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DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 
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ABSTRACT 

Large shifts of liquid ansmg from small changes in cer
tain container shapes in zero gravity can be used as a basis 
for accurately determining contact angle. "Canonical" geome
tries for this purpose, recently developed mathematically, are 
investigated here computationally. It is found that the desired 
"nearly-discontinuous" behavior can be obtained and that the 
shifts of liquid have sufficient volume to be readily observed. 

INTRODUCTION 

The behavior of an equilibrium free-surface of liquid partly 
filling a container can change dramatically when an external 
gravity field is allowed to decrease to zero. For a cylindrical 
container of general cross-section in zero gravity the surface 
change can be discontinuous or "nearly discontinuous", leading 
to large shifts of the liquid mass arising from small changes 
in geometry or contact angle. We are exploiting this behavior 
presently as a means for designing containers for accurate 
determination of contact angle. Space experiments are being 
planned in this connection. 

The principal mathematical result providing the basis for 
design of the container cross-sections is that for particular 
cylindrical sections a discontinuous kind of change can be 
realized as the contact angle / crosses a critical value /0. When 
/ is larger than /0 there exists an equilibrium configuration of 
liquid that covers the base of the cylindrical container simply, 
while for contact angles smaller than /0 no such equilibrium 
configuration can exist. In the latter case fluid moves to the 
walls and uncovers a portion of the base if the container is tall 
enough. A practical challenge is to design a cross-section so 
that a large enough portion of the fluid will rise up the walls for 
easy observation as the critical value of contact angle is crossed, 
without the container being unrealistically tall. Our studies 
have shown generally that (for a wetting liquid) this is more 
difficult to do for smaller contact angles than for larger ones. 

By using two or more containers corresponding to appropri-
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ately chosen values of /0, differing, say, by the accuracy desired 
for the contact angle measurement, one can surround the value 
of the contact angle to be determined, and thereby, by observ
ing on which sides of the transition the bulk fluid configurations 
lie, obtain the desired value. In some cases, geometries can 
be "combined" into a single container for determining contact 
angle. 

Recently, Fischer and Finn have developed a family of 
"canonical" cross-sectional shapes for determining contact angle, 
for which the critical movement of fluid to the walls can be made 
clearly accessible to observation, even for small contact angles. 
Here we give results of numerical calculations of the equilibrium 
free surface in such containers to illustrate the behavior that 
might be expected over a range of contact angles of practical 
interest near the critical one. 

GOVERNING EQUATIONS 

Consider a cylindrical container of general cross-section 
partly filled with liquid, as indicated in Fig. 1. According to the 
classical Young-Laplace theory, an equilibrium interface in the 
absence of gravity between the liquid and gas (or between two 
immiscible liquids) is determined by the equations 

div Tu = ~ in n, 
-y 

(1) 

v· Tu = cos/ on~, (2) 

where 
V'u 

Tu == --Jr:1=+=,;::::V'==u:;:;;:,2' 

see, e. g., Chapter 1 of (Finn, 1986). In these equations n is the 
cross section of the cylindrical container, ~ is the boundary of 
n, v is the exterior unit normal on ~, and 

(3) 
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Figure 1. Partly filled cylindrical tube with base n. 

where Inl and lEI denote respectively the area and length of n 
and Ej u(x, y) denotes the height (single-valued) of the interface 
S above a reference plane parallel to the base, and , is the 
contact angle between the interface and the container wall, 
determined by the material properties. The volume V of liquid 
in contact with the base is assumed to be sufficient to cover 
the base entirely. We restrict discussion here to the case of 
a wetting liquid 0 ::; , < 7r/2 (the complementary non-wetting 
case can be easily transformed into this one). For, = 7r /2, the 
solution surface isa horizontal plane for any cross-section. 

COMPARISON THEOREM 

The procedure for determination of the critical contact 
angle is based on the following comparison theoremj see (Finn, 
1984) and (Concus and Finn, 1990b). We introduce circular 
arcs r of radius R, lying in n and joining two points of Ej we 
refer to the "exterior" of r as the portion n* of n cut off by r, 
that also lies exterior to the circle determined by r. We denote 
by E* the part of the boundary E bordering n*. In interpreting 
the following theorem reference should be made to Fig. 2. We 
consider E to consist of a finite number of smooth arcs, joining 
at any corner points in well defined angles. A corner point is 
called reentrant if the angle formed interior to n at the corner 
exceeds 7r. 
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Figure 2. Domain partitioned by circular 
arc r of radius R,. 

THEOREM. A solution exists for given nand, if and only 
if, for every subarc r of a semicircle of radius R-y in ,Q such 
that each intersection point with E is either a reentrant corner 
or else a point interior to a smooth arc of E where rand E meet 
at angle, (measured exterior to r) , the functional q,(,Qjrj,) 
defined by 

q, == Irl-IE*I cos, + ~ I,Q*I 
-y 

is positive. 

We refer to an arc r that satisfies the conditions indicated 
in the theorem as an "extremal", for the reason that these arcs 
arise in the "subsidiary" variational problem of minimizing q, 
(see (Finn, 1984) and Chapter 6 of (Finn, 1986)j in general 
such arcs are stationary, but need not minimize). The interest 
of the theorem derives largely from the fact that in most cases 
of interest only a finite number of extremals (aside from trivial 
rigid displacements arising from symmetries) can be found in a 
given domain n. Thus the kind of behavior to be expected can 
in general be predicted with only a finite number of area and 
length calculations, carried out for particular configurations. 

The physical significance of the theorem can be described 
as follows. It can be shown, cf., p. 144 of (Finn, 1986), that 
for any ,Q, there corresponds an angle ,0, such that a solution 
to (1), (2) exists when ,0 < , < 7r/2, while no solution can be 
found when 0 ::; , < ,0. The following discussion is based on a 
construction of particular domains n for which 0 < ,0 < 7r /2. It 
is shown in (Concus and Finn, 1987) that for, = ,0, there will 
be (at least) one non-null extremal r in n, with q,(njrj,) = O. 
For simplicity we restrict attention to those situations in which 
a single unique such extremal appears. For any , > ,0, every 
extremal r will yield q, > 0, and thus solution surfaces will exist. 
If we introduce a family of solutions u( X, Yj ,) with, '\. ,0, then 
these solutions can be normalized by additive constants, so that 
they approach infinity throughout ,Q* and tend to a (bounded) 
solution surface in n\n*. We note that such solutions cannot be 

r. 
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normalized to have constant liquid volume in a container with a 
bottom, and thus for any given volume V the base will become 
partly uncovered for some , > ,0, depending on V. Because 
of these striking changes, which in cases of particular interest 
can be nearly discontinuous, the result lends itself naturally to 
experimental study. Even if gravity is not strictly zero, but only 
close to being zero, as in an orbiting space vehicle, numerical 
computations indicate that the above properties obtained from 
zero gravity analysis will still be present. 

Figure 3. Near-rhombus and two-circle domains 

CANONICAL SECTIONS 

In previous work we have considered "near-rhombus" and 
"two-circle" cross-sections for the determination of contact angle 
in microgravity (Concus and Finn, 1991), see Fig. 3. The 
behavior of the near-rhombus section is based on the local 
condition for a wedge-shaped domain that the critical contact 
angle is given by ,0 = ¥ - a, where a is the interior half-angle 
at the corner (Concus and Finn, 1974), (Concus and Finn, 
1990a). The interface behaves discontinuously in this case with 
an abrupt transition as the value ,0 is crossed. For the near
rhombus domain in Fig. 3, with a1 < a2 < 7r /4, fluid will leave 
the base and flow into the corner at P if a1 < ¥ -, < a2' 

If a1 ~ ¥ -, then the free surface will be a lower spherical 
cap with center over 0 concentric with the inscribed circle 
(dashed curve) and meeting the walls in angle ,. Indications are 
that the near-rhombus configuration (possibly with the slight 
modification indicated in (Concus and Finn, 1991) for, < 45°) 
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can work very well for determining contact angles that exceed 
about 40°. For smaller contact angles the two-circle section (a 
larger circle with a protrusion of a portion of a smaller circle 
(p < 1) from it, Fig. 3) has some promise. The behavior can 
be nearly-discontinuous in this case, but for very small contact 
angles the amount of fluid participating in the flow to the 
wall at transition may be too small to be easily observed or 
to ~)Vercome such effects as container surface irregularities and 
hysteresis (Concus and Finn, 1991). 

In (Fischer and Finn) container section geometries are de
veloped that extend and improve on the two-circle configuration. 
Protrusions from the larger circle that are more general than 
a smaller circle are considered, which enlarge the portion of n 
over which the fluid rise at transition takes place. A canoni
cal container section geometry is determined with a family of 
protrusions designed so that the sub-region n* over which the 
fluid rises to infinity as , \, ,0 can be made as large as de
sired. This is achieved by designing the "proboscis" protrusion 
so that along it an entire continuum of extremals exist, as indi
cated in Fig. 4. The proboscis can be arbitrarily long. There 
holds cJ> = 0 for every r in the family of extremal arcs, and the 
fluid rise to infinity is over the entire proboscis to the right of 
the left-most extremal arc. 

The canonical proboscis shapes are given in closed form in 
(Fischer and Finn) as 

x = JRy2 _y2 

(In the above equation and in Fig. 4 the subscript 0 has 
been dropped from , in the interest of clarity of printing.) 
The constant C is determined by specifying the initial point 
(xo, yo) of the proboscis, and the branch of interest is for 
o ::s y < R-y cos,. R-y must correspond to (3) for the cross section 
obtained when joining the proboscis to a closing boundary 
curve. The choice of a circular arc, as in Fig. 4, permits Ry 
to be determined in a computationally convenient way. The 
section may be closed in other ways, for example without the 
introduction of reentrant corners, if desired. 
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Figure 4. A canonical proboscis domain showing three 
members of the continuum of extremal arcs. 



Of practical interest for design of a vessel for determining 
contact angle is the detailed behavior of the free surface as the 
contact angle, decreases to the critical value ,0. A nearly 
discontinuous behavior is sought for which the surface height 
changes slowly at first as ,0 is approached, the increase in 
height then becoming substantial when, is very near to ,0, at 
which value the height becomes infinite. The amount of fluid 
participating in the transition at , = ,0 should be sufficient 
so that an easily discernible shift of liquid bulk away from the 
bottom and toward the proboscis wall occurs. Determination of 
the detailed surface is not directly amenable to mathematical 
analysis for domains such as in Fig. 4, but information can be 
obtained by numerical solution of (1), (2) for a set of values of 
, decreasing toward ,0. 
NUMERICAL RESULTS 

Eqs. (1), (2) were solved numerically for several canonical 
container shapes having different values of,o and with different 
proboscis lengths, for a range of contact angles,. Of principal 
interest were the smaller contact angles (00 to 400

), for which the 
near-rhombus domain would not be suitable. The adaptive-grid 
finite-element software package PLTMG written by Randolph 
Bank was used to obtain the numerical solution. A piecewise
linear approximation to the proboscis portion of the boundary 
was used; the circular-arc portion could be represented as such 
in the package. 

Results are given here for three different domains corre
sponding to critical contact angle ,0 = 300

• The upper half 
of the domain proboscides---one short, one intermediate, and 
one long-are shown in Fig. 5. The container cross-sections are 
formed by joining a proboscis to a circular arc, as depicted in 
Fig. 4; for the scalings in Fig. 5 the joining circular arcs have ra
dius unity. The domains were selected to illustrate the effects of 
varying proboscis length for the prescribed ,0. The results are 
representative generally of those obtained for the other contact 
angles, as well. 

ill 

o 

N 

o 
o 

0-r-----,~----~--~_r----_,------~----_r~--_, 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 

Figure 5. Upper half of the three proboscides-short, 
intermediate, and long-used for the numerical examples. The 
container cross-sections are formed by joining a proboscis to a 
circular arc of unit radius, as depicted in Fig. 4. 

To speed the computation, only the upper half of the do
main was input to PLTMG, with a reflective symmetry boundary 
condition 1/ . Vu = 0 in place of (2) along the symmetry line. 
Solutions were normalized by taking u = 0 at the center of the 
unit circle portion of the domain boundary. 
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The numerically calculated solution surface u( x, y) for the 
(upper half of the) intermediate proboscis domain is shown in 
Fig. 6 for four values of contact angle, 600

, 400
, 350

, and 31 0
, 

from upper left to lower right. The three-dimensional views 
of the surface are color-shaded by PLTMG to indicate contour 
levels, grayscale versions of which are shown in the figure. The 
viewpoint for each surface is the same, but there may be slight 
variations of two or three percent in scale between them arising 
from the size reductions for the figure. Generally, as , decreases 
toward ,0 = 300 more fluid moves toward and up the proboscis 
wall, with the maximum height, as calculated by the program, at 
the proboscis tip. The surfaces for the long and short proboscis 
domains behave similarly, with relatively larger rise height and 
greater amount of fluid in the long proboscis and less in the 
short one. 

The apparent jump discontinuity in the solution height 
at the reentrant corner occurs in the computed solutions for 
contact angles smaller than a certain value, depending on the 
domain. (For the domain in Fig. 6 compare the surface for 
600 with the others.) Such discontinuous behavior of solutions 
of (1), (2) at reentrant corners has been found mathematically 
for certain domains in (Lancaster and Siegel). The effect on 
the behavior of the computer program at these smaller contact 
angles was evidenced in the adaptive mesh refinement. Higher 
levels of refinement concentrated nodes in the neighborhood of 
the reentrant corner. Thus with the approximately 2000 nodes 
to which we limited the computation, relatively fewer nodes 
were distributed elsewhere in the domain than was the case 
when the discontinuity was not present. The estimate of the L2 
norm of the error given by PLTMG was, nonetheless, the order 
of 10-2 or less in all cases. 

The rise height at the tip of the proboscis is shown as 
a function of , for the three domains by the solid curves in 
Fig. 7. The calculated data, which are denoted by squares, 
are connected by interpolating linear segments; three of the 
calculated points for the intermediate proboscis domain are the 
ones corresponding to the surfaces in Fig. 6. At the critical 
value , = ,0 = 300

, denoted by the arrows, the heights would 
become infinite. The dashed curves show the rise height at the 
boundary for the circular domain with no protrusion, for which 
the solution is the lower spherical cap 

which has its minimum at the origin and maximum (sec,-tan,) 
at the boundary. 

For construction of a physical container for measuring con
tact angle, the choice of proboscis length would be governed 
generally by the conflicting practical requirements of not unrea
sonably tall container, say less than about six circle radii high, 
and a sufficiently large fluid shift near critical for easy obser
vation. The latter calls for a proboscis that is not too short; 
the former calls for one that is not too long, so that fluid does 
not rise to the top of the container for contact angles too much 
larger, say one degree or more, than the critical one. An in
termediate length would seem to give the best balance between 
ease of observation and ability for accurate estimate of the tran
sition. We plan to test these designs in collaboration with D. 
Langbein and M. Weislogel in forthcoming space flights. 
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Figure 7. Maximum rise height vs. contact angle for the short, intermediate, and long proboscis domains. "Yo = 30°. 

6 



( 
i'J 

(/ 
<', 

ACKNOWLEDGMENTS 

We wish to thank Randolph Bank for the personal guidance 
he has given us in use of the PLTMG software package. This work 
was supported in part by the Applied Mathematical Sciences 
Subprogram of the Office of Energy Research, Department of 
Energy, under Contract Number DE-AC03-76SF00098, by the 
National Aeronautics and Space Administration under Grant 
NAG3-1143, and by the National Science Foundation under 
Grant DMS89-02831. 

REFERENCES 

Concus, P., and Finn, R., 1974, "On capillary free surfaces 
in the absence of gravity," Acta Math., Vol. 132, pp. 177-198. 

Concus, P., and Finn, R., 1987, "Continuous and dis
continuous disappearance of capillary surfaces," in Variational 
Methods for Free Surface Interfaces, P. Concus and R. Finn, 
eds., Springer-Verlag, New York, pp. 197-204. 

Concus, P., and Finn, R., 1990a, "Capillary surfaces in 
microgravity," in Low-Gravity Fluid Dynamics and Transport 
Phenomena, J. N. Koster and R. 1. Sani, eds., Vol. 130, Progress 

7 

in Astronautics and Aeronautics, AIAA, Washington, D. C., pp. 
183-205. 

Concus, P., and Finn, R., 1990b, "Dichotomous behavior 
of capillary surfaces in zero gravity," Microgravity Sci. Technol., 
Vol. III, pp. 87-92; Errata, Vol. III, (1991), p. 230. 

Concus, P., and Finn, R., 1991, "On accurate determination 
of contact angle," Microgravity Sci. Technol., Vol. IV, pp. 69-70 
(extended abstract); Paper to appear in Proc. IUTAM Sympo
sium on Microgravity Fluid Mechanics, Bremen, Germany, Sept. 
2-6, 1991. 

Finn, R., 1983, "Existence criteria for capillary free surfaces 
without gravity," Indiana Univ. Math. J., Vol. 32, pp. 439-460. 

Finn, R., 1984, "A subsidiary variational problem and 
existence criteria for capillary surfaces," J. Reine Angew. Math., 
Vol. 353, pp. 196-214. 

Finn, R., 1986, Equilibrium Capillary Surfaces, Springer
Verlag, New York. 

Fischer, B. S., and Finn, R., "Existence theorems and 
measurement of the capillary contact angle," (to appear). 

Lancaster, K., and Siegel, D., "Radial limits of capillary 
surfaces," (to appear). 



~ . .--

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

-<If-




