12 .11 .12 .39 .08 .09 .10 .38 .06 .08 .08 .38 .04 .05 .05 ÅÇ,w .66 .65 .13 .12 .12 .66 .09 .11 .11 .66 .07 .07 .07 .66 .04 .05 .05 ÅÈ,w .84 .78 .14 .12 .14 .81 .10 .10 .10 .84 .08 .07 .07 .83 .05 .05 .05 ÅÉ,w .17 .21 .11 .12 .13 .18 .07 .20 .20 .17 .05 .06 .06 .16 .03 .04 .04 ÅÊ,y .63 .63 .14 .14 .14 .64 .10 .10 .10 .63 .07 .08 .08 .64 .05 .05 .05 Å*,y .51 .51 .13 .13 .13 .51 .08 .10 .10 .51 .06 .07 .07 .51 .04 .05 .05 Å**,Æ .52 .55 .13 .15 .15 .52 .09 .12 .12 .51 .07 .09 .09 .51 .04 .05 .05 Å*�,Æ .79 .69 .15 .16 .19 .72 .11 .15 .16 .76 .08 .11 .12 .79 .06 .07 .07 Å*w,Æ .40 .42 .12 .14 .15 .40 .08 .09 .09 .38 .06 .08 .08 .39 .04 .04 .05 
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Table 7. Comparison of results on structural regression coefficients and factor correlations using TSLS, ML and 

PLSe1 for non-normal data with small model 
 

TSLS a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .27 N/A .18 .19 .26 N/A .13 .13 .24 N/A .10 .10 .23 N/A .06 .06 £� .25 .32 N/A .15 .16 .27 N/A .09 .09 .27 N/A .08 .08 .25 N/A .05 .05 £w .30 .27 N/A .45 .45 .33 N/A .40 .40 .29 N/A .39 .39 .32 N/A .28 .28 £y .27 .30 N/A .31 .32 .26 N/A .20 .20 .25 N/A .13 .13 .26 N/A .10 .10 £Æ 1.03 .93 N/A .45 .46 .97 N/A .37 .37 1.00 N/A .30 .30 1.00 N/A .18 .18 Ò�,* .38 .40 N/A .15 .15 .39 N/A .12 .12 .40 N/A .09 .09 .38 N/A .05 .05 

ML  a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .24 .13 .18 .18 .22 .08 .11 .11 .22 .05 .09 .09 .22 .03 .05 .05 £� .25 .32 .11 .17 .18 .27 .07 .09 .09 .26 .05 .08 .08 .25 .03 .05 .05 £w .30 .35 .49 .40 .41 .30 .16 .20 .20 .32 .11 .17 .17 .30 .06 .11 .11 £y .27 .31 .36 .35 .35 .27 .13 .18 .18 .27 .09 .12 .12 .27 .05 .10 .10 £Æ 1.03 1.19 1.26 .81 .83 1.10 .32 .39 .40 1.10 .21 .33 .33 1.05 .11 .18 .18 Ò�,* .38 .38 .11 .14 .14 .38 .07 .11 .11 .39 .05 .08 .08 .38 .03 .05 .05 

PLSe1 a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .29 .19 .19 .21 .27 .12 .12 .13 .25 .08 .09 .10 .23 .05 .06 .06 £� .25 .38 .17 .17 .22 .31 .10 .10 .11 .29 .08 .08 .09 .26 .05 .05 .05 £w .30 .27 .32 .34 .34 .26 .20 .21 .21 .28 .15 .19 .20 .28 .09 .11 .11 £y .27 .28 .34 .32 .32 .25 .18 .19 .20 .25 .12 .12 .13 .26 .08 .09 .09 £Æ 1.03 1.01 .65 .48 .48 1.01 .37 .37 .37 1.02 .27 .31 .31 1.01 .16 .18 .18 Ò�,* .38 .41 .14 .15 .15 .40 .10 .12 .12 .40 .07 .08 .08 .39 .05 .05 .05 
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Table 8 and Table 9 present parameter estimates with the large model and non-

normal data using PLSc (in conjunction with TSLS), ML and PLSe1. We observe largely 

similar patterns as the case of the small model. At a=200, all three estimators seem to 

produce estimates with high RMSEs, but their performance improves as sample size 

increases. Similar to the results with small model at a=2500, ML performs the best with 

the smallest RMSEs. PLSe1 seems to improve PLSc.  

We also observe, as before, that a model with more indicators seems to help with 

the estimation of structural parameter estimates (see Table 9).  At a=2500, RMSEs for all 

regression parameter estimates are consistently smaller with a large model than a small 

model, irrespective of the estimator. Non-normality again poses difficulty in estimation 

(regardless of the size of the model), where it takes a much larger sample size (a=2500) 

to maintain the same level of accuracy achievable with normal data at a=1000.  
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Table 8. Comparison of results on loadings using PLSc, ML and PLSe1 for non-normal data with large model 
 

PLSc  a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .58 N/A .14 .15 .59 N/A .11 .11 .59 N/A .08 .08 .61 N/A .05 .05 Å�,* .69 .65 N/A .13 .14 .67 N/A .09 .09 .67 N/A .07 .07 .68 N/A .04 .04 Åw,* .61 .57 N/A .14 .15 .59 N/A .11 .11 .60 N/A .08 .08 .61 N/A .05 .05 Åy,* .61 .57 N/A .14 .15 .59 N/A .10 .11 .60 N/A .07 .08 .61 N/A .05 .05 ÅÆ,* .69 .64 N/A .13 .13 .66 N/A .09 .09 .68 N/A .06 .07 .68 N/A .04 .04 ÅÇ,* .61 .56 N/A .14 .15 .60 N/A .10 .11 .60 N/A .08 .08 .60 N/A .05 .05 ÅÈ,� .48 .52 N/A .16 .17 .52 N/A .12 .13 .50 N/A .08 .09 .49 N/A .04 .04 ÅÉ,� .36 .40 N/A .13 .14 .40 N/A .10 .10 .39 N/A .07 .07 .37 N/A .03 .03 ÅÊ,� .48 .52 N/A .15 .15 .52 N/A .11 .12 .50 N/A .08 .09 .49 N/A .04 .04 Å*,� .36 .38 N/A .12 .12 .40 N/A .10 .11 .38 N/A .07 .07 .37 N/A .03 .03 Å**,w .66 .60 N/A .18 .19 .64 N/A .12 .12 .64 N/A .10 .10 .64 N/A .06 .06 Å*�,w .84 .76 N/A .15 .17 .81 N/A .09 .10 .82 N/A .07 .08 .84 N/A .05 .05 Å*w,w .17 .25 N/A .17 .19 .21 N/A .14 .14 .19 N/A .12 .12 .17 N/A .09 .09 Å*y,w .66 .63 N/A .17 .17 .63 N/A .13 .13 .64 N/A .11 .11 .66 N/A .07 .07 Å*Æ,w .84 .77 N/A .15 .17 .80 N/A .09 .10 .82 N/A .08 .08 .83 N/A .05 .05 Å*Ç,w .17 .24 N/A .17 .19 .21 N/A .13 .14 .18 N/A .11 .11 .17 N/A .08 .08 Å*È,y .63 .62 N/A .13 .13 .62 N/A .09 .09 .62 N/A .07 .07 .63 N/A .05 .05 Å*É,y .51 .49 N/A .15 .15 .50 N/A .11 .11 .51 N/A .08 .08 .50 N/A .05 .05 Å*Ê,y .63 .62 N/A .14 .14 .61 N/A .09 .09 .62 N/A .07 .07 .63 N/A .05 .05 Å�,y .51 .49 N/A .13 .13 .49 N/A .10 .10 .51 N/A .08 .08 .50 N/A .05 .05 Å�*,Æ .52 .49 N/A .24 .24 .47 N/A .23 .23 .49 N/A .20 .20 .50 N/A .16 .16 Å��,Æ .79 .61 N/A .24 .30 .65 N/A .20 .25 .67 N/A .18 .21 .73 N/A .13 .15 Å�w,Æ .40 .42 N/A .25 .25 .40 N/A .24 .24 .41 N/A .22 .22 .39 N/A .18 .18 Å�y,Æ .52 .44 N/A .23 .25 .49 N/A .22 .22 .47 N/A .20 .21 .50 N/A .17 .17 Å�Æ,Æ .79 .60 N/A .23 .30 .65 N/A .21 .26 .67 N/A .18 .22 .72 N/A .13 .15 Å�Ç,Æ .40 .43 N/A .25 .25 .38 N/A .22 .22 .41 N/A .21 .21 .39 N/A .17 .17 
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Table 8 (cont.) Comparison of results on loadings using PLSc, ML and PLSe1 for non-normal data with large model 

ML  a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .59 .06 .10 .10 .61 .04 .07 .07 .60 .03 .05 .05 .61 .02 .03 .03 Å�,* .69 .67 .06 .09 .10 .69 .04 .08 .08 .68 .03 .05 .05 .69 .02 .04 .04 Åw,* .61 .59 .06 .09 .09 .61 .04 .07 .07 .61 .03 .05 .05 .61 .02 .03 .03 Åy,* .61 .59 .06 .09 .09 .60 .04 .07 .07 .60 .03 .05 .05 .61 .02 .03 .03 ÅÆ,* .69 .66 .06 .10 .11 .69 .04 .07 .07 .68 .03 .05 .05 .69 .02 .04 .04 ÅÇ,* .61 .59 .06 .09 .09 .61 .04 .07 .07 .61 .03 .05 .05 .61 .02 .04 .04 ÅÈ,� .48 .46 .06 .10 .10 .47 .04 .06 .07 .48 .03 .05 .05 .48 .02 .03 .03 ÅÉ,� .36 .36 .06 .08 .08 .35 .04 .06 .06 .36 .02 .04 .04 .37 .02 .03 .03 ÅÊ,� .48 .47 .06 .10 .10 .47 .04 .07 .07 .48 .03 .05 .05 .48 .02 .03 .03 Å*,� .36 .35 .06 .09 .09 .36 .04 .06 .06 .36 .02 .04 .04 .37 .02 .03 .03 Å**,w .66 .65 .07 .11 .11 .66 .04 .06 .06 .66 .03 .05 .05 .66 .02 .03 .03 Å*�,w .84 .83 .06 .10 .10 .84 .04 .06 .06 .84 .03 .05 .05 .84 .02 .04 .04 Å*w,w .17 .17 .07 .10 .10 .16 .05 .07 .07 .17 .03 .06 .06 .17 .02 .03 .03 Å*y,w .66 .65 .07 .09 .09 .65 .04 .07 .07 .65 .03 .05 .05 .66 .02 .04 .04 Å*Æ,w .84 .82 .06 .10 .10 .84 .04 .07 .07 .84 .03 .05 .05 .84 .02 .04 .04 Å*Ç,w .17 .18 .07 .11 .11 .16 .05 .07 .07 .16 .03 .05 .05 .17 .02 .04 .04 Å*È,y .63 .62 .07 .12 .12 .62 .05 .09 .09 .62 .03 .06 .06 .63 .02 .04 .04 Å*É,y .51 .50 .08 .12 .12 .50 .05 .08 .08 .50 .03 .06 .06 .51 .02 .04 .04 Å*Ê,y .63 .61 .07 .11 .12 .62 .05 .08 .08 .63 .03 .06 .07 .63 .02 .04 .04 Å�,y .51 .50 .08 .10 .10 .50 .05 .08 .08 .51 .03 .06 .06 .51 .02 .04 .04 Å�*,Æ .52 .51 .07 .11 .11 .51 .05 .07 .07 .52 .03 .06 .06 .52 .02 .04 .04 Å��,Æ .79 .78 .07 .10 .10 .79 .04 .07 .07 .79 .03 .05 .05 .79 .02 .04 .04 Å�w,Æ .40 .40 .07 .11 .11 .40 .05 .09 .09 .39 .03 .05 .05 .40 .02 .04 .04 Å�y,Æ .52 .51 .07 .10 .11 .51 .05 .07 .08 .52 .03 .05 .05 .52 .02 .03 .04 Å�Æ,Æ .79 .77 .07 .11 .11 .78 .04 .07 .07 .80 .03 .06 .06 .79 .02 .04 .04 Å�Ç,Æ .40 .40 .07 .12 .12 .39 .05 .07 .07 .40 .03 .05 .05 .40 .02 .03 .03 

 

Table 8 (cont.) Comparison of results on loadings using PLSc, ML and PLSe1 for non-normal data with large model 
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PLSe1 a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Å*,* .61 .56 .09 .11 .12 .59 .06 .07 .08 .59 .05 .05 .05 .61 .03 .03 .03 Å�,* .69 .62 .09 .12 .14 .67 .07 .08 .08 .67 .05 .05 .05 .68 .03 .04 .04 Åw,* .61 .55 .09 .10 .12 .59 .06 .08 .08 .60 .05 .05 .05 .61 .03 .03 .03 Åy,* .61 .55 .09 .10 .12 .58 .06 .07 .08 .59 .05 .05 .05 .61 .03 .03 .03 ÅÆ,* .69 .62 .09 .11 .13 .67 .06 .08 .08 .67 .05 .05 .05 .68 .03 .03 .03 ÅÇ,* .61 .55 .09 .11 .12 .59 .06 .07 .07 .60 .05 .05 .05 .61 .03 .04 .04 ÅÈ,� .48 .48 .09 .13 .13 .50 .06 .09 .09 .50 .04 .06 .07 .49 .03 .04 .04 ÅÉ,� .36 .37 .08 .11 .11 .38 .05 .07 .07 .38 .04 .05 .06 .37 .03 .03 .03 ÅÊ,� .48 .48 .09 .13 .13 .50 .06 .09 .09 .50 .04 .07 .07 .49 .03 .04 .04 Å*,� .36 .36 .08 .11 .11 .38 .05 .07 .08 .38 .04 .05 .06 .37 .03 .03 .03 Å**,w .66 .64 .10 .13 .13 .65 .06 .06 .06 .65 .05 .05 .05 .66 .03 .03 .03 Å*�,w .84 .83 .10 .12 .13 .84 .06 .06 .06 .84 .05 .05 .05 .84 .03 .04 .04 Å*w,w .17 .16 .10 .12 .12 .16 .07 .07 .07 .17 .05 .06 .06 .17 .03 .03 .03 Å*y,w .66 .65 .10 .11 .11 .65 .07 .07 .07 .65 .05 .06 .06 .66 .03 .04 .04 Å*Æ,w .84 .82 .10 .12 .13 .84 .06 .07 .07 .84 .05 .06 .06 .84 .03 .04 .04 Å*Ç,w .17 .18 .10 .12 .12 .16 .07 .07 .07 .16 .05 .06 .06 .17 .03 .04 .04 Å*È,y .63 .62 .11 .12 .12 .61 .08 .09 .09 .62 .06 .06 .06 .63 .04 .04 .04 Å*É,y .51 .50 .11 .12 .12 .49 .07 .08 .08 .50 .06 .06 .06 .50 .04 .04 .04 Å*Ê,y .63 .61 .11 .12 .12 .62 .08 .08 .09 .62 .06 .07 .07 .63 .04 .04 .04 Å�,y .51 .49 .11 .10 .11 .49 .07 .08 .08 .51 .06 .06 .06 .50 .04 .04 .04 Å�*,Æ .52 .49 .10 .14 .15 .50 .07 .09 .10 .51 .05 .07 .07 .51 .03 .04 .04 Å��,Æ .79 .74 .10 .14 .15 .77 .07 .10 .10 .78 .05 .07 .07 .79 .03 .04 .04 Å�w,Æ .40 .38 .10 .15 .15 .38 .07 .10 .10 .38 .05 .07 .07 .39 .03 .04 .04 Å�y,Æ .52 .50 .10 .13 .13 .50 .07 .10 .10 .51 .05 .07 .07 .51 .03 .04 .04 Å�Æ,Æ .79 .74 .10 .15 .16 .76 .07 .10 .11 .78 .05 .07 .07 .78 .03 .04 .04 Å�Ç,Æ .40 .38 .11 .14 .14 .37 .07 .09 .09 .39 .05 .07 .07 .40 .03 .04 .04 
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Table 9. Comparison of results on structural regression coefficients and factor correlations using TSLS, ML and 

PLSe1 for non-normal data with large model 

 

TSLS a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .28 N/A .14 .16 .25 N/A .10 .11 .23 N/A .08 .08 .22 N/A .04 .04 £� .25 .31 N/A .13 .14 .28 N/A .09 .09 .26 N/A .06 .06 .26 N/A .04 .04 £w .30 .28 N/A .45 .45 .27 N/A .39 .39 .30 N/A .30 .30 .31 N/A .21 .21 £y .27 .25 N/A .20 .21 .24 N/A .13 .13 .26 N/A .09 .09 .26 N/A .06 .06 £Æ 1.03 1.00 N/A .35 .35 .99 N/A .22 .22 .98 N/A .16 .17 1.01 N/A .10 .10 Ò�,* .38 .41 N/A .11 .12 .39 N/A .07 .07 .38 N/A .06 .06 .38 N/A .04 .04 

ML a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .23 .09 .14 .14 .21 .06 .09 .09 .22 .04 .06 .06 .21 .02 .04 .04 £� .25 .29 .09 .13 .14 .26 .06 .09 .09 .25 .04 .06 .06 .25 .03 .04 .04 £w .30 .29 .17 .24 .24 .31 .10 .15 .15 .30 .07 .11 .11 .29 .04 .07 .07 £y .27 .26 .14 .21 .21 .26 .08 .13 .13 .27 .06 .09 .09 .27 .04 .06 .06 £Æ 1.03 1.11 .26 .37 .38 1.08 .15 .21 .22 1.04 .10 .15 .15 1.03 .06 .10 .10 Ò�,* .38 .39 .08 .11 .11 .38 .05 .08 .08 .37 .04 .06 .06 .38 .02 .04  .04 

PLSe1 a=200 a =500 a=1000 a=2500 

 X Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE Xn Ö-gXnh ÖØgXnh RMSE £* .21 .32 .14 .21 .23 .27 .09 .10 .11 .24 .06 .07 .08 .23 .04 .04 .04 £� .25 .38 .14 .16 .21 .32 .08 .10 .12 .29 .06 .07 .07 .27 .04 .04 .05 £w .30 .24 .24 .35 .35 .25 .14 .18 .19 .27 .10 .12 .12 .28 .07 .07 .07 £y .27 .26 .21 .23 .23 .24 .12 .13 .13 .26 .08 .09 .09 .26 .06 .06 .06 £Æ 1.03 1.09 .36 .40 .40 1.03 .20 .22 .22 1.00 .14 .16 .16 1.02 .09 .10 .10 Ò�,* .38 .44 .11 .12 .13 .41 .07 .07 .08 .39 .06 .06 .06 .38 .04 .04 .04 
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We observe some interesting patterns in standard error estimates with non-

normal data. From the earlier conditions with normal data (as presented in Tables 2-5), 

the standard error estimates from ML, PLSe1 and PLSe2 are well-calibrated across all 

sample sizes regardless of the size of the model. In the non-normal conditions, we 

intentionally used ML instead of robust ML to have an opportunity to see how much 

ML will underestimate the standard errors under non-normality.   

As we can see from Tables 6 to 9 for all the non-normal conditions, ML 

consistently underestimated standard errors across all sample sizes. PLSe1, on the hand, 

shows some instability in standard error estimation at a=200 (slight underestimation of 

the loadings and some occasionally more severe underestimation of regression 

coefficients). When sample size reaches 500, its performance improves markedly. 

Although it still occasionally underestimates, the scale of such underestimation is not as 

large as is observed with ML. At a=2500 with large model (see Table 9), PLSe1 produces 

standard errors for the structural regression coefficients that are consistent with the 

observed Monte Carlo variability.  

Across the normal and non-normal conditions, we can make the following 

conclusions. First, the performance of all estimators improves as sample size increases. 

Second, the parameter estimates of the structural regression coefficients show more bias 

than the loading estimates, especially at the smallest sample size. Third, a large model 

can improve the estimation of the regression coefficients, leading to consistently smaller 
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RMSEs than those from a small model. PLSc (in conjunction with TSLS) benefits more 

from a large measurement model than other estimators, especially when a is small. 

Fourth, non-normality poses challenge for the estimation of the regression coefficients 

especially in conjunction with small a. With non-normal data, we found that it 

routinely takes a larger sample size for TSLS, ML and PLSe1 to maintain a comparable 

level of performance achievable with normal data.  

To summarize, PLSe1 and PLSe2 can improve PLSc-estimated loadings and can 

also improve TSLS-estimated regression coefficients, although to a lesser degree. Their 

performance is comparable to ML across all sample sizes, with PLSe2 closer to ML than 

PLSe1.  In addition, the proposed estimators also provide adequate estimation of the 

standard errors under normality (PLSe1 and PLSe2) and non-normality (PLSe1 only). 

 

4.3. Model Fit Test Statistics 

One additional advantage of the proposed PLSe estimators is that they produce 

formal model fit test statistics. We recorded the minimum fit function chi-square 

statistic (K*) for ML, PLSe1 and PLSe2 (under normality only). Several robust chi-square 

statistics are computed under PLSe1. These include the Satorra-Bentler scaled chi-

square statistic (Kw), Browne’s residual-based statistic (Ky) and Yuan and Bentler’s (1997) 

adjustment statistic (z{|  ) which is based on Ky. 
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The model we estimated is correctly specified, thus under normality, the 

expected value for the K* chi-square statistic in a small model is equal to the model’s 

degrees of freedom (o = G∗ − p = 59) and the expected variance of this test statistic is 

2o = 118. Similarly with a large model, the expected value of K* is 293 (o = 293) and 

the expected variances is 586 (2o = 585). With non-normal data, we resort to the robust 

statistics, such as Kw, Ky and z{|  with known expected means (equal to the model’s 

degrees of freedom).  

First, we present results from the normal condition in Table 10. The upper panel 

of the table compares the test statistics for ML, PLSe1 and PLSe2 with a small model. At 

a=200, the ML K* test statistic has a mean of 60.54 and variance of 115.27, which are very 

close to the expected values (58 and 118, respectively). The PLSe2 K* test statistic has a 

mean of 58.44 and a slightly elevated variance of 142.02, but the elevated variance 

gradually decreases as sample size increases. At a=1000, both ML and PLSe2 produce 

test statistics with empirical distributions closely following the theoretical expectation 

(mean of 58.98 and variance of 128.29 for ML; mean of 58.39 and variance of 127.05 for 

PLSe2). With a correctly specified model, the expected model rejection rate at Ù = .05 

should be controlled at around 5%. Given 300 replications, the 95% confidence interval 

for the observed percentage of rejected model is between 2.5% and 7.5%. For both ML 

and PLSe2, the observed model rejection rates at all sample sizes are between 4% and 

6%, well within the 95% confidence interval.  
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While the minimum fit function chi-square K* is performing as expected with ML 

and PLSe2, PLSe1’s K*  test statistic based on a 1-step improvement from LISREL is 

much too large (mean around 70) for the expected degrees of freedom (59). We also 

found that different programs (e.g. EQS) give different values for K*.  

While in theory that starting from a consistent estimator, a single step Newton-

Raphson improvement is going to make the resulting estimator asymptotically efficient, 

the resulting PLSe1 parameter estimates do not necessarily minimize the fit function at 

a finite sample size. Most software programs that implement ML estimation (which is 

used in PLSe1) are highly sophisticated and routinely employ different numerical 

methods for line-search and for controlling step-length (e.g. LISREL uses quasi-Newton 

methods).  Even if the step-size constants are the same, and that the gradient values are 

also the same, the fact that quasi-Newton methods only gradually build up the second-

derivative matrix (as opposed to fully computing the Hessian at each cycle) again gives 

no assurance that the single-iteration adjustments made by LISREL and EQS will be 

comparable.  

Although we do not suggest using K* for PLSe1 model evaluation purpose, we 

can employ the robust test statistics with PLSe1. The Satorra-Bentler scaled chi-square 

statistic (Kw), Browne’s residual-based statistic ( Ky), and Yuan and Bentler’s adjustment 

to Ky (z{|) were originally developed under the non-normality context. However, they 

can be used for normal data as well. This is because they do not explicitly require the 
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estimates to minimize a particular fitting function (which is not possible with the 1-step 

improvement of PLSe1), and they only require that the estimator is consistent and 

asymptotically normal, which PLSe1 satisfies.  

Returning to Table 10, the means of the Satorra-Bentler scaled chi-square statistic 

(Kw) across each sample size are close to the expected mean of 59. The observed model 

rejection rate is well controlled at 6%. In comparison, Browne’s residual-based statistic 

(Ky) does not perform well at a=200 (with an inflated mean of 90.29 and variance of 

367.11). This is to be expected at small sample size given the lack of stability in the 

sample based asymptotic covariance matrix required to compute Ky. As sample sizes 

increases (e.g. at a=1000), the performance of Ky statistic improves slowly. It seems that 

Ky requires a sample size substantially larger than 1000 to achieve the expected chi-

square distribution. Due to the known disadvantage of Ky, Yuan and Bentler (1998) 

proposed a modification of Ky ( z{|  ). At large sample sizes, z{| converges to Ky. This is 

exactly what we observed. With a small model,  z{| indeed improves Ky by reducing its 

model rejection rate from 74% to 3% at a=200. At a=1000, z{| still improves Ky by 

reducing its mean (63.52) to 59.59 and by bringing down Ky’s variance (158.03) to 122.30, 

values that are much closer to the expected mean of 59 and variance of 118. The model 

rejection rate from z{| is 6% instead of 11% from Ky.  

While a large model can help improve parameter estimates, we find that a more 

complex model leads to less stable model fit statistics. The bottom panel in Table 10 
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presents the results from the large model conditions under normality. First, the K* 

statistic for ML has inflated model rejection rates across all samples sizes (17% at a=200, 

9% at a=500 and 8% at a=1000, all outside of the theoretical 95% confidence interval of 

2.5% and 7.5%). A similar pattern is observed again with K* from PLSe2. Although the 

means are well controlled around the expected values across all sample sizes, the 

variance and the observed model rejection rates are even more inflated when compared 

to K* from ML. With a large model, it would probably take a larger sample size for K* to 

have adequate performance.  

While one should not use K* from PLSe1 for the same reasons as we discussed 

earlier, the robust statistics can be used to test models. The Satorra-Bentler scaled chi-

square statistic (Kw) performs well again across sample sizes, with means very close to 

the expected value of 293. We observe slightly elevated variance, especially at larger 

sample size of a=1000. The model rejection rates (6% to 7%) are higher than the 5% 

theoretical level, although they are still controlled within the 95% confidence interval 

(between 2.5% and 7.5%). This is the same pattern as noted by Hu, Bentler and Kano 

(1992). The disadvantage of Ky statistic from PLSe1 seems more obvious with a large 

model. For example, at a=200, we cannot even obtain Ky (and consequently there is no 

z{|  either), because our sample size is too small to accommodate such a large model 

(and the requisite estimation of a large asymptotic covariance matrix). At a=1000, both 

the mean (430.46) and variance (1895.89) of Ky are much more inflated compared to the 
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expected values (mean of 293 and variance of 586) and we observe a 99% model 

rejection rate. As noted previously, z{| improves Ky. However, it seems to over-correct 

Ky at a=500 with an underestimated variance of 269.41 and rather low model rejection 

rate of 2%. z{|’s performance seems to improve at a=1000, but the variance is still low 

(450.25). Thus, it appears that a large model would require a larger sample size for 

stable performance of the chi-square model fit statistics.  
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Table 10. Comparison of observed ��, variance of observed �� and observed percentage of model rejection with normal 

data 
Small model (expected mean	= o = 59; expected variance = 	2o = 118) 

  a=200 a =500 a=1000 

  Mean Variance  % Reject Mean Variance  % Reject Mean Variance  % Reject 

ML: K* 60.54 115.27 5% 58.71 129.53 4% 58.98 128.29 6% 

PLSe1: K* 69.65 208.31 28% 72.11 701.61 28% 71.00 602.61 24% 

 Kw 59.78 114.31 5% 58.45 129.03 4% 58.73 128.01 6% 

 Ky 90.29 367.11 74% 68.08 205.69 24% 63.52 158.03 11% 

 z{| 61.43 78.75 3% 59.62 120.80 7% 59.59 122.30 6% 

PLSe2: K* 58.44 142.02 6% 57.59 133.14 4% 58.39 127.05 6% 

 

Large model (expected mean	= o = 293; expected variance = 	2o = 586) 

  a=200 a =500 a=1000 

  Mean Variance  % Reject Mean Variance  % Reject Mean Variance  % Reject 

ML: K* 308.43 671.79 17% 300.28 628.39 9% 296.38 704.97 8% 

PLSe1: K* 338.17 1374.45 52% 328.52 2100.48 38% 320.83 2412.18 31% 

 Kw 296.08 607.50 7% 295.24 600.59 6% 293.98 711.24 7% 

 Ky N/A* N/A* N/A* 775.93 11765.01 100% 430.46 1895.98 99% 

 z{| N/A* N/A* N/A* 301.94 269.41 2% 300.10 450.25 6% 

PLSe2: K* 307.56 1807.02 23% 300.98 917.40 13% 297.42 860.15 12% 

Note: The �� statistics include the minimum fit function chi-square statistic (K*�, the Satorra-Bentler scaled chi-square statistic (Kw�, Browne’s 

residual-based statistic (Ky�	and  z{|  which is Yuan and Bentler’s (1997) adjustment to Ky. 

* Note: Browne's residual chi-square Kw and subsequently Ky are not printed at a=200 with large model.  This is because the number of rows and 

columns of the asymptotic covariance matrix for the large model is equal to 
Z�Z�*�� = 351, which is larger than the sample size. 
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Now we turn to the non-normal conditions presented in Table 11. Recall that in 

these conditions, the common and unique factors are dependent which makes the 

asymptotic robustness properties of normal-theory based methods irrelevant. 

According to Hu, Bentler and Kano (1992), the normal-theory methods (e.g., ML) under 

these conditions will always reject the true model even at the largest sample sizes. Our 

observation with both small and large model showed that K* from ML indeed performs 

poorly under the non-normal conditions and the performance deteriorates as sample 

size increases. With a small model, observed model rejection rate increased from 92% at 

a=200 to 100% at a=2500. With large model, observed model rejection rate is 100% for 

all sample sizes. 

For the robust statistics from PLSe1, we observe a similar pattern as in the 

normal conditions. The Kw statistic seems to behave well in terms of the mean being 

close to the expected values across all sample sizes. Unlike the normal data conditions 

where its variance is slightly elevated as sample size increases, under non-normality, its 

variances seems to be lower than the expected value. We also observe a slight over-

rejection at a=200 with large model. However, based on only 300 replications, we are 

unwilling to over-interpret these results of Kw, except noting the general fact that its 

mean is well controlled – as expected for a single-moment adjustment method.  

Essentially the same patterns for Ky and z{|  are observed in the non-normal 

conditions as with the normal conditions, where Ky’s means and variances are inflated 
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across all sample sizes, but Ky’s performance improves as sample size increases (albeit 

slowly). z{| is able to correct Ky by bringing its means, variances, and model rejection 

rates to more tolerable levels. At a=2500 with a small model, we observe a decent 

performance with Ky that requires little correction from z{|. Similar to the case of 

normal data, we found that z{| sometimes over-corrected Ky in terms of its variances 

and model rejection rates, especially with the large model and small sample size.  

 Overall, we find that the minimum fit function chi-square statistic (K*) for ML 

and PLSe2 works well with normal data, but under non-normality, K* for ML cannot be 

trusted. Due to a lack of clarity on PLSe1’s one-step implementation in LISREL, we do 

not recommend the use of K*. Instead one can use the robust statistics for model 

evaluation which works well with both normal and non-normal data. The Satorra-

Bentler scaled chi-square statistic (Kw) performs well under virtually all conditions with 

estimated means very close to the expected values.  It has a tendency to over-reject the 

model at the smallest sample size, but that quickly goes away as a increases. Browne’s 

residual-based statistic ( Ky) performs well only when sample size becomes extremely 

large with a relatively small model. The inflated means, variances and model rejection 

rates of Ky statistic can be corrected with Yuan and Bentler’s (1997) adjustment ( z{|), we 

also observed that z{| tends to over-correct Ky’s variances and model rejection rate at 

smaller sample sizes.  
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Table 11. Comparison of observed ��, variance of observed �� and observed percentage of model rejection with non-

normal data 

 
Small model (expected mean = o = 59; expected variance = 	2o = 118)  

  a=200 a =500 a=1000 a=2500 

  Mean Variance % Reject Mean Variance % Reject Mean Variance % Reject Mean Variance % Reject 

ML: K* 110.12 868.00 92% 127.09 1267.63 95% 136.18 2029.34 98% 144.16 2510.63 100% 

PLSe1: K* 130.35 1787.85 96% 160.10 17717.86 98% 166.81 4735.25 100% 166.63 4802.72 100% 

 Kw 60.17 100.03 5% 59.95 119.28 5% 59.86 87.61 4% 59.00 89.72 2% 

 Ky 90.49 314.63 75% 70.61 156.34 26% 64.63 124.54 13% 61.44 105.99 6% 

 z{|  61.60 68.96 1% 61.63 90.58 5% 60.59 95.94 5% 59.93 95.81 4% 

    

Large model (expected mean = o = 293; expected variance = 	2o = 586)    

  a=200 a =500 a=1000 a=2500 

  Mean Variance % Reject Mean Variance % Reject Mean Variance % Reject Mean Variance % Reject 

ML: K* 560.94 10668.63 100% 611.48 15720.93 100% 658.92 23377.85 100% 737.00 39994.19 100% 

PLSe1: K* 625.77 18029.58 100% 674.40 24405.45 100% 729.28 45989.79 100% 788.88 51212.48 100% 

 Kw 302.23 509.61 7% 297.18 507.83 5% 294.35 555.33 4% 293.12 577.7827 4% 

 Ky N/A* N/A* N/A* 757.73 7290.28 100% 428.37 1501.87 100% 338.57 646.7516 57% 

 z{|  N/A* N/A* N/A* 299.60 180.41 1% 299.21 356.78 3% 297.98 388.7942 3% 

 

Note: The �� statistics include the minimum fit function chi-square statistic (K*�, the Satorra-Bentler scaled chi-square statistic (Kw�, Browne’s 

residual-based statistic (Ky�	and  z{|  which is Yuan and Bentler’s (1997) adjustment to Ky. 

* Note: Browne's residual chi-square Kw and subsequently Ky are not printed at a=200 with large model.  This is because the number of rows and 

columns of the asymptotic covariance matrix for the large model is equal to 
Z�Z�*�� = 351, which is larger than the sample size. 
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CHAPTER 5 

DISCUSSION 

 

5.1. Summation 

 In this dissertation, we have proposed two efficient PLS estimation methods. 

Both estimators take Dijkstra’s (2011) PLS consistent estimator as the starting point. In 

PLSe1, we use a 1-step improvement based on PLSc-estimated factor loadings and 

TSLS-estimated structural parameters. The 1-step improvement leads to a more efficient 

estimator. It also leads to standard error estimates and model fit test statistics. In PLSe2, 

we use PLSc-implied covariance matrix and combine it with Browne’s (1974) GLS 

estimation. We provide a new member to the general GLS family and derive the 

standard errors and model fit test statistics under normality.  

 It is possible to extend PLSe1 to handle data that are non-normally distributed. 

Specifically, we use a sample-based asymptotic covariance matrix and adopt the 

Satorra-Bentler (1994) adjustment to correct normal theory test statistics and standard 

error estimates for the impact of non-normality.  We also examined Browne’s (1984) 

residual based test statistic. While Browne’s statistic may not perform as well in small 

sample situations, we adopt Yuan and Bentler’s (1997) adjustment that improves its 

performance.  
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 The primary motivation for the PLSe estimators comes from the recognition that 

PLS remains a useful approach either for obtaining starting values for more elaborate 

estimation methods, such as ML; and, in practical settings, PLS often provides, 

particularly with Dijkstra’s (2011) adjustment, remarkably good point estimates of 

factor loadings and structural parameters. The major drawbacks of PLS and PLSc were 

the unavailability of convenient standard errors (the bootstrap not withstanding as it 

can be computationally demanding and does not work well under non-normality) and 

the lack of model fit chi-square statistics. We have addressed both deficiencies in the 

current research. We further demonstrated that the approach can be extended to non-

normal situations.  

 We empirically validated the methods using Monte Carlo simulations. We 

generated data under a non-recursive structural equation model with five latent 

variables with either 13 or 26 observed variables. We investigated the performance of 

the proposed estimators relative to the classical ML estimator under a variety of sample 

sizes for both normal data and non-normal data. We showed that under normality, the 

proposed PLSe1 and PLSe2 estimators provide estimates that are almost as good as the 

classical Maximum Likelihood estimator, which is theoretically asymptotically optimal 

under normality. We also demonstrated that the standard error estimates for both of 

these approaches closely correspond to the empirical Monte Carlo variation.  
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We simulated data under non-normality. As expected, Maximum Likelihood 

estimators perform well, but the standard error estimates and model test statistics do 

not perform well under non-normality. Its standard errors are too small relative to 

Monte Carlo variability. Its model fit test statistic rejects the model far too often. With 

non-normal adjustments, PLSe1 performs favorably. While there are some variation in 

terms of the relative merits of Browne’s (1984) residual-based statistic, Yuan and 

Bentler’s (1997) adjustment and Satorra-Bentler’s (1994) scaled chi-square statistic under 

different settings, we note that all three appear to produce asymptotically correct 

inference – with Satorra-Bentler’s (1994) scaled chi-square statistic clearly standing out. 

We did not investigate the performance of PLSe2 under non-normality, because it was 

not derived under non-normal theory. 

 

5.2. Limitations and Future Directions 

We only investigated the conditions where the model fits the population 

covariance structure exactly. In empirical research, the scientist’s model can never be 

identical to true model in the population (MacCallum, 2003; MacCallum & Tucker, 

1991). The performance of PLSc under model error and the subsequent PLSe 

improvements under model error remains a topic for future investigations.  

Theoretically, the PLSe1 estimator we propose is given in eq. (31). However, 

practical implementations of (31) can be done in different ways, so that (31) really 
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describes a class of methods. We accepted the LISREL approach to approximating 

����	, the Hessian matrix and in the use of a possible step size to determine the 1-step 

improved estimates. Research is needed to determine which of three possibilities -- an 

estimated information matrix, a symbolic second derivative matrix, or a 

computationally approximated second derivative matrix -- might improve the behavior 

of (31) in small samples. 

In our simulations, we evaluated PLSe2 only under normal theory conditions for 

which it is well-justified. In principle, it should be possible to “robustify” PLSe2 in the 

same way that ML is typically made robust. We would expect that its point estimator 

should be consistent under non-normality, its standard errors should be correctable via 

the usual sandwich computations, and the test statistic should correctable via Satorra-

Bentler and related corrections. Whether these expectations hold in practice will be the 

focus of followup research. 

In this research, we only investigated one kind of structural equation model. 

Specifically, the model has a fixed set of latent variables where the only variability in 

terms of model complexity stems from the number of observed variables per latent 

variable. In future studies, we could investigate different types of models. For example, 

performance of PLSe under standard correlated factors model may be quite different 

when compared to a higher-order model.  
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The smallest sample size we have examined is 200. This lower limit is partly 

restricted by numerical stability and the proportion of invalid solutions that we 

empirically observed. However, with a different kind of covariance structural model, 

the relative importance of model size and sample size needs to be addressed and 

different conclusions about smallest a for stable estimation might arise.  

The level of non-normality investigated in the current study is somewhat 

contrived. While the observed variables vary in terms of skewness and kurtosis, those 

were held constant across all conditions in the simulation. Whether the advantages of 

PLSc or PLSe estimators remain in other non-normal situations, e.g. when data are 

categorical, is still an open question.  

Finally, we only examined models with a linear structural model, i.e. the model 

is linear in the latent variables. We did not examine polynomials, interactions or 

nonlinear relationships among the latent variables. Dijkstra (2011, 2012) examined 

models with nonlinear and polynomial effects. It is well known in structural equation 

modeling that when latent variables interactions exist (Marsh, Wen & Hau, 2004) 

estimation of structural equation models with nonlinear terms becomes more complex. 

Whether PLSc and the subsequent PLSe improvements continue to hold advantages 

remains to be seen. While the current model is based on an early and classical study 

involving structural equation modeling, it remains a task of model builders to make 

such tools available to researchers analyzing psychological data. The ultimate value of 
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the current approaches can only be validated with time and empirical applications in 

solving substantive psychological problems.  
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