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Tissues are built from ensembles of cells in different states. 
Microscopy enables the identification and characterization 
of cell types through similarities in morphology1–3. Single-cell 

transcriptomics provides complementary approaches to character-
ize cell types through similarities in transcriptional states4–8. Both 
microscopy and single-cell transcriptomics approaches can eluci-
date cellular state, function and organization. Recent advances in 
spatial transcriptomics have combined the two approaches, allow-
ing simultaneous morphological and transcriptional profiling from 
the same single cells or tissue regions, in methods such as Spatial 
Transcriptomics (ST or Visium)9,10, sequential fluorescence in situ 
hybridization (seqFISH)11,12, multiplexed error-robust fluorescence 
in situ hybridization (MERFISH)13,14 and spatially resolved tran-
script amplicon readout mapping (STARmap)15. However, few gen-
eralizable methods for the integrated analysis of both morphological 
and transcriptomics data from the same cell exist. Here we show 
that deep learning techniques can be used to combine information 
from state-of-the-art spatial transcriptomics and microscopy tech-
nologies to provide insights into the organization, function and dis-
ease progression of heterogeneous tissues.

Methods that successfully combine multi-modal information 
hold the promise to identify biologically meaningful subpopu-
lations that are missed by individual modalities and to provide a 
more detailed description of tissue and cell heterogeneity (Fig. 1a). 
However, effective approaches that combine multi-modal data need 
to overcome several challenges. Notable are requirements that: dis-
criminative information in each modality should be captured in the 
combined data structure (requirement 1) and limited information 
from a lower-quality modality should improve—and not reduce—
the ability to identify the subpopulation structure that is learned 
from the higher-quality modality (requirement 2).

Here we present a MUSE approach that addresses these require-
ments (Fig. 1b). MUSE uses a deep learning architecture to extract 
and integrate information from each modality into a meaningful 
joint representation. A self-reconstruction loss ensures that infor-
mation from each modality is not lost in the process of build-
ing the joint latent representation, and a self-supervision loss 
ensures that phenotypic similarity of samples in each modality 
is preserved in the joint representation. We first benchmark this 
approach using synthetic data with known ground truth and com-
pare with known multi-modal approaches (Methods), including 
correlation-based method canonical correlation analysis (CCA)16, 
matrix factorization-based method multi-omics factor analysis v2 
(MOFA+)17,18 and a multi-view autoencoder (AE). We then apply 
MUSE to a variety of datasets obtained using different spatial tran-
scriptomics and imaging technologies. We use examples of profiled 
brain cortex, tumors, intestine and neurodegenerative disease pro-
gression studies to demonstrate how combined multi-modal analy-
sis from MUSE can improve the dissection and interpretation of 
functional spatial heterogeneity (Extended Data Fig. 1a).

Results
MUSE architecture and training. MUSE is built on a standard 
multi-view AE neural network architecture19,20 with the addition 
of a self-supervision loss function (Fig. 1b). Learning is conducted 
in three steps: (1) modality-specific transformations: the input fea-
tures x and y are transformed into latent representations hx and hy; 
(2) pseudo-label learning: clustering on feature spaces hx and hy is 
performed independently to obtain pseudo-labels lx and ly for each 
modality; and (3) joint feature learning: the modality-specific fea-
tures hx and hy are merged and transformed into a joint latent fea-
ture representation z. The learning process is guided by minimizing  
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combined self-reconstruction and self-supervision loss functions. 
The self-reconstruction loss (motivated by the standard AE loss 
function) encourages the learned joint feature representation (z) 
to faithfully retain information from the original individual input 
feature modalities (x and y). The self-supervision loss (using a 
triple-loss function21,22) encourages cells and tissue spots with 
the same cluster label in a single modality (that is, with the same 
pseudo-label in either lx or ly) to remain close—and those with dif-
ferent cluster labels to remain far apart—in the joint latent space. 
During model training, the transformation, pseudo-label learning 
and joint feature learning steps are iteratively performed (Extended 
Data Fig. 1b). Model parameters in the whole neural network are 
jointly updated in each iteration (Methods). Finally, after model 
training, the joint latent features (z) can be used in various tasks, 

such as clustering and trajectory inference. In this work, we focused 
on identifying latent subpopulations (Methods).

Combined analysis improves subpopulation identifications. To 
evaluate the performance of MUSE, we initially made use of simu-
lated transcript and morphology data, in which the ground truth 
subpopulation assignment for each sample (cell or tissue spot) is 
known (Methods and Extended Data Fig. 1c). As benchmarks, 
MUSE was compared to several existing approaches that combine 
data (CCA, MOFA+ and AE) as well as simple concatenation of 
features from the two modalities as a baseline (Methods). CCA 
attempts to learn representations with maximal cross-modality 
correlation16. MOFA+ employs matrix factorization to decompose 
multi-view features into shared latent factors17,18. Finally, the AE 

a b

Spatial transcriptomics
Transcriptional

modality

Morphological 
modality

....C
ou

nt
s

Gen
e 

1

Gen
e 

2

Tissue heterogeneity

Subpopulations
T

ra
ns

cr
ip

tio
n

Morphology

Low

Small Large

High

Transcription-alone 

Morphology-alone 

Morphology

Clustering

Clustering

z

x

lx

hx

hy

ly

x

y y

Transcripts

....

C
ou

nt
s

Gen
e 

1

Gen
e 

2

f   Encoder_x

f  Encoder_z

f   Encoder_y

f   Decoder_x

f   Decoder_y

Self-supervision
loss

Self-supervision
loss

Reconstruction
loss

Combined analysis

c

d

0

0.2

0.4

0.6

0.8

1.0

Single modality

Multi-modalities
CCA
AE

MOFA+
MUSE

Feature concat.

Transcript - PCA
Morphology - PCA

A
R

I

10 8

#Clusters observed in each single modality

6

CCA
AE

MOFA+
MUSE

A
R

I
m

orph.-onlyMin.

Avg.

Max.

ARI - transcript only 
(PCA)

0

0.2

0.4

0.6

0.8

1.0

A
R

I
co

m
bi

ne
d 

an
al

ys
is

~98% ~90%

0 0.2 0.4 0.6 0.8

~80% ~66%

1.0

Dropout rate

Feature concat.

e
Single-modality Multi-modalities

D
ro

po
ut

 le
ve

l f
or

 tr
an

sc
rip

t
Transcript

-alone

ARI = 0.63 

ARI = 0.57 

ARI = 0.40 

Morphology
-alone

ARI = 0.56  

ARI = 0.56  

ARI = 0.56 

CCA

ARI = 0.01 

ARI = 0.00  

ARI = 0.00  

MOFA+

ARI = 0.53 

ARI = 0.33 

ARI = 0.15 

AE

ARI = 0.28 

ARI = 0.12 

ARI = 0.07

MUSE

ARI = 0.92

ARI = 0.84 

ARI = 0.60 

tS
N

E
-2

tSNE-1

Feature
concatenation

ARI = 0.45

ARI = 0.29

ARI = 0.21

ˆ

ˆ

Fig. 1 | overview of MUSE and performance evaluation on simulated data. a, Cartoon indicating how single-cell morphological and transcriptional data 
from a tissue (rectangular slide) can be combined to reveal high-resolution characterization of tissue heterogeneity. b, Overview of MUSE architecture. 
MUSE combines features from transcripts (x) and morphology (y) into a joint latent representation z. The reconstruction and triplet losses encourage 
subpopulation structure from each modality to be faithfully maintained in z. c–e, Performance evaluations using simulated data. c, Accuracy of identifying 
ground truth high-resolution subpopulations (k = 10) from lower-resolution single-modality subpopulations (k = 10, 8 or 6). In total, 1,000 cells with 
transcriptional and morphological profiles are simulated. Cluster accuracy is quantified using the ARI; box plot is based on n = 10 replicates: median 
(center line), interquartile range (box) and data range (whiskers). d, Accuracy of identifying ground truth clusters over a range of dropout levels from the 
transcriptional modality. Dashed lines: minimum, average and maximum ARI of morphology modality alone. x axis: ARI of PCA on transcript modality alone. 
y axis: ARI of combined-modality methods. 3-, 4- and 5-pointed shapes: comparison of results for randomly chosen datasets, also visualized in e. e, tSNE 
visualizations of latent representations from single- and combined-modality methods. Colors: ground truth subpopulation labels in simulation.
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combines multi-modal data through a bottleneck layer that can be 
used to reconstruct original features. MUSE uses the same network 
architecture as a standard AE with the addition of a self-supervision 
loss. For benchmarking, single-modality feature spaces were 
reduced via principal component analysis (PCA) to match the latent 
space dimensions of the compared multi-modal approaches. Unless 
otherwise noted, graph clustering (PhenoGraph23) with default 
parameters was used to automatically identify subpopulation num-
bers, and the adjusted Rand index (ARI)24 was used to assess accu-
racy of discovering true subpopulations.

We first used the simulated data to assess the ability of MUSE 
to capture discriminative information from each modality (require-
ment 1 above). How is performance affected as the ability to dis-
criminate subpopulations in each modality decreases? We retained 
ten ground truth subpopulations in the full multi-modal space and 
degraded the ability of both single modalities to resolve these sub-
populations by randomly merging a different group of sample clus-
ter assignments for each modality (Methods). Transcriptional data 
were simulated using a published single-cell RNA simulator25,26, and 
morphological features were simulated using a multi-layer neural 
network (Extended Data Fig. 1c). As cluster numbers decreased, 
the factorization method MOFA+ and feature concatenation main-
tained an accuracy level similar to either single-modality approach, 
whereas MUSE exceeded the single-modality benchmarks (Fig. 1c). 
Visualization of the MUSE latent space suggested the utility of the 
triplet-loss function: cells originating from the same subpopula-
tion in either modality remained close, and all true subpopulations 
remained well distinguished (Extended Data Fig. 1d). How is per-
formance affected as the number of ground truth subpopulations 
increases? A potential advantage for multi-modal analysis is the abil-
ity to discover more fine-grained population composition by com-
bining heterogenous cellular and tissue properties. Here, we held 
the total number of cells constant and found that, with increased 
numbers of subpopulations, MUSE outperformed single-modality 
methods (Extended Data Fig. 1e).

We next assessed the performance of MUSE when data quality in 
one modality degrades (requirement 2 above). Two persistent prob-
lems in single-cell data are sequencing dropouts and noise in feature 
measurements27,28. First, we varied the level of transcript dropout 
while leaving the morphology modality unchanged (Methods); as 
before, ten ground truth clusters were used. Morphology-alone 
analyses provided an average accuracy of ~0.6 ARI (Fig. 1d, hori-
zontal dashed lines). As expected, as the transcriptional signal 
degraded (Fig. 1d, from right to left on the x axis), the accuracy 
of all multi-modal methods dropped (Fig. 1d, y axis). However, 
the accuracy of MUSE only decreased to the range of accuracy 
estimated using morphology features alone (Fig. 1d, shaded range 
between ‘min’ and ‘max’), suggesting that a lower-quality modality 
did not unduly harm MUSE’s ability to use a higher-quality modal-
ity. Visualizing the results in latent space suggested that MUSE 
representations maintained a discernable subpopulation structure 
of ten clusters (Fig. 1e). Multi-modal methods that relied on maxi-
mizing multi-modal correlation (CCA), reconstruction accuracy 
without self-supervision (AE and MOFA+) or feature concatena-
tion were strongly affected by data degradation in any one modality.

Second, we simultaneously changed the noise level in both the 
transcript and morphology modalities, using additive Gaussian 
random noise with increasing variance (Extended Data Fig. 1f). 
MUSE performed well for lower variance noise levels. However, 
for higher variance noise levels, the performance of MUSE and 
all compared multi-modal methods was strongly compromised. 
MUSE performed as expected in ‘control’ benchmark settings, 
including: not identifying subpopulations when single-cell tran-
script and image data were uncoupled across cells (Extended 
Data Fig. 1g); performing better than simple feature concat-
enation controls (Extended Data Fig. 1g); not over-clustering in 

comparison to simple superimposition of clusters obtained from 
single-modality analysis (Extended Data Fig. 1h); remaining 
robust to ‘semi-simulated’ data with real image features (Methods 
and Extended Data Fig. 1i); and not degrading when one modality 
was completely homogeneous (Extended Data Fig. 1j).

Finally, we surveyed the sensitivity of results to MUSE default 
settings. We found that the accuracy (ARI score) of MUSE was 
robust with respect to varying latent dimension (Extended Data  
Fig. 1k), input feature dimension (Extended Data Fig. 1l), latent 
dimension of single modality (Extended Data Fig. 1m) and the choice 
of post-learning clustering approaches (Extended Data Fig. 1n).  
In terms of runtime performance, MUSE is reasonably fast for cur-
rent experimental data sizes (for example, 1,000 samples in 1.5 min-
utes on a benchmark desktop; Methods and Extended Data Fig. 1o). 
During training, graph clustering and iterative updating of cluster 
assignment increase MUSE runtime; as such, runtime can be accel-
erated by using other clustering methods (Extended Data Fig. 1p) 
or fixing cluster labels before network training, although at a loss of 
accuracy (Extended Data Fig. 1q). All simulation parameters used 
in experiments are summarized in Supplementary Table 1.

In summary, the synthetic data demonstrated that MUSE sat-
isfied our two a priori requirements for a successful multi-modal 
method. Namely, the structured self-supervision approach used by 
MUSE facilitated capturing and combining discriminative informa-
tion that was not available from either modality alone. Furthermore, 
MUSE was not unduly confounded by poor data quality in either 
one or both modalities.

MUSE analysis of mouse cortex layers from seqFISH+ data. 
Assessing inferred subpopulation structure on real data can be 
challenging due to a lack of ground truth. However, tissues with 
stereotyped spatial organization of cell types can provide indepen-
dent evidence to evaluate the quality of learned representations and 
identified subpopulations29,30. A particularly good example of this is 
the brain cortex31,32, whose multi-layer patterning provides orthog-
onal information to evaluate discovered subpopulations. Thus, we 
applied MUSE to two experimental mouse cortex datasets.

The first cortex dataset was obtained using seqFISH+ technol-
ogy12. This dataset includes expression profiles of ~10,000 genes 
and cell images with DAPI and Nissl staining for 523 cells. For the 
transcript modality, we used a standard pre-processing pipeline for 
single-cell RNA and selected highly variable genes as input features 
x (Methods). For the morphological modality, we input the DAPI 
and Nissl images for each cell (based on the provided cell masks) 
into a pre-trained deep neural network (Google Inception v3  
(ref. 33)) to extract morphological properties as input features y 
(Methods and Extended Data Fig. 2a). We extended subpopulation 
analyses to include four approaches in each of three classes, based 
on: (1) only transcriptional features x (PCA, ZIFA34, SIMILR25 and 
scScope26, with detailed descriptions in Methods); (2) only mor-
phological features y (PCA, multi-dimensional scaling (MDS), 
isometric mapping (Isomap) and t-distributed stochastic neighbor 
embedding (tSNE)); or (3) the combination of both x and y (CCA, 
MOFA+18, AE and MUSE). As before, cell clusters and cluster num-
bers were identified automatically by performing Louvain cluster-
ing on the latent cell representations z (Methods).

MUSE identified a relatively large number of clusters that were 
spatially co-localized (Methods and Fig. 2a,b). Clusters were anno-
tated using layer-specific markers (Extended Data Fig. 2b). Only 
MUSE identified clusters specific to each of the four layers (L2/3, L4, 
L5 and L6; Fig. 2c,d and Extended Data Fig. 2b,c). Neither subdivid-
ing transcript-alone clusters (Extended Data Fig. 2d) nor increasing 
cluster numbers from multi-modal embeddings (Extended Data 
Fig. 2e) provided better layer separation. In some cases, MUSE 
clusters within the same cortex layer could be seen to have dif-
ferent distributions of morphology (Fig. 2e) and/or matched to  
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different glutamatergic cell types reported in a recent single-cell 
RNA sequencing (scRNA-seq) study35 (Extended Data Fig. 2f).

MUSE analysis of mouse cortex layers from STARmap data. The 
second cortex dataset was obtained using STARmap technology. 
For the transcript modality, this dataset contained 973 single-cell 
expression profiles of 1,020 genes; however, for the morphologi-
cal modality, only cell shape masks were provided. The data were 
processed in the same manner as for the previous cortex dataset to 
obtain latent representations and subpopulations.

We visualized the ability of different methods to ‘discover’ corti-
cal layer structure based on pseudo-colored cortex depth (Extended 
Data Fig. 3a). SIMLR and MUSE identified the highest number of 
spatially co-localized clusters (Extended Data Fig. 3b, top), with the 
clusters from MUSE well separated in latent space (Extended Data 
Fig. 3b, bottom). We note that the MUSE clusters were also robust 
to cluster parameter changes (Extended Data Fig. 3c).

Based on anatomic annotations from the original paper, which 
labeled all seven layers in the cortex sample, MUSE successfully 
identified all neuronal and non-neuronal layers (Extended Data 
Fig. 3d and Methods). As a case study, we analyzed STARmap clus-
ters identified from individual (based on PCA) or combined (based 
on MUSE) modalities in the joint latent space provided by MUSE 
(Fig. 3a). We classified clusters based on whether MUSE (1) refined, 
(2) reproduced or (3) discovered new clusters compared to those 
obtained from single-modal analyses (Extended Data Fig. 3e,f).

The ‘refined’ MUSE clusters were poorly separated based on 
transcript features yet were reasonably well separated based on 
morphology features (Fig. 3b). In the combined analysis, MUSE 
employed morphological diversity to further dissect cells into sub-
groups. The ‘reproduced’ MUSE clusters were distinct based on 
transcript features alone (Fig. 3c). Differential expression analysis 
allowed us to annotate these clusters as astrocyte (Astro.), hip-
pocampal neuron (Hippo.), oligodendrocyte (Oligo.) or smooth 

d

a

c

e

L2/3 L4 L5 L6

L2/3/4

L5

L6

Other

L2/3 –2

L2/3 –3

L4 –1

L4 –2

L5

L6 –1

L6 –2

L6 –3

Other

L2/3 –1

L2/3 L4 L5 L6

P
C

1 
- 

m
or

ph
ol

og
y

PC1 - transcript

L2/3

P
C

1 
- 

m
or

ph
ol

og
y

PC1 - transcript

L4

P
C

1 
- 

m
or

ph
ol

og
y

PC1 - transcript

L6

Spatial densityCluster
Spatial mapping

P
D

F

x/pixel
tSNE-1

tS
N

E
-2

0

15
10
5

–5
–10
–15

0–5–1
0

–1
5 5 10 15

x/pixel

y/
pi

xe
l

Combined analysis

MUSE

Transcript analysis

PCA

b

MorphologyTranscript Combined

C
lu

st
er

 n
um

be
r

PCA
ZIF

A

SIM
LR

sc
Sco

pe
PCA

M
DS

Iso
m

ap
tS

NE
CCA

AE

M
OFA

+

M
USE

0

5

10

15

Spatial co-localized clusters

Non-co-localized clusters

Cluster 1
Cluster 2
Cluster 3

Cluster 4
Cluster 5

Cluster 7
Cluster 8
Cluster 9

Morphology-alone

PCA MDS Isomap tSNE

CombinedTranscript-alone

ZIFA SIMLR scScopePCA CCA MOFA+ AE MUSE

MorphologyTranscript Combined

S
pa

tia
l c

o-
lo

ca
liz

io
n

sc
or

e 

0.2

0.4

0.6

0.8

1.0

0

sc
Sco

pe
PCA

ZIF
A

SIM
LR PCA

M
DS

Iso
m

ap
tS

NE
CCA

AE

M
OFA

+

M
USE

15

10

5

0

–5

–10

–15
–15 –10 –5 0 5 10 15

15

10

5

0

–5

–10

–15
–4 –2 0 2 4 6 8

15

10

5

0

–5

-10

–15
–4 –2 0 2 4 6

3,000

2,000

1,000

0

0 2,000 4,000 6,000 0
1,

00
0
2,

00
0
3,

00
0
4,

00
0
5,

00
0
6,

00
0
7,

00
0

0.0006

0.0004

0.0002

0.0000
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muscle (SMC) cells. The ‘discovered’ MUSE clusters were missed 
from either single modality, which individually provided only weak 
differences (Fig. 3d). Here, the combination of weak heterogeneities 
from both modalities enabled MUSE to identify distinct L2/3, L5 
and L6 structures.

MUSE analysis of pancreatic ductal adenocarcinoma tissue from 
ST data. Genetic diversity and tumor microenvironment variation 
can greatly affect cancer progression, diagnosis and treatment36–38. 
Here, we made use of a pancreatic ductal adenocarcinoma (PDAC) 
dataset39 collected by ST, which provides tissue-spot-based (rather 
than single-cell-based) reporting of transcriptional states. In this 
dataset, each ST spot contains multiple cells, which limits the  

resolution at which subpopulations can be discovered. For tran-
scripts, 428 tissue spots were sequenced, and, for imaging, corre-
sponding tissue sections were stained with hematoxylin and eosin 
(H&E). We took the top 500 variable genes as the input for the tran-
script modality, and we segmented the corresponding H&E image 
regions for ST spots to learn deep image embeddings (Methods and 
Extended Data Fig. 4a,b). To provide high-resolution references, the 
provided scRNA-seq data from the same tumor tissues were used 
(Extended Data Fig. 4c,d).

In the original study39, transcript analysis of the regionally 
averaged ST data identified four regions, including one identi-
fied as cancer; analysis of high-resolution scRNA-seq data fur-
ther revealed the presence of two cancer clones with the signature 
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marker genes Tmfsf1 (high in both clones) and S100a4 (high in one 
clone) (Extended Data Fig. 4d). We applied MUSE to the avail-
able ST and image multi-modal data and identified two morpho-
logically distinct cancer regions, each of which captured one of the 
two distinct clones based on the signature marker genes (Fig. 4a,c). 
These two distinct cancer clones were not well identified by either 
transcript-only clustering or subclustering (Extended Data Fig. 4e) 
or by image-only (Fig. 4b,c) analysis.

Outside of the cancer regions, MUSE also dissected non-tumor 
tissue into spatially distinct subregions. We performed differen-
tial expression analysis on these clusters to investigate changes 
across tissue regions (Fig. 4d and Methods). The top overexpressed 
cancer-region genes were previously identified PDAC biomarkers 
(Krt19 (ref. 40), Apol1 (ref. 41), Krt17 (ref. 42) and Lamc2 (ref. 43)); these 
genes showed a decreasing trend with increasing distance from the 
cancer regions (Fig. 4e, top, and Extended Data Fig. 4f, top). In com-
parison, the top overexpressed non-cancer-region genes showed the 
reverse trend for distance (Fig. 4e, bottom, and Extended Data Fig. 
4f, bottom). Interestingly, eight out of the top ten of these overex-
pressed non-cancer-region genes (Supplementary Table 2) were also 
previously reported to be overexpressed in bulk tissue samples from 
patients with PDAC with worse prognosis44.

MUSE analysis of human intestine tissue from Visium data. Next, 
we applied MUSE to a recent dataset generated from the intestine of 
a male adult colon using the commercially available 10x Visium spa-
tial platform45. After removing spots outside of the tissue regions, 
we analyzed 2,807 sequenced tissue spots (Methods). For the tran-
script modality, we used the same pipeline as before to select the top 
500 variable genes. For the image modality, we extracted deep image 
features from regions in the H&E images corresponding to the tis-
sue sequencing spots.

For this dataset, the image modality showed clear clustering 
structure (Extended Data Fig. 5a). MUSE, as well as single-modality 
analysis, revealed layered intestinal structure (Extended Data Fig. 
5b,c). Inspired by a recent study46, we used known markers from 
major cell types in this tissue to evaluate the coherence of identi-
fied clusters. We focused on four major cell types, which were 
labeled as epithelium, muscle cells, immune cells and endothe-
lium. Epithelium and muscle layers were clearly identified within 
the clusters (Fig. 5a,b). MUSE and transcript clusters generally 
showed higher enrichment of layer-specific genes compared to the 
image modality alone (Fig. 5c,d). Immune and endothelial cells 
appear spatially grouped (rather than layered) in H&E images. We 
observed one major region for each of these two cell types, which 
were annotated in the previous publication (Fig. 5e, left). We used 
the identified clusters covering each region (Fig. 5e, right) and visu-
alized cell marker expression (Fig. 5f,g). For the immune region, 
the image-alone and MUSE subpopulations showed higher marker 
enrichment, whereas, for the endothelial region, the transcript-alone 
and MUSE showed higher marker enrichment. An interesting pos-
sibility is to use the computational resolution-enhancement method 
BayesSpace47 to infer sub-spot transcript profiles and enhance the 
spatial resolution for ST data before inputting into MUSE. With this 
additional pre-processing, we observed instances of improved spa-
tial and subpopulation resolution (Extended Data Fig. 5d,e), sug-
gesting a fruitful direction of future integration.

MUSE analysis of Alzheimer’s disease from ST data. Finally, we 
investigated how MUSE could leverage combined ST and pathology 
biomarker image data. For this, we made use of a recent study of 
the deposition of amyloid-beta (Aβ) peptide in brain, which is a key 
pathophysiological hallmark of Alzheimer’s disease (AD)48,49. Here, 
we evaluated MUSE on a multi-modal AD dataset with regional 
information on transcripts (ST) and Aβ distributions (immuno-
fluorescent imaging)50. The data consisted of brain samples from 

ten AppNL-G-F knock-in mice of four different ages (3, 6, 12 and 18 
months), using Aβ accumulation as a proxy for disease progres-
sion (Extended Data Fig. 6a). For each sample, we analyzed a tissue 
section that was spatially barcoded for ST sequencing as well as an 
adjacent section immunostained for Aβ (Fig. 6a). In total, 5,009 ST 
spots were sequenced, and we selected the top 500 variable genes 
as before. For the morphological modality, we segmented the cor-
responding region in the adjacent fluorescent image (Aβ-channel 
only) for each ST spot and learned the deep embeddings using the 
Inception v3 model.

Image-alone analysis highlighted the progression of AD as 
viewed by age or by the previously defined Aβ index50 (Fig. 6b and 
Extended Data Fig. 6b,c). Transcript-alone analysis highlighted 
expression differences across brain regions (Fig. 6c). Satisfyingly, 
in combined multi-modal analysis, both the disease progression 
trajectory (from fluorescent images) and brain region differences 
(from transcripts) were captured in the MUSE latent space (Fig. 6d).  
(We note that the 6-month transcript data are distinct from the 
other data; Fig. 6c,d, dashed ellipses.) We further observed that 
MUSE clusters captured regional and temporal specificity (Fig. 6e).

We made use of the MUSE clusters to look for Aβ-related genes. 
We identified four sets of MUSE clusters that had similar regional 
compositions (enriched in thalamus, hypothalamus, hippocam-
pus and cortex) but different age compositions (Fig. 6f). First, we 
investigated differentially expressed (DE) (in age) genes within each 
cluster set. The top DE genes shared across all four regions (Fig. 6f) 
included AD risk genes identified from previous studies, such as 
Ctsd (top-ranked DE genes for all four cluster sets), C4b, Apoe and 
Trem2 (Supplementary Tables 3–5). Second, we performed pathway 
enrichment analysis using the DE genes from each of the four sets 
of clusters (Fig. 6g, top). This allowed us to identify regional dif-
ferences in aspects of amyloid precursor protein (APP) processing 
(Fig. 6g, bottom). For example, the hypothalamus is enriched for 
DE genes related to ‘APP catabolic processes’, whereas the cortex is 
enriched for DE genes related to ‘cellular response to Aβ formation’. 
Specific examples of changes in older AppNL-G-F mice include known 
AD-related genes Ranbp9 (downregulated in hypothalamus), Igf1 
(upregulated in cortex) and Sorl1 (upregulated in hypothalamus but 
downregulated in cortex). In summary, analysis of MUSE clusters 
revealed regional, temporal and biological differences reflecting AD 
progression and raised the hypothesis that APP processing is not 
uniform across brain regions.

Discussion
The characterization of cellular heterogeneity is fundamental to 
understanding the organization and function of tissues in health 
and disease. Two widely used and well-validated methods to study 
tissue diversity are microscopy (to capture morphological differ-
ences) and scRNA-seq (to capture transcriptional differences). 
MUSE leverages a learning architecture containing self-supervision 
and self-reconstruction losses that encourage the synthesis of sub-
population structure observed in these distinct modalities. We 
demonstrated, for both synthetic data and a diverse collection of 
biological data from different platforms, that MUSE can reveal 
novel subpopulation structures and tissue organization missed by 
single modalities or other methods.

Identified cellular subpopulations can, in principle, always be 
further subdivided to reflect a finer characterization of observed 
heterogeneity. Subdivision based on multiple modalities provides 
an opportunity to identify more meaningful biological distinctions. 
From a technical perspective, multi-modal data may also help to 
enhance signal from a low-quality or less informative modality (for 
example, spatially averaged cell measurements, limited numbers of 
measured cells or low transcript depth). In our studies, subpopulation 
refinements obtained by combining image and transcriptomics data, 
rather than transcriptomics alone, appeared to reflect meaningful  
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biological differences, including spatial coherence within a layered 
or heterogeneous tissue, subclonal resolution of growth within a 
tumor and stages of neurodegenerative disease progression.

We anticipate that MUSE can be extended to integrate advances 
in spatial resolution47,51, new measurement technologies52 or 
increased numbers of modalities. Computational analysis across 
-omics modalities, even beyond spatial transcriptomics, holds 
the potential to increase our power to meaningfully dissect and 
interpret tissue heterogeneity47,53,54. The deep learning approach of 
MUSE—with its parallelized AE architecture and self-supervision 
learning approach—is extensible and designed to leverage and com-
bine future advances in measurement modalities.
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Methods
Overview. The ability of MUSE to combine multi-modal data is built around 
the following two principles. First, MUSE makes use of an AE architecture with 
self-reconstruction loss for each modality. The AE encodes data in the original 
space (capturing high-dimensional, multi-modal measures of the cells) into 
points in a joint ‘latent’ space (a low-dimensional space that is allowed to mix the 
modalities) that, although low dimensional, still contains enough information 
to be decoded faithfully back to the original space. A self-reconstruction loss 
measures ‘faithfulness’ as the difference between the original and decoded data 
and is minimized during training of MUSE. Second, MUSE makes use of a 
self-supervision loss, which is simultaneously minimized with the reconstruction 
loss during training of MUSE. Subpopulation structure in each modality is 
calculated in each training iteration. During training, the self-supervision loss 
encourages points that are near (or far from) each other in each modality to remain 
near (or far from) each other in the joint latent space. Taken together, MUSE 
provides a way to combine features across modalities that respects heterogeneity 
within each modality. Although MUSE is demonstrated using image and 
transcriptomics data, the approach is general.

Multi-modal structured embedding. MUSE learns joint latent features by 
incorporating heterogeneity of morphological and transcriptional modalities. 
For a single-cell or tissue-region spatial transcriptomics dataset with n samples, 
transcriptional and morphological profiles are represented as X ∈ R

n×p 
and Y ∈ R

n×q, where the ith row of each matrix is the transcriptional (xi) or 
morphological (yi) feature from the same sample i.

Zero-inflated multi-modal AE. The whole AE structure is illustrated in Extended 
Data Fig. 1r. Features from two modalities (xi and yi) are input into a multi-modal 
AE, and a latent representation for each modality is learned by the encoder layer:

hxi = fEncoderx (xi)

hyi = fEncodery (yi)

where fEncoderx (·) and fEncodery (·) are multi-layer neural networks for two 
modalities, and hxi , hyi ∈ R

m are latent representations with the same low 
dimension extracted from high-dimensional original inputs. The activation 
function in the last layer of the two encoders is chosen as tanh (·) to ensure the 
same scale for the two representations. Then, the initial joint representation zi is 
learned by combing hxi and hyi:

zi = fEncoderz
[

concat
(

hxi , hyi
)]

where concat (·) function concatenates two latent representations into one vector, 
and the neural network encoder fEncoderz (·) further encodes the vector into a joint 
representation zi ∈ R

k. The joint representation zi will be optimized by structured 
self-supervision loss.

Next, we use weight matrices wx and wy to transform information in zi for the 
reconstruction of the original features from ith sample xi and yi:

z(x)i = ziwx

z(y)i = ziwy

where wx, wy ∈ R
k×k are matrices that transform information in zi to generate 

modality-specific features z(x)i  and z(y)i . The Frobenius-norm (F-norm) is used 
on wx and wy to alleviate overfitting. Finally, features for each modality are 
reconstructed by decoders:

x̂i = fDecoderx
(

z(x)i

)

ŷi = fDecodery
(

z(y)i

)

where fDecoderx (·) and fDecodery (·) are multi-layer neural networks that expand 
latent representations into reconstructed features x̂i and ŷi.

Self-reconstruction loss. For the transcriptional modality, dropout is a major 
limitation due to the challenges of tracking fluorescent spots across multiple 
imaging rounds or sequencing on a small number of cells. Therefore, transcript 
profiles usually include a large proportion of zeros. Here, we use a zero-inflated 
reconstruction error for the transcript modality to remove the effects of  
zeros entries:

Lreconstructx =
1
n

n
∑

i=1

∥

∥sign (xi) ◦ (xi − x̂i)2
∥

∥

∑

sign (xi)

where the function sign (·) returns a vector of 0s or 1s for each entry of the vector 
xi depending on whether the entry is zero or not (respectively); 

∑

sign (xi) returns 
the total number of non-zero entries in the vector xi; and ◦ is the element-wise 
product of two vectors. Thus, the numerator returns the total reconstruction error 
for xi using genes with non-zero expressions, and the ratio calculates a normalized 
reconstruction error for expressed genes in the ith sample.

For the morphological modality, we used the standard reconstruction loss:

Lreconstructy =
1
n

n
∑

i=1
∥yi − ŷi∥2/q

The overall reconstruction loss is the combination of the two modality losses 
with the sparsity constraint:

Lreconstruct = Lreconstructx + Lreconstructy + λregularization
(

∥wx∥F +
∥

∥wy
∥

∥

F

)

where λregularization is the regularization hyperparameter and is determined through 
analysis on simulation data (Extended Data Fig. 1s). ∥·∥F represents the F-norm 
of matrix. Effects from λregularization and cluster number to regularization value were 
quantified in Extended Data Fig. 1t.

Self-supervision loss. To extract useful information from each modality and increase 
the quality of the joint latent feature zi, we further used structured self-supervision 
learning to encourage the structure of each modality to be maintained in the joint 
latent space.

To identify modality-specific population structure, clustering is performed for 
cell i using the latent feature from each modality (hxi , hyi) independently. Here, 
PhenoGraph23 was used to identify sample structures. The optimal cluster number 
is determined automatically on sample graph structures, an approach that is widely 
used in single-cell analysis. Here, cluster labels for cell i with respect to modality 
features xi and yi are denoted by lxi and lyi, respectively. Cells with the same labels 
are similar to each other in (at least) one modality. Clusters from each modality are 
used as supervising labels to improve the learning of joint latent feature zi via the 
triplet loss:

Ltripletx =
1
n

n
∑

i=1
max

(

∥

∥zi − zposx
∥

∥

2 −
∥

∥zi − znegx
∥

∥

2 + ε, 0
)

Ltriplety =
1
n

n
∑

i=1
max

(∥

∥

∥
zi − zposy

∥

∥

∥

2
−

∥

∥

∥
zi − znegy

∥

∥

∥

2
+ ε, 0

)

where, in Ltripletx, sample zi is the anchor, and zposx is a positive sample from the 
same cluster as the anchor based on clusters from modality x. znegx is a negative 
sample from a different cluster; ε is the margin; and Ltriplety is defined in the same 
way using clusters from modality y. The triplet loss pushes the distance difference 
between anchor-positive and anchor-negative samples to be greater than the 
margin so that the loss approaches its minimum (that is, 0). Positive and negative 
samples were randomly selected during training. As the choice of margin ε is hard 
to predetermine due to the uncertainty of feature distributions in two modalities, 
an adaptive method was used to automatically determine the margin value (refer to 
the ‘Optimization of MUSE’ section below).

Loss function. The overall loss function for training is the combination of the 
self-reconstruction and self-supervision losses:

L = Lreconstruct + λsupervise
(

Ltripletx + Ltriplety
)

where λsupervise is the hyperparameter to balance the contribution from triplet loss 
terms and was determined by simulation experiments (Extended Data Fig. 1s-(2)).

Optimization of MUSE. MUSE is trained on raw features and reference labels from 
two modalities and optimizes joint latent features and cluster labels iteratively.

First, we obtain an estimate of the margin ε used in triplet loss. To accomplish 
this, we train the model without supervised terms by setting λsupervise = 0, which is 
equivalent to a multi-modal AE with zero-inflated loss in the transcript modality. 
We then estimate ε as the differences between medians in the top and bottom 20% 
values in the pairwise distance matrix from the initialized joint latent zi.

Then, we optimize the whole MUSE model using iterative training (over the 
complete loss function):

 1. Fixing the network parameters, update the cluster labels lxi and lyi by using 
clustering on hxi , hyi (see below).

 2. Fixing cluster labels lxi and lyi, optimize the network parameters to obtain 
updated hxi , hyi and zi.

Clustering. During training, clustering and labels for each independent modality 
were obtained using PhenoGraph23 with the Louvain method, which determines 
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the optimal cluster number automatically. After optimization, the same procedure 
was used to obtain clusters and labels for the joint latent space. For all PhenoGraph 
analysis, we used the same default 30 nearest neighbors to construct the graph. 
We also tested the effects of nearest neighbor numbers on the cluster numbers and 
MUSE accuracies (Extended Data Fig. 1u). We note that the architecture of MUSE 
is flexible, and other (for example, modality-specialized) clustering approaches can 
be used instead of PhenoGraph to provide cluster labels lxi and lyi.

Spatial transcriptomics data pre-processing. In this work, we made use of five 
datasets using seqFISH+, STARmap, ST, Visium and ST with fluorescent imaging, 
respectively.

seqFISH+ cortex dataset. The seqFISH+ data includes 523 cells from five fields of 
views in a mouse cortex. For transcriptional modality, 10,000 RNAs were profiled 
using in situ sequencing for each cell. We performed pre-processing based on gene 
count data and selected the top 500 most variable genes (genes with zero counts for 
all cells were excluded by default). Gene counts were normalized by library size and 
transformed using log(1+x) before input into the tested models. Transcript analyses 
were performed using the scanpy Python package (version 1.4.4)55. For morphology 
modality, DAPI and Nissl stains were used in imaging, and cells were segmented 
manually based on their morphology by seqFISH+ authors. Each cell segmentation 
region was placed at the center of an empty image with 299 × 299 pixels. Then, 
DAPI and Nissl channels were input into the pre-trained Inception v3 deep 
neural network independently. The output of the last network layer (with 2,048 
dimensions) from each cell was concatenated into a long vector. PCA was applied 
to compress these feature vectors to 500-dimensional feature vectors. Vectors were 
scaled to have the same mean value for transcript features across cells and then 
were used as input to the tested models. We used the Inception v3 network33 with 
pre-trained parameters provided by TensorFlow Hub (https://tfhub.dev/).

STARmap cortex dataset. The STARmap dataset mapped 973 cells for mouse visual 
cortex, and each cell has 1,020 gene measurements. Cells were identified using 
watershed segmentation, and segmentation masks were provided. We used the 
same analysis pipeline modality as in seqFISH+ for transcript. For morphology 
modality where cell markers were absent, we directly placed the provided cell 
segmentation masks over blank images and input them into the same Inception v3 
neural network as before. Outputs from the last layers were also compressed using 
PCA and scaled to obtain single-cell morphological features.

Spatial transcriptomics dataset of PDAC. The PDAC dataset employed the ST 
technology and sequenced 428 spots in the tumor tissue. For transcript data, we 
followed the pre-processing in the original publication39, normalized each spot by 
total counts and then scaled using median transcript counts. We also performed 
log(1+x) transformation and selected the top 500 most variable genes. For image, 
we identified corresponding H&E regions for each spot using ST positions, resized 
image tiles to 299 × 299 pixels and learned deep embeddings using Inception v3. 
To test the region size that provided the best description of microenvironment, 
we considered several different image sizes and used the one that gave the best 
separation (Extended Data Fig. 4g).

10x Visium dataset of human intestine. The sample was from the colon of a male 
patient aged 66 years and was labeled as ‘A1’ in the original publication45. The 
10x Visium array covered 4,992 spots. After removing spots that did not map to 
the tissue region, 2,807 tissue spots were left for the subsequent analysis. For the 
transcript modality, we again used median normalization and the log1p transform 
and selected the top 500 most variable genes. For H&E images, tiles corresponding 
to tissue spots from the downsampled image were segmented, resized and input to 
Inception v3 to obtain deep features.

Spatial transcriptomics and fluorescent imaging dataset of AD. The AD dataset 
contains six AppNL-G-F knock-in mice in the age of 3 (two mice), 6, 12 and 18 (two 
mice) months. In total, ten brain samples were collected, with eight of them from 
3- or 18-month-old mice (Extended Data Fig. 6a). For each sample, three adjacent 
sections were obtained, where the middle layer was used for ST sequencing and 
the other two were immunostained for imaging (except for the 6-month sample 
where only one section was available). Each section included ~500 ST spots, and, 
together, 5,009 spots were obtained. For transcript modality, we employed the 
filtered logCPM data provided in the original publication13 and selected the top 
500 variable genes. For morphological modality, we selected the Aβ channel of 
fluorescent images and segmented regions using the coordinates from adjacent ST 
spots. Then, Aβ images were resized and transformed to deep embeddings using 
the Inception network and compressed into 500-dimension morphological input.

Rationale for using deep image features. For image data contained within the spatial 
transcriptomics dataset, data scale is often small, and subpopulation annotation is 
less available. Here, we posited that deep features could provide an efficient method 
for constructing rich, informative image profiles. To this end, for all datasets in 
this work, we used Google Inception v3, trained on ImageNet (ILSVRC-2012-CLS 
dataset), to extract deep features from cell or tissue spot images. The deep neural 

network architecture of Inception v3 (with ~25 million parameters) and large 
training set (1.2 million images from 1,000 categories) enabled the model to 
capture and encode general image features at different scales into highly compact 
representations. Although the interpretation of deep image features is not always 
immediate, in some cases it is possible to find intuition by determining where more 
traditional cell and tissue properties (for example, cell shape) map into the learned 
deep image feature space (Extended Data Fig. 2a).

Simulation experiment setup. We generated simulated ground truth class labels 
l ∈ {1, …, L}n for n cells and L possible cluster (that is, cell subpopulation) 
assignments (see Supplementary Table 1 for values of all parameters below). We 
simulated the situation for which only a proportion of true cluster identities could 
be observed from each modality separately, but all clusters could be discriminated 
using the combination of both modalities (Extended Data Fig. 1c). To accomplish 
this, we divided the true clusters into two non-overlapping groups that were each 
assigned to one of the two modalities. Then, in each group, clusters were merged 
with probability p providing observed cluster labels lx and ly for the two modalities.

For example, ten ground truth clusters, labeled {1, …, 10}, could be divided 
into groups G1 = {1, …, 5} , G2 = {6, …, 10}, with modality 1 considering merges 
from G1 but not G2 and vice versa for modality 2; after merging, modality 1 might 
have seven clusters {1 · 2 · 3, 4 · 5, 6, 7, 8, 9, 10}, whereas modality 2 might have 
six clusters formed from {1, 2, 3, 4, 5, 6 · 7 · 8 · 9 · 10} (where ‘·’ indicates merged 
clusters). Although each modality can distinguish only a subset of the clusters, the 
combination has the potential to distinguish all of them.

For the transcriptional modality, we followed the same scRNA-seq simulation 
framework as used in SIMILR25 and scScope26. In short, we generated latent codes 
z(x)i ∈ R

m for cell i using a multivariable normal distribution:

z(x)i ∼

K
∑

k=1
πk,iMVN (μk, Σk) ,

where K is the total cluster number; πk,i = 1 if cell i was assigned to cluster k 
in lx and otherwise 0; μk ∈ R

m was sampled from a uniform distribution with 
Σk ∈ R

m×m the identity matrix. Raw transcriptional features were generated 
through a linear transformation by xrawi = A(x)z(x)i , where entries in the 
random projection matrix A(x)

∈ R
p×m were randomly sampled from the 

uniform distribution between [−0.5, 0.5]. Gaussian noise was added to features 
xnoisei = xrawi + ε, where ε was sampled from a Gaussian distribution N(0, σ2). 
Next, dropout in the count matrix with dropout rate proportional to expression 
level was simulated as:

xi = xnoisei δ
[

exp
(

−αxnoisei

)

< η
]

,

where δ [·] is an indicator function that outputs 1 if the argument is true and 
otherwise 0; α is the decay coefficient that controls dropout levels (set by default to 
0.5); and η is a random value sampled from the uniform distribution between [0, 1]. 
We input xi to all methods for analysis.

For the morphological modality, we generated latent codes z(y)i ∈ R
m using the 

same mixture model procedure as above with modality labels ly. To add complexity 
to these ‘image-based’ features, we passed these latent codes through a two-layer, 
non-linear network:

y(1)i = sigmoid
(

A(y)
1 z(y)i

)

,

y(2)i = sigmoid
(

A(y)
2 y(1)i

)

,

where A(y)
1 ∈ R

q×m and A(y)
2 ∈ R

q×q were matrices randomly sampled from 
the uniform distribution [−0.5, 0.5]; sigmoid (·) is the sigmoid function to 
non-linearly transform the data. Finally, as above, we added random noise and 
dropouts to y(2)i  to obtain final morphological features yi. As a heuristic, the 
number of dropouts in this modality was set to 0.1 to obtain reasonably similar ARI 
scores for clustering based on each modality alone.

We generated ‘semi-simulated’ data using real images (Extended Data Fig. 1i). 
To create the image modality data, we used the image features from the STARmap 
data and PhenoGraph to obtain image clusters. Next, we randomly subdivided 
the image clusters to create ground truth labels for all cells and then simulated the 
associated transcript modality data as described in the previous section.

Analysis of gene expression data. Differential analysis of expression data. With 
cluster labels, we identified DE genes using fold changes and P values. For each 
cluster, we compared within versus across cluster gene expression of cells. log2 fold 
changes were calculated based on mean gene expressions of these two groups to 
reveal the average expression differences. P values were derived from one-sided 
rank-sum test on expression profiles between the two groups to measure overall 
expression distribution differences. For the STARmap dataset, the analysis was 
conducted among ‘reproduced’ MUSE clusters (Fig. 3c). For the PDAC dataset, the 
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differential analysis was conducted between two cancer regions and two pancreatic 
tissue regions (Fig. 4d). For the AD dataset, clusters with similar brain region 
compositions were analyzed independently (highlighted in bracket in Fig. 6e; late 
stage versus early stage).

Annotation of cortex layers. For the seqFISH+ data, marker genes that identify 
different cortex layers were obtained from the literature31 (in our case, four 
different genes were used to identify four different layers; Extended Data Fig. 
2b). Next, clusters with layer-like structures were identified (see below for score). 
Finally, for each layer-like cluster, the maximally overexpressed marker gene was 
used to assign each cluster to a layer.

For the STARmap data, anatomic layer labels were provided15. This allowed 
clusters to be annotated based on their spatial positions in the tissue section. 
First, clusters with significant spatial co-localization patterns (based on spatial 
co-localization score) were identified for annotation. Next, a one-dimensional 
kernel density estimation (KDE) with Gaussian kernels was performed along the 
provided x coordinate of the image (corresponding to the cortex axis) for each 
cluster to model the spatial density of cells in the tissue. Finally, clusters were 
assigned to anatomic layers where peaks of cell spatial densities were located. In 
our implementation, KDE was performed using the KernelDensity function from 
the sklearn Python library with bandwidth determined by Scott’s rule.

Annotation of tissue regions for PDAC data. For transcript-only analysis results, we 
directly used spot clusters and annotations from the original paper39. For image 
and MUSE clusters, we used the histological annotations based on H&E image 
(also provided in original publications; Extended Data Fig. 4b) as a reference.

Gene Ontology enrichment analysis. Based on differential analysis, we sorted genes by 
P values. Then, we made use of the online Gene Ontology analysis tool GOrilla56 and 
uploaded the ordered gene list to quantify the significance of biological processes.

Subpopulation identification and evaluation. Subpopulation discovery. Unless 
otherwise noted, PhenoGraph was used on the latent representation learned from 
different methods to identify clusters. PhenoGraph automatically determines 
optimal cluster number, which is valuable for analyzing new datasets where the 
true subpopulation size is unknown. We used default PhenoGraph parameters 
in the analysis. The effect of varying the number of neighbors used for graph 
construction on MUSE performance was analyzed in Extended Data Fig. 1u.

Spatial co-localization score and evaluation. To quantify the spatial enrichment 
in the tissue for cell clusters, we designed a spatial co-localization score based on 
the statistic used in gene set enrichment analysis57. We note that, throughout this 
work, spatial coordinates were used only in evaluation and never used as input to 
a method.

For all cells, we first calculated the cell–cell distance matrix 
D =

{

dij
}

∈ R
n×n, where dij is the Euclidean distance between cells i and 

j on the image. The distance matrix was further converted into similarity 
R = {rij} ∈ R

n×n by taking rij = 1/dij, i ̸= j. As the similarity matrix is 
symmetric, only one similarity score is used for each cell pair (i < j). All 
off-diagonal, upper-triangle entries (rij, i < j) in R were ordered into a list and 
re-indexed by rank L = {rk}, where rk is the similarity score in position k of L. If n is 
the total number of cells, then the size of L is given by N = (n − 1) (n − 2) /2.

We define two scores that allow us to assess whether a cluster label, C, is 
consistent with distance similarities. First, let SC ⊂ L be the set of similarity scores 
rk obtained from cells within C and define:

PC (SC, k) =
1
NsC

∑

rl∈SC ,
l≤k

rl,

where NsC =
∑

rk∈SC
rk. Second, for rk /∈ SC (that is, at least one cell is not in C), 

define:

P¬C (SC, k) =
1

N − NH

∑

rl /∈SC ,
l≤k

1,

where NH = (nc − 1) (nc − 2) /2 is the size of SC (nc is the number of cells in C). 
The spatial co-localization score (SCS) for C is defined as the maximal signed 
deviation between distributions PC (SC, ·) and P¬C (SC, ·).

To derive a significance P value, we constructed null SCS distribution by 
permuting cluster labels and calculating corresponding scores 1,000 times. The 
P value is defined as the proportion of scores greater than SCS on non-permuted 
labels. Source code for the SCS calculation is provide on GitHub.

Cluster accuracy evaluation with ARI. For simulation studies, where ground truth 
subpopulation labels were given, we evaluated clustering performance using the 
ARI24. An ARI near 1 indicates a strong match to ground truth clustering, whereas 
values near 0 suggest random assignment. In the implementation, we used the 
adjusted_rand_score function from the sklearn.metrics Python package.

Feature quality evaluation with silhouette coefficient. The quality of latent features 
was evaluated by the compactness of the clusters in the latent space using the 
silhouette coefficient58. A score of 1 indicates highest density in latent space. In 
our implementation, we employed the silhouette_score function from the sklearn.
metrics Python package.

Comparing methods. All compared methods were run on the same input features 
(see the above data processing section; single-modal methods took features from 
only one modality) to learn 100-dimensional latent representations. Subpopulations 
were identified based on latent representations using PhenGraph23. All methods 
were configured with default parameters (unless specifically noted) and were run on 
the same Linux desktop (Ubuntu 18.04.3 LTS operation system) with Xeon E5 CPU 
and Nvidia Titan X GPU (driver version 418.87.00, CUDA version 10.1).

The software packages used for comparisons are as follows.

Transcriptional feature learning methods. PCA: sklearn 0.20.3 Python package. 
ZIFA34 is a Bayesian approach that uses a statistical graph model to simulate 
the generation of gene count data. We used ZIFA.fitModel() from the ZIFA 
Python package (version 0.1) with latent code k = 100. SIMLR25 uses multiple 
kernels to construct the sample similarity matrices at multiple metrics and then 
decomposes similarity into low-dimensional representations. Here, we used the 
Python implementation of SIMLR (version 0.1.3) with 30 neighbors and maximal 
five iterations to construct the graph. scScope26 tackles the gene dropout using a 
recurrent AE and takes the bottleneck layer as latent representations. We used the 
Python implementation scScope (version 0.1.5) with two recurrent layers, 64 batch 
size and 100 epochs.

Morphological feature learning methods. PCA: as above. MDS, Isomap and tSNE: 
sklearn.manifold Python library (version 0.20.3). We note that the tSNE method 
can only support maximal three-dimension latent representations.

Multi-modal feature learning methods. CCA (from the sklearn Python package 
version 0.20.3) learns linear transformations of multi-view data and maximizes 
their correlations in latent spaces. We chose the CCA transformation of the 
transcript data for clustering. This widely used multi-modal analysis approach 
is best applied when the two modalities are equally informative. MOFA+18 is 
designed to combine multi-omics data using multi-view matrix factorization: 
mofapy2 package (version 0.3) with factors = 100, iteration = 500, group 
number = 1 and view number = 2 to learn 100-dimension joint features. AE learns 
joint representations based on reconstruction loss from two modal features. In 
the implementation, we used the same neural network structure as in MUSE, 
with standard reconstruction loss with all learning parameters (learning step, 
iteration numbers, etc.) the same as used in MUSE. For the concatenation analyses 
of two modalities (Extended Data Fig. 1g), we used three approaches, including 
standard scaling, min–max scaling or quantile transformation (implemented 
in the sklearn Python package), to normalize features and then concatenated 
them into joint features and extracted the top 100 principal components (PCs) 
for downstream analysis. MUSE: software is implemented in Python 3.7.3 with 
NumPy (version ≥1.16.2), SciPy (version ≥1.4.1), PhenoGraph (version ≥1.5.4) 
and TensorFlow (version ≥1.14.0) packages (details provided at https://github.
com/AltschulerWu-Lab/MUSE); hyperparameter values were chosen through 
simulation study (Extended Data Fig. 1s) and are provided in Supplementary Table 
6. The same parameters were used in all studied datasets.

Combined enhancement analysis using BayesSpace and MUSE. We followed the 
BayesSpace analysis pipeline and used the top 15 PCs of the transcripts as the input. 
BayesSpace (R package version 1.2.0) was run with default parameters (nrep = 1 × 104; 
nrep = 2 × 105; gamma = 3; jitter scale = 5.5; jitter prior = 0.3) to enhance each tissue 
spot into six subspots. The expression profiles, as well as spatial coordinates (also 
in 15 dimensions), were inferred (Extended Data Fig. 5d, left). Using the subspots’ 
positions, we identified corresponding image regions and extracted deep image 
features in the same procedure as before. Then, MUSE was performed on enhanced 
transcript profiles and image features to learn joint representations. As the transcript 
profiles from BayesSpace were the top PCs instead of counts, we modified the 
transcriptional reconstruction loss in MUSE to include all entries.

Software used in the study. Software packages use in the study can be accessed via 
the following links:

PhenoGraph: https://github.com/jacoblevine/PhenoGraph
ZIFA: https://github.com/epierson9/ZIFA
SIMLR: https://github.com/bowang87/SIMLR_PY
scScope: https://github.com/AltschulerWu-Lab/scScope
MOFA+: https://github.com/bioFAM/MOFA2
BayesSpace: https://github.com/edward130603/BayesSpace
GOrilla: http://cbl-gorilla.cs.technion.ac.il/
TensorFlow Hub: https://www.tensorflow.org/hub

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
seqFISH+ mouse cortex dataset: Transcript data were downloaded from 
the GitHub page of the seqFISH+ project (https://github.com/CaiGroup/
seqFISH-PLUS) on 1 August 2019. Nissl and DAPI stained images were provided 
by the authors of the seqFISH+ paper.
STARmap mouse cortex dataset: Raw data were downloaded from the project 
page (http://clarityresourcecenter.org/) on 2 July 2019. Transcript profiles and cell 
segmentation masks were extracted from data using the Python pipeline provided 
by the authors at https://github.com/weallen/STARmap.
PDAC dataset: Both spatial transcriptomics (including gene expressions and H&E 
images) and scRNA-seq datasets were downloaded from the Gene Expression 
Omnibus (GEO) database with accession number GSE111672.
Intestine dataset: 10x Visium spatial transcriptomics were downloaded from the 
GEO database with accession number GSE158328.
AD dataset: Raw and normalized count matrix of the spatial transcriptomics were 
downloaded from the GEO database of the project (accession number GSE152506). 
Immunofluorescence images (Abeta, GFAP, NeuN and DAPI staining) that 
correspond to spatial transcriptomics data were downloaded from the ‘synapse.org’ 
page of the project (https://www.synapse.org/#!Synapse:syn22153884/wiki/603937) 
on 31 October 2020.

code availability
Simulated tool for multi-modality data generation: Simulation code is available 
from GitHub (https://github.com/AltschulerWu-Lab/MUSE).
MUSE: MUSE is provided as a Python package under MIT license and can be 
installed through ‘pip install muse_sc’. Source code and demonstration code are 
available on GitHub (https://github.com/AltschulerWu-Lab/MUSE).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | overview and simulation studies of MUSE, related to Fig. 1. Parameters used in simulation were listed in Supplementary Table 
1. (a) Summary of data and analysis used in this work. (b) A flowchart of MUSE analysis pipeline. (c) Simulation design (Methods) to generate sample 
profiles with two modalities used for (d-s) below. (d) tSNE visualizations of latent representations from single- and combined-modality methods for 
randomly selected simulation experiments in Fig. 1c. Colors: ground-truth subpopulation labels in simulation. (e) Evaluation of combined methods in 
simulated data with different ground-truth cluster numbers. n = 1,000 (top) and 3,000 (bottom) samples were considered in simulations. (Note: for 
n = 1,000 and cluster number ≥30, each cluster may only contain a small number of samples.) (f) Evaluation of multi-modal methods in simulated data 
with Gaussian noise for increasing variance (σ). (g) Clustering accuracies for (i) analyses of concatenated modality features using various normalization 
approaches (Methods), and (ii) MUSE multi-modal analysis on matched or unmatched (randomly permuted sample order on one modality) data. ARIs 
were calculated based on n = 10 repeats. Boxplot: center line, median; box, interquartile range; whiskers, minimum–maximum range; same annotation 
also applies to other boxplots in this figure. (h) Example t-SNE visualization of MUSE subpopulations (indicated by shapes) and simple superimposition 
of single-modality clusters (indicated by colors) with simulation parameters chosen as in (f). (i) Simulation design using real morphological features from 
STARmap (Methods; dataset details were described in Fig. 3) and performances of multimodal methods (right n = 10). (j) Multimodal analysis on data 
with homogeneous features in one modality. Transcript profiles (left) were generated from a normal distribution while morphological features (middle) 
were simulated from known subpopulations as before. (k) Evaluation of clustering accuracy under different dimensions of joint latent representations 
(n = 10). (l) Clustering accuracy of MUSE while changing dimension of morphological features between 100 to 1,000 (n = 10). (m) Clustering accuracy 
of MUSE when fixing the latent representation of single modality (hx, hy) to different dimensions. ARIs were averaged on 10 repeats. Red underlines: 
parameters selected as default. (n) Effects of clustering methods on accuracies (n = 10). Cluster numbers for hierarchical and Kmeans methods were 
chosen using the elbow method with distortion score. (o) Run times for compared methods on simulated data; n = 1,000 cells. Note: for fair comparison, 
all methods were run under CPU mode. (p) Run times of MUSE on datasets with larger sample sizes using different clustering methods in label updating 
during training. (q) Accuracies and run times when fixing single modality labels (denoted as lx and ly in Methods) to the initial labels in training. Each dot 
represented one independent experiment. (r) Model structure of multi-modal autoencoder used in MUSE. (s) Performance evaluation of MUSE with 
different hyperparameter settings (n = 10): 1) weight of regularization term; 2) weight of supervision term; 3) learning rate; and 4) iteration intervals 
between cluster updating in training. Red underlines: parameters selected as default in MUSE package. (t) F-norms of selective matrices wx and wy to 
different true cluster numbers (left) in data and choices of regularization hyperparameter λregularization (right); n = 10. (u) Clustering accuracies (left) and 
number of clusters (right) from PhenoGraph when change the hyperparameter of n_neighbor (n = 10).
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Extended Data Fig. 2 | Analysis of mouse cortex dataset from seqFISh+, related to Fig. 2. (a) tSNE visualization of latent space from deep image 
features, overlaid with various cellular properties from CellProfiler. (b) Layer annotations of MUSE clusters based on layer gene markers. Spatial 
localization of cell clusters (first column) and marker expression abundances (second column) were shown. For each cluster, gene names with maximal 
overexpression levels were underlined. Boxplot: center line, median; box, interquartile range; whiskers, minimum–maximum range. (c) Comparison of 
discovered cortical layers by transcriptional or combined methods. 5 layers are shown. Squares with the same color and across multiple layers indicate 
the method discovered merged layers. Squares with no color indicate the method failed to discover the corresponding layer. (d) Subclustering analysis on 
transcript L2/3/4 cluster from Fig. 2c. Kmeans clustering were performed to divide L2/3/4 into two subclusters (middle). Spatial coherences with cortex 
layers were shown using cell density plots (right). (e) Comparisons of subpopulations identified by different clustering methods from multimodal features. 
In Kmeans, target cluster number (k) was set to the subpopulation size from MUSE analysis. (f) Shared up- and down-regulated glutamatergic marker 
genes between MUSE clusters and cell types from Allen Brain Atlas. Marker genes were obtained from recent Allen Brain Atlas publication; 36 markers 
were measured in both the seqFISH+ and Allen Brain datasets.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | comparison of methods on mouse cortex dataset from StARmap, related to Fig. 3. (a) tSNE visualization of latent representations 
by different methods with pseudo-colors labeling cortex depth along x-coordinate (on right side). (b) Comparison of cell clusters on (top) numbers of 
identified clusters with or without significant spatial co-localization properties and (bottom) feature quality evaluation by cluster compactness in latent 
space using Silhouette coefficient. (c) Stability analysis of identified clusters to the choice of hyperparameter n_neighbor in PhenoGraph. Red circles: major 
differences in subpopulations compared with the result using default parameters (left panel) annotated with affected cortex layers. (d) Spatial mapping 
and annotations of clusters with significant spatial co-localization patterns. Significantly co-localized clusters are identified using spatial co-localization 
score with permutation test. Clusters are assigned to one layer with respect to the anatomic annotations by original paper (Methods). (e) tSNE 
visualization of MUSE clusters in MUSE latent space. All clusters were classified into ‘Refined’, ‘Reproduced’ or ‘Discovered’ types based on comparison 
with clusters identified from transcript-alone or morphological-alone analysis (corresponding to Fig. 3a). (f) 3D mapping of three types of MUSE clusters 
in the latent space of morphological features (top layer of each 3D plot), MUSE latent features (middle layer) or transcriptional features (bottom layer). 
Lines connect the same cells across the three spaces.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Application of MUSE to a multimodal pancreatic ductal adenocarcinoma (PDAc) dataset, related to Fig. 4. (a) tSNE 
visualizations of latent representations and identified clusters by transcripts-alone (left), H&E image-alone (middle) and MUSE (right) analyses 
(corresponding to Fig. 4a). (b) Manual histological annotations (colored lines) provided in original publications overlaid with regional clusters (colored 
circles) from image analysis. Highlighted regions show the morphological differences. (c-d) Analysis of single-cell RNA-seq data from the same PDAC 
tissue. tSNE visualization with cell type annotations (c) and signature gene expressions of two cancer clones (d). Cell type annotations from original 
publication. (e) Subclustering analysis of transcript cancer region using Kmeans method and comparisons of clone signature expressions between 
transcript subclusters and MUSE cancer regions. Boxplot: center line, median; box, interquartile range; whiskers, minimum–maximum range. n = 44 for 
subcluster 1 and n = 71 for subcluster 2. (f) Spatial expression maps of overexpressed genes in cancer regions (top) or pancreatic tissues (bottom) through 
differential expression analysis between pancreatic tissue regions and cancer regions characterized by MUSE (Methods) (g) Cluster separateness of 
tissue image spots with different size. We segmented image tiles with different pixel sizes and input them into Inception-v3 to learn deep features. Then 
we performed clustering on features and used Silhouette score to quantify the separateness of clusters. Red arrow indicates the chosen region size.
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Extended Data Fig. 5 | Application of MUSE to a Visium human intestine dataset, related to Fig. 5. (a-b) tSNE visualizations of latent representations 
(a) and spatial plots (b) of identified clusters by transcripts-alone (left), H&E image-alone (middle) and MUSE (right) analyses. (c) Selected regions with 
various morphological patterns in the tissue. (d) Enhanced spatial maps of subpopulations from BayesSpace (left) or BayesSpace + MUSE (right). Details 
of the analysis were provided in Methods. (e) Selected zoom-in region examples with marker gene expressions or morphological patterns (top) and 
subpopulations defined from BayesSpace (middle) and MUSE (bottom) for four analyzed cell types in Fig. 5.
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Extended Data Fig. 6 | Application of MUSE to a multimodal Alzheimer’s disease dataset, related to Fig. 6. (a) A summary of samples collected in the 
Alzheimer’s disease dataset. (b) tSNE was fitted on MUSE deep embeddings and each spot was colored by the Aβ index (defined by standard deviation of 
intensity in the previous study). (c) Visualization of deep embeddings of Aβ spots in the same ages. Color annotations as in (a). (d) Proportion of samples 
from all 4 timepoints in each MUSE cluster, related to Fig. 6e.
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