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A PRIMER ON ROBUST REGRESSION

Richard A. Berk

INTRODUCTION

For more than two decades, least Squares estimation has dominatc.
multivariate analyses in the social sciences. Much like cross-tabulatjon
for an earlier generation, analysis of variance, analysis of covariance.
and multiple regression, often extended to multiple equation applic:
tions, have become basic tools of the trade. With the more receul
interest in latent variables, maximum likelihood estimation procedures
also have become popular, but when the normal distribution is invoked.
the least squares criterion s still effectively in place. Indeed, maximum
likelihood estimation for the full set of generalized linear models min
be properly undertaken with iteratively reweighted least squares, Thew
generalized lincar models include not just the conventional linear re
gression, but such popular techniques as logistic regression, probi
analysis, and log-linear techniques for contingency tables (McCullaph
& Nelder, 1983). In short, the vast majority of estimation procedurc-.
currently used in sociology rely on at least the equivalent of a leax
squares “fir.”

[t is widely recognized that estimators associated with the leue
squares principle are especially sensitive to larger residuals. In effect,
the estimates produced take particular account of larger “errors.” If Iy
a “good fit” one means responding to larger residuals, all may be well
However, if by a good fit one means protecting against larger residuuls.

AUTHOR'S NOTE: Thanks g0 toJan De Lecuw for helpful comments on an earlier VETSion il
this chapter and 10 Alice Hoffman far help in constructing the difficult tables,
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fitting by least squares will often give misleading answers. The mean,
for example, rests on a least squares fit and is well known to be
misleading for asymmetric distributions with long tails.

In this chapter, I consider M-estimators for regression analysis,
which, as one kind of robust location estimator, do not depend on the
least squares principle. M-estimators can minimize many different
functions of the residuals, not just the sum of their squared values. As
a result, M-estimators can weight observations in a variety of ways.
Other robust estimators of location share these characteristics, but
M-estimators for robust regression have excellent statistical properties,
may be easily modified for particular problems, and are relatively easy
to compute (Hampel et al., 1986; Li, 1985; Wu, 1985; Chapter 2, this
volume). Whereas by these criteria M-estimators probably dominate the
field,! I will not be discussing the full variety of robust regression
procedures, many of which have considerable merit. Nor will [ tackle
in any depth the more general issues associated with robust statistics.?
Both are well beyond the scope of a single introductory chapter,

In the next section, 1 provide a broad overview of the issues that
motivate the material to follow. In the third section, I briefly consider
the formal definition of M-estimators and summarize how M-estimators
perform. It cannot be overemphasized that my exposition will be no
more than an introduction and that interested readers should consult the
references cited. Then, in the fourth and fifth sections, I undertake some
data analyses showing how robust regression may be applied. The data
in the fifth section are particularly instructive because there are far too
few observations to capitalize on the statistical convenience of asymp-
lotic (i.e., large sample) distributions. Finally, in the last section, I
extract some general lessons.

SOME BACKGROUND

Problems with quadratic objective functions are well documented in
the statistical literature, and cxcellent discussions can now be found in
a few elementary texts (e.g., Mosteller, Fienberg, & Roarke, 1985,
Mosteller & Tukey, 1977).3 Briefly, there are two generic concerns:
diagnosis and cure. Under diagnosis falls a very rich and useful tradition
in statistics, inc]uding the detection of anomalous observations and
determinations of the impact of those observations on one’s results
(Barnett & Lewis, 1978; Belsley, Kuh, & Welch, 1980; Cook &




294 MODERN METHODS OF DATA ANALYSIS

Weisberg, 1982; Chapters 5 and 6, this volume). Whereas these diag-
nostic procedures have been developed from a variety of perspectives
and in reaction to a number of particular problems, many speak effec-
tively to the ways in which quadratic objective functions may b
inappropriate for certain kinds of data.

Under the heading of cure, there have been two related strategies.
On the one hand, there are situations in which observations that arc
clearly anomalous (outliers) result from known measurement errors o
known flaws in the execution of a research design. It is then possiblc
either to correct the troublesome data or to delete them. For example,
perhaps one’s problems derive from the transposition of digits duriny
coding or from the inadvertent aggregation in only some units (e.g..
school districts) being studied. In both cases, if the errors cannot he
corrected, one may choose to discard the offending observations. I will
not consider such options in this chapter, but suffice it to say that onc
must have a convincing explanation for how the errors were introducci
(Barnett & Lewis, 1978; chap. 2; Hampel, Ronchetti, Rousseeuw, &
Stahel, 1986; pp. 56-71; Chapter 6, this volume).

On the other hand, there will often be times when it is not clear which
observations are anomalous. They may not appear to be dramatically
different from the rest of the data, and/or they are not readily explaincd
by any known error in measurement or data collection. Indeed, it is all
too casy to forget that improbable events occur; what looks to be
strange data point may be nothing more than the luck of the draw. 1o
further complicate matters, deviant observations may actually carr
vital information, perhaps as “ideal” types of the units being studici
In short, as an alternative to fixing the data or discarding it, one necd-
statistical procedures that in some sense “accommodate” it (Barnett &
Lewis, 1978).

More positively, one may decide on substantive grounds that the
quadratic objective function is inappropriate. For example, suppose tha
one is regressing income on education. A least squares fit implies thu
individuals with unusually high or low incomes will have a dispropor
tionate impact on the estimated regression parameters, especially il
such individuals are also unusually high or low in education. Thus
graduate students (presumably high in education and low in incomc)
will have a far larger relative impact on the regression fit than, say.
assembly line workers or secretaries. Note that more is involved than
potential atypicality per se; the impact of any atypicality is magnific.
by the squaring process. Clearly, it would be useful to have estimation
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procedures that could provide alternatives to the quadratic objective
function. M-estimators are one viable option.

M-ESTIMATORS OF LOCATION

Drawing on Li (1985, p. 291), the M-Estimator for the vector B is
based on the objective function p(z) and the data (Y1, Xy, . .., ¥, X,).
It is the value of B, denoted B,, that minimizes

n n J
2 Pi=xBm) = X o= 3 x| (7.1
i=1 i=1 j=1

Equation 7.1 is a generalization of the conventional least squares
objective function,® with p(s) left unspecified. If the residuals are
squared (i.e., p(f) = %), one has, as one M-estimator, ordinary least
squares. If the absolute value is taken (i.e., p(¢) = |1]), one has the least
absolute residual estimator. These and other options specify the partic-
tlar M-estimator being used, to which we will turn shortly.

It is often instructive to consider not just p(r), but its derivative
p'(e) = (). If the goal is to minimize equation 7.1, taking the derivative
of equation 7.1 with respect to B, setting the result equal to zero, and
solving lcads to the desired result. Indeed, in the quadratic case, the
intermediate result is the usual normal equations. Thus (s) figures
centrally in the production of actual estimates, both in a generalization
of the normal equations and as w(r), a function of y(r) and ¢, used as a
weight in iteratively reweighted least squares. More will be said about
cstimation later.

In addition, the properties of M-estimators are often characterized in
part through y(¢). For example, y(¢) figures in formal treatments of the
influence function (e.g., Li, 1985, pp. 298-299), which will be addressed
bricfly below. In this introductory chapter, however, such uses of (1)
are not essential and are discussed only in passing. Most of the central
ideas can be addressed through the objective function and a few numer-
ical illustrations.

Figure 7.1 plots the ordinary least squares (OLS) objective function
against the values of residuals, called more generally deviation scores.’
As the quadratic form implies, the weight given to deviation scores
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increases at an increasing rate as the absolute value of the deviation
scores increase.

Figure 7.2 shows the objective function when, instead of squaring
the deviation scores, one takes their absolute values. The weights now
increase linearly so that the larger deviation scores are given no special
importance. While in Figure 7.1 the weights for deviation scores around
4 in absolute value were approaching weights of 6, the weights for those
same scores in Figure 7.2 are a little over 3. Using the absolute valuc
as the objective function leads to least absolute residual (LAR) regres
sion and is another type of M-estimator.f

Figure 7.3 represents a compromise between least squares and lcast
absolute residual regression. Up to the predetermined absolute valuc
of a deviation score (e.g., |1.5]), the objective function is OLS. Beyond
that value, the objective function is LAR. This is the Huber M-estimator.”

While LAR regression gives larger deviation scores less weight than
ordinary least squares regression, there will be circumstances in which
larger deviation scores will stem from suspect observations, and when,
therefore, these observations need to be discounted. One discountiny,
method can be seen in Figure 7.4. The bi-square is an M-estimator that
weights deviation scores steeply up to some predetermined deviation
score value (like the Huber M-estimator just described), at which point
weights become constant. That is, beyond that predetermined deviation
score value, larger scores are given the same weight as smaller scores

Figure 7.5 shows a less “severe” discounting M-estimator, the Bell
M-cstimator. Like the bi-square, at some point increases in residual
values do not translate into commensurate increases in weights, but [ull
discounting to constant weights is only approached as a limit. Morc
over, the shift to discounting occurs gradually,s

Statistical Performance Criteria

It should be clear from Figures 7.1 through 7.5 that M-estimators
provide a rich menu of objective functions. But how can one choosc
between them? To begin, there is a set of statistical criteria that basically
define how a “good” robust estimator should perform.”

First, it is clearly desirable for M-estimators to have the usual “largc
sample” properties of maximum likelihood estimators: consistency and
asymptotic normality.m The OLS, LAR, and Huber estimators mee!
these criteria. The bi-square and Bell estimators will as well, as long as
the distribution to which they are applied is strongly unimodal, If the
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Figure 7.1 OLS objective function.

distribution is not strongly unimodal, the bi-square and Bell estimators
may or may not be consistent and asymptotically normal, depending on
technical considerations beyond the scope of this chapter. However, a
good rule of thumb seems to be that the predetermined constant required
by these estimators be kept relatively large (Wu, 1985). What this means
is that the strong “discounting” of larger deviation scores does not begin
until the larger deviations become quite large. Exactly what defines
large is a tuning constant that may be manipulated (e.g., deviations
larger than two in absolute value).

At the same time, however, it is very easy to make too much of good
asymptotic properties. Small- to modest-sized data sets are common in
the social sciences (e.g., N < 200), especially for large observational
units such as organizations, cities, and countries. In samples of this size,
it is typically very difficult to make any general statements about the



298 MODERN METHODS OF DATA ANALYSIS

5.0

4.0

WEIGHT
3.0

2.0

1.0

= ‘ '—2:.1 I —C:'.? O.I'}' 241 Gt
DEVIATION SCORE

0.0

Figure 7.2 LAR objective function.

performance of M-estimators without specific assumptions about (he
distribution of the disturbance term. In short, asymptotic properties arc
often irrelevant.

Second, good M-estimators should be “resistant.” Basically, a resis
tant estimator is relatively unaffected by a few rather deviant obser
vations or many slightly deviant observations. Drawing heavily on
Mosteller and Tukey (1977, pp. 350-352), consider the following 14
observations:

-6-5-4-3-2-1-5.5123456.
Imagine another observation X that can be “moved” through the data,

beginning with large negative numbers and ending with large positivc
numbers. For each increment in X, one calculates a summary measure
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Figure 7.3 Huber objective function.

of location, so that it is possible to plot the measure against the changing
value of X. If the summary measure is the mean, its value will increase
in a linear fashion with increases in X. If the summary measure is the
median, its value will not change until the increasing value of X exceeds
-.3, will change linearly between -.5 and .5, and will not change for
increased values of X larger than .5. In both cases, the plot of the
summary measure against X conveys the degree of resistance. In both
cases, one is, in effect, studying an influence curve. Figure 7.6 shows
these influence curves for the mean and median.

Because the influence curve of the mean is unbounded, the mean is
formally said to lack resistance. That is, the mean can be shifted any
arbitrary amount with an arbitrarily large or arbitrarily small value of
X. This implies that the mean is very vulnerable to anomalies in the data.
The median is also formally said to lack resistance because of the sharp
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Figure 7.4 Bi-square objective function.

shift around the middle value(s) of the distribution. The point in botl
cases is that the summary statistic is rather easily bounced around when
the data do not cooperate. However, because the shift in the mediun 1~
bounded, the median is usually treated as if it were resistant.

A bit more formally, the influence curve actually shows how mucl
the value of a particular estimator changes in response to infinitesim:|
changes in the underlying distribution. That is, one is able to examinc
how the estimate is altered by arbitrarily small changes in distribution
Mathematical statisticians find influence curves extremely useful, bu
for our purposes the overall message is that LAR, Huber, bi-square, il
Bell M-estimators all considered resistant.!!

Third, good M-estimators should have a high breakdown point. Th
idea of a breakdown point is closely related to the properties of influ
ence curves. Suppose that some number of observations from a sample
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Figure 7.5 Bell objective function.

are arbitrarily replaced. Or suppose that to the given sample, some
number of new observations is arbitrarily added. The breakdown point
of an estimator is the smallest proportion of the sample that may be
arbitrarily replaced or added, which may result in the estimate becom-
ing unbounded (i.e., going off “to infinity”). For example, as Figure 7.6
suggests, the mean may be made arbitrarily large by adding a single,
sufficiently large observation. In contrast, the median can be made to
break down if half of the data is shifted. In practical terms, estimators
with high breakdown points do not change dramatically in the face of
large disparities between the assumed and actual distribution, including
qualitative errors in the shape assumed. For M-estimators of location,
all but the OLS estimator do quite well; they have relatively high
breakdown points.
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Figure 7.6 Influence curves.

The story is somewhat more complicated for regression M-estima-
tors. The key idea is that each observation must be evaluated with
respect to where it lies in the distribution of the response (dependent)
variable and the joint distribution of the explanatory (independent)
variables. Observations that are outliers on the response variable, and
with respect to the joint distribution of the explanatory variables, are
particularly problematic.

Consider, for example, the usual bivariate OLS regression. The
regression line is fit in two-dimensional space, and outliers are distin-
guished by their location with respect to the bulk of the bivariate
scatterplot. Regression M-estimators can discount the impact of outliers
in the y-direction, but do not address outliers in the x-direction. In an
important sense, only half of the problem is solved, even in principle.
Thus regression M-estimators have low breakdown points (Roussecuw
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& Leroy, 1987, pp. 68-70). Estimators that discount outliers in both the
y-direction and x-direction exist, but there are important trade-offs,
which some feel make them problematic. There seems to be, for in-
stance, a nearly inevitable trade-off between a high breakdown point
and high efficiency. In any case, these alternatives to M-estimators are
beyond the scope of this chapter.'?

Fourth, good M-estimators are relatively efficient across a range of
likely distributions. Recall that efficiency refers to the variance of an
estimator’s sampling distribution. Also recall that small (or finite)
sample efficiency is determined by how an estimator performs in a
sample of a particular (typically modest) size, while asymptotic effi-
ciency is determined by how an estimator pcrforms in a sample that
becomes arbitrarily large. Under certain circumstances, optimal esti-
mators may achieve the smallest standard error that is theoretically
possible,

Unfortunately, evaluating the efficiency of M-estimators is compli-
cated. To begin, optimal efficiency can only be achieved, even in theory,
with respect to a specific distribution, and an estimator that may be
optimal for one distribution may perform poorly for others (Wu, 1985,
p- 350). As a fallback position, therefore, one typically focuses on
relative efficiency, which is a standardized ratio of sampling distribu-
tion variances. Moreover, since it is rare for the data’s distribution to
be known, it makes sense to pick an M-estimator whose relative effi-
ciency (compared to other M-estimators) is high across a range of
possible distributions. In the end, however, the only general conclusion
secms to be that the least squares estimator performs worst. That is, even
with modest deviations from the normal distribution, relative efficiency
falls off dramatically. Among the other M-estimators, overall conclu-
sions depend on the particular set of distributions being considered.!?

Finally, good M-cstimators should be practical: relatively easy to
compute, useful for a variety of data problems, and comprehensible to
the mere mortals who will have to use them. All M-estimators for robust
regression are reasonably practical.

To summarize, a review of statistical criteria for robust regression is
primarily an exercise in OLS bashing. Selection among the remaining
M-estimators seems too often to be data specific and dependent on
judgment calls about the relative importance of different performance
characteristics. In particular, there is often a trade-off between the
breakdown point and efficiency. Moreover, much of what we know
about the performance of M-estimators depends on asymptotic proper-
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ties, which may be misleading for samples of the size often available to
social scientists. An important implication, to which I shall return, is
that one may well benefit from trying a variety of approaches and
proceeding in a more inductive manner than is commonly recommended
(see, for example, Leamer, 1983).

Substantive Criteria

While it may be difficult to provide general guidance on the choice
of an M-estimator from statistical performance criteria alone, there will
often be times when choices between different M-estimators can be made
on substantive grounds. Recall the earlier example in which income was
regressed on education, and the relative importance of data on graduate
students was considercd. Depending on how one chooses to weight the
deviation scores, the regression line estimated can differ substantially.
If larger deviation scores are discounted relative to smaller deviation
scores, the regression line will more closely summarize the experience
of more typical individuals. That is, information from more typical
individuals is treated as more important than information from less
typical individuals.

If one has reason to suspect that atypicality on the average results
from some anomaly, the discounting may make sense. Alternatively,
there may be no reason to differentially weight atypical observations:
indeed, there may be circumstances when they should be given extr:
weight. For example, perhaps observations near the center of the scal-
terplot represent cases in which the available measures failed to record
more extreme values. Thus low income individuals may underreporl
their income for fear of losing eligibility for various kinds of transfcr
payments; or smaller municipalities with less professional public scr-
vants may routinely fail to record incidents, such as reported crimes,
that are later aggregated as the official statistics for the locale. The point
is that there will be situations in which, on substantive grounds, typical
observations may be less credible than atypical ones. Then, the typicul
observations should be downweighted, or at the very least, not given
extra weight. In short, before proceeding it is vital to consider objective
functions such as those shown in Figures 7.1-7.5 and decide which
makes the most substantive sense.!*
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Computation

Regression M-estimators are perhaps most easily computed with any
software that contains procedures for iteratively reweighted least
squares. SAS, BMDP, GAUSS, and PC-1SPare examples. ! One begins
with conventional OLS estimates and then weights the data (the re-
sponse variable, the explanatory variables, and the vector of 1’s for the
intercept) by a function of residuals. The particular function used
depends on the M-estimator being employed. OLS is then applied to the
weighted data. Again, residuals are calculated, new weights are con-
structed, and the data are reweighted. OLS is then applied a third time.
The OLS estimation and the reweighting is continued until the estimates
converge. Table 7.1, reproduced from Li (1985, p. 293), shows for
popular M-estimators the objective function p(t), the derivative of the
objective function y(¢), and the weighting function w(r).

With the exception of OLS and LAR regression, a scale parameter
(much like 0% in OLS regression) also needs to be estimated along with
the usual regression parameters. That is, a scale parameter is required
as part of the iteration process; all of the residuals are divided by (i.e.,
scaled by) the scale parameter. This presents no special difficulties,
although there is some debate about what scale parameter estimator
should be used. Details can be found in Li (1985, pp. 300-310).

Unfortunately, the issues are far more complicated when one turns
to statistical inference. First, just as in the usual formulas for OLS
regression, a scale parameter is required for calculation of the standard
crrors. However, a key motivation for robust regression is concern
about outliers, and that same motivation applies to estimates of scale.
Hence, one necds a sensible robust scale estimator, and there are many
possible candidates. For example, a linear objective function leads to
the mean absolute deviation (MAD) scale estimator. Yet there seems to
be no consensus about which is best, and the difficulties caused by a
number of unresolved technical matters. Second, statistical inference
requires that the sampling distribution of the estimates be known. For
large samples one can rely on asymptotic normality, but for small
samples the sampling distribution is almost certainly not known and
may well be a very long way from normal, These and other difficullies
make statistical inference for M-estimators problematic (Li, 1985, pp.
300-301; Wu, 1985, Pp. 365-363, 367).

Perhaps the best approach, therefore, relies on resampling methods
such as the bootstrap (see, in particular, Chapter 8, this volume). The
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Table 7.1 M-Estimators for Regression

Estimator p(1) Y(t) wlt) Range of |
oLs %rz ‘ | 1<
LAR I sgr(1) “ﬂlr ‘ I <=

L { 1 ] =k
Huber® 3

ki -1/21 k sgnlt) ki >k

e A1 - cost/A)] Asin(t/A)  Afltsin(t/A) ] =nA
Andrews 942 0 0 I >
L B’ i :

Biweight? o W=0=(/BYY] t[1-(/BPF N -(/BYP llsB
(bi-square) 5

% 0 0 -8

SOURCE: David C. Hoaglin, Frederick Mosteller, and John Tukey (Eds.), Fxploring Data Tables,
Trends. and Shapes. Copyright @ 1985, John Wiley & Sons. Reprinted by permission of John Wiley
& Sons, Inc,

NOTES: a. The illustrative example p-functions and y-functions use k = 1 for the Huber, 4 =1/ at for
the Andrews and 8 = 1 for the biweight.

basic idea of the bootstrap is to treat the data sct as a population.
Certainly, if the data were sampled properly by probability procedures,
the data set will well represent the population, within sampling error.
Then, one takes bootstrap samples from the data set by selecting single
cases at random with replacement. (Each bootstrap sample is the same
size as the data set.) From bootstrap sample to bootstrap sample,
parameter estimates will vary. In effect, the sampling distribution of the
estimator is being empirically generated. Statistical inference then
follows naturally. In the application to follow in the fifth section,
bootstrapping is employed.

AN ILLUSTRATION

Before launching into a real life application with all of its complex-
ities and uncertainties, a far more simple illustration may perhaps prove
useful. In an article on Adelphe Quetcelet, Stone (1988) included data
on the number of births and deaths by time of day for a particular
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Table 7.2 Births and Deaths in Brussels by the Hour

Hour Births Deaths Hour Births Deaths
1 142 228 13 94 257
2 173 253 14 97 233
3 130 230 15 88 217
4 122 242 16 9 237
5 120 231 17 104 281
6 111 213 18 100 233
7 112 217 19 121 204
8 99 248 20 97 194
g 88 207 21 133 199

10 130 228 22 115 220
11 137 in 23 224 243
12 48 110 24 4 14

hospital in Brussels. The number of births by hour covers a 30-year
period in the nineteenth century, whereas the number of deaths dates
from 1811 to 1822. Table 7.2 shows these data.

Figure 7.7 (constructed with the statistical package STATA) shows
the scatterplot for deaths (y) and births (x), along with the univariate
boxplot for each, Twenty-two of the observations are clustered and
show little association. Two observations (for noon and midnight) are
dramatically smaller in both the y-direction and x-direction. With these
two included, there is obviously a positive association in the data. It is
difficult to know what to make of the two apparent outliers without
being a lot more familiar with how the data were recorded and collected.
However, since there is no apparent biological reason for the outliers,
hospital practice or data collection are implicated.

Table 7.3 shows four regression estimates for the bivariate relation-
ship shown in Figure 7.7. The first is the ordinary least squares estimate.
Roughly speaking, there is a one-to-one increase of deaths with births.
The intercept is approximately 100. Both coefficients are statistically
significant at the (two-tailed) .05 level for a null hypothesis of zero.
However, given the small sample and real questions about the distur-
bance distribution, both tests are probably not very useful. Next (mov-
ing to the right) are shown the results for least absolute residual
regression. The estimated relationship is, in effect, rotated clockwise:
The slope is cut by about 50% and the intercept is increased by about
50%. No standard errors are presented because there is no really con-
venient way of getting them.'® Next are shown the Huber regression
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results and little changes. However, standard errors are provided, and
both coefficients are statistically significant, if one assumes that the
disturbance distribution is normal. In short, both robust regression
M-estimators tell a rather different story compared to ordinary least
squares. '

Recall, however, that regression M-estimators only address outliers
in the y-direction. The final column in Table 7.3 shows the results for
least median squares regression (calculated with PROGRESS by
Rousseeuw & Leroy). Least median squares regression (Rousseeuw &
Leroy, 1987) fits the regression line (hyperplane) by minimizing the
median of the squared residuals rather than the sum of the squared
residuals; that is, the criterion is a robust measure of location rather than
a very nonrobust sum. While the details are beyond the scope of this
chapter, outliers in both the y-direction and x-direction are taken into
account. Note that the estimated relationship is now rotated further in
a clockwise direction. Compared to the robust M-estimators, the slope
is decreased by about half, and the intercept is increased by about a
third. Indeed, there now appear to be virtually no relationships between
births and deaths. No standard errors are available. Nevertheless, the
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Table 7.3 Quetelet Birth-Death Data: Results for Three Regression
M-Estimators and LMS Regression

oLs LAR HUBRER LMS
CONSTANT 1149 159.4 169.9 195.8
(26.31) b (18.5) .
COEFFICIENT 92 54 47 .26
(:22) . (.16) .

NOTE: *Standard error not compuled.

vulnerability of regression M-estimators to outliers in the x-direction is
apparent.

In summary, the illustration makes clear that regression M-estima-
tors can make a difference. However, their small sample properties are
typically unknown in just those instances when they are most likely to
be needed. In addition, outliers in the x-direction are ignored. We turn
now to a far more realistic application.

AN APPLICATION

While robust regression represents a particular set of estimation
procedures, equally important is the underlying data analysis perspec-
tive. At each step in the process, from research design to reporting
results, one proceeds as if Murphy’s Law applies. This means that as
many assumptions as possible are made problematic, and, where possi-
ble, cfforts are made to protect the analysis. This also means being
explicit and conservative about what may be learned. As an illustration,
[ present below an evaluation of an effort in Alameda County, Califor-
nia, to more effectively prosecute narcotics cases (Greenspan, Berk,
Feeley, & Skolnick, 1988).

The Program

On January 10, 1985, Oakland’s Assemblyman Elihu Harris intro-
duced legislation in the State Assembly that was intended to coordinate
and enhance law enforcement efforts to control drug use in Alameda
County. Particular attention was directed toward the courts. The bill
assumed that more effective and efficient prosecution of narcotics cases
could lead to a reduction in drug crimes and drug-related crimes. A
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number of interventions were proposed, including an oversight “Tar-
geted Urban Crime Narcotics Task Force” and additional financial
support for the county’s courts, Prosecutor’s office, Public Defender’s
office, probation department, and crime laboratory. The bill was ap-
proved in July of 1985, and program funding became available on
October 1, 1985,

For the present purpose, I will focus on whether the legislation made
the sanctioning process more effective, and on a particular outcome
measure: the number of offenders incarcerated. I will not address the
ultimate impact of the program on crime or other kinds of outcomes
such as efficiency (e.g., how fast cases were processed). Readers inter-
ested in the substantive issues should consult the evaluation completed
by Greenspan and her colleagues (1988).

Under the Alameda Program, there were essentially two routes by
which drug offenders could be incarcerated. Offenders could be sen-
tenced by the court after a conviction (or pleading) or be sent to prison
or jail for having violated probation. For the first route, the state
legislation supported the use of a team approach to prosecution, in
which all drug-related offenses were handled by a specialized group of
Deputy District Attorneys, under the direction of a coordinator. The
team was given sufficient staff to try at least two cases simultaneously.

For the second route, an effort was made to orchestrate better the
probation revocation process so that drug offenders who violated the
conditions of their probation would be swiftly incarcerated. Offenders
found violating a condition of their probation were required either to
serve the original sentence imposed or a new sentence if the original
sentence had been suspended. One key advantage of incarceration
through probation revocation was that the standards of proof are lower
than in court trials. This meant that it was often more effective to simply
“violate” an offender than to go through the trouble of trying thc
offender for a new crime. A single member of the drug prosecution team
was made responsible for revocation process.

Despite the face validity of the program, it was not at all clear that
it would work. For example, the greater use of probation revacation
might divert “good” drug cases away from the usual channels. Thus,
while revocations might increase, convictions might decline. Alterna-
tively, the District Attorney's office might have to use the additional
resources to aggressively pursue a small number of difficult cases, with
the bulk of the caseload unaffected. Anticipating such questions, the
legislation required a program evaluation.
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The Research Design

The legislative requirement for an evaluation was not matched by a
great deal of insight into what a sound evaluation would entail. For a
variety of reasons, therefore, the strongest design that could be imple-
mented was an interrupted time series from official statistics. In brief,
data on cases processed by the county’s court were available from a
management information system (called CORPUS) used to monitor the
processing of cases forwarded to the District Attorney’s office. These
data were examined and from tapes provided by the county, a longitu-
dinal file was constructed organizing key outcome variables by quarter.
There were 12 quarters of data, with the intervention falling in the
eighth quarter. 1 will focus on the number of drug cases sanctioned over
those 12 quarters.

Figure 7.8 shows with a broken line and open squares the time series
for the number of drug cases in which the offender was sanctioned (i.e.,
sent to prison or jail). The number of drug offenders sanctioned by
quarter ranges from about 70 to about 350, but there is clearly an upward
trend, beginning before the eighth quarter. Moreover, since the steps
from arrest to sentence may take months, cases sanctioned in the eighth
quarter were largely processed before the program began; that is,
program effects on sanctioning should appear after the eighth quarter.
And in this case, the trend begins in about the fourth quarter, especially
if the downward spike in the eighth is considered aberrant.

Note how one could have been misled by a pretest/posttest design.
A comparison between the number of cases sanctioned in the seventh
quarter, for example, and the tenth quarter would have revealed a
dramatic gain of about 100 cases, but would have neglected the positive
trend beginning well before the program was launched. This illustrates
simply an important principle in a robust approach: One can reduce
dramatically the difficulties faced during data analysis by anticipating
possible difficultics in one’s research design.

In this instance, the design can be further strengthened by adding a
comparison group not subject to the program. Figure 7.8, therefore, also
shows a time series for the number of theft cases sanctioned (in which
no drug offenses were involved). As with the drug cases, there is a
general upward trend, although it seems to begin a bit later.!” This
supports the speculation that there may be no distinct program impact
because the increase that both series share must be driven by common
or correlated causes.
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Figure 7.8 Cases sanctioned.

The search for common or correlated causes leads directly to
concern with the number of drug and theft cases entering the system;
more cases coming in the front door must generate more cases going
out the back door. This leads to standardizing the number of sanctioned
by the number of arrests. That is, one may control for the number of
cases entering the system by simply calculating the proportion of arrests
for which sanctions were applied.

Figure 7.9 plots, therefore, the proportion of final dispositions in
which sanctions were imposed. The proportions range from a low of
about .11 to a high of about .40, Thus, for example, a high of about 40%
of the theft dispositions involved incarceration. Perhaps the major
conclusion from Figure 7.9 is that the drug series seems to be gaining
on the theft series,
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Figure 7.9 Cases sanctioned.

Unfortunately, it is still difficult to disentangle the long-term relative
gains for the drug series, beginning in the sixth quarter, from gains after
the eighth quarter that may be attributable to the program. Inferences
are made especially difficult because of the possible outlier in the eighth
quarter for the drug time series. Alternatively, the eighth quarter may
be reasonably atypical of quarter-to-quarter variation, and the propor-
tions for the sixth and seventh quarters may be atypical. In short, there
seems to be unusual variation in the drug time series in the middle of
the observational period, but its causes and consequences are unclear.
In any case, the importance of visual displays should be apparent; there
is no substitute for a careful examination of one’s data before statistical
analysis is begun,
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Statistical Analysis

As a way of capitalizing on the information produced by the research
design, an outcome variable was defined as the difference between the
proportions of drug and theft cases sanctioned. Using proportions stan-
dardized for the number of cases overall reaching final disposition
controls for the number of cases entering the system, whereas differ-
encing the two time series controls for common or correlated causes.!®
From the perspective of robust data analysis, differencing has the asset
of requiring that no parameters be estimated.

As for any time series, there is also reason to be at least suspicious
about autocorrelation within the differenced time series. This suggests
the need for some kind of autoregressive formulation. Were there more
than a suspicion, one might choose to longitudinally difference the
(already cross-sectionally differenced) series. However, since “over-
differencing” can lead to biases in the analysis of time series data, it is
probably more sensible to allow the amount of difference to be an
empirical question.

Figure 7.10 shows with a broken line the difference between the
standardized drug and theft time series. Using that differenced series as
the response (dependent) variable, an OLS model was fitted using
one-period lagged values of the response variable and a dummy variable
for the treatment, coded 0 through the eighth quarter and 1 thereafter.
The lagged response variable was introduced to control for any first
order serial correlation, and the dummy variable was introduced to
estimate any treatment effects. The solid line in Figure 7.10 represents
the predicted values from the OLS regression.

Figure 7.10 suggests that there was a treatment effect, and, from the
upper panel in Table 7.4, we see that although the autoregressive
component is not important, the estimated treatment impact is. The drug
series gains 9% on the theft series after the program is introduced
(beginning in the ninth quarter). Looking back at Figure 7.9, one can
see thal a 9% increment is nontrivial, given base sanctioning rates
between 11% and 40%. Put another way, about 20% of the pretest final
dispositions in drug cases include incarceration. The OLS estimates of
the program’s effect suggest an increase in that figure to about 30%, or
about a 50% relative improvement. However, under the ¢ distribution
(given the small sample size), the effect is not statistically significant
at the .05 level for cither a one-tailed or a two-tailed test.
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Figure 7.10 Cases sanctioned.

There are, however, ample grounds for being uneasy with these
results. First, because of the small sample, conventional significance
tests require that the disturbance term have a normal distribution. This
is formally impossible since the response variable is the difference
between two proportions. Indeed, there are not even grounds for assum-
ing that the disturbance term has a symmetric distribution, in part
because the drug series has several observations close to zero.

Second, there is no reason to assume that the events making up each
proportion are independent. Indeed, given the bureaucratic environ-
ment in which the cases were processed, the events are probably clus-
tered by spells. That is, there is a spell of great concern about crowded
court dockets, followed by a return to business as usual. During a spell
of concern, cases are processed faster than at other times, implying
serial correlation between the length of time between events and,
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Table 7.4 Regression Analysis for the Impact of the Program

Ordinary Least Squares Regression

Variable Coefficient Standard Error T Value
Intercept -0.14 0.05 -2.82
Program impact 0.09 0.05 1.79
Lagged oulcome -0.03 0.29 -0.09

Bootstrapped Least Absolute Residual Regression

Variable Coefficient Standard Error T Value
Intercept -0.21 0.05 -4.33
Program impact 0.16 0.06 2.68
Lagped outcome -0.30 0.27 -1.10

therefore, the events themselves. While the lagged response variable
may well “soak up” any correlations between the proportions over time,
any correlation among the events making up the proportions remains
potential problem, which undermines conventional statistical inference.

Third, the very large residuals for quarters six, seven, and eight arc
grounds for concern. Perhaps the results are being inappropriately
dominated by these three quarters, Within the pretest period at least, the
data for quarters six and seven look particularly aberrant. In short, therc
is good reason to worry about the quadratic objective function and a
rationale for trying a robust alternative.

A priori, there scems to be no reason for significantly downweighting
the larger residuals relative to the smaller ones. That is, there is no
reason to suspect that the three largest residuals result from a measurc-
ment or design error. This suggests ruling out any of the redescending
M-estimators in favor of least absolute residual regression. Recall that
the objective function for least absolute residual regression weights the
residuals in a linear fashion.

Recall that LAR regression can be easily undertaken with iteratively
reweighted least squares (Li, 1985, pp. 305-310). Basically, before each
least squares “pass,” all of the data for each case (including the column
of 1’s associated with the intercept) are multiplied by the square root of
the inverse of the absolute value of the residual for that case.!® Unfor-
tunately, it is not clear how best to calculate the standard errors directly
(Li, 1985, pp. 300-301), and for these data, the small sample precludes

A Primer on Robust Regression 317

any reliance on a normal asymptotic distribution for the parameter
estimates (Amemiya, 1985, p- 75).

In response, the entire procedure was bootstrapped using resampling
techniques appropriate for autoregressive time series models (Efron &
Tibshirani, 1986, p. 65), but applied to M-estimators (Efron, 1982,
pp. 35-36). Bootstrapping has a number of strengths, including the
ability to represent all sources of instability, not just those addressed by
conventional significance tests. However, it is necessary to assume that
one’s sample is truly representative of some theoretical population
because, inavery real sense, the sample is being treated as a population.
In the case of historical data such as these, the best that one can typically
do is assert that if the underlying historical process in principle pro-
duces a population of realizations with the same properties as those
observed in the given sample, the bootstrapped sampling distribution is
appropriate, Although this may seem like a long stretch, the same
argument basically applies to conventional statistical inference used on
historical data. For both, the population is a hypothetical set of realiza-
tions from a given historical process.

Table 7.4 reports in the lower panel the LAR regression results based
on 1,000 bootstrapped samples (estimated using GAUSS). Note that
while the standard errors are basically unchanged, the treatment effect
has approximately doubled. This doubling translates into a nearly 100%
increase in the proportion of cases sanctioned. Note also that the ¢ value
is now well over 2,00, However, while the autoregressive cocfficient
has increased substantially, it is still not much larger than its standard
eITOr.

Taking the point values of all of the regression coefficients seriously
for the moment, Figure 7.11 shows the goodness of fit. Clearly, the
impact of the residuals for sixth and seventh quarters has been signifi-
cantly reduced under the linear objective function. The result is lower
estimates of the pretest predicted values leading to a larger estimated
increment during the posttest period,

Figure 7.12 shows the bootstrapped sampling distribution for the
treatment coefficient, based on 1,000 bootstrap samples. The distribu-
tion shows some skewing to the right, which, as noted earlier, is not
surprising given the distributions of the theft and drug proportions; the
right tail and left shoulder are heavy. Yet, because the distribution falls
off more quickly on the high end, the mean, mode, and median are about
the same (about .16). Ninety-five percent of the estimates fall between
.03 and .33, which defines the 95% confidence interval, and 99.2% of
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Figure 7.11 Cases sanctioned.

the estimates are above 0. Clearly, it is very unlikely that there is no
posttest increment,

The story could have been different under conventional inference. If

the ¢ distribution had been applied (given the small sample size), the
95% confidence interval would have been between -.02 and .30. Under
a two-tailed test, therefore, one would have failed to reject at the .05
level the null hypothesis of no treatment effect. However, the treatment
cffect would have been statistically significant at the .05 level for a
one-tailed test.20

To summarize, there was ample reason to be suspicious about the
OLS estimates. Because of the quadratic objective function, large
residuals immediately before the intervention could have been distort-
ing the results. LAR regression, coupled with bootstrapping, led to more
plausible estimates of the treatment effect and to the conclusion that
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sanctioning increased after the program was initiated. At the same time,
attribution of cause is always fraught with risk, and it was only after
considering a range of other possible explanations for the posttest

increase that policy recommendations were made (Greenspan et al.,
1988).

CONCLUSIONS

Choosing a proper regression estimator requires that a pair of com-
plementary judgments be made: What objective function makes sub-
stantive sense, and what estimator(s) has the best statistical properties?
When the quadratic objective function makes substantive sense and
when the normal distribution is closely approximated by the observed
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disturbance distribution, one has, regardless of sample size, the best of
all possible worlds: convenient least squares estimators with excellent
statistical properties that match the questions being asked. With large
samples, one is able, as a fallback, to capitalize on a number of handy
asymptotic properties, even if the observed disturbance distribution is
a long way from normal.

However, estimators relying on the quadratic form are fragile, and
one may be seriously misled when other objective functions are more
appropriate. Moreover, in the presence of outliers, lcast squares regres-
sion may lead one astray. Finally, least squares estimators may be well
short of optimal, especially in small samples, if the observed distur-
bance distribution is not normal.

Given the widespread availability of cheap computing and the rela-
tive ease of computing M-estimators, M-estimators should be applied,
atleast as a supplement to OLS, whenever there is any doubt about OLS.
When M-estimators and OLS (which, technically, is also an M-estima-
tor) produce the same substantive story, all may be well. When they
differ, the data must be carefully examined for these reasons. It should
then be possible to make an informed decision about which set of results
is most plausible,

More generally, there is an enormous gap between what sociologists
know and what sociologists need to know to use properly the rich set
of tools statisticians have provided. To meet the assumptions required
forinmrucﬁvestaﬁsﬁcalanalyses,sochﬂogiﬂsnnuslhaveartasonably
accurate understanding of the substantive phenomena in question and
have access to data sets unsullied by significant measurement and
design errors. In other words, the data need to be an accurate reflection
of some underlying social process whose general properties are known.
Stated in these bald terms, it should be apparent that, in principle,
almost all quantitative research in sociology is suspect and that statis-
tical analyses of sociological data should be designed from a robust
perspective. In practice, this means being very cautious about what may
be learned from a given data set and regularly applying techniques that
minimize the risk of being seriously misled. Routine application of a
robust perspective could dramatically improve quantitative research in
sociology.
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NOTES

1. There are, however, important differences of opinion about the relalive merits of
robust cstimators, and as further developments oceur, the comparative advantages of
different eslimators may change. For example, Koenker and Portnoy (1987) have recently
proposed a very interesting L-estimator for linear regression that asymptotically is the
same as the Huber M-estimator (see below), but, unlike the Huber M-estimator, is scale
invariant. For an interesting sct of exchanges on such issues, see Draper (1987) and the
comments thal follow.

2. Fortunately, excellent discussions can be easily found elsewhere (e.g., Hampel
et al., 1986; Li, 1986; Wu, 1985). Especially interesting are “generalized” M-estimators
(Hampel et al., 1986, chap. 6; Li, 1985; Welsch, 1980) and certain S-estimators
(Rousseeuw & Leroy, 1987) that address the impact of deviant values among one’s
explanatory variables as well as the impact of deviant residuals. T will have more to say
about this issue below.

3. Since the “objective” of least squares procedures is to minimize the sum of the
squared residuals, the function that does this is called an objective function.

4. It is also easy to show that M-estimators are a slight generalization of conven-
lional maximum likelihood estimators (Hampel, 1986, p. 36). The M in M-estimator refers
lo its maximum likelihood roots.

3. These were drawn from a rectangular distribution, but any sel of values covering
a reasonable range would suffice. The distribution of the input to the objective function
is irrelevant to the shape of ils output.

6. The mean is the location measure that minimizes the sum of the squared deviation
scores. The median is the location measure that minimizes the sum of the absolute values
of the deviation scores. In effect, therefore, ordinary least squares regression fits a set of
conditional means to the data while least absolute value regression fits a set of conditional
medians. Consequently, many of the comparative merits of means and medians carry over
1o the two regression generalizalions.

7. Where one sets the cutoff point is basically a judgment call, although there are
diagnoslics that may help.

8. Both the bi-square and Bell estimators belong to a class of “redescending”
estimators because the derivative of the objective function, W(r), first increases and then
decreases 10 zero. There are also location cstimalors that give no weight whatsoever to
deviation scores beyond a certain size by literally dropping them from the analysis.
However, these are not M-estimators. The “trimmed mean” is one example (Rosenberger
& Gasko, 1983, pp. 307-312).

9. The discussion that follows on desirable properties of M-estimators borrows
heavily from Wu's excellent exposition (1985, pPp. 325-327, 344-356).

10. Aswithall maximum likelihood estimators, one must assume that for the observed
distribution in question (e.g., for the particular response variable), each observation
behaves as if it were randomly and independently sampled from a particular distribution.
However, this is not as restrictive as it might seem because the independence is condi-
tional upon the values of the distribution’s parameters and whatever conditioning vari-
ables are being used. In the case of linear regression, for example, the independence is
found in the disturbance lerm (not the dependent variable per sc), which represents the
canditional distribution of the dependent variable around the regression hyperplane.
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11. Technically, resistance requires that the derivative of the objective function (y(r})
be continuous and bounded. While the derivative of the objective function for the LAR
eslimator is discontinuous (at zero), the discontinuity is unimportant in practice.

12. One alternative, bounded influence regression, is briefly described in Li (1985,
Pp. 324-328). A major drawback is that the breakdown point is a decreasing function of
the number of explanatory variables; in the very instances when the opportunities lur
outliers are great, the breakdown point is relatively low (Rousseeuw & Leroy, 1987, p.
13). Another alternative is “least median of squares” regression, which minimizes the
median of the squared residuals instead of the sum. While least median of squarcs
regression has a high breakdown point (indeed, it achieves the theoretical maximum ol
30%, it gives up some efficiency (Rousseeuw & Leroy, 1987, sect. 4). Still, one must kecp
in mind that efficiency is calculated with respect to a particular distribution, typically the
normal, and the relative efficiencies of estimators can easily change if the assumed
distribution is incorrect. An unusually clear exposilion of these issues can be found in
Rousseeuw and Leroy (1987), and software for their preferred estimators is easily
obtained from the authors.

13. Readers with good statistical backgrounds and a particular interest in efficiency
might well want to work through Chapter 6 in Hampel el al. (1986). However, it is not
clear to me that much of genuine practical significance will be learned.

14, This is especially important in applied work. See, for cxample, Berk and Cooley
(1987) and Berk (1988).

15. Some software have routines designed especially for certain M-estimators. For
example, SAS has a procedure for LAR regression, and PC-ISP has procedures for LAR
and Huber regression estimators. PROGRESS does least median squares regression and
trimmed estimator via weighted least squares.

16. This is because the second derivative of the objective function is not defined. Put
another way, the underlying disturbance distribution (the Laplace distribution) is not
continuous. Boolstrap methods are employed below.

17. Theft cases were chosen because they are common and in some ways similar 1o
drug cases. Bul the basic point is that the program was direcled at drug cases and not thef
cases. Time trends that both share, therefore, cannot be aitributed directly to the program.

18. The differencing is identical to inserting into a regression analysis a dummy
variable for every time period but one, which is common in analyses of pooled cross-sec-
tional and time series data within an analysis of covariance perspective (Hsiao, 1986, PP
29-32). It is also closely related (o the notion of cointegration for time series data (Granger
& Newbold, 1986, pp. 224-226). Note that differencing does not assume a constan|
disparity between the two series. Shared effects that vary over lime are removed.

19. There is a tendency for iteratively rewcighted least squares, when applied to LAR
regression, lo produce one estimated residual very close to zero. Should this cause the
software to abort before convergence is reached, a vary small number (e.g., .00001) can
be added to each estimated residual,

20. Recall that the events making up the proportions are unlikely to be independen!
and the proportions themselves are unlikely to be independent. Thus conventional signif-
icance tests comparing, for example, the pretest differences in proportions against the
posttest differences in proportions (McNemar, 1962, pp. 86-88) would have been techni-
cally incorrect and could not have been taken literally, In all fairness, however, almost
any reasonable discounting of ¢ values would have suggested a statistically significam
treatment effect.
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AN INTRODUCTION TO
BOOTSTRAP METHODS
Examples and Ideas

Robert Stine

The bootstrap is an approach to estimating sampling variances, confi-
dence intervals, and other properties of statistics. Just as maximum
likelihood refers to an estimation strategy rather than to any specific
estimator, bootstrapping is a methodology for evaluating statistics
based on an appealing paradigm. This paradigm arises from an analogy
in which the observed data assume the role of an underlying population.
As a result, bootstrap variances, distributions, and confidence intervals
are obtained by drawing samples from the sample.

Data analysis seeks answers to questions such as “Does a new drug
cure more people than the old one?” or “What factors affect how
someone votes in an election?” Statistical answers to such questions
require models that characterize the random behavior of observed
factors. Estimates of the model arise from observed data and lead to
description or inference. The importance of the bootstrap lies in this
inferential step: The bootstrap gives standard errors and confidence
intervals that are typically better than alternatives that rely on untested
assumptions. The flexibility of the bootstrap gives the data analyst the
freedom to choose statistics whose standard errors would otherwise be
difficult to measure. The bootstrap offers reliability and brings new
insights to some of the difficult problems of data analysis.
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