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Significance

As human clinical studies are 
often expensive, lengthy, and 
with many constraints, model 
organisms, such as mouse and 
rat, play an indispensable role in 
almost all disease domains. 
Although instrumental and 
popular, the application of model 
organisms has raised caution. 
Two previous PNAS reports 
presented controversial 
conclusions of mouse model’s 
resemblance to humans in 
inflammatory transcriptomic 
responses, which triggered 
debates on its usefulness. To 
date, no objective and 
quantitative tools are available to 
describe the congruence of a 
mouse model to humans. The 
proposed methodology in this 
paper fills this gap to facilitate 
mechanistic understanding and 
hypothesis generation when 
evaluating an animal model.
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Model organisms are instrumental substitutes for human studies to expedite basic, 
translational, and clinical research. Despite their indispensable role in mechanistic inves-
tigation and drug development, molecular congruence of animal models to humans 
has long been questioned and debated. Little effort has been made for an objective 
quantification and mechanistic exploration of a model organism’s resemblance to 
humans in terms of molecular response under disease or drug treatment. We hereby 
propose a framework, namely Congruence Analysis for Model Organisms (CAMO), 
for transcriptomic response analysis by developing threshold-free differential expression 
analysis, quantitative concordance/discordance scores incorporating data variabilities, 
pathway-centric downstream investigation, knowledge retrieval by text mining, and 
topological gene module detection for hypothesis generation. Instead of a genome-wide 
vague and dichotomous answer of “poorly” or “greatly” mimicking humans, CAMO 
assists researchers to numerically quantify congruence, to dissect true cross-species 
differences from unwanted biological or cohort variabilities, and to visually identify 
molecular mechanisms and pathway subnetworks that are best or least mimicked by 
model organisms, which altogether provides foundations for hypothesis generation and 
subsequent translational decisions.

model organism | molecular congruence analysis | transcriptome | translational research

As human studies often encounter numerous constraints, including larger biological het-
erogeneity, hidden confounding factors, greater cost and time, and potential ethical con-
cerns, model organisms have played an indispensable role in preclinical research to 
understand the pathogenesis of human diseases at the behavioral, cellular, and molecular 
levels. Their clinical validity and translational values are, however, long debated with con-
troversial opinions (1–4). A notable example is the opposite conclusions from two articles 
analyzing an identical transcriptomic response dataset in human and mouse inflammation 
(5, 6), with the former concluding that mouse models (MMs) “poorly” mimic humans 
while the latter reporting “greatly” mimicking. The contradictory results triggered further 
debates of merits and limitations of animal models (7–9). To date, efforts have been made 
to compare or predict model organism responses using association analysis (5, 6), machine 
learning (10, 11), pathway enrichment (12, 13), or meta-analysis (14) approaches. An 
objective and quantitative approach to identify biomarkers, pathways, and topological 
gene regulatory modules that are best or least mimicked by the model organism is, however, 
still lacking. Our research aims to fill this gap and to facilitate data-driven mechanistic 
understanding, hypothesis generation, and translational guidance of animal models.

Fig. 1 presents an overview of the Congruence Analysis for Model Organisms (CAMO) 
pipeline, consisting of state-of-the-art methods and approaches for a thorough congruence 
evaluation. In Fig. 1A, differential analyses contrasting case and control groups (e.g., disease 
vs. healthy or treated vs. un-treated) are first performed in mouse and human cohorts 
separately. Threshold-free Bayesian differential analysis is implemented to transform P values 
from conventional pipelines (e.g., Linear Model for Microarray Data (LIMMA) or 
Differential expression analysis based on the Negative Binomial (DESeq2)) to differential 
posterior probabilities, with which cross-species concordance/discordance scores (abbrevi-
ated as c-scores/d-scores hereafter) are calculated by the F-measure concept in machine 
learning with the associated inference of P values. Pathway-specific c-scores/d-scores are 
calculated similarly by constraining genes to a specific pathway. When multiple cohorts are 
jointly analyzed, c-scores and d-scores are calculated for all pairs of studies in each individual 
pathway provided by users or pathway databases. Fig. 1B heatmap illustrates an imaginary 
example of two human and two mouse studies, labeled as H1, H2, M1, and M2, where H2, 
M1, and M2 are more congruent to each other while H1 is dissimilar to the other three 
cohorts for the first pathway shown.
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After c-score/d-score calculation, the “Mechanistic investigation 
and hypothesis generation” component in Fig. 1B can perform 
“pathway knowledge retrieval” and “topological gene module 
detection”. In “pathway knowledge retrieval”, an unsupervised 
clustering method is applied to cluster enriched pathways with 
similar concordance patterns across studies to extract and simplify 
highly overlapped and redundant information of pathways anno-
tated from different database sources, such as Gene Ontology 
(GO) (15), Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(16), and Reactome (17). A text mining algorithm is then applied 
to retrieve statistically enriched keywords in each pathway cluster. 
Finally, in “topological gene module detection”, a community 
detection algorithm is developed for any selected pair of models 
to identify concordant or discordant subnetworks in a selected 
pathway based on its topological regulatory information (e.g., see 
Fig.3). For a pathway topological plot of two selected models, it 
is possible to detect both a cross-species concordant subnetwork 
and a discordant subnetwork. The resulting concordant/discordant 
subnetworks together with retrieved pathway knowledge provide 
an objective and disciplined basis for mechanistic understanding 
of cross-species congruence and for further hypothesis 
generation.

To allow application by other researchers, we develop a user-
friendly R-shiny app (https://github.com/CAMO-R/Rshiny) to 
interactively implement the streamlined workflow. The results can 
then be visualized and investigated in pathway clusters, individual 
pathway, or subnetwork modules inside pathways for interactive 
exploration. The Bayesian differential analysis tool allows flexible 
input of processed expression data or precalculated P values from 
conventional differential analysis tools. Ortholog genes can be 

automatically mapped for Mus musculus, Rattus norvegicus, 
Drosophila melanogaster, and Caenorhabditis elegans. Popular path-
way databases, such as GO (15), KEGG (16), Reactome (17), and 
BioCarta (18), are included in the package, where KEGG (16) 
and Reactome (17) contain topological regulatory information 
for visualization.

Results

Below, we demonstrate the CAMO framework using two real 
examples. We first revisit the previously reported controversial 
example of human vs. mouse inflammatory disease models (5, 6). 
Our CAMO result reconciles the two dichotomized and subjective 
conclusions of “greatly mimicking” or “poorly mimicking” by 
numerically quantifying the concordance and discordance of 
human–MM comparisons at genome-wide, pathway, or gene sub-
network module level. In the second example, we apply CAMO 
to compare developmental stages from embryo to adult in two 
model organisms, worm (C. elegans) and fruit fly (D. melanogaster) 
in the modENCODE project (19, 20). Results of the two case 
studies show flexibility and extensibility of CAMO for simulta-
neously comparing multiple models (i.e., six MMs and six human 
models in case study 1) or two models in multiple developmental 
stages (i.e., five developmental stages in C. elegans and five in D. 
melanogaster in case study 2).

Case Study 1: Congruence of Inflammatory MMs and Human. 
Two papers published in PNAS reached contradicting conclusions 
on MM resemblance to humans in transcriptomic response of 
inflammatory diseases (5, 6). In an earlier paper, Seok et al. (5) 

Fig. 1. Workflow of the “CAMO” framework. (A) Procedures to calculate genome-wide and pathway level c-scores and d-scores for a pair of human sepsis (HS) and MM. 
(B) Downstream machine learning and bioinformatics interactive visualization tools for pathway knowledge retrieval and topological gene nodule detection.

https://github.com/CAMO-R/Rshiny
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analyzed microarray studies to investigate gene expression changes 
in human inflammatory diseases and the corresponding MMs and 
found a “poor” correlation between the genome-wide expression 
changes in humans and in mice. Takao et al. (6) later reanalyzed 
the same dataset and concluded that the transcriptomic changes 
in MMs greatly mimicked those in humans. A series of comments 
and debates followed to discuss potential differences in cell-type 
composition, time frame, and genetic variation between mice 
and humans, but no converging message or practical guidance 
has been formed (7–9). In SI Appendix, Table S1, we compare 
the analytical procedures in the two papers and identify multiple 
major differences that may have contributed to the contradicting 
conclusions: a) The two papers select different sets of differential 
expression (DE) genes to calculate the correlation (i.e., using DE 
genes in humans only in ref. 5 but using intersected DE genes in 
both humans and mice in ref. 6), b) They use different statistical 
significance (q value or P value) and biological significance (effect 
size) thresholds for determining DE genes, c) They report different 
correlation measure (R2≈(Pearson correlation)2 or Spearman 
correlation), d) Their sources of data and preprocessing steps are 
different and with no reproducible code. Observing the risk of 
ad hoc and potentially subjective analytical decisions in these 
cross-species congruence analyses, we are motivated to develop a 
threshold-free and rigorous statistical framework in CAMO. In 
contrast to genome-wide correlation assessment in these papers, 
we extend the investigation into pathways and gene regulatory 
modules for insightful mechanistic understanding.

SI Appendix, Table S2 lists six inflammatory response studies 
in humans (Burns, Infection, Trauma, Sepsis, lipopolysaccharide 
endotoxins, and acute respiratory distress syndrome; abbreviated 
as HB, HI, HT, HS, HL, and HA, respectively) and six corre-
sponding conditions in mice (abbreviated as MB, MI, MT, MS, 
ML, and MA, respectively), where data are previously curated 
from Gene Expression Omnibus repository in the KERIS package 
(21). The 12 microarray datasets in Affymetrix and Illumina plat-
forms are preprocessed and normalized as uniformly as possible 
(see Methods section). Since inflammatory diseases progress over 
time and differ in humans and mice, the selection of matched 
time points across species is critical. We evaluate the cross-species 
time series and select the best-matched time points by c-score in 
case-control transcriptomic response (Methods). After cross-species 
gene matching, 8,317 ortholog genes are remained for CAMO 
analysis. For any pair of the 12 studies, genome-wide and path-
way-specific c-scores and d-scores are calculated. The resulting 
genome-wide c-scores and d-scores of each pair of studies are 
shown in SI Appendix, Tables S4 and S5 respectively. The congru-
ence visualization by multidimensional scaling (MDS) plot, a 
visual representation of dissimilarity structure, using transforma-
tion of c-scores as dissimilarity measure is shown in SI Appendix, 
Fig. S1. We find that four human inflammatory studies HB, HI, 
HT, and HS resemble each other well with genome-wide c-scores 
ranging from 0.25 to 0.52 (shaded dark green in SI Appendix, 
Table S4), consistent with previous findings in the two PNAS 
papers, while no resemblance evidence is suggested for HL and 
HA (c-scores ≈ 0; shaded light green, SI Appendix, Table S4). MB 
and MI are overall more similar to the four human studies (HB, 
HI, HT, and HS) in a weaker congruence level (c-scores = 0.081 
to 0.20; shaded pink, SI Appendix, Table S4) while MT, MS, MA, 
and ML have almost no genome-wide congruence, implying the 
concordance of cross-species transcriptomic response in inflam-
matory diseases is condition specific. Interestingly, mouse studies 
are not necessarily more similar to human studies of the same 
inflammatory condition. For example, c-scores of MI-HI and 
MB-HB are 0.2 and 0.11 (marked red, SI Appendix, Table S4), 

while c-scores of the other four pairs, MT-HT, MS-HS, ML-HL, 
and MA-HA, are almost 0 (marked blue, SI Appendix, Table S4). 
Unlike most of the human studies, the six mouse studies generally 
do not mimic each other, implying unknown complexity and high 
variability of MMs in inflammatory diseases.

We next apply consensus tight clustering to 219 selected path-
ways with enriched meta-analyzed DE genes (Methods) to reduce 
redundancy of highly overlapped pathways and to improve inter-
pretation. Four pathway clusters are identified with 41 scattered 
(i.e., unclustered) pathways (SI Appendix, Table S6), where the 
number of clusters is selected by the consensus CDF and scree 
plot (SI Appendix, Fig. S2). Heatmap and MDS plot of pathway 
clusters are shown in SI Appendix, Fig. S3 A and B. The comem-
bership heatmaps are used to summarize the proportion of signif-
icantly concordant pathways within each pathway cluster between 
each pair of studies (SI Appendix, Fig. S3C). Through text mining 
of pathway names and descriptions, top significantly enriched 
keywords are shown (SI Appendix, Fig. S3C and Table S7). These 
results suggest molecular mechanisms underlying the commonal-
ities and differences in various inflammatory response models 
between the two species, providing insights beyond the subjective 
and dichotomous conclusions of the previous two contradicting 
PNAS papers. For example, pathway Cluster I and II (SI Appendix, 
Fig. S3C) show that several MMs (e.g., MB, MI, and MT in 
Cluster I) mimic most human studies (e.g., HB, HS, HT, and HI 
in Cluster I) well in both innate (e.g., natural killer cell related) 
and adaptive (e.g., T cell related; SI Appendix, Table S7) immunity. 
Despite the difference in neutrophil and lymphocyte abundance 
and other phenotypes, it has been reported that the overall 
immune system is relatively similar between humans and mice 
(22). Pathway Cluster IV shows that MMs do not mimic human 
studies in ribosome and protein translation while responses in HS, 
HB, HT, and HI are similar to each other. Such findings agree 
with earlier studies that profound cross-species differences exist 
in translation machinery (23).

CAMO next provides interactive exploration in the shiny app 
to select pathways and facilitate further topological visualization 
of regulatory networks. To demonstrate the idea, Fig. 2 contains 
a selected display of burn and sepsis studies in humans and mice 
(HB, HS, MB, and MS). Fig. 2A shows DE evidence with con-
cordance (the upper right region) and discordance (the lower left 
region) information in each pair of model comparison, where each 
dot represents a pathway, X-axis and Y-axis represent the aggre-
gated DE evidence (average posterior probability of DE) of a 
pathway, and color intensity of the dots refers to statistical signif-
icance (minus-log-transformed P values) of c-scores or d-scores 
in each pathway. In the shiny app, a user can click on any location 
of a plot to obtain information of the nearby pathways. After 
interactively exploring individual pathways of interest, a pathway 
with high DE evidence in both axes and strong congruence/dis-
cordance can be selected for scrutinizing its gene-specific congru-
ence information and mechanistic investigation. In this 
demonstration, two KEGG pathways (hsa04760 and hsa04662) 
with strong DE evidence and high c-score or d-score statistical 
significance are identified and further investigated. Fig. 2B shows 
the signed DE posterior probability (red for upregulation and 
green for downregulation) of each study (on columns) for selected 
DE genes (on rows). The “Leukocyte transendothelial migration” 
pathway (hsa04670) has high DE evidence with average DE pos-
terior probabilities = 0.42 and 0.35 in HS and MS in Fig. 2A. 
Intriguingly, the pathway exhibits discordant DE signals in 25 
genes in the HS vs. MS comparison (marked blue in Fig. 2B; 
upregulated in HS and downregulated in MS or vice versa) and 
only one concordant gene (marked orange in Fig. 2B). Fig. 3A 
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shows the KEGG pathway topological plot with gene–gene reg-
ulatory network information and with side-by-side display of the 
differential regulation signals in HS and MS (red for upregulation 
and green for downregulation; HS on the left and MS on the 
right). The community detection algorithm (Methods) identifies 
a subnetwork module containing 14 DE genes (RHOA, PTK2B, 
RAC2, RAC1, CDC42, ITGA4, ITGB2, MSN, PXN, NCF2, 
CYBA, GNAI1, GNAI2, and GNAI3) with opposite expression 
response directions in human-mouse comparison of sepsis (i.e., 
green in HS and red in MS or vice versa; P = 0.002 for this 
detected subnetwork module). The colocalized discordant module 
is directly related to cell motility and direct sensing (Fig. 3A pop-
out plot), a critical function that allows leukocytes to attach to 
the vessel wall to initiate immune response during inflammation 
(24). The striking mouse–human discordant result may reflect the 
discrepancy in proportions of different cell types of blood leuko-
cytes between humans and mice as pointed out in a previous 
critique (9).

The second pathway “B cell receptor signaling pathway” 
(hsa04662) exhibits high discordance between HS and MS (11 
discordant genes in blue and two concordant genes in orange in 
Fig. 2B) while exhibits more concordance between HB and MB 
(26 concordant genes in orange and nine discordant genes in blue). 
From the KEGG topological plot of HS/MS comparison in 
Fig. 3B, a subnetwork module of seven discordant genes (PTPN6, 
DAPP1, CD79A, RAC1, RAC2, GRB2, CD19; P = 0.009) is 
detected. CD79A and CD19 are antigen receptors on the B cell 

membrane to regulate signaling molecules, such as GRB2 and 
RAC family, with important roles in the regulation of cell growth 
and movement (25). On the other hand, Fig. 3C shows the general 
concordance of DE signals between HB and MB (both red or 
both green) in the B cell membrane receptor and signaling. The 
community detection algorithm identifies a subnetwork module 
of four concordant genes: CD79A (Ig-Alpha), CD79B (Ig-Beta), 
CD19, and BLNK (yellow genes in Fig. 3B). Additionally, three 
genes, CD72 (coinhibitor), IFITM1 (LEU13; costimulator) and 
CR2 (costimulator) work together to regulate the integral mem-
brane protein complex and show concordance between HB and 
MB (Fig.3C pop-out plot). Results in Fig. 3 B and C are consistent 
with previous literature showing similarity but also a significant 
difference between mouse and human immunology, specifically 
in B cell development (22).

To elucidate true cross-species differences in c-scores/d-scores 
and dissect from within-cohort and cross-cohort variabilities in 
humans, we perform two additional analyses: Intracohort heter-
ogeneity analysis and intercohort heterogeneity analysis for human 
subjects. An intracohort heterogeneity analysis is performed by 
randomly splitting samples into two equal-size subsets (e.g., HI 
randomly split to HI1 and HI2). The c-scores/d-scores are calcu-
lated to evaluate the experimental noise within the cohort and to 
assess the “ceiling” of (i.e., the highest possible) concordance given 
the cohort, sample size, and experimental design in humans (see 
details in SI Appendix, section 1C and Fig. S4A). SI Appendix, 
Fig. S4B compares the intracohort c-scores with cross-species 
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Fig. 2. Results from the case study 1. (A). Summary plot of DE evidence and pathway level concordance (orange in the Upper Right region) and discordance (blue 
in Lower Left region). Each ○/△/◻ is a pathway. X- and Y-axes represent the average DE posterior probabilities, and color represents the magnitudes of −log

10
 

transformed P value of c-scores or d-scores. Two example pathways are highlighted using different shapes (“△”: hsa04662—KEGG: B cell receptor signaling 
pathway; “◻”: hsa04670—KEGG: leukocyte transendothelial migration). Ten additional randomly selected pathways are shown as comparison. Pathways with 
high average DE posterior probabilities in both models (x-axis and y-axis) and with high significance of c-score or d-score (darker color) are prioritized pathways 
for further mechanistic investigation. (B). Gene-wise heatmap of posterior mean of DE indicators of the HS-MS comparison in hsa04670, HS-MS in hsa04662, 
and HB-MB in hsa04662. Genes identified by community detection algorithm (yellow) and genes with concordant (orange) or discordant (blue) are shown in 
two columns beside the heatmaps.
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c-scores in both genome-wide and selected pathways. Higher 
genome-wide intracohort c-scores in HB, HI, HT, and HS 
(between 0.4 and 0.7) suggest their potential of meaningful 
cross-species evaluation while ~0 intracohort c-scores in HA and 
HL indicate incompetence of using these human data for 

cross-species evaluation. Intriguingly, although MI only shows 
moderate genome-wide cross-species c-score compared to intra-
cohort c-score (median c-score = 0.15 for HI1 vs. MI vs. 0.43 for 
HI1 vs. HI2), its cross-species c-scores in all four selected pathways 
are close to the human “ceilings” in SI Appendix, Fig. S4B. For 
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(CDC42)
(RAC1)

(GNAI1, GNAI2, GNAI3)(ITGA4)
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Fig. 3. Pathway topological plots of the example pathways in case study 1. (A) hsa04670 (HS-MS), (B) hsa04662 (HS-MS), and (C) hsa04662 (HB-MB). Pop-out 
plots represent the colocalized concordant/discordant modules identified from the pathway topology by the community detection algorithm. Colors in the nodes 
refer to the posterior mean of DE indicators in each corresponding study pair (red for upregulation and green for downregulation).
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example, the median c-score of HI1 vs. MI is 0.26 compared to 
0.31 in HI1 vs. HI2 in hsa04662, showing impressively high 
cross-species congruence of MI in the B cell receptor signaling. 
We note that, in this human intracohort analysis, mouse studies 
(e.g., MI) has to be compared to the halved human subsampled 
data (i.e., HI1) to avoid sample size bias. Since the reduced sample 
size could significantly reduce statistical power in the downstream 
biological findings, we always apply CAMO to the full human 
dataset as the main analysis and this analysis is an auxiliary diag-
nostic tool to dissect cross-species differences from inherent 
human within-cohort variability.

Next, a human intercohort heterogeneity analysis is performed 
to validate the intriguing discordance findings between HS and 
MS using independent human datasets to factor in cross-cohort 
variability (see detailed analysis procedure in SI Appendix, sec-
tion 1D and Fig. S5A). Four independent human sepsis studies 
(a. GSE26378, b. GSE26440, c. GSE4607, and d. GSE8121) 
with similar study designs are downloaded from the GEO repos-
itory and preprocessed similarly. In SI Appendix, Fig. S5B, HS has 
high genome-wide c-scores with all four independent studies and 
even higher in the three selected KEGG pathways, showing sat-
isfying replicability across human cohorts. In contrast, MS has 
almost zero genome-wide and pathway-specific c-scores with all 
five human studies. The result strongly validates the lack of con-
gruence of the MS model with human. In SI Appendix, Fig. S5C, 
MS shows d-scores = 0.2 to 0.4 for the three selected KEGG 
pathways when compared to HS and the four human validation 
studies. When HS is compared to the four human validation stud-
ies, the d-scores dropped to ~−0.3, which is likely an impact of 
high congruence (large c-scores). In summary, the result provides 
a strong confirmation that the discordance of the MS model with 
human in the three KEGG pathways are true biological signals.

Case Study 2: Congruence of Developmental Stages in C. elegans 
and D. melanogaster. C. elegans (ce) and D. melanogaster (dm) are 
effective model organisms for studying molecular, cellular, and 
developmental processes. Using the modENCODE RNA-seq 
data (19, 20), Li et al. performed comprehensive comparison in 
developmental time courses between the two species and provided 
new insights into similarities in their development. We reanalyze 
and preprocess 35 worm samples measured at four developmental 
stages (embryo, larvae, dauer, and adult) and 30 fruit fly samples 
measured at four developmental stages (embryo, larvae, pupae, 
and adult). Heatmaps of hierarchical clustering (SI Appendix, Fig. 
S6) show clear separation across the developmental stages while 
the embryonic stage of both species can further split into three 
subphases: Early embryonic phase, middle embryonic phase, and 
late embryonic phase. In addition, the female and male adults 
in fruit fly are very different from each other on the heatmap. 
In light of these observations and also considering the similarity 
between female adult fruit fly and adult worm as reported in Li 
et al. (20), five transcriptomic studies in each species are identified 
and the worm adults and fruit fly female adults are treated as the 
reference group in the DE analysis, which generates 10 models 
for molecular congruence analysis: 1) C. elegans: early embryo 
(ce.e0), mid embryo (ce.e1), late embryo (ce.e2), larvae (ce.lar), 
and dauer (ce.dau); 2) D. melanogaster: early embryo (dm.e0), 
mid embryo (dm.e1), late embryo (dm.e2), larvae (dm.lar), and 
pupae (dm.pup). After gene matching and standard preprocessing, 
6,869 common ortholog genes are remained for CAMO analysis.

The MDS plot (SI Appendix, Fig. S7) of genome-wide c-scores 
for the five Drosophila and five C. elegans developmental stages 
shows a clear separation between the two species on the y-axis. 
The x-axis presents a developmental transition in the embryonic 

stages e0→e1→e2 while the lar and pup/dau stages are not exactly 
ordered. Adjacent developmental stages are found to be more 
similar to each other within species and the late embryonic stage 
in C. elegans (ce.e2) appears to somewhat resemble all stages in 
Drosophila except for the early embryonic stage (dm.e0). This 
unintuitive result is better visualized by an intriguing bipartite 
graph between Drosophila and C. elegans stages (Fig. 4A) by cre-
ating solid edges when the genome-wide c-score between any pair 
of stage is greater than 0.1. We first observe reasonable with-
in-stage cross-species resemblance (i.e., solid yellow edges: ce.e0—
dm.e0, ce.e1—dm.e1, ce.e2—dm.e2, and ce.e2—dm.e1; dashed 
yellow edge: ce.lar—dm.lar with a slightly lower c-score = 0.087) 
and then identify surprising cross-stage resemblance between spe-
cies (i.e., purple edges: ce.dau—dm.e2, ce.e2—dm.lar, and 
ce.e2—dm.pup). Resemblance of ce.dau—dm.e2 has been sug-
gested by the original modENCODE paper (20). Resemblance 
of ce.e2—dm.lar and ce.e2—dm.pup confirms the second large 
wave of cell proliferation and differentiation in Drosophila’s life 
cycle. The complete c-score matrix and d-score matrix are shown 
in SI Appendix, Tables S8 and S9, respectively.

From the 269 selected pathways with enriched meta-analyzed DE 
genes, consensus tight clustering identifies six pathway clusters (see 
consensus CDF plot and scree plot in SI Appendix, Fig. S8; heatmap 
and MDS plot in SI Appendix, Fig. S9 A and B). Pathway Cluster III 
is found related to cell cycle and DNA replication with cross-species 
congruence in late stages (e2, lar, and pup/dau). Cluster IV is related 
to hormones, such as estrogen and other steroid hormones, with con-
gruence mostly in C. elegans stages. Pathway Cluster II is specific to 
Drosophila developmental stages and contains several pathways 
related to RUNX family of transcription factors shown to be orches-
trators of development (26) (see results of six pathway clusters in 
comembership heatmaps in SI Appendix, Fig. S9C; pathways mem-
berships in SI Appendix, Table S10; text mining results in SI Appendix, 
Table S11). For demonstration purposes, DE evidence and c-scores/d-
scores in ce.e2, ce.dau, dm.e2, and dm.pup are shown in Fig. 4B. 
Three pathways of interest with strong DE evidence and large c-scores 
or d-scores between the two species are further explored by genewise 
heatmap of posterior mean of DE (Fig. 4C) and pathway topology 
(SI Appendix, Fig. S10). Pathways “Homologous recombination” 
(KEGG: cel03440) and “Mismatch repair” (KEGG: cel03430) 
exhibit high concordance between ce.e2 and dm.e2 (SI Appendix, Fig. 
S10 A and B), implying similar molecular events taking place in the 
late embryo stage for both species. The pathway “Nucleotide-binding 
domain, leucine-rich repeat containing receptor (NLR) signaling 
pathways” (Reactome: R-CEL-168643) exhibits discordance between 
ce.dau and dm.pup (SI Appendix, Fig. S10C). The NOD1/2 and 
inflammasomes components of the pathway are both related to the 
innate immune system, the first line of defense against invading micro-
organisms that are more expressed in the pupae stage of Drosophila 
but not in the dauer stage of C. elegans (27).

Discussion

Model organisms have played critical roles in biomedical research. 
However, molecular congruence analysis between these models 
and human has been largely lacking or understudied, resulting in 
confusion and loss of opportunities for best use of these animal 
models. In this paper, we develop the CAMO pipeline for a rig-
orous quantification, visualization, and exploratory system to 
study molecular congruence of an animal model to human. We 
also propose intracohort and intercohort heterogeneity analyses 
in human to isolate experimental variabilities from true cross-spe-
cies differences when the sample size in the human sepsis is suffi-
ciently large and/or independent human studies are available for 
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http://www.pnas.org/lookup/doi/10.1073/pnas.2202584120#supplementary-materials
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validation. The workflow is flexible and extensible to most disease 
contents and general experimental design.

In Fig. 5, we present a guideline for practitioners to apply and 
interpret toward decision making. In Step 1, we perform DE 

analysis and intracohort congruence analysis in the reference 
(human) and comparison (mouse) groups, respectively, to con-
firm sufficient and stable DE information for the subsequent 
cross-species evaluation (see SI Appendix, Table S12 for case 
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Fig. 4. Results from the case study 2. (A) Bipartite graph between Drosophila and C. elegans where solid edges are drawn when the genome-wide c/d-scores 
between any pair of cross-species stages are greater than 0.1. The yellow dashed line indicates a slightly weaker within-stage concordance with c-score = 0.087. 
(B) Summary plot of DE evidence and pathway level concordance (the Upper Right region) and discordance (the Lower Left region). Each ○/△/◇/◻ is a pathway. 
X- and Y-axes represent the average DE posterior probabilities, and color represents the magnitudes of −log

10
 transformed P value of c-scores or d-scores. ce.e2: 

Late embryo stage of CE; ce.dau: Dauer stage of CE; dm.e2: Late embryo stage of DM; and dm.pup: Pupae stage of DM. Three example pathways are highlighted 
using different shapes (“△”: cel03440—KEGG: Homologous recombination; “◇”: cel03430—KEGG: DNA mismatch repair; “◻”: R-CEL-168643—Reactome: NLR 
signaling pathways). Ten additional randomly selected pathways are shown as comparisons. Pathways with high average DE posterior probabilities in both 
models (x-axis and y-axis) and with high significance of c-score or d-score (darker color) are prioritized pathways for further mechanistic investigation. (C) Gene-
wise heatmap of posterior mean of DE indicators of the ce.e2-dm.e2 in cel03440, ce.e2-dm.e2 in cel03430, and ce.dau-dm.pup in R-CEL-168643. Genes with 
concordant (orange) or discordant (blue) are shown in column beside the heatmaps.
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study 1). Conceptually, intracohort c-score provides stability 
evaluation to troubleshoot DE analysis in a single cohort, where 
small intracohort c-scores point to underpowered and inconsist-
ent DE analysis result. If the reference group has low number of 
DE genes and low intracohort concordance, the congruence 
analysis is not expected to succeed (Scenario I). For example, 
HL and HA in case study 1 have smaller sample sizes compared 
to the other four comparisons (N = 26 and 34 vs. N = 57 to 60 
in SI Appendix, Table S2). This resulted in smaller numbers of 
DE genes and intracohort c-scores and thus almost no genome-
wide congruence in HL-ML and HA-MA comparisons. When 
there is sufficient and stable DE information in the reference 
group but not in the comparison group (Scenario II), one can 
continue with the congruence analysis with caution. In this case, 
the genome-wide congruence is likely low but some path-
way-specific congruence results may be valuable. In addition, 
increasing sample size in the comparison group is expected to 
provide a more conclusive finding. This is exactly the case of 
HS-MS and HT-MT comparisons. Finally, when both reference 
and comparison groups show sufficient differential response sig-
nals, the cross-species congruence framework (Step 2) can be 
performed with confidence, and a congruence decision can be 
made based on genome-wide congruence and pathway-specific 
evaluation incorporating prior biological knowledge, which is 
the case of HB-MB and HI-MI comparisons.

CAMO has two critical factors to consider when applying to 
different model organisms. First, when a model organism has fewer 
orthologous genes mapped, the quantification of pathway-specific 
congruence may be impacted. SI Appendix, section 1E and Fig. 
S11 present simulation analysis and show robust c-score quanti-
fication at genome-wide level when the number of mapped ort-
hologs decreases. For pathway-specific analysis, however, 
variabilities of c-scores are much increased and results are less 
reliable. Second, pathway annotations are often biased toward 
human biology and understudied in model organisms. Since many 
pathway annotations in model organisms are computationally 
inferred and not accurate (28), users can apply annotation quality 
scores [e.g., GO Annotation Quality, GAQ (29)] to prefilter and 
select high-quality pathway annotations for congruence analysis. 
For this purpose, CAMO allows users to modify or customize the 
pathway definitions. Note that restricting pathways to only 
high-quality annotations may improve hypothesis generation dur-
ing investigation, but potentially at a cost of reduced statistical 
power. The decision and balance should be contextual, for exam-
ple, whether the research aim is exploratory or explanatory.

The current CAMO framework focuses on bulk-RNA transcrip-
tome data with biological replicates. Multiple future directions are 
under development. When multilevel omics data, such as single- 
nucleotide polymorphism, methylation, miRNA expression, and 
protein expression, are available, an extended CAMO with 
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Fig. 5. Flowchart for practitioners to apply and interpret toward decision making. In Scenario I#, the DE signal of the reference group (humans) is insufficient, 
and the congruence analysis is not expected to succeed. In Scenario II*, since the comparison group (mice) does not have sufficient and stable DE information, 
genome-wide congruence is expected to be low, but one can continue with the congruence analysis with caution as some pathway-specific congruence results 
may be valuable. In Scenario III, when both reference and comparison groups show sufficient differential response signals, the cross-species congruence 
framework can be performed with confidence, and a congruence decision can be made based on genome-wide congruence and pathway-specific evaluation 
incorporating prior biological knowledge.
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cross-species comparisons of genomes, epigenomes, transcriptomes, 
and gene regulation will provide holistic understanding of the con-
gruence. Second, single-cell experimental data (e.g., scRNA-seq) 
will provide further congruence information specific to cell types. 
Finally, some types of experimental data typically do not contain 
replicates to capture biological heterogeneity and thus, the current 
framework based on conventional DE analysis does not fit. Notable 
examples include cell lines and 3 dimensional organoids in cancer 
research, where omics experiments are usually performed once 
without replicates. Extended modeling for investigating molecular 
congruence between cell lines or organoids and human cancer 
patients is an ongoing work.

Materials and Methods

Data Preprocessing and Pathway Database. The datasets used in case 
study 1 are downloaded from the publicly available GEO repository with acces-
sion numbers listed in SI Appendix, Table S2. All datasets are preprocessed 
separately by applying the suggested pipeline in R packages “affy” and “lumi” 
for Affymetrix and Illumina platforms, respectively. For datasets comparing 
human and mouse samples collected at multiple time points, we compare 
each time point to controls within species, respectively, and select the best-
matched time points with the highest cross-species c-score while also consider 
d-score when it has prominent discordance. (SI Appendix, Table S3 for c-scores, 
d-scores, sample sizes, and matched time points are provided in SI Appendix). 
The processed RNA-seq datasets (in FPKM) of both species in case study 2 are 
downloaded from the author’s website (http://jsb.ucla.edu/software-and-data). 
Genes with average FPKM smaller than one are filtered out followed by log2 
transformation. Cross-species genes (worm vs. fly) are matched by Drosophila 
RNAi Screening Center Integrative Ortholog Prediction Tool (http://www.flyrnai.
org/diopt) (30).

In case study 1, 219 KEGG (16) and Reactome (17) human pathways sat-
isfying 1) gene set size between 5 and 200, 2) Fisher combined enrichment  
q value smaller than 0.05, 3) the minimum number of overlapping genes across 
studies greater than five, and 4) the median number of overlapping DE genes 
across studies greater than three are selected. In case study 2, 269 KEGG and 
Reactome worm pathways are selected similarly to have size between 3 and 500, 
the minimum number of overlapping genes across studies greater than three, 
the minimum number of overlapping DE genes across studies greater than two, 
and belonging to the top 50 enriched pathways in at least one of the studies.

Threshold-Free Bayesian Differential Analysis. CAMO applies a Bayesian 
mixture (BayesP) model (31) to derive DE posterior probabilities and to facili-
tate the calculation of c-scores and d-scores in the next section, where the input 
of BayesP can be single-study DE results from any conventional pipeline (e.g., 
“LIMMA” for microarray or log2-transformed and normalized RNA-seq data and 
“DESeq2” for RNA-seq counts). “LIMMA” was used for both case studies 1 and 2 
since only normalized expression values are available for these public data. By 
assuming a nonparametric Dirichlet process prior on the grand means, Markov 
chain Monte Carlo (MCMC) using Gibbs sampling is used to sample the posterior 
probabilities of DE indicator �g, which will be used to derive the cross-species 
concordance and discordance scores later. The detailed modeling and MCMC 
procedure are outlines in SI Appendix, section 1A.

Deterministic Version of Cross-Species c-Scores and d-Scores. The founda-
tion of cross-species c-scores and d-scores comes from a natural definition of confu-
sion matrix and F-measure in machine learning (Table 1) when human and mouse 
DE status of upregulation (ΩH+ and ΩM+), downregulation (ΩH− and ΩM−), and no 
change (ΩH0 and ΩM0) are deterministically known, where ΩH+

=

{
g: �H

g
= 1

}
,  

Ω

H−
=

{
g: �H

g
= − 1

}
, and ΩH0

=

{
g: �H

g
= 0

}
  in human and �H

g
 is the 

DE indicator of gene g in human and similarly for mouse. a, e, and i  denote the 
number of cross-species concordant genes (i.e., DE with the same directional-
ity or no change in both): a = |ΩH+

∩ Ω

M+ | (number of concordant upregu-
lated genes), e = |ΩH0

∩ Ω

M0| (number of concordant no-change genes), and 
i = |ΩH−

∩ Ω

M−| (number of concordant downregulated genes). The numbers 
of discordant genes (i.e., DE in one but DE with opposite directionality or no change in 
the other) can be similarly defined for b , c , d , f , g , h in the contingency table. 

From the viewpoint of machine-learning prediction benchmark assuming we use 
mouse DE status to predict human DE status, one can define concordance sensitivityC 

(a. k. a. recallc) =
a+ i

D+ F
 and precisionc =

a+ i

A+ C
 when we focus on cross-species 

 concordant DE genes, where A = |ΩM+ | , C = |ΩM− | , D = |ΩH+ | and 
F = |ΩH−|. In sensitivityC, we calculate the number of concordant DE genes (i.e., 
a + i) among the true human DE genes (i.e., D + F). Similarly, precisionC is defined 
as the number of concordant DE genes (i.e., a + i) among the claimed mouse DE 
genes (i.e., A + C). We define the raw concordance score between humans and 
mice as the F-measure: c � = 2

(
precisionc × recallc

)
∕

(
precisionc + recallc

)
. 

Similarly, we can focus on discordant DE genes (i.e., genes upregulated in humans 
but downregulated in mice or vice versa) and define  sensitivityD =

c + g

D+ F
   

and precisionD =
c + g

A+ C
. The raw discordance score between humans and mice 

becomes d �

= 2
(
precisiond × recalld

)
∕

(
precisiond + recalld

)
. In addition 

to F-measure, we can also use the Youden index (=sensitivity + specificity − 1) 
or the geometric mean of sensitivity and specificity, where specificityC =

e

E
 

and specificityD =
e

B
. When there is no reference study specified or under the 

general multicohort scenario, the F-measure is a better choice among the three 
because it is symmetric no matter which species is taken as the reference. With sim-
ple algebraic calculation, one can show that c� = 2(a+ i)

A+ C + D+ F
 and d �

=

2(c + g)

A+ C + D+ F
.  

Similar to Rand index used to evaluate clustering similarity and the adjusted Rand 
index subsequently developed (32), although both c′ -score and d ′ -score range 
between 0 and 1, their expected value under null hypothesis (i.e., no resem-
blance between mice and humans) is not 0, making the interpretation difficult. 
To account for this pitfall, we adjust the scores to have maximum value at 1 for 
perfect resemblance and expected value at 0 when no resemblance exists using 
a linear transformation: c − score =

c � − E(c � |H0)
1− E(c� |H0)

 and d − score =
d
�

− E(d
� |H0 )

1− E(d� |H0)
, 

where H0 is the null hypothesis when mice and humans have no resemblance, 
E
(
c� |H0

)
=

2(AD+ CF )

G(A+ C + D+ F )
 and E

(
d
� |H0

)
=

2(AF + CD)

G(A+ C + D+ F )
 by computing the 

expected counts from the table margins for each cell (e.g., E
(
a|H0

)
=

AD

G
).

Empirical (Data-Driven Estimation) Version of c-Scores and d-Scores. In 
practice, the underlying true DE statuses (ΩH+,ΩH0,ΩH−) and (ΩM+,ΩM0,ΩM−) 
are not known and are inferred from data. As previously mentioned, cross-spe-
cies congruence analysis by applying arbitrary P value/FDR and fold change cut-
offs can lead to subjective bias and inconsistent conclusions (5, 6). In CAMO, we 
infer Bayesian posterior probabilities and plug into the deterministic definition 
of c-scores and d-scores. Specifically, �̂

H

gb
 denotes the simulated estimation of �H

g
 

in the b-th MCMC iteration for gene g in the HS and similarly �̂
M

gb
 for the mouse 

study. The unbiased estimators are obtained as Â = ΣgΣ
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�
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B
b= 1

�
(
�̂
H

gb
= −1 & �̂

M

gb
=1

)
∕B, where B is the number of  

(post burn-in) MCMC simulations and �( ⋅ ) is the indicator function taking value 1 

Table 1. Confusion matrix of the DE gene status compar-
ing between a human study (H) and a mouse study (M).

ΩH+ ΩH0 ΩH− sum

ΩM+ a b c A

ΩM0 d e f B

ΩM− g h i C

sum D E F G
Ω

H+ ΩH−, and ΩH0 are collections of upregulated, downregulated, and nondifferential 
genes in humans, where ΩH+ = {g: �H

g
= 1}, ΩH− = {g: �H

g
= − 1}, and ΩH0 = {g: �H

g
= 0}, 

and similarly for mouse. a, e, and i denote the no. of cross-species DE concordant genes: 
a = |ΩH+ ∩ Ω

M+ | (no. of concordant upregulated genes), e = |ΩH0 ∩ Ω

M0 | (number 
of concordant no-change genes), and i = |ΩH− ∩ Ω

M− | (no. of concordant downregulated 
genes). b, c, d, f , g, h are defined similarly.
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if the statement is true and 0 otherwise. c-score and d-score are estimated by plug-
ging these estimators into their deterministic definitions.

Pathway-Specific c-Scores and d-Scores. The aforementioned c-score and 
d-score estimations are calculated in the genome-wide scale. Since the cross-spe-
cies congruence can vary by biological pathways, we analogously define path-
way-specific c-scores and d-scores by constraining the calculation to each pathway. 
One major modification is when calculating the expected raw score under null 
hypothesis, a subsampled (sample without replacement) gene set with equiva-
lent size of the target pathway is used to calculate Ê (j)

(
c′ |H0

)
 and Ê (j)

(
d
′ |H0

)
 

in the j-th sampling. We then estimate Ê
(
c� |H

0

)
=

1

J
Σ

J

j= 1
Ê (j)

(
c� |H

0

)
 and 

Ê
(
d
� |H

0

)
=

1

J
Σ

J
j= 1

Ê (j)
(
d
� |H

0

)
 to better represent the genome-wide status.

Statistical Significance (P Value) Assessment of c-score and d-score. 
We assess P values of genome-wide and pathway-specific c-scores and 
d-scores by permutation analysis. Specifically, we randomly permute 
cross-species ortholog gene annotation, so no cross-species congruence 
exists under the null hypothesis and the procedure is repeated for T  times. 
The P values are calculated as p

(
ĉ
)
=

(
Σ

T
t = 1

�
(
ĉ (t) ≥ ĉ

)
+ 1

)
∕(T + 1) and 

p
(
d̂
)
=

(
Σ

T
t = 1

�
(
d̂(t) ≥ d̂

)
+ 1

)
∕(T + 1), where ̂c  and ̂d  are the calculated 

c-score and d-score, and ĉ (t) and d̂(t) are the derived c-score and d-score in the 
t-th permutation. Note that we count ĉ  and d̂  as one of the permutation obser-
vations to avoid obtaining zero P values (33). Both pathway specific c-scores 
and d-scores and their associated P values are essential in CAMO to identify 
pathways most or least mimicked by the animal model and to investigate the 
underlying mechanism.

Pathway Clustering and Text Mining. In CAMO, the congruence analysis 
is evaluated in a pair of studies. When we assess M studies, CAMO will create 
Q = CM

2
 congruence analysis results. In practice, hundreds or up to thousands 

of pathways are assessed for c-scores and d-scores depending on selection 
criteria, and the result can contain high redundancy since different pathway 
databases may describe a related biological function using similar gene sets. 
CK×Q =

{
ckq
}

 and ΘK×Q =
{
�kq = − log10p

(
ckq
)}

 denote the matrices of 
c-scores and associated minus-log-transformed P values of the Q congru-
ence comparisons in K  pathways. Note that large value of �kq represents 
high concordance in the q-th congruence evaluation of pathway k. To further 
decipher and interpret pathway-specific congruence result, we consider dis-
similarity (Euclidean distance d

(
���⃑𝜃
k
, ��⃑𝜃

k

)
 between ��⃑𝜃k =

(
𝜃k1, ⋯ , 𝜃kQ

)
 and 

���⃑𝜃k� =
(
𝜃k�1 , ⋯ , 𝜃k�Q

)
 of pathways k and k′ and using a consensus tight clus-

tering algorithm to cluster the statistically significant pathways that pass the 
selection criteria in pathway size, minimum number of DE genes, q values from 
Fisher’s combination method, etc. The algorithm uses the resampling-based 
consensus clustering (34) for identifying stable patterns in data followed by 
removing the scattered pathways with low silhouette width (35) iteratively 
until all pathways’ silhouette widths are above a certain cutoff (e.g., 0.1) to 
improve the tightness of clusters. Pathways with similar concordance patterns 
across the Q pairwise comparisons of the M studies are clustered together to 
reduce redundancy and facilitate further investigation. A heatmap of the matrix 
ΘK×Q sorted by pathway clusters is shown to visualize the concordance patterns 
in different clusters (e.g., SI Appendix, Figs. S3A and S9A). A MDS algorithm 
is applied to the dissimilarity matrix generated from ΘK×Q for visualization 
(e.g., SI Appendix, Figs. S3A and S9B). Finally, the comembership heatmaps 
are used to summarize the proportion of significantly concordant pathways 
within each pathway cluster between each pair of studies (e.g., SI Appendix, 
Figs. S3C and S9C).

We next apply a text mining pipeline to extract summary annotations and 
retrieve knowledge from each pathway cluster (36). The method first collects 
names and summary descriptions of all pathways and extract noun phrases 
after filtering of biologically redundant phrases and merging synonyms using 
R packages spacyr, tm, textstem, and wordnet. Each noun phrases are tested for 
whether significantly enriched in selected pathway clusters by performing a 
permutation test on a cluster score weighted by length of pathway description. 
The output of text mining includes a list of key phrases most enriched and the 
corresponding permutation P values for each pathway cluster.

Individual Pathway Topology and Colocalized Concordant/Discordant 
Gene Module Detection. Pathway databases such as KEGG (16) and Reactome 
(17) provide pathway topological graphs to visualize involved genes, gene–gene 
interactions, and regulatory information in the pathway. In the R-shiny interface 
of CAMO, we map and incorporate the gene-based concordance/discordance 
inference results in mouse–human comparison to the pathway graph to allow 
users for visual mechanistic investigation of the local concordance/discordance 
pattern. For pathways from KEGG, we use R package “Pathview” (37) to render 
the topology graph and integrate the concordance/discordance information. For 
pathways from Reactome, we develop our own tool to first retrieve and parse 
the pathway topology (.sbgn file) from Reactome database using the Python 
minidom parser (https://docs.python.org/3/library/xml.dom.minidom.html). 
Then, each node is colored by its posterior mean of DE indicators in the two 
studies side by side using the Python Imaging Library (https://pillow.readthe-
docs.io/en/stable/).

To avoid visual bias and to further investigate the local concordance/discord-
ance pattern inside the pathway, we develop a community detection algorithm 
to identify closely connected concordant or discordant gene modules based on 
shortest path distance in the graph, where the unweighted graph is constructed 
using R packages “KEGGgraph” (38) and “xml2”, and the shortest path matrix 
is calculated by R package “igraph” (39). Exhaustive search algorithm is imple-
mented to identify the concordant/discordant gene set with the smallest average 
shortest path at a given module size. However, for a pathway with a large num-
ber of concordant/discordant genes (e.g., size > 30), exhaustive search is not 
feasible, and a simulated annealing algorithm is used for fast search. Finally, a 
permutation test is performed to assess the P value of identified concordant or 
discordant gene modules (see SI Appendix, section 1B for details of simulated 
annealing and permutation).

In case study 1, we apply this local community detection algorithm to KEGG 
pathways hsa04670 and hsa04662 to identify discordant modules using exhaus-
tive search. An elbow plot of 

(
avgSPm

)
 over m is generated from m = 4 to the 

cardinality of searching space, i.e., the total number of discordant genes (SI 
Appendix, Fig. S12). The SA algorithm with x = 1 and y = 1 generates similar 
results as the exhaustive search. The maximum module size whose P value is 
within two SD of the minimum P value is reported (i.e., 12 nodes containing 
14 genes in hsa04670 (HS-MS), 6 nodes containing 7 genes in hsa04662 (HS-
MS), and 4 nodes containing 4 genes in hsa04662 (HB-MB)). Corresponding 
KEGG topological plots with highlighted gene modules are shown in Fig. 3. We 
recommend users to consider the P value elbow plot and KEGG topological plot, 
together with their biological insights into determining an appropriate module 
size for further investigation.

Data, Materials, and Software Availability. Datasets used in the two case 
studies are publicly available from the following two papers, Li et al. (21) and 
Li et al. (20). CAMO R package and R-shiny app are available in github (https://
github.com/CAMO-R).
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