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In the past few years, inflation has become increasingly connected with
supersymmetric models. Although there is no fundamental reason for
that - the basic ingredient for inflation, at least in the way it has been
described so far , i; a scalar‘ﬁeld whose potential has certain definite

properties - the number of arguments in favor is rather compelling and

almost all inflationary scenarios which have a claim for success

incorporate super-symmetry. . The number of : problems to which an
inflationary scenario is supposed to give an answer - in particular the
spectrum and the amplitude of density fluctuations, the gravitino and
the monopole problems - as well the number of problems it must avoid -
insufficient baryon number generation (in connection with reheating)
and entropy crisis - give a set of constraints tight enough to. require a
good deal of fine tuning in the choice of parameters. We are still left
however with a rather large set of models, which reflects the freedom in
the choice of the underlying supersymmetric theory. It seems that we

have reached a point where the only way to sort out which is the right

-model for inflation will be to make some progress in the understanding

of the exact content of the supersyim'netric theory that describes our
particle physics world. For example, such issues as the mass of the

gravitino, the particles it can decay into, which scalar field is

responsible for inflation - the so-called inflaton -, how it coupIes to the

matter fields, how it relates to supersymmetry-breaking are questions

that a unique supersymmetric model would answer in an unambiguous

way. In that respect, the models inspired by superstring theories that
have recently appeared might represent a progress in our

understanding of inflation, if they incorporate it.



In Section 1, I review the reasons that led to study super-
symmetric models in the context of inflation, by setting up . the
constraints that candidates to an inflationary scenario must satisfy.
Section 2 then raises the question whether the groundstate of the new
scalar field that we have iﬁtroduced- i.e. the inflaton - breaks
supersymmetry. This is discussed in-connection with the so-called
thermal constraint. I take the opportunity to discuss some problems
about the study of thermal fluctuations that have received a lot of
attention recently. Section 3 then reviews the different models
available and the way they address those issues. A discussion of baryon
number generation and of the gravitino problem follows in Section 4.

1. Why Supersymmetry? .

The standard scenario for inflation!? - which, for historical
reasons, is often referred to as “new inflation - requires thé presence of
a scalar field, from now on called the inflaton and noted ¢. The scalar
potential has, in the direction of that field, a plateau followed by a dip
towards the grouhdstate o (see Fig. 1). One assumes that the
cosmological constant is zero at the ground state. For reasons to be
determined, at some early stage of the evolution of the universe, the
inflaton field is held at thé top of the plateau (¢ = 0). If that region is
flat enough, once the inflaton field starts evolving classically in the
potential, the time t necessary to cross the plateau will be large on the
time scale of the evolution of the universe. That evolution is governed

by the well-known equation (neglecting the curvature term)

W =R [R)% (T p[3md (4)

where R is the cosmic scale factor that enters in the Robertson-Walker
metric, T is the temperature, and M is the reduced Planck mass (M =
M,/ V8n = 2.4 x 10'8 GeV). p, the energy density of the universe is
given, at early times when all matter is relativistic, by
. 4' : - -ty a’
P = V(¢)+ 14", '-‘i ’R'z’(VCP) + P

ol (2)
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where N, ;is the effective number of bosonic (fermionic) degrees of
freedom. At high enough temperatures, the radiation term dominates
the energy density and the universe is radiation-dominated. Soon,
when temperature drops, p becomes dominated by the energy stored in

the vacuum V and this lasts for the time t that the inflaton field rolls

- down the plateau.‘ Plugging p = V, into (1) gives the exponential

behavior for the cosmic scale factor that is characteristic of inflation
Yo t
R:-R, e 3 (3)
At the end of this de Sitter phase (H = cst), R will have undergone N =
T V/(3M) e-foldings. In order that inflation solve the horizon and
flatness problems, we must require! N = 65, which sets a limit on the
height of the plateau (V) as well as on its slope (via 7).

Once the inﬂa;tion field reaches the end of the plateau, it falls
down to the minimum o and starts oscillating around it. The energy
density of the universe is then dominated by the density p o of these
coherent oscillations( the &2 term in (2) starts playing a role). For
example?®, if the potential is quadratic around the ground state, the

coherent oscillations will behave like nonrelativistic matter and the
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" universe will expand like a matter-dominated one. Because of that
expansion, oscillations are damped. Eventually after a timet ~ T ¢'1, the
inflation field decays into ordinary matter (T, is the corresponding
decay rate). This is what is known as reheating although the term is
somewhat misleading: no reheating occurs, strictly speaking, because
the matter which was present initially has been diluted away by
inflation; on the other hand, the decay products of the inﬂaton are

produced at a temperature Ty, which is given by (2)

Py h -1 .
B 35 NTaw = pe(t=Ts) W)

Of course all fields that can be produced through the decay of ¢ (or the
sﬁbsequent interactions between its decay products) are present, even
those whose mass is greater than Ty, that would long have decoupled if
the temperature of universe had decreased smoothly. We will come
back to these matters in Section 4.

Before reviewing the candidates to a successful inflationary
scenario, let me quantify the previous analysis to emphasize the role of
the two basic parameters: the energy stored in the vacuum at thé
origin-V - and the groundstate value 0. In order to do that, I will take
the simplest possible form for the potential (for a more general and

more elaborate analysis, see Steinhardt and Turner?):
- (¢V ( ) "]
v(¢)-v,[|-t.(c_)+3 %) (5)
The fact that there are no linear and quadratic terms assures that the

potential is flat at the origin (V'(0) = V'(0) = 0). Using the classical

equation of motion for the ¢ field,

4.>+3H‘i> = -.Vl(q’) K _ (G)

and neglecting the ¢ term throughout the slow-rollover, we can easily

compute the number of e-foldings.

(% OIS .
N[ Hd - L, M @ (%)

In this formula ¢, is the initial value for ¢; because of quantum

fluctuations in the de Sitter phase, ¢, is non-zero. Since the only - ‘

relevant scale in a de Sitter phase is the Hubble parameter we will
simply take® ;= H = (V//3MH)'2, ¢_is the value of ¢ at the time t .
when the exponential expansion ends: in other words, g(te) = 3H cB(te),
which gives, using 3Hé(te) = - V'(4,)"

IViexowt o &= (@
We can then approximate ‘N by evaluating the integrand in (7) for ¢

near the origin :
Nz-[ 3H"———L’-’ Eﬁi"’l—ivx (¥
& Vo(-1ffey) M & WIMY
One of the major successes of the inflation scenario is to explain the
origin of fluctuations in the universe.5 They start as ‘quantum
fluctuations in the de Sitter phase. Asinflation goes on, they grow‘until

at time t, they become bigger than the horizon radius H'! (constant in a ‘

. de Sitter phase). From then on, their evolution is purely mechanical

because the horizon screens dynamics. Exponential inflation ends, the

* Note that we can treat the motion of the inflaton field classically only

if ,>> ¢, 0r 6%V M >> 1.



universe becomes, say, radiation-dominated and the horizon radius,
now H(t) = 2t, grows faster than the fluctuations; eventually at time
t, fluctuations reenter the horizon. Note that t, and t; depend on the
scale of the fluctﬁation that we are considering; on the other hand,
(80/p)(t) does not and this is a success of inflation: inflation predicts a
scale invariant Harrison-Zel'dovich spectrum’. The reason is that the
time translation invariance of the de Sitter phase insures the scale
independence of (§p/p)(t,) and hence of (§p/p)(t;) since no dynamics is
acting between t, and t.. What about the amplitude §p/p (£)? Since we
want to account for the size of all density fluctuations in the universe, it
is rather strictly constrained. On one hand?, on the scale of galaxies
(105 M,,), we can expect at most a factor 105 growth»between trand the
present time, for which it is established on firm grounds that 8§p/p ~ 1.
On the other hand®, on the scale of the background radiation (10!°M,),
~ the observed anisotropy ST/T = 1/2(§p/p)(t,) is smaller than 104 We

must therefore have ,
Selp ()~ 10 (10)

What does the theory predict? The magic formula is® (see Ref. 10 for
caveats)
§Q_ (\:") - \'\ 89. U‘A . (‘,)
P ¢k
where §4(t,) is the fluctuation at the time of crossing the horizon in de
Sitter phase, roughly H. I will crudely neglect the evolution between t,
and't, and write ¢(t,) = o(t)=-V' (4,)/(3H) to obtain, using (8),

Sp(p(ts) » 38/IV(®)] = 18 VIM[a? (12)

T N

To recapitulate before starting our hunt for candidates to an

inflationary scenario, we have the following constraints (cfeq. (9, 12))

N = 0(‘) \‘:\1"“- > 65 ‘ (\Su)
8—‘3(*:) e oy M L 105 10 (13b)
P o3 .

Note that basically one parameter appears, namely I = o%(MV,!?),

which must be greater than one if our approach makes sense (see

" footnote to Eq. 8) - and that the two constraints are compatible.

The models originally proposed? to realize this “new inflation”
scenario were Coleman-Weinberg!! potentialis in grand unified theories.
Typically, the potential reads -

V(4 - BY (?m fsr - Y2)+ Vg B (1%

where

<% \
Using our toy model parametrlzatxon (V, = /2 Bg*), we get
63 ~ -B—'/" ____M(”' o 3= 10-3 ( |€)
MV M

which violates the constraints (13). A little caution is needed here.
First of all, our toy model parametrization does not really apply here.
Furthermore, the fact that o®/(MV 2 << 1 shows us that a classical
estimation of N is invalid. More precisely, we can parametrize the
Coleman-Weinberg potential near ¢ = 0 as (we cut off the argument of

the logarithm at 62 = H?):
V(¢) - V .-Aq’(' (l"l’) .
C 3B A~ kB[ LF e F LTS



With this form, one finds, along the same lines as before, that ¢, =
HV3/A = H. One has therefore to include gravitational effects in the

determination of N, which gives5
-llz
N~ 0(-) A . ( ‘8)

As for the scale of density perturbations, we obtain from (12)(i

Ve ~HWVY 4
3 (1) 00 * (19

where I have included the numerical factor that a less crude estimation
would yield.f It is therefore now A2 which plays the role of the
parameter I and it is clear that the value of A is such that we cannot
satisfy the constraints (13).

The solution to those constraints ié clear: we have to increase o

(and since we had o= M, the next step seems to be ¢ = M), or

GUT?
decrease V  or act on both.

A first possibility adopted by Shafi and Vilenkin!? is to t_aké a
scalar field with a potential given by (17) where A ~ 10-1°, The field has
to be a gauge singlet because gauge radiative corrections would induce
self-couplings of a size much bigger than A. But where does this very
weakly coupled singlet field come from?

A second line of approach is to remark® '3 that fermions contribute
with the opposite sign to B and including them would decrease B and

therefore increase [ as desired. Indeed, in a supersymmetric theory

with unbroken supersymmetry,

B« L (W\g-h’\:) =0 (%)

10

and if superSymmetx‘y is broken at a scale y,

B~ I g - mf (&_) (2)
In order to satisfy the constraints (13), we need to decrease B (or 1) by
some 12 orders of magnitude:

_l;_‘ n 1073 107 (22)

This yields a gravitino mass

W\3h_= E N ‘()\o *'o ‘oﬂ. &N (23)
M

This is the idea of supersymmetric inflation which was first proposed
for global supersymmetry!®> and then ‘extended to. local
supersymmetry.'*

S§ much for motivations. From now on, we éouple the theory to N
= 1 supergravity. The inflaton field is a gauge singlet and its potential

has the standard form!5 o
8 _ .
V(@) Me | 848 S 3] (24)

where g is the Kihler potential (for the time being, we take a flat

Kihler metric)

8

f(¢) is the superpotential. We will assume that, apart fr,om'the Planck

‘- _‘z  ¢?.
AL e%\ﬂ_m%l

scale M, there is basically one (overall) scale present in f(¢):

ORI L oon(eIm” (%)

a8 "
= I& (.'2'5)
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‘where the a_are of order 1. This gives a minimum o of order M, which
was one of our goals. ‘

Moreover, we put the inflaton field in a hidden sector,'® which
means that the superpotential describing the interactions of the

inflaton field and of the ordinary matter fields y, reads‘:
G (2.9 = 3(d) « F(y) (23)

This ensures that the inflaton field is weakly coupled (~ u¥M?) to
ordinary matter. Since the self-coupling A for the inflaton is of order
ut/M*(cf eqs (24-26)), for . "
W WV T (28)
the hidden sector provides us with the very weakly coupled field that
was searched for in an analysis a la Shafi-Vilenkin. We now discuss in
some dgtail the issue of supersymmetry -breaking.
2. Supersymmetry breaking and the inflaton field. The initial
conditions.

We now have in our theory two singlet chiral fields: one will
provide the goldstino field and is necessary to break supersymmetry via
the superHiggs effect, the other one takes care of inflation through its
scalar component. It is certainly tempting to identify them. And there
is indeed a good reason to do so, apart from the aesthetical or
economical ones.

Remember that we need to explain why the inflaton field is
initially at the top of the plateau. In the case of the Coleman-Weinberg
potentials that we were considering earlier, it was easy to do so: at high
temperatures, the grand unified symmetry is restored, therefore thé

global minimum is at ¢ = 0; when the universe cocls down, the inflaton

12

quite naturally finds itself in position to slowly roll down to its zero-
temperature groundstate ¢ = ¢ . There is no such symmetry in the
supersymmetric case since the inflaton is a gauge singlet.

We therefore have to impose that théﬁ?bté_ntial have an absolute
minimum at ¢ = 0, at high temperatures. Th’il‘s i:s"i{nown as the thermal
constraint!” and it has some interesting consequences on
supersymmetry breaking. Before coming to that, I want to stress the
following point. We. have implicitly assumed that the inflaton is in
thermal equilibrium with the matter at T ~ M,. If it was not so,
thermal equilibrium between inflaton and matter would be restored
only at very low temperatures!® because the inflaton field is so weakly
coupled, and considering thermal corrections to the potential would not
make sense. Ovrut and Steinhardt!® stressed that as the temperature
of the universe reaches the Planck scale My, the number of particle per
horizon becomes less than one (the particle number goes as (T/M)? and
the horizon radius as (M/T)?) which makes it “difficult” to talk about
thermal equilibium. This only means that we do not-know what is
going on in the Planck era and if we want to have a thermal equilibium
at T ~ M;, we have to include it in our assumptions.

We will study the behavior of the potential at high temperatures
by computing the effective potential in the one-loop approximation.?0-24
It turns out that one piece of this effective potential is proportional to
the total number N of chiral fields (for a minimal low energy super-
symmetric model N = 50). In the leading N approximation, the tem-

perature corrections to the potential V(¢) of Eq. (24) read simply:23.24

M) ToN V(@) veBroCiing
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Using this form, it is straightforward to show a rather strong result on
supersymmetry breaking:?* if the thermal constraint is satisfied, the
absolute minimum ¢ of the superpotential must be supersymmetry-
breaking. Indeed, let us suppose for a moment that it is not, i.e. m,,,2 =
M2e930= 0, then since V(o) = 0, we have AV, (0) = 0 On the other
haﬁd, AV (4) > 0 for ¢ = 0. Therefore o is the absolute minimum even
at high temperature, which contradicts the thermal constraint. One
can show?! that the résult still holds when we generalize our study to
~include: 1) terms non-leading in N, 1ii) partial supersymmetry-
breaking in the ordinary sector. On the other hand, two key
assumptiéns are the facts that we considered that the inflaton sector
consists only of one field (¢)-and that we used a flat Kahler metric (eq.

25) (see below). To summarize, we have the following result: with only

one field in the inflaton sector, it is not possible to conserve

supersymmetry in that sector and to satisfy the thermal constraint. It
is -possible to go further and to quantify that result. We show on Fig. 2
the behavior of the temperature corrections for a very simple example
of potential. In order to satisfy the thermal constraint, we need e9
M¢4u* = 4. This result proves to be general?® Therefore in order to

satisfy the thermal constraint, we need
2 .
My > <2 F/M , (30)
which gives, using (28)

my, ~ 10° o l0"GN (3)

It is not a surprise that we obtain again the gross estimate which

prompted our analysis (eqs. 22, 23). Note also that we will get such a

14

range for m,, whenever we Break supersymmetry in the inflaton
sector- independently of the thermal constraint.

Ovrut and Steinhardt'” were actually the first to stress the
conn_ectioh between the thermal constraint and supersymmertry
break.ing by proving the following theorem: a ‘supersymmetry-
coné’erving real minimum ¢ with V(o) = 0, which satisfies the thermal
constraint and gives enough inflation, is aiways separated, along the
real axis, from ¢ = 0 by another minimum o’ for which V(¢’'} < 0.

Now, a constraint such as (31) is a real embarrassment if we want
the theory tob account also for the low energy phenomenology, in
particular the breaking of SU(2) x U(lv). ‘The point is that, quite
generally when we couple gauge theories to supergravity, scalars
acquire tree level masses of the order of the gravitino mass. In order to
see that, let us generalize the potential of Eq.. 24 to include one iow

energy scalar y - the superpotential is given by (27)-
( ‘ﬂ“' lal‘)lﬂ" a Py 2 . aF < |2 3 ‘
V(4y)=e [I a_g.;,%‘c,[ . la'g +%§)-ﬁ,|@|j (39

When we shift the inflaton field, we obtain in particular mass terms for '
the scalar y:

h

xh . ‘3\1. ﬁ.eﬁlﬁt\ﬂ_v)r.-: ml-bh“a\,. (33)

This is innocuous for most of the scalar fields, but certainly not for t;he .
Higgs doublets of the Weinberg-Salam model.?*" Such a term would
induce a breaking of the gauge-symmetry at the scale m,,. Therefore
requiring that we can describe successfully the low . energy

phenomenology seems to require
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““3,,_ ~ Mw (311)

We will spend most of the next section trying to reconcile (31) with (34).

Let me finish this section by adding some important comments to
the preceding discussion of thermal effects.

To determine the conditions for inflation, we have relied - through
the thermal constraint - upon the effective potential at the one-loop
level. As Mazenko, Unruh and Wald®® have strongly emphasized, we
must be very cautious in using such a tool. Their argument goes as
follows.” First of all, the effective potential V (¢) describes the
vproperties of the spatially averaged value <¢>_, of ¢. In particular,
the fact that as the temperature increases, V() becomes more convex
around ¢ = 0 only tells us that the fluctuations in <¢>s§ become
small, not that the local fluctuations in ¢ become small. Actually,
locally the latter are of order T and therefore become increasingly large.
This suggests that some domainé can form where ¢ = g, at T > T,

where T_is the temperature at which the potential energy starts to

dominate the energy density of the universe. If such a thing happens,

this is bad news for inflation. One could think that still some domains
will form in which ¢ = 0; these domains would inflate and eventually
reach a size that could easily encompass our universe. Unfortunately,
once we allow for the presence of ¢ = o &omains, the domains where ¢
= () become very scarce. The reason is that they have to be extremely
big in order to survive the pressure exerted on their boundary by the
true vacuum dom_ain. Typically, their radius p has to be bigger than the
Hubble radius H-! in order that expansion overcomes the félct that their

boundary is contracting inward at the speed of light.” Since for T > T,

16

the universe is radiation dominated p ~ H'! ~ M/T2. On the other hand,
the size of the ¢ = ¢ domains should just be § ~ T'!, since they originate
from thermal fluctuations. Therefore, when we approach the critical
temperature, the number of ¢ = o domains overcb'_r'x_ifé's“_'the number of ¢

-

= 0 domains byAa factor
BE)
P T
In our case, T, = V' = u which gives a very large factor (10° to 10'2
from Eq. 28). The occurrence of domains with ¢ = 0 is therefore very
improbable.

Is ‘this the ungraceful exit of inflation? Not quite. First, let me
point out that our use of the effective potential was a perfectly valid
one. We were looking for the conditions for inflation. Certainly, one
condition to fulfill is to require the existence of a metastable state with

non-zero vacuum energy V, (i.e. the thermal constraint). As com-

mented by Mazenko, Unruh and Wald,?® the effective potentialisa

* Taking into account the contraction of the boundary, volume of the do-
main is V(t) = p(t)® with p(t) =R(t)(p/R(ty) - [t,*dt'/R(t')) where p, is the
radius at t = t,. Requiring that V(t) > 0 gives p(t) > R(t)/R(t) = H'\(t).
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) perfectly valid tool to do so. Of course, once we have that metastable

state, it does not mean that inflation occurs: this is the whole point of
their discussion. Secondly, their analysis is incomplete because it
assumed that all domains occur with an equal probability. This

asSumption is model dependent. Remember that at T, the fluctuations

sy

in the field ¢ are of order T, therefore if T, << o, or more precisely if T,

is of the 6rder of ¢, or smaller, (¢, is the value of ¢ when the universe
leaves the exponential expansion era, cf egs. (7,8)), basically all
domains present at T, will lead to inflation. Since ¢, ~ o3/M? (eq. 8), we
conclude that this is not verified for Coleman-Weinbergy potentials (T,
~ Mgy 0~ Mg) but that it is so in the case of supersymmertric
models (T, ~ ﬁ, o ~ M). This result is substantiated by the analysis of
Albrecht and Brandenbergex.'.27 They showed that the potential term in
the energy density of the universe (eq. 2) starts to dominate when T
drops below T, and that the time At necessary to recreate domains
where ¢ = o (through the intéraction terms of the potential) is longer
than the duraﬁon of inflation 1. Actually expressing the requirement

At > tfora genefal potential V(¢) = Z 1 ¢"yields the condition®"*3

AR LA L N PR B (35)

In the case of our toy model (eq. 5), the condition on A, reads
) o ) :
l)‘s\«H or M\Ls «4 (36)
<

This is nothing else than the condition (13) that we found necessary to
impose to obtain enough inflation and the right amplitude for density
fluctuations. Conditions on higher order couplings (3,) from (35) are

less stringent. Similar results have been obtained by Guth and Pi2?

18

who found that sufficient inflation occurs if the inflaton field is coupled
weakly enough (I'' = A2<< 1),

The picture now seems clear enough. Let me bring some confusion
how-ever by adding the following remark, due to Linde.? At large
enough temperatures (T >> T ), domains where ¢ >> T_are created by
thermal fluctuations. Naively, when the temperature decreases (T < ¢)
the field rolls down the temperature dependent potential in order that
at T, all domains have ¢ = T_ This is not so because the inflaton field is
too weakly coupled to be in thermal equilibium. More quantitatively, if

we come back to our toy langrangian, the temperature correction reads

Ny~ THEV Ly OT (3
. T d¢:. ~ ” Q_s ( )
and the motion of the ¢ field in the potential is given by (6)
X : A N = M (38
q>+3\'\¢2-03 ) H M’t'\’-rz )
which gives
$ - Wb - (39)

Therefore if we consider the largest possible fluctuation ¢ ~ M (created
at T ~ M), it will take a time 6%V to go back to zero. But the age of the
universe at T_is M/T 2. Thus if
3 M o’ ' (4o
S - MV 2 =1 )
Vo Tc, ©

the field will never come back to the minimum and the high-

temperature configuration will be “frozen”. But eq. (40) is nothing else
than condition (13). This seems to indicate that for all the models that

we might consider all possible configurations (even ¢ >> T ) are allowed
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at T = T.. It led Linde® to describe supersymmetric inflation in the
context of chaotic inflation.! According to this hypothesis, the initial
distribution of the field ¢ is a chaotic one where all values are equally
probable. Of coufse, we are back to the problem raised earlier: why
should our universe be in one of the ¢ = 0 domains that were so rare at
T.? Moreover, we have heavily relied upon the effective potential to
derive (40) and although this certainly points towards a problem, a
more elaborate analysis is needed to determine quantitatively in which
cases the standard scenario does not work. In particular, gravitational
interactions might drive the inflaton field more quickly to its
minimum.'?

3. The models.

We now describe some of the models, emphasizing the way each of
them solves the problem of the discrepancy between the constraints (31)
from the amplitude of density fluctuations and (34) from the low-energy
spectrurﬁ of scalar masses. i
3.1. Models where supersymmetry is not broken in the inflaton
sector.!4!8:32 If supersymmetry is not broken in the inflaton sector, then
m,, is not related to the parameter u (Eq. 30) which was fixed by the
constraints (13). For example, Holman, Ramond and Ross used the very

simple superpote.z,_rziti‘érll_.-‘_?',iv"
09 - 2 (o9 ()

and showed that it satisfies all the basic requirements (note that flo) =
0: supersymmetry is conserved at the minimum).
- of course, the thermal constraint is violated. One Way out of it'8

is to introduce a second field ¥ in the inflaton sector (remember that to

20

obtain the result of last section, we assumed that there is only one field
in that sector). For example, a superpotential for the fields ¢, ¥ of the

form!833

h($,v) - §(4) + ¥vq(® | ()

where f(¢) is given by (26) will give the right behavior at high
temperature (minimum at ¢ = 0), if we choose correctly the couplings
in g(¢). This means in particular that some of the-couplings in g(¢)
have to be of order N (otherwise, the argument using the leading N
temperature correction (29) would still be valid), which is not very
natural. Moreover, it is somewhat unsatisfactory to introduce this ad
hoc field ¥ whose only purpose is to satisfy the thermal constraint.

One issue that is raised in models where the inflation field ¢ is
different from the field z responsible for supersymmetry-breaking is the
so-called entropy crisis.3* Let liS consider the field z; it is clear from our
discussion of temperature corrections, that itsi groundstate at high
temperature lies away from the minimum of the T = 0 potential.
Therefore, when temperature decreases, the z field will oscillate around
its minimum and these coherent oscillations will release entropy when
the field decays. (This is very similar to our discussion of reheating at
the end of inflation but remember that now z = ¢.) Moreover év.en if
inflation washed away the energy stored in the oscillations the
minimum of the z field would be displaced by its coupling to the inflaton
¢ and oscillations would resume at the end of inflation. Now, the mass
m, of the z field is of the order of m,,, which we want to be light (0(M,),
cf eq. (34)); if we place the z field in a hidden sector, (as for a Polonyi

field3®) its decay rate is
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[‘ W) M; ~ mm ~n M"‘ (l‘IS)
™MW
Therefore z is very long-lived and entropy will be released at a very late
sfage of the evolution of the universe, thus diluting away any baryon
number abundance (This is similar to the gravitino problem discussed
in Sect. 4.1). The solution3? is to break supersymmetry a la
O’Raifeartaigh®®. In this case -
mi”“%m)r"o_(h')'m* (L ) MN‘Aﬁm:— Lll’)
where q, is a coupling in the superpotential (a, ~ 10+ typlcally) The
lifetime of the z field is therefore much shorter andone can find a range
of parameters for which there is no entropy crisis.3?
3.2 Models obtained by perturbing a supersymmetry-conserving
potential 33
The idea here is to start with a potential whose absolute minimum
is supersymmetry-conserving and to see under which conditions a
perturbation can make this minimum supersymmetry-breaking. Let e
be the per-turbation parameter.‘ It is easy to deduce from the form of
the potential (egs. 24, 25), that a necessary cdndition in order that

supersymmetry be broken when ¢ = 0, is
. 1\2 -
s @)\ -0 (hs)
&9“ € =0

or equivalently.

d}V()I = dV(v') =0 (46)

£=0

This somewhat fixes the potential we are starting with. In particular,

one deduces from (45) that the mass of the inflaton field is small
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(actually, it is of order €'2) which gives a small decay rate T~ m(»8 and
therefore a low reheaﬁng temperature.

What is ¢? In Ref. 33, it was assumed that (-¢) is the slope of the
potential at the origin. It is usually assumed to be zero but no
symmetry argument reqﬁirés thét’. But it certainly has to be small (¢ <
10°%) in order that sufficient inflation occurs.

The gravitino mass is at least of order ¢ since the model at e= 0
conserves supersymmetry. Actually, the global minimum (in the

complex plane) yields
2 3 .
My ~N _t[:'?. € f _ (ll:l’)

which easily gives m,, ~ M_ when one uses the constraints on u (Eq.
28) and e. One can show that this result is stable under radiative
corrections. Of course, the fact that we can obtain such a low mass for '
m, , tells us that the thermal constraint is violated (the ¢ = 0 model
clearly violates it, since it is supersymmetry conserving) and we have to
introduce a second field to restore it, as in the previous models.

3.3 Inflaton sector with two fields.®”

If we have to introduce two ﬁélds in the inflaton sector, why not
introduce them from the beginni‘ng? Taking that point of view, Ovrut
and Steinhardt®” were able to use a method that gives very naturally a
low supersymmetry-breaking scale. The method can be illustrated on

the following example,!9:38 Let us consider the superpotential
l. . '
Ley)=-pée i dy (48)

and study the minimum of the potential in global supersymmetry, for
the time being. Itis given by



23

[ - pKre¥-o0 (h3)
ok = 1¢=0
hfoy = 3+ ¢
which gives ¢ = u%y and v - «. If we turn gravity on (local
supersymmetry), the Planck mass acts as a cutoff and the minimum is

at

LI Y S
D> ~O  <Dyh> AWM
We conclude therefore that the gravitino mass is |
My, ~ l<Deyhy] |, : (5v)
M M
From the constraint y ~ 103 to 10 (Eq. 28), we see that we fall
precisely in the range m,, ~ M,,. Ovrut and Steinhardt applied this
method to the inflaton sector.?” The potential they used is sketched on
Fig. 3. Starting at the origin, one evolves ﬁrst down a plateau in the ¢
direction; when ¢ reaches the saddle point e, one falls down rapidly to
the _super—symmetry-breaking minimum described above (¢ ~ u*M, ¥
~ M). The computation of the temperature corrections shows that they
stabilize the minimum at the origin (one can note indeed that the
superpotential used by Ovrut and Steinhardt?” is basically of the

generic form (42)). Therefore the thermal constraint is satisﬁed.
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The study of reheating and of the gravitino problem requires
speeial treatment in this kind of model because the presence of two
fields creates some anharmonicities in the potential ﬁear the true
groun&state. In particular, one has to cheék'@ﬁ__ét, there is no entropy
crisis in the direction orthogqnal to the directioe ef supersymmetry-
breaking.3”

3.4 No-scale models.

There are some cases where the constraint (34) can be evaded.
This is when the scalar sector respects some global symmetry;39 To
each unbroken geﬂerator corresponds a massless Goldstone boson.
Usually, the gauge sector does not respect that symmetry, which
therefore becomes approximate. The Goldstone bosons turn out to be.
pseudo-goldstone ‘bosons and acquire a mass through radiative
corrections. The interesting point fof us is that in that case, the tree
level supersymmetry-brealking}mass term .is zero for those pseudo

Goldstone bosons. If the doublets that break SU(2) x U(1) are among

these fields, their mass is no longer directly related to m,,, which can

therefore take any value (at least as far as this problem of SU(2) x U(1)
breaking is concerned). » |

No-scale models provide a nice example of how this works. They
were introduced® as a way to obtain a vanishing cosmological constant
at tree level without unnatural fine tuning. To start with the simplest
version, let z be a singlet field. If we drop our assumption of a flat

Kihler metric and use as a Kihler poteritial, instead of (25),

8 =-3%2;‘_*’ (52)
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we obtain from eq. 24 a potential that is identically zero. Therefore z,
and hence m,, = Me?? remains undertermined at the tree level. The
connection with the SU(1,1) invariance
2 2B xS +Bp= 4 (53)
iyz+ 3 .
was soon realized*®4!:it is that non-compact symmetry that assures the
flat potential to be zero. |
If we now include matter fields (some of them getting a vev at the

GUT scale), the generalization of (52) is*?

g - G + ‘__‘LLF(N:V
G =- 30 (20T 5 B )R- codippk

The invariance isnow SU(n, 1)/SU(n) X U(1) and the potential reads

(5%)

1)
V= 83

aF | ) |
6‘5‘ + D-frms (55)

The dependence of the scalar potential in z (through G) and therefore in
m,, is spurious because the fields y, are not normalized properly. In

terms of the normalized fields y, = e<C>/y,,

v N ‘ %fr * . D-torms ,Fzce d‘jg\’a‘lj"& (56)

There, once again the potential is flat in the direction of
superéymmetry-breaking {z) and no mass term of order m,, appears
(compare with eq. 33). In those models, supersymmetry-breaking

comes from the gaugino masses m_ and the scalar masses are of the

order of m . Therefore our previous constraint (34) transforms into m_’

= M. On the other hand, the ratio § = m,,/m_ is determined
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dynamically by studying the radiative corrections that raise the
degeneracy of the potential and determine z. This ratio £ is model
dependént and can yield gravitino masses m,,, ~My*%, m,, ~ M;**, m,,
<< M.

When inflation is discussed in the context of these models,*>47 the
inflaton field ¢ is taken to be among the fields y,. The fact that the
potential (56) is always positive definite shows us that the theorem of
Ovrut and Steinhardt!” discussed above does not apply here: even if the
groundstate for ¢ conserves supersymmetry, there cannot be a lower
minimum elsewhere. Similarly, our result on the relation between
thermal constraint and supersymmetry-breaking does not apply here
because we have relaxed one of our hypothesis: a flat Kiahler metric. In

the leading N approximation, however, one obtains instead?447 of (29)

ANy = I N [\J(‘\’) ,,o(\,,,,)) | (s .

1sM*

where V is given by (55) (F-term); therefore, the thermal constraint is
violated in that approximation: the minimum is unchanged at high
temperature. One has"als’o to be careful about the entropy crisis in
those models since ¢ is di‘siinct from z, the field responsible for
supersymmetry-breaking. Let me mention finally that chaotic
inflation scenarios can be realized in the same context.*

3.5 Superstring models

Recently, no-scale models have received some special attention

‘becal__.lse they apparently?® emerge from the reduction®® of ten

dimensional superstring theories®! to four dimensions. Of course, the
underlying superstring theory brings some new constraints to the

model, in particular to its particle content. Let me therefore review
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which are the candidates for the inflaton field in that context.>? First of
all, the sector of the gauge singlet scalar fields is very poor. It consists
of the dilaton, another scalar field coming from the 10-dimensional
metric and two pseudoscalars (axions). These four fields mai{e up two
complex scalars S and T in terms of which the Kahler potential reads:*®
g BT oot
30 (TeI. g L B
G = - ™ 3 n )
where the y, are the gauge non-singlet scalar fields. A comparison with
eq. 54 shows that the scalar T plays the role of the field z that breaks
supersymmetry. Similarly, the vacuum expectatiﬁn value for T + T"
remains undetermined at tree level, and so is the scale of super-
symmetry-breaking. On the other hand, the presence of the S field in
(58) has some important consequences. In ofder to describe the fields y,,
let us consider the E; x E, model,5! compactified on a Calabi-Yau
manifold of SU(3) holonomy.®® Once one identifies one of the SU(3)
subgroups of E; with the holonomy group, the gauge grouﬁ becomes E;
x Eg'. Moreover if the manifold is not simply connected,%-5° the grand
unified group E is broken at tree level to a lbw e_energy'gauge group K.
The smallest realistic (i.e. including SU(3), and Weinberg-Salam gauge
group) such group turns out to be K, = SU(3) x SU(2) x U(1) x U(1).
The number of generations Ny is fixed by the topology of the manifold.
On the other hand, the assumption of an SU(3) holonomy group tells us
that scalar fields are in 27 representations of E;. We therefore have N
families of 27 plus some self-conjugate part of 27 + ‘2-_’.7. We are looking
for fields singlet under SU(3), x SU(2), x U(1), to play the role of the

inflaton. It is easy to check that only two such fields exist for each 27.
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Let me call them N, and Ng. The restrictions on the superpotential as
well as the invariance under the group K forbid any interaction term
involving only N, and N,. We therefore need the presence of their
counterpart in the -2;:1', N-l or 1_\1_2. One can check® that such a field is
presenf.on-ly when K is of rank 6 (therefore not in the minimal case K,).
Moreover, the scalar fields N, and N, are precisely the ones that will
break the extra U(1) groups (at least ";me) at an intermediate scale.5*
One has to make sure that this does not interfere with inflation.
Therefore, the use of one of the y fields for inflation is rather
constrained by superstring theories.>? There are some other differences
with the previous no_scale models. In particular, the mass of the
gravitino seems to be constrained to be close to the Planck scale.’® The
source for supersymni_etry breaking is the condensation of the gauginos
of the E;' sector.® In the usual no-scale models,*“? the scale of
supersymmetry-breaking (i.e. m,,) is determined by the radiative
corrections due to the light fields (y). Here, it turns out that the heavy
gauge-singlet sector (S, T) already fixes that scale at the one-loop level
and drives it to the Planck mass.®* With such a high gravitino mass,
one clearly avoids the gravitino problems discussed in the next section.
4. The problems of reheating.

As we mentioned in Section 1, ét the end of inflation, the inflaton
field falls down to the minimum o and starts oscillating around it.
Since the energy density of the universe is dominated by these coherent
oscillations, the universe expands which redshifts away the energy
stored in the oscillations. ‘Eventually at time t ~ I‘¢", the inflaton field
decays into ordinary matter. Since we have placed the inflaton field in

a hidden sector, it can only interact gravitationally with the rest of the
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matter (i.e. its coupling is of order M!) and, simply on dimensional
grounds (or from Eq. 27 and 32), its decay rate is given by

Pq, = mf.’, l M- (55>
Since V is of order u*, the mass of the inflaton field m, is generally of

order u*/M. Now from Eq. 4, it is straightforward to compute Ty,
Ty s Y.
Ton o [ro (T | 5] Copy (&)

where we have neglected the contribution to the energy density of the
matter that is created during the oscillating phase, and we have used

the fact that p ~ M?/t2. Therefore, typically
3\
ar ”(%)t” 2w 10° b 10°Qan (6)
M

We see that a general property of supersymmetric inflation is a low
reheating temperature. Of course, there are variations from model to
model. For example, for the model of subsection 3.2, Ty is even lower33
‘ (T}.m = u3/M2 &%), On the other hand, in the model with two fields,?” one
of them, ¢, is very heavy (m, ~ M) and although oscillations proceed in
the ¥ direction (see Fig. 3), anharmonicities of the potential around the
minimum convert a fraction of the oscillation energy to the ¢ direction®”
 (Tgy = w¥M). Anyway, the low reheating temperature (60) requires
that some special attention be addressed to the questions of baryon
. number generation and gravitino production.

4.1. Baryon number generation.

With such a low Ty, it is hopeless to create by thermal equilibrium
processes the color triplet.Higgs H¢ that we need to generate baryon
number in supersymmetric theories (the non(?)-observation of proton

decay sets their mass my. to be bigger than, say, 10'GeV). For this
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reason, one cannot reproduce the standard scenario for baryon number
generatioh. On the other hand, the mass of the inflaton is bigger than
Tges (see Ref. 57 for a review) m, ~ u? M. Therefore, if m, > mye, the
color triplets are produced, and they are produced very far from
equilibrium (since Ty, << m,), which is a bonus for barybgenesis.57 In
this case,’® if we assume that the inflaton decays predominantly into
the heaviest particles (H¢), we obtain ﬁypically fo-r the baryon to photon
ratio584.18
my ,, SBre ., OB pol®e SR TRM ‘eSBJ‘{*-4 (c2) -
My Tau _ T&i My
where 8B is the baryon asymmetry produced per decay of H(8B << 1).

In most models, this is enough to reproduce the observed value (~ 1019,

On the other hand, if m < my, there is no way to produce the color

]
triplet Higgs and we have to advocate some low temperature non-
standard scenarios for baryogenesis.3? '

4.2 The gravitino problem

Let me first summarize the situation of the gravitino problem in

the standard scenario® by means of the following table:
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1 kev 10 MeV 10°GeV

m:}lz

gravitinos have survived gravitinos havedecayed

to the present time. before the presenttime
gravitino density gravitino decay after reheating due to gravitino
exceeds the mass nucleosynthesis relea- decay is large enough to ’
density of the sing entropy. break up all He already
universe. n /nY let ™ standard value formed and restore initial condi-

tions. Fresh start for nucleo-
synthesis.

We therefore have the following bound for the mass of the gravitino:
i .
M3|z < \ &e\l oy Ma 2 10 &” (63)

It was first thought that inflaton could “save the gravitino”8!by diluting
away the abundance of primordial inflatons but it was soon realized
that in an inflationary scenario there are new sources of gravitinos.
They are:

i) production by direct decay of the inflaton field

This happens whenever m, > mg,. Note however that in our general
analysis m, ~my, ~ u2/M; oﬂ the other hand, when m,, ~ M, we have
m, >> Ty >>my,(cfeq. 61). The problem is the following!?: (see Fig. 4)
at Ty, gravitinos and photons (radiation) are produced in roughly
equal amounts. Since both of them are relativistic, their energy
densities behave the same way until T, ~ m ,, where the gravitino
becomes non-relativistic: p,,(Tyg) = pY(TNR). From then on, p,,, scales
as T3 (non-relativistic matter) whereas Py~ T*. Therefore att, ~T,,",
or T, ~ (T, ,M)"2 when the gravitino decays (T, is the gravitino decay
constant and since the gravitino couples only gravitationally to.the

matter [, ~ m,,*M? - cf eq. 59 - which gives T, ~ m,,,**/M"?) '

> £
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Psll (T ~ P3n (,TNP.) Tuo.
Py (o) Pr (Twe) ( ) o <6l'>

The energy stored in the gravitino (p,,) is released in the universe as
entropy. We therefore have to make the ratio T, /T, as small as
possible in order not to destroy the successes of the standard big bang
scenario.

Ovrut and Steinhardt noticed in that respect that T, is actually

bigger than m,,. The reason is that the gravitinos are produced at T,

3/2°
with a momentum Ipml‘ ~ m, which is subsequently simply reshifted
because the gravitinos couple too weakly to the rest of the matter.

Therefore the gravitino becomes non-relativistic at T\, determined by

My, ~ I?sh(Tnu)\N\’P*(TRﬂlT” ~N?T"", (65)
which gives
Taa ™ TR My, « Ty, (ce)
. My

and therefore lowers the ratio T /T ,.
ii) production by thermal equilibrium processes.

The presence of such gravitinos provides a very definite constraint
on the reheating temperature Ty, because their number is proportional
to Tpy,.5264 In order to see that, let us suppose that gravitinos Gare
produced in processes such as XY - Z&. The evolution of the number

density of gravitinos m,,, is governed by®®

dmsp 3 7 pa m
T 3T M= N Tt My (69)

where I have assumed that the number densities for X, Y species n_

are much larger than n,, to start with (any primordial n,, has been
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washed away by inflation). Assumingthatny ~ny~n , = 24(3)T%7?,
and introducing the relative abundance Y,, = n3,2/nYwe can write (67)

as

% z S My v"‘*:x,iie Y xy 428 (c8)

and using t = (32 %2N/90)V2M/T2, (N is defined in Eq. 2), we obtain

Ay _ _ K
&M | (62)
where K is constant given by (0, ~ aM?)s
S
> \ 32u'N :

The solution of (69), with the boundary condition Y, (T = 0is obvi-

ously for T << Tg,
Y&lz (-‘? = K -[%15' (#)

Therefore any bond on Y, will translate into a bound on the reheating
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temperature. In particular, nucleosynthesis provides a limit on Y, (a
gravitino of mass m,, = M_ has not decayed at nucleosynthesis; see
table above): too large a gravitino abundance would spoil the successes
of the standard analysis by increasing the rate of expansion of the
universe or the baryon-to-entropy ratio at the time of nucleosynthesis.
It turns out however that the most stringent bounds come from the p-
dissociation%%56 or the photodissociation®? of “He. Let me illustrate the
method in the case of the p-dissociation. The annihilation of even a
small fraction of *He through (p*He — *He + anything) or (§ ‘He — ’H

— anything) could very well account for the total amount of *He

observed in the universe: X3, < 7 x 105(tritium *H subsequently

34

d_ecays into *He). Actually, the amount of *He produced in these

reactions is given by

Mag, = My '5‘,{—5 ? s, )

where®6 v '

N cr(?l‘\'\e —=°He or H *“"‘Xw"’“a)

: -fsx—\, = o(FMe) i _ (13,)
= 0.43t+ 0.01%4 '

This gives a lower bound on the abundance of antibaryon

Mg b Xwe My PO (#4)
My ~ 3 iy, “‘r¥ ‘ '

where X denotes the mass concentration of aﬁ element (X4y, = 0.25).
Assuming for simplification that there is one pp pair per gravitino
decay, this yields ‘

Yag, < % | )'(%:L % $op, v 10" (¥
He

and we obtain from (70) and (71)63.66
Tow € 103 G (36)

The same sort of constraint®” is obtained by studying the
photodissociation of “He: y + ‘He - n + 3He,p + H,p + n + D (see
Ref. 67 for a more complete analysis than the one presented here). Itis
one of the successes of supersymmetric inflation to predict such a low
reheating temperature (compare with eq. 61) .

To conclude, supersymmetric inﬁation is characterized by a large
value of the parameter [ = 03/(MV01}2), which assures enough inflation

and the right amplitude for density fluctuations. In most models, the
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reheating temperature is low (~ 10® GeV), which might be a problem

for baryogenesis but is a necessary condition to avoid the gravitino

problem. The discrepancy between the scale u present in the inflaton

sector and the scale M of SU(2) x u) breaking might pose problem

when one relates the two of them to the supersymmetry-breaking scale

(m,,) but there are ways to solve that contradiction. Finally, progress

in the predictive power of éupefsymmetric theories as well as in the

quantum mechanical analysis of inflation - how do fluctuations really

behave? - should help in the near future to discreminate between the

different models.
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Figure Captions

Fig. 1. Schematic form of a scalar potential leading to inflation.

Fig. 2. Effective potential V. ($)/u® at T = M for a simple shape of the
potential at T = 0 (dashed line) and different values of eEM*/u*| : 0 (a),
1(b), 4(c), 9(d); x is ¢/M. (See Ref. 24.) |

Fig. 3. Schematic evolution in the ¢-y plane for the model of Ovrut and .

Steinhardtﬁ. The shape of the potential in the first phase of the
evolution (inflation) is given on the left and the shape of the potential in
the second phase is given on the top, versus ¥.

Fig. 4. Comparative evolution of the energy density of gravitinos G and

radiation (y) after reheating.
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