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Abstract

Science relies on increasingly complex data sets for progress, but common data management 

methods such as spreadsheet programs are inadequate for the growing scale and complexity of this 

information. While database management systems have the potential to rectify these issues, they 

are not commonly utilized outside of business and informatics fields. Yet, many research labs 

already generate “medium sized”, low velocity, multi-dimensional data that could greatly benefit 

from implementing similar systems. In this article, we provide a conceptual overview explaining 

how databases function and the advantages they provide in tissue engineering applications. 

Structural fibroblast data from individuals with a lamin A/C mutation was used to illustrate 

examples within a specific experimental context. Examples include visualizing multidimensional 

data, linking tables in a relational database structure, mapping a semi-automated data pipeline to 

convert raw data into structured formats, and explaining the underlying syntax of a query. 

Outcomes from analyzing the data were used to create plots of various arrangements and 

significance was demonstrated in cell organization in aligned environments between the positive 

control of Hutchinson-Gilford progeria, a well-known laminopathy, and all other experimental 

groups. In comparison to spreadsheets, database methods were enormously time efficient, simple 

to use once set up, allowed for immediate access of original file locations, and increased data rigor. 

In response to the National Institutes of Health (NIH) emphasis on experimental rigor, it is likely 
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that many scientific fields will eventually adopt databases as common practice due to their strong 

capability to effectively organize complex data.

Keywords

medium sized data; databases; LMNA; data organization; multidimensional data; tissue 
engineering

Introduction

In an era where scientific progress is heavily driven by technology, handling large amounts 

of data has become an integral facet of research across all disciplines. The emergence of new 

fields such as computational biology and genomics underscores how critical the proactive 

utilization of technology has become. These trends are certain to continue due to Moore’s 

law and steady progress gained from technological advances1,2. One consequence, however, 

is the rising quantities of generated data that exceed the capabilities of previously viable 

organization methods. Although most academic laboratories have sufficient computational 

resources for handling complex data sets, many groups lack the technical expertise necessary 

to construct custom systems suited for developing needs3. Having the skills to manage and 

update such data sets remains critical for efficient workflow and output. Bridging the gap 

between data and expertise is important for efficiently handling, re-updating, and analyzing 

a broad spectrum of multifaceted data.

Scalability is an essential consideration when handling large data sets. Big data, for instance, 

is a flourishing area of research that involves revealing new insights from processing data 

characterized by huge volumes, large heterogeneity, and high rates of generation, such as 

audio and video4,5. Using automated methods of organization and analysis is mandatory for 

this field to appropriately handle torrents of data. Many technical terms used in big data are 

not clearly defined, however, and can be confusing; for instance, “high velocity” data is 

often associated with millions of new entries per day whereas “low velocity” data might 

only be hundreds of entries per day, such as in an academic lab setting. Although there are 

many exciting findings yet to be discovered using big data, most academic labs do not 

require the scope, power, and complexity of such methods for addressing their own scientific 

questions5. While it is undoubtable that scientific data grows increasingly complex with 

time6, many scientists continue to use methods of organization that no longer meet their 

expanding data needs. For example, convenient spreadsheet programs are frequently used to 

organize scientific data, but at the cost of being unscalable, error prone, and time inefficient 

in the long run7,8. Conversely, databases are an effective solution to the problem as they are 

scalable, relatively cheap, and easy to use in handling varied data sets of ongoing projects.

Immediate concerns that arise when considering schemas of data organization are cost, 

accessibility, and time investment for training and usage. Frequently used in business 

settings, database programs are more economical, being either relatively inexpensive or free, 

than the funding required to support use of big data systems. In fact, a variety of both 

commercially available and open source software exists for creating and maintaining 

databases, such as Oracle Database, MySQL, and Microsoft (MS) Access9. Many 
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researchers would also be encouraged to learn that several MS Office academic packages 

come with MS Access included, further minimizing cost considerations. Furthermore, nearly 

all developers provide extensive documentation online and there is a plethora of free online 

resources such as Codecademy, W3Schools, and SQLBolt to help researchers understand 

and utilize structured query language (SQL)10,11,12. Like any programming language, 

learning how to use databases and code using SQL takes time to master, but with the ample 

resources available the process is straightforward and well worth the effort invested.

Databases can be powerful tools for increasing data accessibility and ease of aggregation, 

but it is important to discern which data would most benefit from a greater control of 

organization. Multi-dimensionality refers to the number of conditions that a measurement 

can be grouped against, and databases are most powerful when managing many different 

conditions13. Conversely, information with low dimensionality is simplest to handle using a 

spreadsheet program; for example, a data set containing years and a value for each year has 

only one possible grouping (measurements against years). High dimensional data such as 

from clinical settings would require a large degree of manual organization in order to 

effectively maintain, a tedious and error-prone process beyond the scope of spreadsheet 

programs13. Non-relational (NoSQL) databases also fulfill a variety of roles, primarily in 

applications where data does not organize well into rows and columns14. In addition to being 

frequently open source, these organizational schemas include graphical associations, time 

series data, or document-based data. NoSQL excels at scalability better than SQL, but 

cannot create complex queries, so relational databases are better in situations that require 

consistency, standardization, and infrequent large-scale data changes15. Databases are best at 

effectively grouping and re-updating data into the large array of conformations often needed 

in scientific settings13,16.

The main intent of this work, therefore, is to inform the scientific community about the 

potential of databases as scalable data management systems for “medium sized”, low 

velocity data as well as to provide a general template using specific examples of patient 

sourced cell-line experiments. Other similar applications include geospatial data of river 

beds, questionnaires from longitudinal clinical studies, and microbial growth conditions in 

growth media17,18,19. This work highlights common considerations for and utility of 

constructing a database coupled with a data-pipeline necessary to convert raw data into 

structured formats. The basics of database interfaces and coding for databases in SQL are 

provided and illustrated with examples to allow others to gain the knowledge applicable to 

building basic frameworks. Finally, a sample experimental data set demonstrates how easily 

and effectively databases can be designed to aggregate multifaceted data in a variety of 

ways. This information provides context, commentary, and templates for assisting fellow 

scientists on the path towards implementing databases for their own experimental needs.

For the purposes of creating a scalable database in a research laboratory setting, data from 

experiments using human fibroblast cells was collected over the past three years. The 

primary focus of this protocol is to report on the organization of computer software to enable 

the user to aggregate, update, and manage data in the most cost- and time-efficient manner 

possible, but the relevant experimental methods are provided as well for context.
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Experimental setup

The experimental protocol for preparing samples has been described previously20,21, and is 

presented briefly here. Constructs were prepared by spin-coating rectangular glass coverslips 

with a 10:1 mixture of polydimethylsiloxane (PDMS) and curing agent, then applying 0.05 

mg/mL fibronectin, in either unorganized (isotropic) or 20 μm lines with 5 μm gap 

micropatterned arrangements (lines). Fibroblast cells were seeded at passage 7 (or passage 

16 for positive controls) onto the coverslips at optimal densities and left to grow for 48 h 

with media being changed after 24 h. The cells were then fixed using 4% paraformaldehyde 

(PFA) solution and 0.0005% nonionic surfactant, followed by the coverslips being 

immunostained for cell nuclei (4’,6’-diaminodino-2-phenylinodole [DAPI]), actin (Alexa 

Fluor 488 phalloidin), and fibronectin (polycloncal rabbit anti-human fibronectin). A 

secondary stain for fibronectin using goat anti-rabbit IgG antibodies (Alexa Fluor 750 goat 

anti-rabbit) was applied and preservation agent was mounted onto all coverslips to prevent 

fluorescent fading. Nail polish was used to seal coverslips onto microscope slides then left to 

dry for 24 h.

Fluorescence images were obtained as described previously20 using a 40x oil immersion 

objective coupled with a digital charge coupled device (CCD) camera mounted on an 

inverted motorized microscope. Ten randomly selected fields of view were imaged for each 

coverslip at 40x magnification, corresponding to a 6.22 pixels/μm resolution. Custom-

written codes were used to quantify different variables from the images describing the 

nuclei, actin filaments, and fibronectin; corresponding values, as well as organization and 

geometry parameters, were automatically saved in data files.

Cell lines

More extensive documentation on all sample data cell lines can be found in prior 

publications20. To describe briefly, the data collection was approved and informed consent 

was performed in accordance with UC Irvine Institutional Review Board (IRB # 2014–

1253). Human fibroblast cells were collected from three families of different variations of 

the lamin A/C (LMNA) gene mutation: heterozygous LMNA splice-site mutation (c.357–

2A>G)22 (family A); LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 423 (family 

B); and LMNA missense mutation (c.1003C>T, pR335W) in exon 624 (family C). Fibroblast 

cells were also collected from other individuals in each family as related mutation-negative 

controls, referred to as “Controls”, and others were purchased as unrelated mutation-

negative controls, referred to as “Donors”. As a positive control, fibroblast cells from an 

individual with Hutchinson-Gliford progeria (HGPS) were purchased and grown from a skin 

biopsy taken from an 8-year-old female patient with HGPS possessing a LMNA G608G 

point mutation25. In total, fibroblasts from 22 individuals were tested and used as data in this 

work.

Data types

Fibroblast data fell into one of two categories: cellular nuclei variables (i.e., percentage of 

dysmorphic nuclei, area of nuclei, nuclei eccentricity)20 or structural variables stemming 

from the orientational order parameter (OOP)21,26,27 (i.e., actin OOP, fibronectin OOP, 

nuclei OOP). This parameter is equal to the maximum eigenvalue of the mean order tensor 
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of all the orientation vectors, and it is defined in detail in previous publications26,28. These 

values are aggregated into a variety of possible conformations, such as values against age, 

gender, disease status, presence of certain symptoms, etc. Examples of how these variables 

are used can be found in the results section.

Example codes and files

The example codes and other files based on the data above can be downloaded with this 

paper, and their names and types are summarized in Table 1.

Protocol

NOTE: See Table of Materials for the software versions used in this protocol.

1. Evaluate if the data would benefit from a database organization scheme

1. Download the example codes and databases (see Supplemental Coding Files, 

which are summarized in Table 1).

2. Use Figure 1 to evaluate if the data set of interest is “multi-dimensional”.

NOTE: Figure 1 is a graphical representation of a multi-dimensional database 

provided for the example data set.

3. If the data can be visualized in a “multi-dimensional” form like the example and 

if the ability to relate a specific experimental outcome to any of the dimensions 

(i.e., conditions) would allow for greater scientific insight into the available data, 

proceed to construct a relational database.

2. Organize the database structure

NOTE: Relational databases store information in the form of tables. Tables are organized in 

schema of rows and columns, similar to spreadsheets, and can be used to link identifying 

information within the database.

1. Organize the data files, so they have well thought out unique names. Good 

practice with file naming conventions and folder-subfolder structures, when done 

well, allow for broad database scalability without compromising the readability 

of accessing files manually. Add date files in a consistent format, such as 

“20XX-YY-ZZ”, and name subfolders according to metadata is one such 

example.

2. As the data-base structure is designed, draw relationships between the fields in 

different tables. Thus, multi-dimensionality is handled by relating different fields 

(i.e., columns in the tables) in individual tables to each other.

3. Create readme documentation that describes the database and relationships that 

were created in step 2.2. Once an entry between different tables is linked, all 

associated information is related to that entry and can be used to call complex 

queries to filter down to the desired information.
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NOTE: Readme documents are a common solution for providing supplemental 

information and database structural information about a project without adding 

non-uniform data to the structure.

4. Following steps 2.1–2.3, make the end result similar to this example where the 

differing characteristics of individuals (Figure 2A) are related to associated 

experimental data of those individuals (Figure 2B). The same was done through 

relating columns of pattern types (Figure 2C) and data types (Figure 2D) to 

matching entries in the main data values table to explain various shorthand 

notations (Figure 2B).

5. Determine all the essential and merely helpful data points that need to be 

recorded for long range data collection.

NOTE: A key advantage of using databases over spreadsheet programs, as 

mentioned earlier, is scalability: additional data points can be trivially added at 

any point and calculations, such as averages, are instantly updated to reflect 

newly added data points.

1. Identify the necessary information for creating distinct data points prior 

to beginning. Leave raw data untouched, instead of modifying or saving 

over it, so that reanalysis is possible and accessible.

NOTE: For the given example (Figure 2), the “Designator” 

corresponding to an individual, “Pattern type”, “Coverslip #”, and 

“Variable type” were all vital fields for distinctness of the associated 

value.

2. If desired, add other helpful, non-vital information such as the “Total # 

of Coverslips” to indicate the number of repetitions conducted and help 

determine if data points are missing in this example.

3. Set up and organize the pipeline

1. Identify all the various experiments and data analysis methods that might lead to 

data collection along with the normal data storage practices for each data type. 

Work with open source version control software such as GitHub to ensure 

necessary consistency and version control while minimizing user burden.

2. If possible, create procedure for consistent naming and storing of data to allow 

for an automated pipeline.

NOTE: In the example, outputs were all consistently named, thus creating a data-

pipeline that looked for specific attributes was straightforward once the files were 

selected. If consistent naming is not possible, the tables in the database will need 

to be populated manually, which is not recommended.

3. Use any convenient programming language to generate new data entries for the 

database.

1. Create small “helper” tables (files #8–#10 in Table 1) in separate files 

that can guide automated selection of data. These files serve as a 

Ochs et al. Page 6

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



template of possibilities for the pipeline to operate under and are easy to 

edit.

2. To generate new data entries for the data-pipeline (Figure 3D), program 

the code (LocationPointer.m, file #1 in Table 1) to use the helper tables 

as inputs to be selected by the user (files #8–#10 in Table 1).

3. From here, assemble a new spreadsheet of file locations by combining 

the new entries with the previous entries (Figure 3E). Create a code to 

automate this step as shown in LocationPointerCompile.m (file #2 in 

Table 1).

4. Afterwards, check this merged spreadsheet for duplicates, which should 

be automatically removed. Create a code to automate this step as shown 

in LocationPointer_Remove_Duplicates.m (file #3 in Table 1).

5. Additionally, check the spreadsheet for errors, and notify the user of 

their reason and location (Figure 3F). Create a code to automate this 

step as shown in BadPointerCheck.m (file #4 in Table 1). Alternatively, 

write a code that will check the compiled database and identify 

duplicates in one step as shown in LocationPointer_Check.m (file #5 in 

Table 1).

6. Create a code to let the user manually remove bad points without losing 

the integrity of the database as shown in Manual_Pointer_Removal.m 

(file #6 in Table 1).

7. Then use the file locations to generate a data value spreadsheet (Figure 

3G, file #12 in Table 1) as well as to create a most updated list of 

entries that can be accessed to identify file locations or merged with 

future entries (Figure 3H). Create a code to automate this step as shown 

in Database_Generate.m (file #7 in Table 1).

4. Double check that the pipeline adds to the experimental rigor by checking for 

inclusion of rigorous naming conventions, automated file assembly codes, and 

automated error checks as previously described.

4. Create the database and queries

NOTE: If tables store information in databases, then queries are requests to the database for 

information given specific criteria. There are two methods to create the database: starting 

from a blank document or starting from the existing files. Figure 4 shows a sample query 

using SQL syntax that is designed to run using the database relationships shown in Figure 2.

1. Method 1: Starting from scratch in creating the database and queries

1. Create a blank database document.

2. Load the helper tables (files #8–#10 in Table 1) by selecting External 
Data | Text File Import | Choose File (files #8–#10) | Delimited | 

First Row Contains Headers, Comma | leave default | Choose My 
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Own Primary Key (Designator for Cell Lines File #8, Variable Name 

for Data Types File #9, Pat Name for Pattern Type File #10) | leave 
default | Finish.

3. Load the Data value table (file #12 in Table 1) by selecting External 
Data | Text File Import | Choose File (file #12) | Delimited | First 
Row Contains Headers, Comma | leave default | Let Access Add 
primary key | Import to Table: DataValues | Finish.

4. Create the relationships by selecting Database Tools | Relationships | 

Drag all Tables to the board | Edit Relationships | Create New | 

Match the DataValue fields with Helper Tables Designators | Joint 
Type 3.

5. Select Create | Query Design.

6. Select or drag all relevant tables into the top window. In this example 

‘Cell Lines’, ‘Data Values’, ‘Data Types’, and ‘Pattern Type’. The 

relationships should automatically set up based on the previous 

Relationship design.

7. Fill out the query columns for desired results, for example:

1. Click on Show | Totals.

2. Fill out the first column (Table: DataValues, Field: DataVar, 

Total: GroupBy, Criteria: “Act_OOP”), the second column 

(Table: DataValues, Field: PatVar, Total: GroupBy, Criteria: 

“Lines”), and the third column (Table: Cell_Lines, Field: 

Designator, Total: GroupBy, Sort: Ascending).

3. Fill out the fourth column (Table: DataValues, Field: 

Parameter, Total: Ave), the fifth column (Table: DataValues, 

Field: Parameter, Total: StDev), and the sixth column (Table: 

DataValues, Field: Parameter, Total: Count).

8. Run the query.

2. Alternatively, use the provided example database as a basis for examples. Open 

the database file Database_Queries.accdb (file #13 in Table 1) that was 

downloaded earlier. Use it as a template by replacing existing tables with the data 

of interest.

5. Move the output tables to a statistical software for significance analysis

1. For this sample experimental data, use the one-way analysis of variance 

(ANOVA) using Tukey’s test for mean comparisons between various conditions.

NOTE: Values of p < 0.05 were considered statistically significant.
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Representative Results

Multi-dimensionality of the data

In the context of the example data-set presented here, the subjects, described in the Methods 

section, were divided into groups of individuals from the three families with the heart 

disease-causing LMNA mutation (“Patients”), related non-mutation negative controls 

(“Controls”), unrelated non-mutation negative controls (“Donors”), and an individual with 

Hutchinson-Gilford progeria syndrome (HGPS) as a positive control20. Results from 

Controls and Donors could be further grouped together as an overall Negative Control 

(N.C.) group, given their collective lack of LMNA mutations. Every subject’s cell line had a 

“Mutation Status” associated with it, based on their condition group (Figure 1 – dark blue 

axis). For each experiment, fibroblast cells from the subjects were cultured on arrangements 

of either unorganized (Isotropic) or micropatterned (Lines) fibronectin, creating the 

condition of “Pattern type” (Figure 1 – orange axis). After the cells were fixed, 

immunostained, and imaged, the “Coverslip #” was transcribed, since multiple experiments 

(i.e., technical replicates) would occur using the same individual’s cells (Figure 1 – light 

green axis). Custom MATLAB codes20,21 were then used to quantify different aspects of cell 

nuclei or tissue organization variables as “Variable type” (Figure 1 – teal green axis). The 

three factors were associated with the cells’ human source and consequently linked to the 

“Family” (Figure 1 – dark pink axis) and “Age at time of biopsy” (Figure 1 – dark green 

axis) in addition to “Mutation Status.” Other dimensions not included in Figure 1 were the 

“Age of presentation,” “Symptoms,” “Designator,” and “Gender” of the individual in 

question. The example provided here results in at least ten possible dimensions for data 

aggregation. Thus this example data is a prime candidate for organization by relational 

databases.

Organizing the pipeline

Up to an estimated 95% of all digital data is unstructured4, but structured formats are 

required for databases. Still, creating a good automated method for the data-pipeline is 

highly context dependent.

For this example, the images collected from each experiment were stored in folders named 

by date and initial of the lab member responsible, with sub-folders listing the subject and 

coverslip number. Pipeline files are provided in the Supplemental Materials section, as well 

as summarized in a flow chart illustration (Figure 3). Different metrics from various 

experimental conditions across a variety of subjects were quantified from these fluorescent 

images (Figure 3A) using custom codes (Figure 3B)20,21. For example, actin orientational 

order parameter21 was extracted from tissues stained with phalloidin (Figure 3A) and used to 

compare the organization of fibroblasts from different individuals. The code outputs were 

saved in the same folder as the source images (Figure 3C).

Identifying a novel relationship in LMNA mutation data set

When given multitude of possible conformations, it can be difficult to identify where novel 

relationships exist using manual data aggregation methods. In this specific context, we were 
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interested in comparing the organization of subcellular actin filaments across multiple 

conditions, measured using the OOP27.

OOP is a mathematical construct quantifying the degree of order in anisotropic 

environments, normalized to zero corresponding to completely isotropic tissue and one 

corresponding to completely aligned tissue. The data set was first split up by pattern type as 

lines (Figure 5A) and isotropic (Figure 5B) conditions, which were expected to have vastly 

different OOPs since fibronectin micropatterning heavily influences tissue organization. 

There were no significant differences between conditions when comparing isotropic tissues 

(Figure 5B). Conversely, the patterned tissues were statistically less organized in the positive 

control cell line (HGPS) (Figure 5A), and this relationship held even when the data was 

aggregated into different groups (Figure 5C). Actin OOP was additionally plotted against 

individuals’ age at time of biopsy (Figure 5D), separated by mutation status and family, to 

illustrate aggregation against a clinical variable. Unlike with nuclear defects20, there is no 

correlation between actin organization and an individual’s age (Figure 5D). Ultimately, the 

plots shown in Figure 5 illustrate how the same data can be analyzed in different 

combinations and how easily the normally difficult task of aggregating data that falls under 

multiple classes can be accomplished using databases.

For this article, data from patient sourced fibroblasts were compared between conditions to 

determine mutation consequences. Although both HGPS and the three families in this study 

have LMNA-linked diseases that potentially disrupt the nuclear envelope, the patients 

exhibit symptoms primarily associated with heart dysfunction whereas HGPS individuals 

have multiple organ systems affected22,23,24. Indeed, despite the micropatterned environment 

cells originating from an HGPS patient had a statistically lower actin OOP value than any of 

the other cell lines considered (Figure 5A,C). This dovetails with HGPS patients being the 

only ones in the study with any skin abnormalities caused by the mutation. Viewing the 

same data in different conformations is also helpful for providing additional insight and 

avenues into scientific inquiry in a varied data set (Figure 5).

Discussion

Technical discussion of the protocol

The first step when considering the use of databases is to evaluate if the data would benefit 

from such an organization.

The next essential step is to create an automated code that will ask the minimum input from 

the user and generate the table data structure. In the example, the user entered the category 

of data type (cell nuclei or structural measurements), cell lines’ subject designator, and 

number of files being selected. The relevant files were then selected by the user (Table 2, 

column 1), with the row entries being automatically created and populated with all variables 

contained within the file (Table 2, column 2). Furthermore, it is important the code is 

flexible so that if another experimental entry needs to be added, the user can select to 

continue the loop; if not, the files are saved and the loop ends. The basic functions of adding 

new entries, checking for errors, and assembling the spreadsheet from file locations 

described in this step are all critical for an efficient data-pipeline setup.

Ochs et al. Page 10

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is imperative to note that using file locations when creating the data-pipeline increases 

experimental rigor. Specifically, having a corresponding spreadsheet listing all file locations 

for the data values allows a user to backtrack any data point back to the lab notebook of the 

researcher who collected the raw data. When dealing with hundreds to tens of thousands of 

data points, greater transparency and accessibility is invaluable over the lifetime of a project. 

It is highly recommended that users consider saving file locations first and later compiling 

values for data instead of only storing the data values.

Once the database is created, the simplest way to get started is by programming the queries 

through the design view. The user will find it useful to download the provided template (file 

#13 in Table 1) as a starting point. Alternatively, these can be programed directly through 

SQL language (Figure 4).

Scientific discussion

The purpose of this article was to disseminate methods involving a data-pipeline and 

database that elucidated data set scalability and transparency. These methods are not widely 

used outside of informatics and business, but have enormous potential for those working in 

biological contexts. As science continues to rely on computers more heavily, the importance 

of effective management systems also rises6,29. Databases are frequently used for high 

volume and/or high velocity applications and are well cited in the literature, especially 

regarding their usage for clinical patient populations8,30,31. Several have already been 

constructed for specific fields such as the Rat Genome Database curation tools or REDCap 

for clinical and translational research32,33. Thus, the use of databases has been adopted in 

the clinical domain8 or large genomic databases32, but has not become common in other 

scientific disciplines such as tissue engineering.

The issues of handling increasingly complex data using spreadsheet programs have long 

been acknowledged within the scientific community34. One study reported that around 20% 

of genomic journal papers with supplemental files had gene names that were erroneously 

converted to dates35. These mistakes increased at an average of 15% per year from 2010 to 

2015, far outpacing the annual increase of genomics papers at 4% per year. It is often nearly 

impossible to identify individual errors within a large volume of data, as by nature 

spreadsheet programs are unsuited for easy validation of results or formula calculations. 

Published articles even exist for educating scientists on better spreadsheet practices in an 

attempt to reduce the frequency of errors7. One of the strongest benefits of databases is the 

reduction of error through automated methods and ability to validate potentially 

questionable data (Figure 3).

A significant outcome of this methodology is the increased rigor of data analysis. The 

importance of increasing the reproducibility of data has been highlighted by the NIH as well 

as by other scientists and institutions36,37. By having a spreadsheet of file locations 

corresponding to every database, it is easy to trace a data point back to the lab notebook of 

the experiment in question (Figure 3). Individual data points can also be quickly identified 

and found electronically using the corresponding file locations, which is invaluable at times, 

even when coupled with automatic error screening during the data-pipeline process. Even as 

the data set is amended over time, best practice involves keeping all past files in case issues 
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occur or older versions need to be checked. Working non-destructively and keeping old 

versions within the data-pipeline creates security through redundancy and allows for better 

troubleshooting.

There are myriad relational database management systems in combination of coding 

languages that can be used for the same data-pipeline needs. The most appropriate choices 

are highly dependent on the data and context being used; some applications excel best at 

scalability, flexibility, reliability, and other priorities9. Although databases are still 

technically finite in scale, reaching memory limits remains beyond the scope of most 

scientific labs. For instance, an MS Access database has a memory size limit of 2 GB, which 

would be a data set on the order of hundreds of thousands to millions of entries depending 

on the data and number of fields. Most labs will never have experimental needs of this 

magnitude, but if they did then spreadsheet software would be far beyond their effective 

limits anyway. In comparison, business-level relational database management systems can 

handle data sets of larger magnitudes while processing millions of transactions 

simultaneously29. Part of the reason databases are not commonly used in scientific 

laboratories is that past experiments rarely crest needs of such data magnitudes, so easy-to-

use spreadsheet software became widespread instead. A significant investment required to 

make these methods function, however, is the time needed to plan the data-pipeline and learn 

SQL for using databases (Figure 3 and Figure 4). Although coding experience greatly 

hastens the process, most will need to learn SQL from scratch. A wealth of documentation is 

available online through extensive documentation by developers, as well as free SQL 

tutorials such as at Codecademy, W3Schools, and SQLBolt10,11,12. Some alternatives that 

require subscriptions do exist, however, such as the program teaching website Lynda38; 

further reading about database basics can be found online. In an academic setting, good lab 

buy-in and robust systems can outlast their creators and help facilitate many years of 

projects across multiple students. This can be accomplished through the creation of 

guidelines and implementation steps during setup. Indeed, there is high value for all 

researchers in having a well-functioning joint data-pipeline and database system.

Other benefits of this methodology include the ability to employ automated methods for 

converting raw data into structured formats, ease of use once stored inside the database, and 

constant re-updating and re-aggregation of datasets (Figure 3). It is also possible to pull 

multiple variables’ worth of information from a single data file and automate the data-

pipeline to do so when prompted. In the context shown, commonly available and economical 

software was used to achieve results demonstrating that expensive and niche software 

packages are not mandatory in achieving a functional database. Given the limited reach of 

most laboratories’ research funds, the ability to increase the efficiency of database 

management is a priceless commodity.

In conclusion, as scientific data sets become more complex, databases become increasingly 

more important for the scientific community and have great potential to be as commonplace 

as and even more effective than current widespread spreadsheet usage for data storage. 

Issues with data transparency and replicability in science will only continue to expand in the 

future as data sets continue to grow in size and complexity, highlighting the importance of 

Ochs et al. Page 12

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more widespread adoption of databases and automated data-pipeline methods for general 

scientific needs now and into the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A visualization of multi-dimensional data from the LMNA mutation data set.
A single cube is defined by the three dimensions of “Variable type,” “Pattern type,” and 

“Coverslip #.” Further dimensions are shown as the axes of “Mutation Status,” “Age of 

biopsy” (yrs), and “Family.” Colored labels correspond to the different axes shown, such as 

the age of biopsy (green numbers) for each individual’s cube. Here, six of the ten possible 

dimensions are used to illustrate the multi-dimensionality of experimental data points.
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Figure 2: Table and design view relationships within the LMNA mutation data set.
Relational databases have the advantage of linking fields in one table with information in 

another table, which allows for immediate interchangeability of aggregation. The example 

here visually demonstrates how differing information can be linked.
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Figure 3: An example of common data-pipeline needs in a generalized context.
New entries were created using user inputs and automated codes, formatting important 

information into a spreadsheet format. These entries were combined with the most recent set 

of file location entries, checked for errors, then stored as both a spreadsheet of file locations 

and a spreadsheet of data values. Scale bar = 20 μm.
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Figure 4: An example query using SQL syntax.
SELECT and FROM statements are requirements to generate a query, but additional 

commands and criteria are often included. GROUP BY provides clarification on how 

aggregate the data, HAVING or WHERE statements limit the output to data that meets 

specific criteria, and ORDER BY indicates the order by which the outputs should be 

arranged by.
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Figure 5: Comparisons between conditions for the actin OOP variable.
(A,B) groupings correspond to the four primary conditions: non-related negative control 

Donors, related negative control Controls, LMNA mutation Patients from three families, and 

positive control HGPS. (C) all negative controls (N.C.) were combined and patients were 

separated by family (PA, PB, PC) instead. (D) A potential graph of isotropic actin OOP 

against age at time of biopsy collected for this study, separated by condition and family. 

Panels A, C, and D are plotted for the tissues micropatterned with a Lines pattern, while 

panel B is plotted for isotropic tissues. Statistical significance of p < 0.05 (*) was found in 

panels A, C, and D. No significance between any pairs was found in panel B. All error bars 

represent standard deviations calculated within the database.
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Table 1:

List of all the example files that can be uploaded to run the protocol.

Reference Number File Name Type

1 LocationPointer.m Pipe-line Code

2 LocationPointerCompile.m Pipe-line Code

3 LocationPointer_Remove_Duplicates.m Pipe-line Code

4 BadPointerCheck.m Pipe-line Code

5 LocationPointer_Check.m Pipe-line Code

6 Manual_Pointer_Removal.m Pipe-line Code

7 Database_Generate.m Pipe-line Code

8 Cell_Lines.csv Helper Table

9 Data_Types.csv Helper Table

10 Pattern_Types.csv Helper Table

11 DataLocation_Comp_2018_6_26_10_01.csv Example Data Location File

12 DataValues_2018_6_26_10_02.csv Example Data Values File

13 Database_Queries.accdb Example Database
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Table 2:

Listed select files that correspond to different variables of either cell nuclei measurements or fibroblast 

structural (OOP) data.

File Selected Variable

Summary.mat Proportion of Defective Nuclei

All Nuclei Area Average (μm2)

Defective Nuclei Area Average (μm2)

Normal Nuclei Area Average (μm2)

All Nuclei Eccentricity Average

Defective Nuclei Eccentricity Average

Normal Nuclei Eccentricity Average

All Nuclei MNC Average

Defective Nuclei MNC Average

Normal Nuclei MNC Average

Act_OOP.mat Actin OOP

Actin OOP Director Angle

Fibro_OOP.mat Fibronectin OOP

Fibronectin OOP Director Angle

Nuc_OOP.mat Nuclei OOP

Nuclei OOP Director Angle
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