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Immunodeficiencies
Caused by Infectious
Diseases
Jane E. Sykes, BVSc(Hons), PhD
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The classic example of immunodeficiency caused by an infectious agent is the
acquired immunodeficiency syndrome, caused by human immunodeficiency virus
(HIV). Similarly, the best known pathogens of companion animals causing immunode-
ficiencies are the feline retroviruses feline immunodeficiency virus (FIV) and feline
leukemia virus (FeLV). However, several other pathogens are capable of disrupting
normal immune function. Many infectious agents disrupt host barriers to infection.
This may result from the inflammatory response to a pathogen or direct damage by
the microbe itself. Examples include disruption of the gastrointestinal mucosal barrier
by canine parvovirus, destruction of nasal turbinates by Aspergillus fumigatus in
canine sinonasal aspergillosis, or paralysis of the respiratory cilia by Bordetella bron-
chiseptica. Anaplasma phagocytophilum disables neutrophil function, ensuring its
survival within a cell normally charged with antimicrobial substances. Viruses, such
as canine distemper virus, cause lymphopenia; the outcome of infection depends
on the balance between viral destruction of the immune system and the ability of
the remaining immune defenses to eliminate the virus.

Disruption of immune function by infectious agents may serve to promote the infec-
tious agent’s survival through host immune evasion. Immunosuppression having the
greatest impact clinically often occurs as a result of infection with organisms that
are able to persist within the host. Ideally, a pathogen is able to adapt such that it
can coexist with the host, without causing death of the host or severe illness, in
a way that maximizes the pathogen’s transmission efficiency.

The types of opportunistic infections that occur in patients that are immune compro-
mised as a result of an underlying immunosuppressive infection depend upon the
mechanisms of immunosuppression. Impairment of normal host barrier function or
the function of granulocytes is generally associated with a broad spectrum of bacterial
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infections and sometimes infection with opportunistic fungi, such as Aspergillus spp
Impairment of cell-mediated immunity (CMI) results in infections with opportunistic
pathogens, such as Nocardia spp, Mycobacterium spp, Toxoplasma gondii, and
a variety of fungal pathogens. Reactivation of dormant pathogens, such as feline
herpesvirus, may also occur with depression of CMI.

The purpose of this article is to highlight some of the mechanisms by which persis-
tent infectious microorganisms cause acquired immunodeficiency in companion
animal species, and the consequences of the resulting disturbance in immune
function.
VIRAL INFECTIONS CAUSING IMMUNODEFICIENCY
Canine Distemper Virus Infection

Canine distemper virus (CDV) causes canine distemper, a common disease of dogs
worldwide that is associated with a high degree of morbidity and mortality. The virus
also infects several other species, including foxes, raccoons, skunks, ferrets, and
free-ranging and captive felids. Disease in dogs is most prevalent in regions where
vaccination of young dogs against the disease is either not performed or is poorly
timed, and epidemics continue to occur in shelter environments in developed
countries.1

Canine distemper virus is a Morbillivirus related to measles virus and has been used
to study the pathogenesis of measles virus infection. Morbilliviruses are enveloped
RNA viruses that survive poorly in the environment. Based on genetic variation within
the viral hemagglutinin (H) gene, a multitude of different strains of CDV exist that vary in
their geographic distribution, cell tropism, and virulence. Although CDV infects
a variety of different cell types, including epithelial, mesenchymal, neuroendocrine,
and hematopoietic cells, the marked tropism of CDV for immune cells is critical in
respect to its ability to cause immunosuppression. Viral components involved in
CDV-induced immunodeficiency include the viral hemagglutinin; the V protein (a
nonstructural phosphoprotein); and the nucleocapsid (N) protein.

Dogs are generally exposed to CDV through contact with infected oronasal secre-
tions. The virus initially infects monocytes within lymphoid tissue in the upper respira-
tory tract and tonsils and is subsequently disseminated via the lymphatics and blood
to the entire reticuloendothelial system. Direct viral destruction of a significant propor-
tion of the lymphocyte population, and especially CD41 T cells, occurs within the
blood, tonsils, thymus, spleen, lymph nodes, bone marrow, mucosa-associated
lymphoid tissue, and the hepatic Kupffer cells.1–3 This viral destruction is associated
with an initial lymphopenia and transient fever that occurs a few days after infection.
Subsequently, there is a second stage of cell-associated viremia, after which CDV
infects cells of the lower respiratory; gastrointestinal tract; central nervous system;
urinary tract; and red and white blood cells, including additional lymphoid cells.

Elimination of CDV by the host depends on humoral and CMI.1,4 Because the virus is
lymphocytolytic, the outcome of infection depends on the rate at which the host is able
to remove the virus before the virus has sufficient time to cause severe immune system
injury. Dogs mounting a partial immune response may undergo recovery from acute
illness but fail to eliminate the virus completely, leading to a spectrum of more chronic
disease manifestations that often involve the uvea, lymphoid organs, footpads, and
especially the CNS. Opportunistic infections may also have the chance to develop
in these dogs.

Dogs with canine distemper may develop profound lymphopenia and leucopenia.
Lymphopenia results from generalized depletion of T and B cells in a variety of tissues
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(Fig. 1). CD41 T cells are preferentially depleted during the acute phase, which is fol-
lowed by CD81 cell depletion.5,6 Necrosis of hematopoietic cells within the bone
marrow may result in leucopenia.7

Infection of ferrets has been used as a model of CDV-induced immunosuppression.8

CDV infection of ferrets leads to dramatic reduction in cell-mediated immune function
with markedly depressed lymphocyte proliferative activity, and to some extent
delayed type hypersensitivity responses. The virus enters lymphocytes following
binding of the viral H gene to the primary receptor for the virus, signaling lymphocyte
activation molecule (CD150, SLAM). The expression of SLAM appears to be upregu-
lated in response to CDV infection.9 SLAM is also expressed on antigen-presenting
cells, such as dendritic cells and activated monocytes, and infection of these cells,
which may predominate in the chronic phase of infection, has been hypothesized to
be associated with impaired antigen presentation.1,6 Infection of dendritic cells within
the thymus may lead to impaired maturation and selection of T cells, with subsequent
release of immature CD5- T cells, including cells that may have the potential for autor-
eactivity.6 Lymphocyte apoptosis also occurs independent of viral infection in canine
distemper, although the mechanisms have not yet been elucidated.10 The presence of
the viral V protein is essential to permit rapid replication of CDV in T cells and critical in
CDV-mediated immunosuppression. This protein almost completely antagonizes
alpha interferon, TNF-alpha, Il-6, gamma-interferon, and Il-2 in the acute phase of
infection.3 Suppression of the cytokine response is associated with severe immuno-
suppression and a fatal outcome in ferrets. Finally, the N protein of Morbilliviruses
may interfere with the immune response through the binding of the CD32 (Fc-gamma)
receptor on B cells, resulting in impaired differentiation of B cells into plasma cells.11

Binding of this receptor on dendritic cells12 is associated with impairment of antigen
presentation by dendritic cells and resulting disruption of T cell function.

The most common secondary infections in canine distemper are secondary bacte-
rial infections that contribute to bronchopneumonia. Bordetella bronchiseptica is also
a common co-pathogen in dogs with distemper. Dogs may be diagnosed with borde-
tellosis in the early stages of distemper, the underlying CDV infection being over-
looked. Other opportunistic infections that have been identified in dogs with
distemper include toxoplasmosis,13 salmonellosis,14 nocardiosis,15,16 and generalized
demodicosis (Sykes and colleagues, unpublished observations, 2006). In one study
from Brazil, canine distemper was the most common underlying immunosuppressive
Fig. 1. Severe cortical lymphoid necrosis in a mandibular lymph node from a 5-month-old
female spayed German Shepherd cross that was euthanized as a result of canine distemper
virus infection.
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disease predisposing to nocardiosis in dogs.16 Infection with Pneumocystis carinii was
associated with CDV infection in a mink,17 and concurrent neosporosis and canine
distemper was reported in a raccoon.18

Canine Parvovirus 2 and Feline Panleukopenia Virus Infection

Although parvoviruses do not cause chronic, persistent infections in dogs and cats,
parvoviral replication creates the perfect storm for development of acute and severe
opportunistic bacterial infections. The combination of leukopenia, disruption of the
gastrointestinal barrier, and the immature immune system of the young animals that
are most susceptible to these viruses is associated with the common development
of sepsis, which is frequently the cause of death.

Canine parvovirus 2 (CPV-2) and feline panleukopenia virus (FPV) are small, nonen-
veloped DNA viruses. Since its emergence in 1978, CPV has subsequently mutated to
CPV-2a; CPV-2b; and in the last decade, CPV-2c, which was first documented in Italy
and has subsequently spread to dogs on every continent, with the exception of
Australia. The CPV-2c strain appears to be particularly virulent and there has been
some debate regarding the ability of current vaccines to protect against it and the
ability of commercially available SNAP ELISA tests to detect the virus.19

CPV and FPV have tropism for rapidly dividing cells. As such, they exert an effect on
the host that resembles the outcome of treatment with a chemotherapeutic drug. The
virus binds and enters cells using the transferrin receptor.20 Cells preferentially
involved are the crypt cells of the gastrointestinal tract, bone marrow, and lymphoid
tissue. Leukopenia results from sequestration of neutrophils within damaged gastro-
intestinal tissue and is compounded by destruction of white cell precursors within
the bone marrow. Damage to the gastrointestinal barrier can result in translocation
of enteric bacteria. In the face of the massive immunosuppression that ensues as
a result of virus-induced neutropenia and lymphopenia, the host fails to contain bacte-
rial replication and bacteremia and sepsis ensue. Treatment of secondary infections
with broad-spectrum parenteral antimicrobial drugs is critical to permit recovery of
dogs and cats from parvoviral infection. Bacterial causes of sepsis reported in infected
animals include Escherichia coli, Salmonella spp, and Clostridium difficile. Giardia
infection also exacerbates illness.21 Immunosuppression may also contribute to repli-
cation of other co-infecting enteric viruses, such as enteric coronavirus, which in turn
exacerbate the damage to the gastrointestinal mucosa. Similarly, CPV-induced immu-
nosuppression potentiates the development of postvaccinal canine distemper
encephalitis.22

The importance of secondary infections in the pathogenesis of parvovirus infections
is highlighted by the fact that experimental infection of germfree cats is not associated
with development of clinical illness, despite the associated reduction in white cell
count.23

Feline Retroviral Infections

Feline leukemia virus and feline immunodeficiency virus are common causes of viral-
induced immunodeficiency in cats, although the underlying mechanisms by which
they exert immunodeficiency are still incompletely understood. Subtypes of FeLV
and FIV are defined based on variations in the env gene sequence, which also influ-
ences their pathogenicity.

Feline Leukemia Virus Infection

There are four different subtypes of the gamma retrovirus FeLV: FeLV-A, FeLV-B, FeLV-
C, and FeLV-T. Each subtype uses a different receptor to enter cells (Table 1).24–27 All
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cats infected with FeLV-B, FeLV-C, and FeLV-T are co-infected with FeLV-A, with
FeLV-A being the only type that is transmitted between animals. The other subtypes
arise through recombination or point mutation within FeLV-A during the course of infec-
tion and influence the clinical expression of disease (see Table 1). FeLV-T, a T-cell tropic
variant, is unique amongst gamma retroviruses in that it requires two host proteins to
enter and infect cells.27 As a result of its T-cell tropism, FeLV-T infection may be partic-
ularly associated with immunodeficiency in cats.

Transmission of FeLV-A primarily occurs through prolonged, close contact with sali-
vary secretions, although other routes of transmission, including through biting, can
also occur. After an initial phase of viremia, FeLV replicates within rapidly dividing
lymphoid, myeloid, and epithelial cells, such as those lining the intestinal crypts.28

As with distemper, when cellular destruction exceeds the ability of the host’s immune
system to suppress viral replication, persistent viremia and progressive FeLV-related
disease results.

Clinical outcomes of FeLV infection include tumor development, especially
lymphoma or leukemia; non-regenerative anemia; marrow failure, which in turn can
result from myelophthisis, myelodysplasia, or myelofibrosis; neurologic manifesta-
tions, such as anisocoria; reproductive failure; gastrointestinal disease; and immuno-
deficiency. The development of opportunistic infections may result from marrow
failure or cell-mediated immunodeficiency. The immunosuppressive properties of
FeLV have been linked at least in part to the transmembrane viral envelope peptide,
Table 1
Host cellular receptors involved in FeLV infection

FeLV
Subtype Receptor

Receptor
Function Comments References

FeLV-A FeTHTR1 Thiamine
transporter
protein

Present in all
cats with FeLV;
transmitted
exogenously

Mendoza
et al24

FeLV-B FePit1 or
FePit2

Inorganic
phosphate
transporter
protein

Results from
recombination between
FeLV-A and feline
endogenous FeLV-
related retrovirus
sequences; may
accelerate development
of lymphoma or enhance
neuropathogenicity

Anderson
et al25

FeLV-C FLVCR Heme
transporter
protein

Arises from point
mutations in FeLV-A env
gene; associated with
non-regenerative
anemia

Keel
et al26

FeLV-T FePit1 or FLVCR
plus a soluble
cofactor encoded
by endogenous
FeLV-related
retrovirus
sequence,
usually FeLIX

Transporter
protein
(variable)

Arises from point
mutations in FeLV-A
env gene; associated
with severe
immunosuppression

Anderson27
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p15E.29 This viral protein inhibits T- and B-cell function, inhibits cytotoxic lymphocyte
responses, alters monocyte morphology and distribution, and has been associated
with impaired cytokine production and responsiveness.30–32 Kittens persistently
infected with FeLV have impaired T-cell, and to a lesser extent, B-cell function.33–36

Infected cats may develop lymphopenia, thymic atrophy, and depletion of lympho-
cytes within lymph node paracortical zones. CD41 T-cell malfunction may contribute
to a decreased humoral and cellular immune response in affected cats.37,38 The
response to vaccination may also be impaired. Neutrophil function is also impaired
in cats that are FeLV-infected.39–41 Opportunistic infections documented in cats
that are FeLV-infected include bacterial infections of the upper and lower urinary tract,
hemoplasmosis, respiratory tract infections, feline infectious peritonitis (FIP), and
chronic stomatitis, although there is little evidence in the literature to support an
increased prevalence of these infections in cats with FeLV as opposed to cats not
infected with FeLV. Some infections, such as cryptococcosis, appear to occur with
the same frequency in cats that are FeLV positive as in cats that are FeLV negative,
but may be more severe and refractory to therapy (Fig. 2).42

Feline Immunodeficiency Virus Infection

FIV is a lentivirus that is primarily transmitted between cats by biting. FIV invades cells
via the primary receptor CD134, which is expressed on feline CD41 T lymphocytes; B
lymphocytes; activated macrophages43,44; and the secondary receptor CXCR4, a che-
mokine receptor.

The mechanisms of immunosuppression in FIV infection are complex, and despite
more than 20 years of research on the subject, not completely understood. Paradox-
ically, immune suppression and immune hyperactivation have been documented in
infected cats. A comprehensive review of the subject is beyond the scope of this
article but has been recently published elsewhere.45

Central to FIV-induced immunosuppression is a progressive reduction in CD41 T-
cell numbers. The number of CD41 T cells in peripheral blood declines shortly after
infection, owing to initial viral replication within target activated CD41 T cells and
macrophages. After this acute phase of infection, numbers of CD41 T cells rebound
and viremia is suppressed (Fig. 3). Neutropenia can also occur during this phase46 and
it has been suggested that this may result from neutrophil apoptosis.47 CD41/CD251
T regulator cells have recently been shown to be infected and activated during acute
Fig. 2. Siamese cat with FeLV infection and concurrent severe cryptococcal rhinosinusitis
that was refractory to therapy with antifungal drugs.
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infection. When activated, these cells inhibit proliferation and induce apoptosis of
other activated CD41 or CD81 T cells, which may also contribute to persistence of
FIV and further immunosuppression.45,48,49 Evidence also points to altered dendritic
cell function during acute FIV infection.50,51 The impairment of T-cell function in acute
FIV infection has been suggested to result from cytokine dysregulation, immunologic
anergy, and increased apoptosis.45 In turn, this is associated with an inability to mount
a primary immune response to opportunistic pathogens.

A prolonged asymptomatic period follows, sometimes lasting years or even the life-
time of the cat, which is associated with a gradual decline in CD41 T-cell numbers;
a reduction in the CD41/CD81 ratio; generalized lymphoid depletion; and in some
cats, hyperglobulinemia, which results from B-cell hyperactivation. In addition to
a decline in cell numbers, although activated, paradoxically, T cells develop a reduced
ability to respond to antigenic stimulation. Altered lymphocyte expression of cell
surface molecules, including CD4, cytokine receptors and major histocompatibility
complex (MHC) II antigens, and continued alteration of dendritic cell function, also
contribute to immunosuppression. Dysregulation of cytokine production occurs.
Cats chronically infected with FIV fail to produce Il-2, Il-6, and Il-12 in response to
T gondii infection, instead producing elevated levels of the antiinflammatory cytokine
Il-10.45,52

Ultimately these changes lead to opportunistic infections, most commonly bacterial
infections of the mouth; chronic bacterial skin infections; persistent viral upper respi-
ratory tract infections; mycobacterial infections; hemoplasmosis; toxoplasmosis; and
parasitic infections, such as demodicosis and severe flea burdens.

Feline Coronavirus Infection

FIP virus infection is associated with a profound, virus-induced depletion of CD41 and
CD81 cells and hypergammaglobulinemia, suggesting virus-induced dysregulation of
Fig. 3. Graph depicting the pathogenesis of feline immunodeficiency virus infection. As the
CD41 count declines, production of antibody is limited and cats with advanced infection
may test negative using antibody tests. Opportunistic infections ensue.



Sykes416
the immune response.53 The mechanism of T cell depletion is not clear, because the
virus does not infect lymphocytes, only monocytes and macrophages. Infection of
antigen-presenting cells, specifically dendritic cells, by the virus has been hypothe-
sized to cause T-cell apoptosis.53 Despite the profound T-cell deficiency that accom-
panies FIP, opportunistic infections are rarely reported, perhaps partly as a result of
the rapidly fatal clinical course of disease.
BACTERIAL INFECTIONS CAUSING IMMUNODEFICIENCY

Perhaps the best examples of bacterial infections causing immunodeficiency are
those of the tick-borne pathogens Ehrlichia canis and Anaplasma phagocytophilum,
which are described later in this article. Bartonella spp. and hemotropic mycoplasmas
(hemoplasmas) may also be capable of inducing chronic immunodeficiencies. Human
infection with Bartonella bacilliformis infection may be immunosuppressive and many
patients have succumbed with secondary bacterial infections, especially salmonel-
losis.54 Impaired leukocyte function, cyclic CD81 lymphopenia, and diminished
expression of adhesion molecules and MHC Class II molecules by CD81 and B
lymphocytes, respectively, were documented in one study of Bartonella vinsonii
subspecies berkhoffii-infected dogs.55 Hemoplasma-induced immunosuppression is
not a new phenomenon and has been recognized as a problem in experiments
involving chronically infected laboratory rodents and in sheep chronically infected
with Mycoplasma ovis.56,57 The clinical importance of immunosuppression induced
by Bartonella spp and hemoplasmas in cats and dogs requires further investigation.

Ehrlichia canis Infection

Ehrlichia canis is a gram negative intracellular bacteria that causes canine monocytic
ehrlichiosis (CME), arguably the most important infectious disease of dogs exposed to
ticks worldwide. The organism is transmitted by the brown dog tick, Rhipicephalus
sanguineus. The organism infects monocytes, in which it forms morulae. In the United
States, disease is diagnosed most frequently in dogs living in the southeastern and
southwestern states, but because of chronic, subclinical infection, dogs can be trans-
ported to non-endemic regions and subsequently develop disease. Different strains of
E canis exist but the degree by which these vary in virulence is poorly characterized.

The course of CME has been divided into acute, subclinical, and chronic phases,
although in naturally infected dogs, these phases are often not readily distinguishable.
Clinical signs of acute disease include depression, inappetence, fever, and weight
loss. Ocular and nasal discharges, edema, hemorrhages, and neurologic signs may
also occur. The organism replicates in reticuloendothelial cells with generalized
lymphadenopathy and splenomegaly, and transient cytopenias, especially thrombo-
cytopenia, may occur. After the acute phase, which may last up to 6 weeks, a subclin-
ical phase may develop that lasts months to years. During this phase, the organism
appears to evade host immune responses through antigenic variation. Ultimately,
a small percentage of these infected dogs develop chronic CME. Chronic CME is
characterized by signs that include lethargy, inappetence, fever, weight loss, bleeding
tendencies, pallor, lymphadenopathy, splenomegaly, dyspnea, anterior uveitis, poly-
uria/polydipsia, muscle wasting, polyarthritis, and edema. Dogs with severe chronic
ehrlichiosis may develop marrow failure, with aplastic pancytopenia. Severe disease
may also be associated with a protein-losing nephropathy and development of neuro-
logic signs. Some dogs have bone marrow plasmacytosis and peripheral granular
lymphocytosis. Hyperglobulinemia is a frequent finding on the serum chemistry profile
and usually results from a polyclonal gammopathy, although monoclonal
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gammopathies have also been reported.58 High antibody titers to E canis, occasionally
exceeding 1:1,000,000, are also common.

The chronic phase may also be associated with development of secondary oppor-
tunistic infections. The precise underlying mechanism of the immunodeficiency that
develops and how it relates to successful persistence of E canis has not been eluci-
dated. Not all dogs that develop chronic infections are pancytopenic, so leukopenia
alone does not explain the predisposition for opportunistic infection. Furthermore,
the types of infections reported, such as viral papillomatosis; generalized demodico-
sis; protozoal infections, such as neosporosis and opportunistic mycoses, suggest
a defect develops in CMI (Fig. 4).59 E canis infection has also been suggested to
predispose dogs to development of canine leishmaniasis.60 Infection of a canine
cell line with E canis resulted in suppression of MHC Class II expression.61 In one
study, acute experimental infection with E canis was not associated with measurable
suppression of CMI or humoral immune responses.62 Alterations in immune responses
during chronic infection require further evaluation.

Anaplasma Phagocytophilum Infection

Like E canis, Anaplasma phagocytophilum is an obligate, tick-transmitted intracellular
bacteria that forms morulae within leukocytes. In contrast to E canis which infects
monocytes, A phagocytophilum infects granulocytes, primarily the neutrophil,63 and
causes granulocytic anaplasmosis, a disease of humans, dogs, horses, ruminants,
and occasionally cats (Fig. 5). The vector ticks are generally those belonging to the
Ixodes persulcatus complex, primarily I scapularis and I pacificus in the United States,
and I ricinus in Europe. Numerous small wild mammals, deer, and possibly birds, act
as reservoir hosts for the organism. Several genetic variants have been identified and
there is increasing evidence of strain variation in host specificity and pathogenicity.

Immunosuppression resulting from A phagocytophilum infection results primarily
from impairment of neutrophil function by the bacteria. After inoculation into the
host, A phagocytophilum attaches to sialylated ligands on the surface of neutrophils,
after which it enters neutrophils via caveolae-mediated endocytosis, bypassing phag-
olysosomal pathways. A phagocytophilum then actively disables neutrophil bacteri-
cidal functions, in particular neutrophil superoxide production, thus promoting its
own survival.64,65 A phagocytophilum also reduces neutrophil mobility and phagocy-
tosis,66 and reduces endothelial adherence and transmigration of neutrophils.67 By
Fig. 4. Viral papillomatosis in a male neutered Rottweiler cross with chronic canine mono-
cytic ehrlichiosis (From Ettinger SJ, Feldman EC. Textbook of veterinary internal medicine.
7th edition. St. Louis (MO): Saunders; 2010. Figure 206-1; with permission.)



Fig. 5. Morulae of Anaplasma phagocytophilum within a canine neutrophil (From Ettinger
SJ, Feldman EC. Textbook of veterinary internal medicine. 7th edition. St. Louis (MO): Saun-
ders; 2010. Figure 206-2; with permission.)
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inhibiting neutrophil apoptosis, the organism is able to survive in a well-differentiated
cell that normally has a very short lifespan. The impairment of neutrophil function and
leukopenia that develop as a result of A phagocytophilum infection is occasionally
associated with development of opportunistic infections in some humans and animals
with granulocytic anaplasmosis. The best example of this is tick pyemia, which is
a debilitating lameness and paralysis that develops in infected lambs in Europe,
most commonly as a result of disseminated Staphylococcus aureus or Pasteurella
spp infection. Infection with A phagocytophilum may influence the outcome of infec-
tion with Borrelia burgdorferi, which can be co-transmitted by Ixodes ticks, possibly as
a result of impaired neutrophil function.68
IMMUNOSUPPRESSION CAUSED BY PROTOZOAL AND FUNGAL PATHOGENS

Leishmaniasis, caused by the protozoal parasite Leishmania infantum, is a chronic
progressive disease transmitted by the sand fly. The mechanisms of immunosuppres-
sion induced by this organism are perhaps the best studied amongst protozoal para-
sites. The disease is most common in the Mediterranean basin and South America.
The organism causes a systemic disease in dogs characterized by lymphadenopathy,
crusting skin lesions, weight loss, anemia, ocular lesions, polyarthritis, and protein-
losing nephropathy. The infection is often associated with other infections, especially
ehrlichiosis and babesiosis, and occasionally with neoplastic disease, especially
hematopoietic tumors.69 Leishmania infantum invades mononuclear phagocytes,
evading the phagolysosome, and survives within them through inhibition of the respi-
ratory burst, inhibition of macrophage function and apoptosis, and impairment of
antigen presentation through inhibition of MHC Class I and MHC Class II molecule
expression. The protozoan also appears to impair macrophage and neutrophil chemo-
taxis, and interferes with Il-12 transcription.70 The Leishmania spp surface protein
gp63 is a key protein that mediates entry and survival within macrophages. It also
allows the organism to resist complement and was recently shown to bind to and
suppress the activity of NK cells.71



Fig. 6. India ink preparation showing encapsulated yeasts of Cryptococcus spp within
cerebrospinal fluid. Immunosuppressive properties of the organism have been associated
with the glucuronoxylomannan capsule. (From Malik M, Krockenberger M, O’Brien CR,
et al. Cryptococcosis. In: Greene CE. Infectious diseases of the dog and cat. 3rd edition. St.
Louis (MO): Saunders/Elsevier; 2006. p. 584–98. Figure 61-6B; with permission.)
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Several fungal pathogens are capable of causing immunosuppression, including
Aspergillus spp, Candida spp, and Cryptococcus spp. Cryptococcus neoformans
and Cryptococcus gattii are highly immunosuppressive fungal pathogens, although
co-infections with other pathogens are rarely documented. Cryptococcal organisms
possess several potent virulence factors that are capable of suppressing or orches-
trating the immune response in favor of fungal growth and persistence. The crypto-
coccal capsular polysaccharide, glucuronoxylomannan, has attracted the most
attention in this regard (Fig. 6). It effectively inhibits phagocytosis and interferes
with migration of leukocytes from the bloodstream into tissues by causing them to
shed selectin. It can also deplete complement and directly inhibits T-cell
responses.72,73 There is a shift from a Th1 to a Th2 immune response, the Th1
response being normally required for organism clearance. The cryptococcal urease
enzyme was shown to promote accumulation of immature dendritic cells within the
lung, and an associated shift in the immune response to a non-protective Th2-cytokine
dominated response.71
SUMMARY

This review highlights the mechanisms of immunosuppression in just a small subset of
the huge variety of infectious agents that are capable of inducing immunosuppression
to promote their own survival within the host. The degree of immunosuppression and
the mechanisms by which immunodeficiency develops are highly variable and
complex. Pathogen surface molecules and cellular receptor tropisms play an impor-
tant role in determining the initial immune cells infected. Because of the cascading
mechanisms involved in normal immune cell recruitment, cytokine and antibody
production, pathogens frequently disrupt the function of immune cells that do not
undergo direct infection. Considerable research effort has been invested in under-
standing the mechanisms of pathogen-induced immunosuppression, with the hope
that effective therapies may be developed that reverse the immunodeficiencies devel-
oped and in turn assist the host to clear persistent or life-threatening infectious
diseases.
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