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A B S T R A C T   

Historically, surface complexation model (SCM) constants and distribution coefficients (Kd) have been employed 
to quantify mineral-based retardation effects controlling the fate of metals in subsurface geologic systems. Our 
recent SCM development workflow, based on the Lawrence Livermore National Laboratory Surface Complexa-
tion/Ion Exchange (L-SCIE) database, illustrated a community FAIR data approach to SCM development by 
predicting uranium(VI)-quartz adsorption for a large number of literature-mined data. Here, we present an 
alternative hybrid machine learning (ML) approach that shows promise in achieving equivalent high-quality 
predictions compared to traditional surface complexation models. At its core, the hybrid random forest (RF) 
ML approach is motivated by the proliferation of incongruent SCMs in the literature that limit their applicability 
in reactive transport models. Our hybrid ML approach implements PHREEQC-based aqueous speciation calcu-
lations; values from these simulations are automatically used as input features for a random forest (RF) algorithm 
to quantify adsorption and avoid SCM modeling constraints entirely. Named the LLNL Speciation Updated 
Random Forest (L-SURF) model, this hybrid approach is shown to have applicability to U(VI) sorption cases 
driven by both ion-exchange and surface complexation, as is shown for quartz and montmorillonite cases. The 
approach can be applied to reactive transport modeling and may provide an alternative to the costly develop-
ment of self-consistent SCM reaction databases.   

1. Introduction 

The high reactivity of mineral surfaces (Dong and Wan, 2014; Dur-
rant et al., 2018) enables metals to adsorb to soils and sediments, 
limiting their bioavailability and influencing their overall mobility. 
Scientists have traditionally used surface complexation models (SCMs) 
or linear distribution coefficients (Kd) to quantify this adsorption phe-
nomenon and to predict metal partitioning in immobile solid versus 
mobile aqueous phases (Appelo et al., 2002; Goldberg, 1992; Nair et al., 
2014b). SCMs not only account for sorbate complexation to mineral 
surfaces, but, when paired with thermochemical databases (e.g. 
Ragoussi and Costa (2019)), they account for aqueous speciation, min-
eral solubility, and liquid-gas exchange (Parkhurst and Appelo, 2013; 
Romero-González et al., 2007). Over the course of last several decades, 
SCMs have become well-established thermodynamic components to 
larger-scale reactive transport models that also include hydrological and 
fluid-dynamics transport processes, such as advection, diffusion, and 

dispersion (Nitzsche and Merkel, 1999; Steefel, 2019; Zhu et al., 2001). 
Furthermore, recent years have seen deeper mechanistic information 
incorporated into SCMs: Estes and Powell (2020) established the tem-
perature dependence of U(VI) adsorption onto hematite through cali-
brating SCMs to multi-temperature batch adsorption data while 
Tournassat et al. (2018) addressed basal plane electrostatic surface po-
tential spillover effects on montmorillonite edge-surface SCMs (Estes 
and Powell, 2020; Tournassat et al., 2018). Additionally, Ren et al. 
(2020) used attenuated total reflectance-Fourier transform infrared 
spectroscopy and extended X-ray absorption fine structure spectroscopy 
to discern that U(VI) adsorption onto manganese oxide is driven by a 
bidentate, binuclear surface structure under acidic to neutral pH con-
ditions. The use of various spectroscopic techniques in combination with 
batch adsorption methods demonstrated a path forward for enhancing 
the mechanistic accuracy during the construction of SCMs. 

While calibrated SCMs yield valuable aqueous- and surface- 
speciation predictions under the investigated geochemical conditions, 
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the implementation of SCMs also poses some key limitations. The most 
notable of these challenges that has not been solved to-date is the non- 
uniqueness of SCMs that are implemented with various divergent as-
sumptions regarding the nature of the surface electrostatic potential 
(Westall and Hohl, 1980). Because adsorption is largely driven by the 
favorable interactions between oppositely charged sorbent surfaces and 
aqueous sorbate molecules, surface complexation is impacted by surface 
charge, which in turn may influence the stability of various 
surface-bound complexes (Davis and Kent, 2018). Historically, there 
have been numerous conceptualizations of the electrical double layer, 
ranging from constant capacitance (Schindler et al., 1976) and triple 
layer models (Leroy and Revil, 2004) that assume linear surface 
charge-potential relationships to non-electrostatic approaches that do 
not account for charge buildup altogether (Newcombe and Drikas, 1997; 
Pivovarov, 1998). These various SCMs capture the electrostatic effects 
on adsorption through fundamentally different assumptions—yet, they 
are all able to sufficiently match data from batch adsorption experiments 
with similar accuracy (Westall and Hohl, 1980). Because the 
sorbate-sorbent stability constants extracted from these SCMs are 
model-dependent, a significant present-day challenge exists in 
comparing and co-utilizing various historic SCMs and associated reac-
tion constants that have very different underlying assumptions. 

The various electrostatic model descriptions of the mineral electrical 
double-layer are simplifications of the reality that inherently pose lim-
itations in their usage. For instance, constant capacitance SCMs assume 
that all sorbate metals bound to the mineral sorbent are strong, inner- 
sphere complexes, eliminating any nuance to outer-sphere or diffuse- 
swarm based surface complexation. Because the theoretical basis for 
such mineral-fluid interface descriptions may be limited, implementing 
a data-driven model to represent the mineral-fluid interface provides a 
new path forward in directly exploiting the continual growth of 
adsorption data available in the literature. Among ML techniques, the 
random forest (RF) algorithm has received significant attention for 
providing a flexible learning framework that can effectively capture 
nonlinear behavior commonly found in adsorption dynamics, such as 
impacts associated with pH and ionic strength solution changes (Brei-
man, 2001). Merzlikine et al. (2011) illustrated the applicability of RF 
models to predict solubility changes induced by the complexation of 
cyclodextrins to various drug molecules (Merzlikine et al., 2011). In a 
similar fashion, Chaube et al. (2020) implemented RF modeling to probe 
lanthanide binding affinities to many different ligand compounds 
(Chaube et al., 2020). Both Merzlikine et al. (2011) and Chaube et al. 
(2020) demonstrated the effectiveness of RF modeling in predicting 
aqueous complexation processes. In recent years, authors have also 
discussed the quantification of solid-phase adsorption reactions through 
RF methods. Zhu et al. (2019) used RF learning to predict adsorption of 
six heavy metals onto biochar surfaces and Hafsa et al. (2020) demon-
strated the broad generalizability of RF learning to predict adsorption of 
heavy metals onto various biosorbent interfaces. At a larger environ-
mental scale, Dalla Libera et al. (2020) also implemented unsupervised 
ML algorithms in the form of self-organizing maps (SOMs) to study 
redox-controlled dissolution-precipitation processes of hydrous ferric 
oxides as a key parameter controlling arsenic mobility in alluvial aqui-
fers near Venice, Italy. Latest research further deploys AI-supported 
surrogate model development to rapidly predict SCM parameters in a 
more robust manner than historically evaluated (Li and Zarzycki, 2022), 
pushing the boundary of predictive modeling of sorption processes. 
Many of these studies have implemented various forms of uncertainty 
quantification. Root mean square error and mean absolute error are 
among the most common metrics to evaluate overall ML model perfor-
mance and errors between observed and predicted data points (Kar-
unasingha, 2021). These rigorous error quantification methods provide 
a major added benefit for the implementation of ML approaches for 
environmental risk and performance assessments as uncertainties can be 
propagated through downstream analyses. 

The goal of this study is to develop a hybrid-ML approach that 

exploits thermodynamic aqueous speciation calculations while also 
including RF-ML regression modeling of the mineral-fluid interface. 
While the traditional RF studies utilize ML to model sorption, these 
works wholly use ML, eliminating the mechanistic underpinnings of 
SCMs altogether. This highlights a dramatic shift from quasi-mechanistic 
SCM constructs to data-driven, black-box predictions of the adsorption 
process. The Lawrence Livermore National Laboratory-Speciation 
Updated Random Forest (L-SURF) model operates as an alternative 
hybrid approach. Because reactive transport codes can effectively 
simulate aqueous speciation but the relevant SCM data suffer from 
diverging descriptions of surface reactions (e.g. electrostatics, reaction 
stoichiometries, etc.), we exploit the solution chemistry description 
found in traditional thermochemical databases while replacing the SCM 
interfacial chemical modeling with a data-driven, RF-ML approach. By 
doing so, we develop a new model that is not hindered by limitations of 
explicit surface descriptions: we eliminate challenges associated with 
assumptions on electrostatic surface effects and complicated permuta-
tions of relevant reaction stoichiometries that potentially convolute 
overall mechanism. Here, we demonstrate how L-SURF can be trained to 
predict metal adsorption onto mineral surfaces. This L-SURF approach 
can be integrated with reactive transport modeling codes that account 
for aqueous speciation and solubility using traditional thermodynamics. 

2. Methods 

2.1. Data acquisition and pre-processing 

Extensive raw adsorption data in addition to an aqueous speciation 
database are needed for the application of L-SURF. The Lawrence Liv-
ermore National Laboratory-Surface Complexation/Ion Exchange (L- 
SCIE) database is a recent effort to unify community adsorption exper-
iments and metadata in a findable, accessible, interoperable, and reus-
able (FAIR) format (Zavarin et al., 2022). It has already mined over 23, 
000 raw adsorption data from the literature. Briefly, L-SCIE mines 
sorption data (Kd, % sorbed, surface excess) and dataset experimental 
conditions (background electrolyte, mineral surface area, gas composi-
tion, etc.) from journal manuscripts and loads them into a database. The 
sorption data undergo a series of unit conversions to yield a unified 
database which includes propagated conversion errors from the original 
extracted data (Zavarin et al., 2022) The database can then be filtered 
for a mineral-metal pair of interest in order to display a corresponding 
experimental dataset. 

2.2. L-SURF algorithm part 1: Aqueous speciation modeling of raw 
sorption data 

The first step of L-SURF requires an aqueous speciation database and 
compilation of raw experimental adsorption data for a given metal- 
mineral pair (Fig. 1) to perform aqueous speciation calculations. Here, 
aqueous speciation calculations were performed using the PHREEQC 
software (Parkhurst and Appelo, 2013). Notably, other speciation codes 
may also be implemented if desired. We used the thermodynamic 
database that is provided with PHREEQC and is derived from LLNL’s 
SUPCRT (Johnson and Lundeen, 1997) database but updated with 
missing and revised U(VI) reaction constants taken from the latest 
NEA-TDB effort (Ragoussi and Brassinnes, 2015; Ragoussi and Costa, 
2019) as implemented in our previous work (Zavarin et al., 2022). The 
L-SCIE database was used as the source of raw experimental adsorption 
data, for data unification, and data filtering. Raw adsorption data consist 
of total sorbate concentration, aqueous equilibrium sorbate concentra-
tion, and associated metadata consisting of gas composition, sorbent 
properties (concentration, surface area, reactive site density), back-
ground electrolyte concentrations, and pH conditions compiled in a 
comma-separated values format (Table 1). The metadata and the total 
aqueous sorbate concentration are used for each sorption datapoint to 
create PHREEQC simulations of solution chemistry conditions. Upon the 
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completion of aqueous speciation calculations, relevant geochemical 
variables are assessed as input features for the subsequent RF adsorption 
model development. An example data frame for raw data of U 
(VI)-quartz adsorption as extracted directly from L-SCIE is available in 
the Supplemental Information (Table SI1). 

2.3. L-SURF algorithm part 2: RF regression of mineral-based adsorption 

The second, RF-based step of L-SURF is executed after aqueous 
speciation modeling determines the equilibrium solution conditions for 
each individual adsorption data point. RF is an ensemble machine 
learning algorithm that uses a combination of decision trees whereby 
individual trees are built upon a randomly and independently sampled 

set of training data (Breiman, 2001). The RF regression method was 
chosen as the ensemble ML algorithm because of its effectiveness in 
capturing non-linear relationships between various dependent variables 
and the target valuable. This poses a particular advantage in charac-
terizing adsorption isotherm and edge data, where ionic strength, 
adsorbate and adsorbent concentrations can non-linearly impact the 
overall adsorption phenomena and the resulting equilibrium sorbate 
concentration (Pereira et al., 2019). The RF algorithm uses bootstrapped 
samples obtained from the provided training dataset to construct indi-
vidual decision trees. Decision trees are a common form of supervised 
learning whereby nodes are created to subset the data to meet certain 
criteria, such as evaluation of mean square error. In this RF model, all 
tree predictions are defined as the equilibrium aqueous sorbate con-
centration. These tree predictions are bagged, and bootstrap aggregated 
to output the best-predicting output value. At each splitting node within 
a decision tree, a random subset of dependent variables is selected as 
input features. Training data not selected via this method are called 
out-of-bag (OOB) samples and are used to estimate error of the built 
model. OOB predicted values for all decision trees are averaged and 
compared to the experimental values based on RMSE calculation: 

RMSEOOB =√

∑n

1

[
yi − yOOB

i

]2

n
(1)  

where yi is the experimental equilibrium aqueous adsorbate concen-
tration extracted directly from the L-SCIE database of raw adsorption 
data, yOOB

i is the average predicted equilibrium aqueous adsorbate 
concentration based on OOB-sampled data, and n is the number of 
samples employed in the RF model. 

As applied to the L-SURF workflow, previously described metadata 
variables and PHREEQC output variables (Table 1) are pushed through 
the RF regression model. The root-mean-square-error (RMSE) of the 
regression outputs are then evaluated against a training subset of the 
experimental raw adsorption data. A constraint on the number of input 
features is tested at this step to ascertain the most impactful geochemical 
features to incorporate into the RF regression. Specifically, the number 
of input features to obtain the highest RMSE is determined by adding an 
individual variable up to the specified input feature count. The selection 
of the individual variables is explored using 10-fold cross-validation 
splitting. A backward sequential feature selection algorithm was also 
explored (one variable removed from 6 to 1 feature counts) with mini-
mal alteration in the result. Upon the optimal choice of input features 
that yielded the lowest RMSE, the RF regression model is trained using a 
10-fold cross-validation (Marcot and Hanea, 2021) repeated 20 times to 
randomly search for hyperparameters that yielded the best training 
RMSE. The hyperparameters tuned in this study’s implementation of RF 
modeling were the number of estimators, maximum tree depth, mini-
mum samples split, and minimum samples in a leaf. The number of es-
timates determines the number of decision trees in a given forest and the 
maximum tree depth constrains the maximum number of levels to 
implement in each decision tree. The minimum sample split determines 
the minimum number of datapoints to place in a given node before 
splitting occurs and the minimum samples in a leaf determines how 
many data points are allowed in each leaf node. These hyperparameters 
are adjusted after the choice of the most impactful geochemical input 
features in order to optimize the overall RF adsorption model perfor-
mance. Upon completion of training, the RF regression model is vali-
dated against another subset of experimental raw adsorption data, and 
test predictions are finally made. The model is trained using 80% of the 
experimental data while 20% of the remaining data are equally split 
(10%/10%) and used as validation and test datasets. The training, 
validation, and test errors are determined using RMSE. The test error is 
additionally calculated using a weighted Pearson correlation coefficient, 
R, to allow for direct comparison with a traditional SCM constructed for 
U(VI)-quartz adsorption (Zavarin et al., 2022): 

Fig. 1. L-SURF workflow chart with chronological steps: (1) Adsorption data 
and selected thermodynamic database are imported into L-SURF module, (2) 
Aqueous speciation calculations are conducted and all geochemical features are 
output, (3) Choice of most impactful geochemical features and hyperparameters 
are optimized, (4) Optimal features are used to train and test a random forest 
adsorption model, (5) Equilibrium aqueous metal sorbate concentrations are 
output, and (6) Steps 1–5 are repeated using Monte-Carlo simulations with 
randomly sampled input data ± experimentally-determined measurement 
uncertainty. 

Table 1 
Generic data frame structure used as feature inputs into RF adsorption model.  

Input feature Method for obtaining 
feature values 

Input feature units 

Mineral source Extracted from L- 
SCIE metadata 

Number associated with 
unique mineral source 

Log10(Total Sorbate 
Concentration) 

Extracted from L- 
SCIE metadata 

Log10(Molar) 

Log10(Total Site 
Concentration) 

Calculated using L- 
SCIE metadataa 

Log10(sites/L) 

Ionic Strength Calculated using 
PHREEQC speciation 

Log10(Molar) 

Log10(Aqueous sorbate 
species concentrations)b 

Calculated using 
PHREEQC speciation 

Log10(Molar) 

Log10(HCO3
− concentration) Calculated using 

PHREEQC speciation 
Log10(Molar)  

a log10(Total Site Concentration) = Mineral density (g/L) × Mineral surface 
area (m2/g) × Mineral site density (sites/m2). All parameters to compute Total 
Site Concentration are available in the L-SCIE metadata. 

b Here, aqueous U(VI) sorbate species features include the testing of all of the 
following under variable permutations: UO2OH+, (UO2)2CO3(OH)3

- , UO2(OH)2, 
UO2CO3, UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2(CO3)2
2− , UO2Cl+, 

(UO2)4(OH)7
+, UO2NO3

+, (UO2)3(OH)4
2+, (UO2)3(OH)7

- , (UO2)2OH3+, 
UO2(CO3)3

4− , UO2Cl2, (UO2)3O(OH)2(HCO3)+, UO2(OH)4
2− , (UO2)3(CO3)6

6− , 
(UO2)11(CO3)6(OH)12

2− , and UO2(OH)3
- . 
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R=

∑
(ciwi − m)(coiwi − mo)

( ∑
(ciwi − m)

2∑
(ciowi − mo)

2)1/2 (2)  

where ci and coi are the measured and simulated aqueous concentration 
for the ith observation, respectively, wi is the weight (1/standard devi-
ation) of the ith observation, and m and mo are the mean measured and 
simulated values of weighted aqueous concentration, respectively. The 
Pearson correlation coefficient was chosen because it is independent of 
the number of observations and additionally accounts for uncertainties 
associated with each individual observation. 

For a more intuitive understanding of the model outputs, the equi-
librium aqueous sorbate concentrations that were output from the RF 
regression model were converted to Kd values using the following 
expression: 

Kd(L / g)=
n
(

mol
g

)

c
(

mol
L

) , (3)  

where c = model output equilibrium aqueous sorbate concentration and 
n = surface excess as computed using the following expression: 

n (mol / g)=
Sorbed concentration

(
mol
L

)

Mineral density
( g

L

) =
Total sorbate concentration

(
mol
L

)
− c

Mineral density
( g

L

)

(4)  

2.4. Partial dependency plot for assessing effects of important 
geochemical features 

A well-trained RF model can provide useful predictive capabilities 
and also elucidate dependent variables that are particularly important in 
the prediction process (Nguyen et al., 2022). This approach has yielded 
descriptions of the most important geochemical features that impact 
contaminant presence in aquifers (Lopez et al., 2021; Ransom et al., 
2017; Wheeler et al., 2015). The marginal effects contributed by a given 
feature on a predicted outcome can be visualized using a partial 
dependence plot (PDP) (Friedman, 2001). The partial dependence 
function for a regression is defined as 

f̂ s(xs)=
1
n

∑n

i=1
f̂ s
(
xs, x(i)c

)
(5)  

where xs are the plotted features and x(i)
c are the features in the ML 

model f̂ we are not interested in. An average over the n instances of the 
data is taken, where a Monte-Carlo method is used n times and an 
average of xs partial dependencies while marginalizing effects of x(i)

c is 
used to calculate the global relationship of a feature xs with its predicted 
value. 

2.5. Error propagation from experimental uncertainty 

Each adsorption datapoint and its associated metadata possess 
experimental uncertainties that are extracted directly from L-SCIE. For 
each datapoint that is selected, a normal distribution is commonly used, 
and a random sample is chosen within ± 1 standard deviation of the 
average value. After a random sample for each variable is selected, a 
Monte-Carlo simulation encompassing the full L-SURF workflow 
(aqueous speciation calculations + RF mineral sorption modeling) is run 
Y times, where Y iterations may be specified. For the U(VI)-quartz test 
case, Y = 200 iterations were run to demonstrate the Monte-Carlo 
iterative process. Upon completing the L-SURF iterations, a mean 
value and standard deviation is computed from the L-SURF output 
values to quantify error propagated throughout the full modeling pro-
cess (Anderson, 1976). The model output values (equilibrium sorbate 
concentrations) were then converted to associated Kd values following 
equations (3) and (4). 

2.6. U(VI)-quartz and -montmorillonite test cases 

For the test case of U(VI)-quartz adsorption, the features tested 
included mineral site concentration, ionic strength, HCO3

− aqueous 
species concentration, and aqueous UO2OH+, (UO2)2CO3(OH)3

- , 
UO2(OH)2, UO2CO3, UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2(CO3)2
2− , 

UO2Cl+, (UO2)4(OH)7
+, UO2NO3

+, (UO2)3(OH)4
2+, (UO2)3(OH)7

- , 
(UO2)2OH3+, UO2(CO3)3

4− , UO2Cl2, (UO2)3O(OH)2(HCO3)+, 
UO2(OH)4

2− , (UO2)3(CO3)6
6− , (UO2)11(CO3)6(OH)12

2− , and UO2(OH)3
- 

species concentrations. Each aqueous species concentration was treated 
as an individual feature within the RF model. Ionic strength was chosen 
as a feature representing chemical effects associated with aqueous spe-
cies activity corrections and surface electrostatic potential. The HCO3

−

aqueous species concentration was used as an input feature to account 
for CO2 liquid-gas exchange and speciation as a function of pH. The U 
(VI) aqueous species were chosen as features in an attempt to capture 
surface complexation of U(VI) onto quartz, such as through a mono-
dentate, inner-sphere reaction as described in Zavarin et al. (2022):  

>SiOH + UO2
2+ + X H2O → >SiOUO2(OH)X

+1− X + (1 + X) H+, where X =
0–3.                                                                                               (6) 

Among the U(VI) species, carbonate complexes such as the UO2CO3 

(aq) aqueous species were also tested as features. For instance, UO2CO3 

(aq) is an important species that may participate in U(VI)-carbonate 
surface complexation with quartz (Zavarin et al., 2022):  

>SiOH + UO2
2+ + Y CO3

2− → >SiOUO2(CO3)Y
+1− 2Y + 1H+, where Y = 1–2. 

(7) 

Ultimately, these variables were tested specifically to account for the 
most relevant liquid-gas exchange processes, aqueous complexes, and 
activities of aqueous species. 

A second test case of U(VI)-montmorillonite adsorption was inves-
tigated to assess the flexibility of L-SURF to evaluate adsorption pro-
cesses driven by a combination of surface complexation and ion- 
exchange as described in Troyer et al. (2016) in which the 
ion-exchange is formulated as a competition between cationic species:  

2 X–Na + UO2
2+ → X2-UO2 + 2 Na+ (8) 

where X is the permanent structural charge associated with the mont-
morillonite basal plane. 

The same geochemical features were tested under the second test 
case in order to compare any mechanistic differences as determined by 
the L-SURF model. At ambient CO2 conditions, it is expected that the U 
(VI)-quartz test case will be a representative example of the surface 
complexation of UO2

2+, U(VI)-hydroxide and U(VI)-carbonate species 
whereas the U(VI)-montmorillonite test case will be representative of a 
combination of UO2

2+ ion-exchange and surface complexation of the 
various U(VI) species in solution. The most impactful RF input features 
for each test case is discussed in the Results and Discussion section. 

3. Results and Discussion 

3.1. Model performance of U(VI) adsorption onto quartz 

Among the aqueous speciation calculations and metadata informa-
tion provided as input features, the most impactful geochemical vari-
ables selected for U(VI)-quartz adsorption were UO2(CO3)3

4− aqueous 
concentration, total uranium concentration, and mineral site concen-
tration (Table 2). The optimized hyperparameters chosen for the RF 
adsorption model using these three features involved an unconstrained 
maximum depth, a 200-estimator count, 1 minimum sample per leaf, 
and 2 minimum samples per split (Table 2). The model performance as 
evaluated using the Pearson correlation coefficient showed no signifi-
cant improvement after the incorporation of the aforementioned three 
geochemical features (Fig. 2). The choice of 3–6 input features results in 
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comparable error between the experimental and predicted Kd values 
(Fig. 3). Notably, while the choice of one input feature results in large 
error (±1 standard deviation falls within 2 log10(Kd) units of experi-
mental values), the choice of 2+ geochemical features results in pre-
dictions falling within 1 log10(Kd) unit of the experimental values. 
Among the input feature counts between 2 and 6, the choice of 3 input 
features yielded the best RMSE against the training data. Total uranium 
concentration and mineral site concentrations are relevant for predict-
ing adsorption dynamics as these features establish the solid: solution 
ratio. The automatic feature selection of UO2(CO3)3

4− aqueous concen-
tration suggests that a surface complexation mechanism that includes U 
(VI)-carbonate species is important for predicting U(VI)-quartz sorption. 

Model performance of the optimal RF adsorption model was reached 
using 3 input features. A training RMSE score = 0.065, validation RMSE 
score = 0.18, and test RMSE score = 0.13 are reported, demonstrating 
high-quality predictions across each data subset. When accounting for 
experimentally derived uncertainty, a weighted Pearson correlation 
coefficient R score = 0.96 was determined. As the RF training and 
validation scores yield low RMSE against their respective subsets of data 
and the R score is greater than 0.90 (Zavarin et al., 2022), this study 
presents an ML method that successfully accepts aqueous chemistry 
based features to accurately predict U(VI)-quartz interactions (Fig. 2). 
Additionally, Monte-Carlo iterations of L-SURF applied to U(VI)-quartz 
adsorption were implemented to propagate measurement derived un-
certainties associated with electrolyte concentrations, pH, total site 
concentration, and CO2 gas fugacity, yielding standard deviation values 
for each L-SURF test prediction of equilibrium aqueous sorbate con-
centrations. These standard deviations were then propagated to 
compute errors associated with predicted Kd values, which may have 
particular relevance in downstream modeling efforts, such as perfor-
mance assessment approaches. 

The adsorption predictions generated from L-SURF can be compared 
with recent efforts that use the same U(VI)-quartz dataset to generate 
optimized non-electrostatic, diffuse layer, and triple layer SCMs. Briefly, 
Zavarin et al. (2022) used PHREEQC/PEST to optimize a number of 
SCMs and associated reactions constants reported in the literature. The 
global fits yielded R values that ranged from 0.88 to 0.94 depending on 
the choice of SCM. In comparison, the L-SURF model yielded an R of 
0.96, demonstrating the ability of hybrid ML modeling to predict 
pH-dependent radionuclide-mineral adsorption with comparable accu-
racy to the best traditional 2-site, 4 surface complex non-electrostatic 
surface complexation model (Fig. 4). 

3.2. Model performance of U(VI) adsorption onto montmorillonite 

In contrast to U(VI)-quartz adsorption, U(VI) adsorption onto 
montmorillonite required the presence of 4 geochemical input features 
to fit the training dataset (Fig. 5). The important features were total U 
(VI) concentration, total site concentration, ionic strength, and UO2

2+

aqueous species concentration. The optimized hyperparameters for this 
RF model with 4 input features were the same as that optimized for the U 
(VI)-quartz RF model (Table 2). Notably, the lack of U(VI)-carbonate 
species and the presence of ionic strength and a cationic UO2

2+

aqueous species suggests the RF algorithm’s distinction between two 
different adsorption mechanisms. Rather than a U(VI)-carbonate surface 
complexation driven regression seen in the U(VI)-quartz RF model, the 
importance of ionic strength and aqueous UO2

2+ features suggests that 
the U(VI)-montmorillonite RF model is most impacted by ion-exchange. 
The resultant RF model that utilized 4 input features yielded Kd pre-
diction values that were within ±1 log10(Kd) units of the experimental 
values (Fig. 6). 

The best-performing RF adsorption model was evaluated to have 
training, validation, and test RMSE of 0.087, 0.30, and 0.29, respec-
tively. A larger RMSE for validation and test errors suggest a potential 
for overfitting of the training data. Modifications to the execution of 
hyperparameter tuning or choice of training-validation-test sub-datasets 

Table 2 
Most impactful geochemical input features and hyperparameters for RF models.   

U(VI)-Quartz U(VI)-Montmorillonite 

Features: 
Feature 1 Total Uranium Concentration 

Log10(mol/L) 
Total U(VI) Concentration 
Log10(mol/L) 

Feature 2 Total Site Concentration 
Log10(mol/L) 

Total Site Concentration 
Log10(mol/L) 

Feature 3 UO2(CO3)3
4− Concentration 

Log10(mol/L) 
Ionic Strength Log10(mol/L) 

Feature 4  UO2
2+ Concentration 

Log10(mol/L) 
Hyperparameters: 
Max depth None [no maximum 

constraint] 
None [no maximum 
constraint] 

Number of 
estimators 

200 200 

Min samples in a 
leaf 

1 1 

Min samples in a 
split 

2 2  

Fig. 2. U(VI)-quartz model performance against the training dataset as the 
number of RF input features is varied. The weighted Pearson correlation coef-
ficient is not significantly improved with the inclusion of more than 3 features. 

Fig. 3. Probability Density Function of Error between Experimentally Derived 
and Predicted Kd values for U(VI)-quartz adsorption. The number of feature 
inputs were varied until no further improvement was observed. 
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may mitigate such effects in future applications. When accounting for 
experimental uncertainty, a Pearson correlation coefficient of the test 
prediction was reported as 0.96. Uncertainty associated with the raw 
adsorption data (e.g. electrolyte and sorbate concentration, pH, mineral 
concentration, and gas fugacity) were propagated into the model Kd 
predictions using a Monte-Carlo based method. This resulted in test Kd 
predictions with standard deviation errors that fell within a range of ±1 
log10(Kd) units of the experimental values (Fig. 7). 

3.3. RF partial dependence contour plots for U(VI)-Quartz and 
-montmorillonite models 

Low RMSE training and validation scores and a high >0.90 test 
weighted prediction R score allow for the RF regression modeling to be 
well-equipped for further model analytics that elucidate feature re-
lationships and partial dependencies of prediction values. As part of the 
L-SURF work package, PDPs are generated to illustrate how the aqueous 

chemistry features of the RF adsorption model contribute to equilibrium 
aqueous U(VI) concentration predictions (Fig. 8). For the U(VI)-quartz 
test case, the impacts on the predicted equilibrium U(VI) aqueous con-
centration associated with changes in total U(VI) sorbate concentration 
and UO2(CO3)3

4− aqueous concentration were explored (Fig. 8a). At the 
high U(VI) total sorbate concentration feature region (greater than − 4.5 
log10(Molar) units), the RF regressor is dominated by impacts associated 
with the total U(VI) concentration. However, at lower U(VI) total sor-
bate concentrations, UO2(CO3)3

4− aqueous concentration becomes more 
influential on the model predictions. This is evidenced by the high total 
U(VI) sorbate concentration region experiencing minimal change as 
UO2(CO3)3

4− aqueous concentration varies while the low total U(VI) 
sorbate concentration region experiences large variability as 
UO2(CO3)3

4− aqueous concentration changes. 
For the U(VI)-montmorillonite test case, impacts on the predicted 

equilibrium U(VI) aqueous concentration were observed with variable 
ionic strength and UO2

2+ aqueous concentration (Fig. 8b). The most 
sensitive region where both features impact the model prediction most 

Fig. 4. Example pH-dependent model predictions of 
Kd values for U(VI)-quartz adsorption. The 
community-data optimized 2-site, 4 surface complex 
non-electrostatic SCM reported in Table 2 of Zavarin 
et al. (2022)is represented by green circles; L-SURF 
modeling is represented by blue stars ± 1 standard 
deviation error bars; experimentally measured values 
are indicated by red dots. Adsorption edge data are 
sub-divided into individual datasets from the D01 
(Davis, 2001) original publication as extracted from 
L-SCIE (Zavarin et al., 2022). Datapoint references, 
such as f5 through 5c, are included as originates from 
the L-SCIE database nomenclature to track individual 
datapoints from reference D01. The full 
pH-dependent model predictions may be found in the 
Supplemental Information (SI.1) and utilize the 
following references: AOTKA82 = Allard et al. 
(2011); AZBN00a = (Arnold et al., 1999); AZBN98 =
(Arnold et al., 1998); AZZBN01 = (Arnold et al., 
2001); CSB18 = (Coutelot et al., 2018); D01 = (Davis, 
2001); DW14 = (Dong and Wan, 2014); FDZ06b =
(Fox et al., 2006).; JHLCH99 = (Jung et al., 1999); 
KCKD96 = (Kohler et al., 1996); NKM14 = (Nair 
et al., 2014a); PJTP01 = (Prikryl et al., 2001); 
PTBP98 = (Pabalan et al., 1998a).   

Fig. 5. U(VI)-montmorillonite model performance against the training dataset 
as the number of RF input features is varied. The weighted Pearson correlation 
coefficient is not significantly impacted after the incorporation of 4 
input features. 

Fig. 6. Probability Density Function of Error between Experimentally Derived 
and Predicted Kd values for U(VI)-montmorillonite adsorption. The number of 
feature inputs were varied until no further improvement was observed. 
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heavily is under high ionic strength, high UO2
2+ aqueous concentration 

conditions. This is consistent with reaction (8), where UO2
2+ and elec-

trolyte (Na+) aqueous concentrations directly impact the thermody-
namics of the montmorillonite ion-exchange process. Conversely, lower 
ionic strengths and UO2

2+ aqueous concentrations yield conditions with 
the least sensitive feature impacts on the predicted equilibrium U(VI) 

aqueous concentration. 
While PDPs inform us of how important input features impact the 

model output, the true mechanisms explaining these trends may still be 
difficult to elucidate. For instance, in discussing U(VI)-montmorillonite 
ion-exchange, we cannot de-convolute whether the aforementioned 
trends are a result of changes in (1) aqueous species activities, (2) 

Fig. 7. Example pH-dependent model predictions of Kd values for U(VI)-montmorillonite adsorption. L-SURF modeling is represented by blue stars ±1 standard 
deviation error bars; experimentally measured values are indicated by red dots. Adsorption edge data are sub-divided into individual datasets from the K01 (Kim, 
2001) original publication as extracted from L-SCIE (Zavarin et al., 2022). The full pH-dependent model predictions may be found in the Supplemental Information 
(SI.2) and utilize the following references: BB05 = (Bradbury and Baeyens, 2005); BCHSSY98 = (Boult et al., 1998); BM11 = (Bachmaf and Merkel, 2011); K01 =
(Kim, 2001); KDSE04 = (Kowal-Fouchard et al., 2004); MBDSB12 = (Marques Fernandes et al., 2012); MZST95 = (McKinley et al., 1995); PTBP98 = (Pabalan 
et al., 1998b). 

Fig. 8. Partial dependence contour plots of (a) 
UO2(CO3)3

4− aqueous concentration and U(VI) total 
sorbate concentration impacts on modelled U(VI)- 
quartz adsorption and (b) UO2

2+ aqueous concentra-
tion and ionic strength impacts on modelled U(VI)- 
montmorillonite adsorption. Solid black dashes on 
x-axis indicate deciles of the feature values (every 
10th value among the full list of feature values used 
in the contour plot). Various colored regions indicate 
discretized zones of partial dependency as quantified 
by the log10 values expressed along the boundary 
lines.   
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electrical double layer thickness, or (3) electrolyte competition for 
sorption sites on the mineral surface. The PDPs presented in this study 
are thus more illustrative of the impacts from specific features on the RF 
regressor rather than an elucidation of exact sorption mechanisms 
occurring at the mineral-fluid interface. 

3.4. L-SURF use cases and implications to other modeling tools 

The hybrid framework posed by the L-SURF method enables the 
extraction of chemically relevant variables through the use of aqueous 
speciation programs such as PHREEQC. A major benefit of this approach 
is to efficiently translate experimental variables (e.g., pH, elemental 
concentrations) acquired from datasets into meaningful geochemical 
features (e.g., ionic strength, aqueous species concentrations). While 
this study focuses on the use of RF regressors as coupled with a 
geochemical feature engineering process, the hybrid machine learning 
approach is more broadly applicable to the incorporation of different 
regression-based models. Gaussian process models, for instance, may 
serve as a regression model alternative by solving for equilibrium 
aqueous metal concentrations as a function of the pre-determined input 
features. Specifically, a correlated multivariate Gaussian distribution in 
the multi-dimensional input feature parameter space may be used to 
interpolate output values (e.g., equilibrium aqueous concentrations). 
The covariance functions used in these models may explore several 
different kernels, such as the commonly used radial-basis function. An 
advantage of using the Gaussian process approach may include the 
computation of uncertainty estimates without ensemble simulations. 
Furthermore, the availability of multiple kernels allows for flexibility of 
fitting diverse sets of adsorption data as impacted by variable 
geochemical conditions. 

The use of non-linear multivariable regressions may also serve as a 
valuable use case once the hybrid framework is exploited to generate 
chemistry-informed features. Similar to the Gaussian process method 
that possesses flexibility in the choice of kernel, the non-linear multi-
variable regression approach may be deployed by choosing from a va-
riety of different equations, such as exponential, logarithmic, and 
logistic function shapes. As the RF regressor in this study is optimized by 
using a training dataset to conduct hyper-parameter tuning, a similar 
method may be executed for the quantification of non-dependent and 
-independent variable parameters for non-linear functions. Such explo-
rations and optimizations of kernel or function shape are well-suited in 
the context of Python-based scripting and may serve as an efficient data- 
processing tool to understand preliminary trends among various 
geochemical features as determined from the aqueous speciation results 
of the hybrid data-driven approach. 

3.5. Potential trade-offs in the use of hybrid-machine learning approaches 

This study explores the use of a hybrid algorithm to quantify U(VI)- 
mineral sorption processes. As discussed previously, the L-SURF 
approach enables the flexible application of various other regression- 
based modeling tools to estimate fluid-mineral interactions, posing a 
benefit for systems that possess large amounts of sorption data under 
diverse geochemical conditions. Recent work further suggests the 
“imperative need” to quantitatively evaluate large and varied datasets to 
build more robust models that quantify surface reactions (Satpathy 
et al., 2021). The L-SURF approach explores this topic by exploiting a 
data unification tool (L-SCIE) and poses an alternative, data-driven 
means to quantify metal-mineral sorption. 

An advantage of the L-SURF method that relies on high data density 
can be considered a limitation under conditions of data paucity. 
Consistent with other data-driven methods, the lack of sufficient 
representative data may hinder the applicability of the L-SURF approach 
and result in overfitting or bias towards geochemical conditions with 
greater data density. Additionally, because the currently described al-
gorithm trains a RF regressor through computing RMSE values, large 

ranges of data input conditions may result in unintended biases as re-
ported by the RMSE metric if proper scaling methods are not imple-
mented. Such effects may be mitigated through, for example, the 
normalization of RMSE to either the mean or the range of the model 
output (equilibrium aqueous concentration values). While large datasets 
enable data-driven methods to effectively characterize trends, the RF 
algorithm does not lend itself to extrapolation. Furthermore, the 
replacement of a traditional surface complexation model with an RF 
regressor currently prevents the direct mechanistic interpretation of 
sorption modes and mechanisms (e.g., polydentate or redox trans-
formation behaviors). Thus, the work presented herein should be 
considered an alternative approach for quantifying adsorption pro-
cesses; one that is neither more accurate nor more precise compared to 
traditional surface complexation models yet enables the use of 
regression-based modeling techniques to estimate fluid-mineral inter-
action effects and may lead to more rapid application of large commu-
nity datasets to reactive transport model parameterization. 

3.6. Concluding remarks 

The L-SURF work package has yielded successful predictions of U(VI) 
adsorption onto quartz and montmorillonite mineral surfaces, while 
suggesting distinct sorption processes of surface complexation and ion- 
exchange. This work is also a significant contribution in hybrid 
physics-integrated ML applications in the field of Earth Sciences 
(Reichstein et al., 2019); physical models that are known to be reliable 
(i.e., aqueous speciation) are combined with data-driven models for 
processes that have greater uncertainty (i.e., surface complexation). 

This study explores L-SURF using single element-mineral interface 
datasets. There is a need to study real-world systems that incorporate 
complex mixtures of aqueous species and mineral phases. Future work 
will thus include incorporation of more complex features, such as the 
ability to distinguish between different mineral structures or adsorbate 
oxidation states. In addition, work will be done to integrate L-SURF into 
higher-order reactive transport codes as a substitute to more complex 
SCM approaches to adsorption and retardation. As the L-SURF method is 
novel in the space of adsorption modeling, the authors emphasize the 
need to test L-SURF rigorously across numerous different elements and 
minerals under varied environmental conditions. Additionally, com-
parisons with other SCM constructs may yield new insights into which 
alternative methods may serve as a more robust tool for computing non- 
linear Kd-based retardation factors. The work presented herein captures 
a first-of-its-kind method to bridge the gap between mechanistic surface 
complexation modeling and ML-based regression modeling, successfully 
achieving prediction accuracy equivalent to traditional SCMs for U(VI)- 
quartz surface complexation and demonstrating applicability to U(VI)- 
montmorillonite ion-exchange/surface complexation processes as well. 

Computer code availability 

L-SURF work package is made available for review under a free LLNL 
license: https://ipo.llnl.gov/technologies/software/l-surf. The code is 
authored by Elliot Chang, Linda Beverly, Sol-Chan Han, and Jadallah 
Zouabe. The primary developer is Elliot Chang (email: elliotc@berkeley. 
edu). The work package is written in the Python programming language 
and is accessible as a Jupyter notebook. Additional software required 
include the latest packages of sklearn and an executable version of 
PHREEQC. 
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