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Giant resonance and anomalous quality factor scaling in coupled resonator optical 

waveguides at the degenerate band edge 

 Mohamed Y. Nada, Mohamed A. K. Othman, Ozdal Boyraz, and Filippo Capolino 

Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA 

We propose a novel scheme for enhancing the quality factor of coupled resonators optical waveguides (CROWs) 

when operating near a degenerate band edge (DBE). A DBE is a four-mode exceptional point of degeneracy (EPD) 

occurring when four Bloch eigenmodes coalesce providing a resonance condition with a giant enhancement in fields. 

We report an unprecedented scaling law of quality factor of CROWs when operating at the DBE, even in the presence 

of losses and structural perturbations. Remarkably, the Q factor of the proposed CROW can be engineered to exceed 

that of a single ring resonator having a diameter equal to the CROW length, hence having an overall strong area 

reduction. The findings reported in this letter are critical for enhancing field’s amplitudes to giant levels and the Q 

factor of ring resonators and are very beneficial for various applications including four wave mixing, Q switching, 

lasers, and highly sensitive sensors.

1. INTRODUCTION 

High quality (Q) factor microcavities provide a practical testbed for 

new advances in fundamental sciences, in particular biological and 

chemical sensing. Implementation of such high Q factor 

microcavities has been a classical contest in the optics realm [1]. 

Thanks to state of the art nanofabrication techniques such high Q 

cavities have been ubiquitous for various on-chip photonic devices. 

A recent burgeoning aspect in high Q cavity design is the concept of 

slow light in which a field in an optical guiding system possesses a 

group velocity much lower than the velocity of light in vacuum 

c [2,3]. The proliferation of slow light has spawned many intriguing 

aspects in light manipulation and transport for which nonlinearities 

(higher harmonic generation, wave mixing, etc.) [4], and 

gain/absorption [5] among other features can be significantly 

enhanced. In this letter we demonstrate a fundamentally novel 

approach for realizing high Q factor microcavities using a special 

kind of engineered slow-light through eigenmode dispersion and 

degeneracy conditions [6]. Particularly, slow light resonance 

occurring in the vicinity of the band edge of periodic structures is 

intimately linked to degeneracies of Bloch eigenmodes. This 

degeneracy condition occurs when wave propagating eigenvectors 

coalesce. A degenerate band edge (DBE) [7–10] arises when four 

Bloch eigenstates (eigenvalues and eigenvectors) coalesce into a 

single one in periodic structures supporting multiple polarization 

eigenstates that are periodically mixed. This has led to many 

interesting physical processes in optics  [10,11], and 

microwaves [12,13]. The concept of exceptional point [14,15] has 

already received a surge of interest in recent years. Parity-Time 

symmetry and the DBE are two distinct classes of systems with 

exceptional points, where in the latter class the guiding structure has 

neither losses nor gain. The DBE investigated here is a fourth order 

exceptional point of degeneracy (EPD). Although degeneracy 

condition is an exact mathematical condition that can only be 

achieved when one parameter is rigorously met, we show here that 

the desired performance related to these degeneracies can still be 

detected even when structural perturbations occur, as also seen in a 

recent microwave experiment [13]. Here we propose an optical 

platform based on coupled resonator optical waveguide (CROW) 

design introduced by Yariv et al. in [16]. The proposed design (see 

Fig. 1) leads to observing the DBE and large Q factors higher than 

105 in relatively small structures even in the presence of realistic 

material loss and perturbations existing due to potential 

microfabrication process tolerances. This shows great promise for 

realizing high Q factor compared to analogous designs investigated 

in [17,18]. Interestingly, we demonstrate that such CROW can 

possess higher Q factors than that of a single microring resonator 

having a diameter equals the length of the CROW and same material 

loss. 

2. ANOMALOUS SCALING OF THE Q FACTOR AT 

THE DBE 

Let us consider the CROW in Fig. 1 designed to exhibit the DBE. A 

DBE is a condition upon which four eigenvectors representing wave 

propagating in the periodic structure coalesce. This could only occur 

in structures supporting multiple polarizations guided and coupled 

through the periodic waveguide (such as the anisotropic/birefringent 

layers  [5]), or in coupled waveguides such as the CROW in Fig. 1. 

The proposed CROW is composed of a chain of ring resonators 

coupled to each other via coupling coefficient  , and side-coupled 

to a uniform waveguide with another coupling coefficient . The 

waveguide and the rings have effective refractive indices nr and nw, 

 

Fig. 1. The loaded CROW consists of a chain of N ring resonators of radius R, coupled 

to each other with field coupling coefficient κ . They are side-coupled to a rectangular 

waveguide withκ . The structure is periodic in the z-direction with a period d = 2R. 

The figure also shows the field amplitudes defined at points z = 0 and z = L. 
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respectively, and we assume single transverse mode propagating in 

each waveguide. Each ring resonator radius is R hence the periodic 

CROW has period d = 2R. Note that we ignore the gap dimensions 

between rings as well as the ring thickness for simplicity as was done 

in  [2]. To explore the unique modal characteristics of this CROW, 

we proceed by representing wave propagation along z using 

complex field amplitudes that are defined as shown in Fig. 1. As 

such, there exist at any point z three complex field amplitudes that 

propagate in the positive z-direction, namely 1 ( )E z , 2 ( )E z , and

3 ( )E z , and they are described by a three-dimensional vector 

1 2 3( ) ( ) ( ) ( )
T

z E z E z E z    
 

E . Analogously, three field 

amplitudes at the same point z represent wave that propagates along 

the negative z-direction with a field amplitude vector 

1 2 3( ) ( ) ( ) ( )
T

z E z E z E z    
 

E . To quantitatively analyze 

the wave dynamics, we assume a state vector composed of the six 

field amplitude components ψ(z)=[(E
+
(z))

T
  (E


(z))

T
]
T

. Then, we 

utilize coupled mode theory [2,19] and a 6×6 transfer matrix 

formalism to  investigate the evolution of the state vector along the 

CROW and derive the eigenmode characteristics. Accordingly, at 

any frequency, there exist up to six Bloch eigenmodes guided by the 

CROW. Yet at some particular frequencies some eigenmodes 

coalesce in both their wavenumber and eigenvectors. We generalize 

the theory of CROW [2] to the case shown in Fig. 1 and obtain the 

dispersion relation of the eigenmodes of the system, namely 

D(k,ω)=0, where k is the Bloch wavenumber along z and ω is the 

angular frequency. There exist six Bloch wavenumber solutions and 

they obey the symmetry such that k and  ̵k are both solutions. It is 

important to point out that conventional CROWs made of only a 

chain of coupled ring resonators have a structural symmetry in which 

their modes exhibit only a regular band edge (RBE) as shown 

in [2].Introducing coupling to the straight waveguide as in the 

geometry depicted in Fig. 1 breaks the structural symmetry and in 

turn facilitates the observation of a DBE, i.e., a fourth order 

degeneracy. Symmetry here is defined with respect to a plane cutting 

the rings in half and perpendicular to the plane containing the rings 

as shown in Fig. 1 with a horizontal dashed line. The DBE is found 

by proper tuning of the coupling parameters, effective refractive 

indices and radius of the rings. Although there are many possible 

points in the parameter space of the CROW that realize DBEs, we 

focus on some designs to demonstrate important resonance 

characteristics described in the following. The DBE wavelength is 

chosen close to 2 /d dc    1550 nm in all the subsequent 

analysis. We consider three different designs of the unit cell of the 

periodic CROW; whose parameters are given in Table. 1. The 

reported coupling coefficients and effective refractive indices of the 

CROWs under consideration can be readily implemented using 

silicon optical ridge waveguides as in [20,21]. The dispersion 

diagram of the three designs of the DBE CROW is depicted in Fig. 

2(a); near the DBE wavelength (only real branches are shown in the 

range [0,2 ]kd  ). Note that the dispersion relation in the vicinity 

of DBE frequency is approximated by 
4(1 ) ( / 1)/ dd k k     where d  is the DBE angular 

frequency and /dk d is the wavenumber at the band edge. 

The parameter ζ dictates the flatness of the dispersion relation, i.e., 

the value of the fourth derivative 
4 4/d dk  at the DBE. Smaller 

values of ζ indicate flatter dispersion at the DBE, and it plays a very 

important role in realizing higher Q factors. For that aim, we 

investigate the transmission properties of the finite CROW with N 

cascaded rings and examine the resonances near the DBE. In Fig. 

2(b) we show the transmission coefficients of the three CROW 

designs 

TABLE1: THREE DESIGNS OF DBE CROW UNIT CELL, 

AND THE CORRESPONDING VALUES OF THE Q 

FACTOR OF A SINGLE RING RESONATOR IN BOTH 

LOSSY (Q0,loss) AND LOSSLESS (Q0) CASES 

#       nw nr R(μm) ζ Q0 Q0,loss 

1 0.7 0.09 2.51 2.48 50 0.001 4.7×103 4.5×103 

2 0.25 0.1 2.4 2.51 10 0.06 1×104 9.3×103 

3 0.25 0.1 2.42 2.5 50 0.01 5×104 3.5×104 

 

made of N = 16 coupled rings. The transmission coefficient is defined 

as out 1| / (0) |FT E E  where outE  is the field amplitude exiting 

the waveguide from the right, while 1 (0)E
 is the field amplitude 

representing the excitation of the waveguide. The transmission peaks 

of the CROW have a narrow spectral width when the frequency 

approaches the DBE as seen from Fig. 2(b) (Note that the straight 

waveguide itself does not have discontinuities). The transfer function 

TF also has a unity magnitude for such resonance in a lossless CROW. 

Moreover, in Fig. 2(c) one can observe how the resonance angular 

frequencies closest to DBE denoted by ,r d  evolve as the length of 

the CROW increases; for the three different designs having various 

ζ’s. The DBE resonance angular frequency ,r d is getting closer to 

d  either by increasing N or decreasing ζ. Such trend follows the 

asymptotic formula , / dr d  41 / N   as discussed in [7]. 

Now, we analyze the scaling of the Q factor with the length of a 

CROW shown in Fig. 1. The loaded Q factor of the cavity 

(connected to the straight waveguide at both ends) versus the number 

of rings N is shown in Fig. 3(a) for the three CROW designs. From 

here onward, the loaded quality factor of the DBE resonator is 

referred to as “Q factor” and is calculated through the group delay, 

 

Fig. 2. (a) The Bloch wavenumber dispersion showing the propagating modes (purely real 

k) of the three designed CROWs with parameters given in Table. 1. (b) The transfer function 

TF calculated near the DBE resonance ωr,d for the three CROW lossless designs with N=16. 
(c) Trajectory of the DBE resonance frequency of the lossless CROWs for different N that 

follows the trend , / dr d  41 / N  . For the sake of clarity, note the normalization 

of the angular frequency axes in the three plots. 
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obtained as discussed in [10]. The Q factor is evaluated at the DBE 

resonance angular frequency ,r d for each respective design, see 

Fig. 2(c). We observe the general trend for lossless DBE structures 

in which the Q factor is fitted by 
5aN b  (see also [7,10,17]) where  

the fitting parameters a and b are different for the three designed 

CROWs. It is important to point out that the growth as 5Q aN

represents an unprecedented scaling of Q factor for CROWS. The 

parameter a is inversely proportional to the dispersion fitting 

parameter ζ, in the sense that the product of a and ζ is approximately 

constant, i.e., aζ ≃ constant for the three cases under consideration 

and equals to ~0.03. The later observation is inherently related to the 

fact that the quality factor is inversely proportional to the group 

velocity of the wave vg in the constitutive periodic structure (i.e. Qvg 

= constant) as discussed in  [3], and vg is in turn proportional to ζ in 

the vicinity of the DBE frequency. Therefore, realizing smaller 

values of ζ (meaning flatter dispersion) leads to higher quality 

factors. In essence, this would also entail an increase in the local 

density of states [9] when wavenumber dispersion is flatter. The 

anomalous scaling law for large N applies to the lossless structures, 

whereas the effect of losses is described next. 

We account for radiation and dissipative losses by incorporating 

the attenuation constant of the waveguide and ring resonators. We 

assume that dissipative losses for silicon are 3.7 dB/cm and radiation 

losses are 0.005 dB/turn due to bending as given in [22]. In Fig. 3(a) 

we show the Q factor for lossy CROWs. Losses cause a saturation 

effect in the anomalous Q factor scaling law. Indeed, the Q factor 

grows by increasing the number of rings N but after a certain length 

the growth ceases to have the N5 trend as clearly seen from Q factor 

of Design 2 in Fig. 3. For Designs 1 and 3, the N5 trend stops at 

smaller number of rings N not shown in Fig. 3, and this manifests 

because such designs have larger dimensions than Design 2 hence 

the impact of losses is significant in Designs 1 and 3. Furthermore, 

Designs 2 and 3, accounting for losses for N = 12 rings, have almost 

the same Q factor as seen in Fig. 3(a), even though Design 3 has a 

total length five times larger than that of Design 2 for the same N (yet 

they have almost identical coupling parameters). In principle, this 

indicates that to attain a specific Q factor using a lossy DBE CROW 

with the smallest possible area while keeping all the other CROW 

parameters fixed, it is preferable to utilize rings with the smallest 

dimensions.   

We provide a comparative analysis for the three designs to show 

enhancement of the normalized Q factor defined as the ratio between 

the Q factor of the CROW to the single ring resonator Q factor. The 

latter is given by Q0,loss = ωr,dph / (αLrln(1κ2))  [23] where ωr,d is 

the angular frequency coinciding with the one of the CROW with 

DBE, Lr=2R is the  circumference of each ring resonator, ph is the 

phase delay given by ph = nrLr/c and nr is the effective refractive 

index of the ring resonator; while α is the waveguide power-

attenuation constant. The respective single ring Q factor of the three 

designs considered here for both lossless (denoted by 0Q  for the 

case when α = 0) and lossy (denoted by Q0,loss) are also reported in 

Table. 1. We show in Fig. 3(b) that the anomalous scaling of 

normalized Q near the DBE depends on 0Q as well as on the DBE 

parameters, i.e., is a function of 0Q and the constant ζ. 

Notice that in Design 1, the Q factor of the single ring resonator 

(which could be considered simply as the Q factor of a CROW with 

a single ring or N =1) is smaller than the other two designs (due to its 

larger value of ). Yet, interestingly such configuration produces the 

highest possible Q among the three designs for both lossless and 

lossy structures. For instance, for N = 10 rings, the Q factor of Design 

1 with losses is higher than that of Design 3 with losses and it is even 

higher than that of Design 2 without losses. This is attributed to 

having the smallest value of ζ (the flattest dispersion) as well as a 

large value of the stored energy in the DBE CROW for Design 1, 

see Fig. 4(a). We recall that the DBE resonance shows an 

unconventional standing wave profile mandated by giant field 

concertation in the center of the cavity [7,10]. By examining the field 

distribution in Designs 1 and 2 as shown in Fig. 4, we see that the 

resonance peak field exists as expected at the center region of the 

CROW (z ~ L/2) either inside the ring resonators (Design 1, Fig. 4a) 

or inside the straight waveguide (Design 2, Fig. 4b). In fact, for 

Design 1 the field is remarkably much higher than that of Design 2, 

that is why it has larger Q factor despite having the smallest Q0. In 

addition, the field is concentrated in the rings due to larger value of 

. Note that the field profile associated to Design 2 in the presence 

of losses maintains the ideal DBE resonance field profile; whereas 

in Design 1 the DBE resonance shape is largely perturbed. This 

mechanism also can be used to engineer the mode profile inside such 

CROW to control the impact of losses and to design highly sensitive 

sensors. 

To further elucidate the anomalous scaling of CROWs with DBE, 

we compare their Q factors to that of other resonator designs without 

DBE: We compare with a conventional CROW made of coupled 

ring resonators without coupling to the straight waveguide; also we 

compare it with an optically large single ring resonator whose 

diameter Ds  equals the total length of CROW (i.e., DS =2NR), and 

finally we compare it with  a design of  a chain of cascaded 

uncoupled ring resonators (i.e. similar to the  proposed CROW with 

 

Fig. 3. (a) The loaded quality factor of three designed CROWs in the ideal lossless 

(markers on solid lines) and lossy waveguide (markers on dashed lines) cases. (b) The 
loaded Q-factor normalized to the Q0 of a single loop, for each design. The values of 

Q0 and Q0,loss are given in Table. 1. The solid curves represent the lossless Q fitted by 

the equation aN5+b, that is in perfect agreement with the simulated Q represented with 

square markers. 

  

Fig.4. Electric field amplitudes at the unit cell boundaries of Design 1 and Design 2 in 
both lossless and lossy CROWs. Solid lines represent the normalized electric field in 

the waveguide (|E1(z)/E1
+(0)|), while dashed and dotted lines represent the normalized 

electric field inside the ring resonators (|E2(z)/E1
+(0)| and |E3(z)/E1

+(0)|, respectively). 
Note that z is normalized to the unit cell length of Design 2 which is 2R2. 
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waveguide but with vanishing coupling between the adjacent rings, 

i.e., with 0  ). In the lossless case, the conventional CROW Q 

factor scaling is proportional to N3 when operating at  an RBE [2]. 

On the other hand, the large single ring resonator of radius NR has a 

Q factor equals to NQ0 (i.e., exhibiting a linear growth of Q with 

length). Hence, when the CROW’s normalized Q factor, i.e., Q/Q0 

 
(shown in Fig. 3(b)) exceeds N, the CROW’s Q factor surpasses that 

of the respective large single ring resonator. As such, Q factor of 

Design 1, in the range shown in Fig. 3(b), is always higher than that 

of the respective large single ring resonator. Whereas the other two 

designs start to have higher Q factor than their respective large single 

ring after 11 rings. The behaviour of the chain of cascaded uncoupled 

ring resonators, is identical to that of  the large single ring resonator 

since Q grows linearly with N.  

In the lossy case, the Q factor of the CROW with DBE is 

compared to that of the other two resonators in Fig. 5; namely to the 

lossy chain of coupled ring resonators (conventional CROW), and 

to the respective lossy large single ring resonator. From Fig. 5 we 

observe that the Q factor of the conventional CROW which operates 

at an RBE is always worse than the other designs. On the other hand, 

Design 1 with losses shows always better performance than all other 

designs, in the range shown in Fig. 5(a). Lossy Design 2 in Fig. 5(b) 

starts to show better Q factor than the large single ring resonator 

when N > 12 rings, whereas the Q of lossy Design 3 does not exceed 

the Q of the single ring resonator till N = 14 rings as seen in Fig. 5(c). 

We finally study the impact of perturbations on the DBE Q factor 

of the CROW shown in Fig. 1. Indeed, during a microfabrication 

process structural, perturbations from the ideal design occur. 

Especially, the coupling parameters are dictated by tolerances in the 

gaps between adjacent rings and between rings and the straight 

waveguide. Let us assume that the values of  and     in each unit 

cell of the N-rings CROW are varied within 5% change of their DBE 

design value in Table. 1 using a standard uniform probability density 

function. In other words, we assume a uniform distribution in the 

interval  which are within the limits of modern 

fabrication tolerances [24]. We perform sufficient random 

simulations within this interval and calculate the statistics: namely 

the average Q factor and standard deviation of the Q factor, namely 

σQ as shown in Fig. 6. For the lossless case, we show that the 

standard deviation increases as the number of cells increases (σQ, is 

represented by vertical bars). Despite perturbations, the effect of 

growing Q is still remarkable. For the lossy CROW designs, σQ is 

very small, almost unnoticeable when compared to average values 

of Q (as seen from the zoomed inset in Fig. 6). In summary, the trend 

of Q versus N is almost independent of possible fabrication 

tolerances; thus, DBE is robust against some standard fabrication 

tolerances.  

CONCLUSION 

We have demonstrated that the degenerate band edge (DBE), a 

fourth order EPD, occurs in a properly engineered CROW coupled 

to a waveguide.  We have shown an unprecedented scaling of the Q 

factor with length even in the presence of losses. We have illustrated 

a very effective approach to enhance the Q at optical frequencies by 

properly engineer the coupling coefficients and dimensions of the 

proposed CROW. Importantly, the desired large Q values associated 

to the DBE resonance are shown to be robust against possible 

fabrication tolerances and could be readily detected in experiments. 

It is important to notice that certain designs of CROW with DBE 

show much larger Q factor than others, and we have explained how 

this depends on the parameter ζ, that is thus important to obtain the 

benefits of the CROW with DBE. The dependence of DBE 

resonance on structural/environment parameters could be further 

investigated to conceive novel extremely sensitive sensors. 

ACKNOWLEDGEMENT 

This material is based upon work supported by the Air Force Office 

of Scientific Research under award number FA9550-15-1-0280 and 

under the Multidisciplinary University Research Initiative award 

number FA9550-12-1-0489 administered through the University of 

New Mexico. 

REFERENCES 

 

Fig. 5. Q-factor of lossy CROWs, for the three designs in Table. 1, represented by solid 
lines. Results are compared to the Q of lossy single ring resonators having diameters 

equal to the respective CROW length (i.e. Ds = 2NRi) represented by dashed lines. The 

dashed dotted lines with triangular markers represent Q factor of the conventional 
CROW (chain of coupled ring resonators). 

 

   

Fig. 6. Statistics of the effect of random perturbations on the Q factor of Design 1 and 
Design 3 for both lossless and lossy cases when the structure is perturbed within 5% 

deviation in both  and    form their DBE design values in Table 1. Dotted lines 

represent the statistical average of Q factor while error bars denote the standard 

deviation σQ. 



NADA, OTHMAN, BOYRAZ, CAPOLINO: GIANT RESONANCE AND ANOMALOUS …           UC IRVINE, JULY 2017 

[1] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, 

Nature 421, 925 (2003). 
[2] J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, Opt. Photonics 

News 16, 36 (2005). 

[3] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, 
Photonic Crystals: Molding the Flow of Light (Princeton university 

press, 2011). 

[4] M. SoljaČiĆ and J. D. Joannopoulos, Nat. Mater. 3, 211 (2004). 
[5] K. Sakoda, Opt. Express 4, 167 (1999). 

[6] M. Moccia, G. Castaldi, and V. Galdi, EPJ Appl. Metamaterials 3, 2 

(2016). 
[7] A. Figotin and I. Vitebskiy, Phys. Rev. E 72, 0036619 (2005). 

[8] C. Löcker, K. Sertel, and J. L. Volakis, Microw. Wirel. Compon. Lett. 

IEEE 16, 642 (2006). 
[9] M. Othman and F. Capolino, IEEE Microw. Wirel. Compon. Lett. 25, 

(2015). 

[10] M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, Phys. Rev. 
B 93, 024301 (2016). 

[11] J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. 

Reano, Opt. Express 21, 8736 (2013). 
[12] J. L. Volakis and K. Sertel, Proc. IEEE 99, 1732 (2011). 

[13] M. A. K. Othman, X. Pan, G. Atmatzakis, C. Christodoulou, and F. 

Capolino, IEEE Trans. Microw. Theory Tech. 65, (2017). 
[14] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. 

Segev, and D. Kip, Nat. Phys. 6, 192 (2010). 

[15] J. Wiersig, Phys. Rev. Lett. 112, 203901 (2014). 
[16] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999). 

[17] J. R. Burr, N. Gutman, C. de Sterke, I. Vitebskiy, R. Reano, 
Opt.express 21, 8736 (2013). 

[18] J. R. Burr, M. G. Wood, and R. M. Reano, IEEE Photonics J. 8, 1 

(2016). 
[19] H. Haus, W. Huang, S. Kawakami, and N. Whitaker, J. Light. 

Technol. 5, 16 (1987). 

[20] A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, 
T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, IEEE 

Photonics J. 2, 181 (2010). 

[21] Y. Dattner and O. Yadid-Pecht, IEEE Photonics J. 3, 1123 (2011). 
[22] Y. A. Vlasov and S. J. McNab, Opt. Express 12, 1622 (2004). 

[23] J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators 

(Springer New York, New York, NY, 2008). 
[24] S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. 

Spencer, and J. E. Bowers, IEEE Photonics J. 7, 1 (2015). 

  




