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Abstract 75 

Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. 76 

Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy 77 
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selectively favor the development of treatment-resistant subtypes of metastatic castration 78 

resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular 79 

drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we 80 

comprehensively characterized treatment-emergent mCRPC by integrating matched RNA 81 

sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 82 

tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with 83 

the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation 84 

changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ 85 

tumors. Genome-wide methylation analysis nominated KLF5 as a driver of the AR-/NE- 86 

phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the 87 

aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in 88 

this highly aggressive disease. 89 

Word count: 154 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

Introduction 99 

Although localized prostate cancer is usually well-controlled by radiation, surgery, or systemic 100 

androgen deprivation therapy (ADT), metastatic prostate cancer has a five year survival rate of 101 

only 31% (1). Hormone-refractory metastatic disease, known as castration-resistant prostate 102 
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cancer (CRPC), develops after tumors become resistant to ADT (2). Progression to metastatic 103 

CRPC (mCRPC) is associated with recurrent driver gene alterations. In approximately 80% of 104 

cases, somatic alterations affect the Androgen Receptor (AR) itself or a nearby AR enhancer 105 

locus (3–5). Many patients with mCRPC receive AR-targeting therapies such as enzalutamide or 106 

abiraterone acetate. Progression on these therapies is associated with further AR alterations (6). 107 

However, a subset of treatment-resistant mCRPC infrequently harbors AR somatic alterations 108 

and instead develops lineage features of small cell neuroendocrine carcinoma (7–12). Patients 109 

whose tumors have this phenotype have worse prognosis than those with adenocarcinoma 110 

mCRPC (8). It was recently proposed that five distinctive histological and expression-based 111 

subtypes of mCRPC exist (13): adenocarcinoma (AR+/NE-), double-positive (AR+/NE+), low AR 112 

(ARL/NE-), neuroendocrine (AR-/NE+), and double-negative (AR-/NE-). While these subtypes 113 

have been described at the transcriptional level, the etiology and clinical implications of the low 114 

AR and double-negative subtypes are largely unknown. Herein, we define the somatic alterations 115 

and DNA-methylation changes among these five subtypes by integrating whole transcriptome 116 

RNA-sequencing (RNA-seq), whole-genome sequencing (WGS), and whole-genome bisulfite 117 

sequencing (WGBS) from 210 mCRPC tumors.  118 

 119 

 120 

 121 

 122 

Materials and Methods 123 

Tumor specimens  124 

Image-guided fresh-frozen mCRPC biopsy acquisition and DNA extraction were performed as 125 

previously described (5,11). WGS and WGBS libraries were prepared and processed as 126 

previously described (5,11). The clinical characteristics of patients in this study are available in 127 

Supplementary Table 1. Human studies were approved and overseen by the UCSF Institutional 128 
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Review Board in accordance with the Declaration of Helsinki. All individuals provided written 129 

informed consent to obtain fresh tumor biopsies and to perform comprehensive molecular profiling 130 

of tumor and germline samples.  131 

 132 

Data processing 133 

RNA-seq data derived from laser-capture micro-dissected samples were aligned with STAR(14). 134 

RNA abundance was calculated using the default parameters, and transcripts were quantified at 135 

the gene level by GENECODE v.28, as previously described (11). The expression level of each 136 

gene was then converted to Transcripts Per Million (TPM). WGBS data were aligned to GRCh38, 137 

and de-duplication, then base-level methylation calling was performed using Bismark 0.23.0 with 138 

“--pairedend” and “--no_overlap” parameters set; otherwise, default parameters were used, as 139 

recommended by the Bismark User Guide for the library kit.  140 

 141 

Statistical Analysis 142 

All statistical analyses were conducted using the R statistical software version 4.2.0. Hierarchical 143 

clustering was performed using Ward’s linkage algorithm with Euclidean distances. Survival 144 

analysis was performed using the survival package in R and survival probability was visualized 145 

using the Kaplan-Meier method, with endpoint overall survival defined from the time biopsies were 146 

obtained from the patients to death from any cause. All correlation analyses were performed using 147 

Pearson’s method unless otherwise specified. Fisher's exact test was applied to determine if DNA 148 

alterations were significantly different between the subtype groups. All tests were 2-sided when 149 

applicable, and p < 0.05 was considered statistically significant. Results were corrected for 150 

multiple testing using the Benjamini-Hochberg method (FDR) unless otherwise stated. All 151 

measurements were taken from distinct individual samples. Boxplots should be interpreted as 152 

follows: horizontal lines denote median values; boxes extend from the 25th to the 75th percentile 153 

of each group's distribution of values; vertical extending lines denote adjacent values (the most 154 
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extreme values within 1.5 interquartile range of the 25th and 75th percentile of each group). 155 

Differences between groups were assessed by the Kruskal-Wallis test. Significance is indicated 156 

as follows in the figures: *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; ****, p ≤ 0.0001. 157 

 158 

Differentially expressed gene analyses 159 

Differential gene expression analysis was performed using RNA-seq raw feature counts with 160 

DESeq2 version 1.36.0 (15). The data were corrected for tumor purity and tumor ploidy. Genes 161 

with fold-change ≥ 2 or ≤ -2 and FDR ≤ 0.01 were considered significantly up- or downregulated, 162 

respectively.  163 

 164 

Evaluation of copy number alteration and tumor purity and ploidy 165 

The PURPLE tool (16) was used on WGS data to evaluate copy number alterations and assess 166 

the tumor purity and tumor ploidy. Copy number (CN) and biallelic status of the tumors were 167 

determined by incorporating tumor purity, tumor ploidy, and chromosome type (autosomal or sex 168 

chromosome). Genes were classified as amplified or deleted according to the following criteria: 169 

for the genes in chromosomes X and Y, a gene was marked as amplified if a minimum coding CN 170 

was higher than tumor ploidy * 0.9. A gene was marked as a single copy deletion if the coding CN 171 

was lower than 0.75. A gene was marked as two copies deleted if the maximum coding CN was 172 

lower than 0.5. For genes in autosomal chromosomes, a gene was marked as amplified if a 173 

minimum coding CN exceeded tumor ploidy * 1.95. Genes were marked as deleted if their 174 

minimum coding CN was lower than 1.1. Genes were marked as two copies deleted if their 175 

maximum coding CN was lower than 0.5. Copy number bounds used in this analysis were 176 

determined by reviewing genome-wide distributions of all corrected gene copy estimates. 177 

 178 

Evaluation of structural variants and mutation calling 179 
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Somatic mutation analysis was performed with Strelka2 version 2.9.10 and MuTect version 1.1.7 180 

(17). Alterations with a PASS score in both tools were used to improve the accuracy of the results 181 

as recommended (18). SnpEff version 4.3 was used to identify Frameshift, Missense, Splice 182 

donor, Splice acceptor, Stop gain or Stop loss. Germline mutation analysis was performed using 183 

HaplotypeCaller version 4.2.2.0. GRIDSS version 2.12.2 and LINX (19) version 1.17 were used 184 

to identify structural variations and gene fusions, respectively. Samples lacking a PASS 185 

designation were excluded from the analyses. 186 

 187 

Differentially methylated regions 188 

Differential methylation analysis was performed using the DSS tool, version 2.26.0107 (20). No 189 

minimum CpG read coverage was set since DSS considers the read depth for calculating the 190 

differentially methylated regions (DMR). The smoothing was set to TRUE, otherwise, default 191 

parameters were used in DSS. DMRs were required to pass the following criteria: 192 

hypermethylated regions should have at least 10% higher methylation level and hypomethylated 193 

regions should have at least 10% lower methylation level in each subtype compared to the same 194 

regions in AR+/NE-. The same criteria were used to identify DMRs in AR+/NE- when compared 195 

to all other subtypes combined.  196 

 197 

Motif analysis in DMR regions 198 

A list of all known homo sapiens transcription factor motifs was downloaded from the JASPAR 199 

database (21). This list was employed to perform an unbiased motif analysis using FIMO version 200 

5.1.0 (22) with default parameters. FIMO was used to identify the occurrence of known motifs with 201 

potential regulatory functions that may bind the putative enhancer regions identified in the CHD7 202 

gene. Regions of interest in the CHD7 gene (DMR2 and DMR3) on build GRCh38 were used as 203 

inputs in FIMO. Results were ranked by false discovery rate (q value). DMRs including hyper- and 204 

hypomethylated regions identified by DSS for each subtype were converted to bed files using the 205 
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GenomicRanges package version 1.48.0. We excluded ENCODE Blacklist (23) regions 206 

annotated in GRCh38, under accession number ENCFF419RSJ, and genomic coordinates 207 

outside of chromosomes 1-22, X, and Y. The BED files were used as inputs for the motif 208 

enrichment analyses using the HOMER program suite version 4.11.1 (24) (findMotifsGenome.pl) 209 

with “-size given”, otherwise default parameters. Significantly enriched motifs, were ranked by log 210 

(p-value). The top 20 motifs, if available, within each subtype were plotted on heatmaps. Genes 211 

mapped to KLF5 were annotated using HOMER (annotatePeaks.pl).  212 

 213 

Gene Set Enrichment Analysis 214 

We obtained gene sets of the Cancer Hallmark pathways from the Molecular Signatures Database 215 

(MSigDB) using msigdbr version 7.5.1 to conduct Gene Set Enrichment Analysis (GSEA) and 216 

single sample GSEA (ssGSEA). ssGSEA was carried out using GSVA version 1.44.1 (25). A 217 

matrix of RNA-seq read counts was used as an input and the recommended parameters were 218 

applied for the ssGSEA analysis (tau=0.25, kcdf="Poisson", method="ssgsea"). In GO enrichment 219 

analyses, differentially expressed genes unique to each subtype were ranked by their log2 (fold-220 

change) value, and the GO enrichment analyses were computed using the clusterProfiler R 221 

package version 4.4.2 (26) with default parameters. The gene sets with enrichment of FDR < 0.1 222 

were considered significant. Genes annotated to the KLF5 transcription factor using HOMER were 223 

ranked by FDR and GSEA was performed using the enrichR (27) tool with default parameters. 224 

The p values of enriched pathways were then adjusted for multiple testing using FDR. Pathways 225 

enriched with FDR < 0.1 were considered to be significant.  226 

 227 

Code availability  228 

Code used in this manuscript is available at https://github.com/DavidQuigley/WCDT_subtypes. 229 

 230 

Data Availability 231 
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RNA-seq FASTQ files of 148 localized samples from the CPC-GENE cohort (28) were obtained 232 

from the European Genome-Phenome Archive (EGA) under accession number 233 

EGAS00001000900 and the FASTQ files of eight benign samples from the PAIR cohort (29) were 234 

retrieved from Gene Expression Omnibus (GEO) database under accession number GSE115414. 235 

The files were aligned with STAR, and the gene level quantification was performed using gene 236 

models in GENECODE  version 28. The expression value of each gene was converted to TPM. 237 

The ChIP-seq data of DNase I hypersensitive sites (DHS) (30) was obtained from the ENCODE 238 

project under accession number ENCSR857UZV. The H3K27ac ChIP-seq data of primary 239 

prostate tumors (31) was obtained from GEO, under accession number GSE120738. WGBS and 240 

WGS from 100 samples of mCRPC tumors from the WCDT cohort are available on dbGaP with 241 

study number phs001648 (11) and an additional 28 samples are available on EGA with study 242 

number EGAS00001006649. RNA-seq data from 210 samples of mCRPC tumors from the WCDT 243 

cohort are available on EGA with study numbers EGAD00001008991, EGAD00001008487, and 244 

EGAD00001009065 (Supplementary Table 2). All other raw data are available upon request 245 

from the corresponding author. 246 

 247 

Results 248 

Subtypes of mCRPC are associated with distinct transcriptional phenotypes. 249 

We developed a cohort of 210 mCRPC tumors from fresh-frozen core biopsies obtained through 250 

a prospective multi-institutional IRB-approved study (NCT02432001) (8). All 210 tumors of the 251 

West Coast Prostate Cancer Dream Team cohort (WCDT) were characterized by RNA-seq, with 252 

128 tumors also characterized by WGS and WGBS. The clinical characteristics of patients in the 253 

cohort are listed in Supplementary Table 1, and characteristics of the molecular analysis are 254 

summarized in Supplementary Table 2. All samples were processed by a uniform analysis 255 

pipeline to evaluate transcriptional activity, somatic alterations, and tumor methylation status 256 

(Methods). We first tested the hypothesis that the AR and NE tumor subtypes identified in 257 
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Labrecque et al. (13) could be replicated in this independent cohort. To this end, we clustered the 258 

WCDT gene expression data by employing a gene set previously demonstrated to distinguish 259 

these subtypes (13). Using hierarchical clustering we identified 132 tumors as AR+/NE-, 9 as 260 

AR+/NE+, 49 as ARL/NE-, 7 as AR-/NE+, and 13 as AR-/NE- (Figure 1A). An unbiased genome-261 

wide principal component analysis performed on tumor gene expression data identified clusters 262 

consistent with the supervised gene set clustering analysis (Supplementary Figure 1). We 263 

inferred that the hierarchical clustering approach identified subtypes in the WCDT cohort 264 

consistent with those previously described by Labrecque et al. (13), and that these subtypes were 265 

associated with a large proportion of the overall transcriptional variance in our cohort. We 266 

repeated this analysis in an independent cohort of mCRPC tumors (7) and identified the same set 267 

of five transcriptionally defined subtypes (Figure 1B), further supporting the generality of this 268 

subtype classification. 269 

 270 

We next asked whether these subtypes are present in localized tumors, or if they instead are 271 

exclusively observed in tumors that have progressed on ADT. We clustered gene expression data 272 

from eight benign samples from the PAIR cohort (29) and 148 localized prostate cancer samples 273 

from the CPC-GENE cohort (28) in addition to the WCDT mCRPC tumors using the Labrecque 274 

gene sets (13). Localized tumors were not associated with subtypes in this analysis 275 

(Supplementary Figure 2). Six localized tumors with high levels of Chromogranin-A (CHGA) 276 

expression, a neuroendocrine lineage marker, and low AR expression clustered with the mCRPC 277 

tumors, closer to NE+ and AR-low biopsies. This analysis was consistent with a model wherein 278 

these subtypes either arise de novo after progression on ADT or arise from rare cell populations 279 

among localized tumors that cannot be readily identified by bulk sequencing (32). 280 

 281 

We next set out to identify the expression pathways that distinguish the subtypes. Consistent with 282 

previous studies, AR expression status was the major determinant in mCRPC molecular 283 
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measurements (5,9,11) and was associated with the largest number of differentially expressed 284 

genes. In comparison with AR+/NE- tumors, we identified 1,557 and 2,856 differentially expressed 285 

genes specific to AR-/NE- and AR-/NE+ subtypes, respectively (Supplementary Figure 3, 286 

Supplementary Data 1). AR+ subtypes were significantly enriched for androgen response, while 287 

NE+ subtypes were enriched for neuronal lineage and proliferation gene sets such as Hallmarks 288 

of Pancreas Beta Cells and E2F targets (Student’s t-test p < 0.001) (Figure 2A, Supplementary 289 

Figure 4). Tumors in AR- subtypes were enriched for hallmarks of hypoxia and proliferation 290 

(Student’s t-test p < 0.001) (Figure 2A).  Double-negative AR-/NE- tumors had down-regulation 291 

of adaptive immune response genes, consistent with reports that this subtype has an 292 

immunosuppressed tumor microenvironment (33), and elevated expression of genes related to 293 

innate immune response and fibroblast growth factor signaling, as previously reported (34) 294 

(Supplementary Figure 4). Taken together, these data validate the presence of these mCRPC 295 

transcriptional subtypes in metastatic prostate tumors and demonstrate that these subtypes can 296 

be identified at a time when this knowledge could potentially lead to a change in therapy. 297 

 298 

The AR-/NE- subtype is associated with the worst prognosis. 299 

Neuroendocrine mCRPC, which has also been termed aggressive variant disease, is associated 300 

with poor patient outcomes (8,35). We assessed the patient outcomes of the five molecular 301 

subtypes of mCRPC that we identified in the WCDT cohort of men with mCRPC. We tested for 302 

association between molecular subtypes and patients’ survival from the date tumor biopsies were 303 

obtained. Survival analyses confirmed that patients with AR- tumors had inferior overall outcomes 304 

relative to AR+ tumors (log-rank p < 0.001). There was not a significant association between AR 305 

signaling inhibitor exposure and either AR- status or individual tumor subtype (Supplementary 306 

Table 1). Notably, pairwise-comparisons tests between the AR- and AR+ subtypes indicated that 307 

the strongest significant difference in survival was associated with the AR-/NE- subtype (vs. 308 
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AR+/NE- p < 0.001, vs. AR+/NE+ p = 0.008, vs. AR-/NE+ p = 0.06, vs. ARL/NE- p < 0.001) (Figure 309 

2B).  310 

 311 

Biallelic loss of PTEN is associated with the AR-/NE- subtype. 312 

Leveraging the integrated molecular data available for the WCDT cohort, we tested for association 313 

between somatic alterations and the five mCRPC subtypes. We focused on 131 frequently altered 314 

prostate cancer driver genes (5,36), and conducted somatic mutation and structural variation 315 

analyses to identify variants linked to each subtype. As expected, AR+ tumors harbored more 316 

frequent amplification of AR and a nearby AR enhancer than AR- tumors (AR amplified in 69% 317 

vs. 15% Fisher’s exact p = 0.001 and AR enhancer amplified in 79% vs. 23%, Fisher’s exact p < 318 

0.001) (Figure 3A). Inactivation of the tumor suppressor genes TP53 and RB1 has been reported 319 

to be frequent in neuroendocrine prostate cancer (37). Combined biallelic loss of RB1 and TP53 320 

alterations was significantly more frequent in AR- tumors than other subtypes (23% vs. 0%, 321 

Fisher’s exact p = 0.002) (Figure 3A).  322 

 323 

Loss of the tumor suppressor gene PTEN has been associated with castration resistance and 324 

worse survival outcomes in response to AR-targeted therapy(38–40). We observed more frequent 325 

PTEN biallelic loss and inactivation in AR-/NE- tumors compared to the other subtypes (57%, AR-326 

/NE- vs. 17%, Fisher’s exact test p = 0.031) (Figure 3A-B). Germline alterations inactivating an 327 

allele of BRCA2 are associated with more aggressive prostate cancer (41), and biallelic 328 

inactivation of homologous recombination repair genes including BRCA2 is predictive of response 329 

to PARP inhibitor therapy (42,43). Two of the eight tumors with biallelic inactivation of BRCA2 330 

were AR-/NE- (29% of AR-/NE- vs. 5% in other subtypes, Fisher’s exact p = 0.061). MYC 331 

activation is a key driver of aggressive prostate cancer tumors and is associated with poor 332 

prognosis (44), and it has been observed that MYC overexpression impacts the activity of AR 333 

targets (45). We observed positive correlation between MYC copy gain and MYC gene expression 334 
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level among the tumors (R = 0.3, p < 0.001). AR- tumors were more likely to harbor copy gain of 335 

MYC than AR+ tumors (69% in AR- vs. 29% in AR+, Fisher’s exact p = 0.019) (Figure 3A-B). 336 

Gene fusions in the ETS family are the most common alterations in localized prostate cancer. 337 

62% of the WCDT tumors harbored ETS fusions and was not associated with tumor subtypes 338 

(Supplementary Table 3). These results demonstrated that PTEN biallelic loss, previously 339 

associated with poor prognosis, was most frequently observed in AR-/NE- tumors compared to 340 

the other subtypes. These associations were consistent with our observation that AR-/NE- tumors 341 

were associated with the worst prognosis for WCDT patients (Figure 2B). 342 

 343 

Alterations in the chromatin remodeling gene CHD7 are associated with AR- tumors. 344 

Out of the 131 prostate cancer genes we examined, chromodomain helicase DNA binding protein 345 

7 (CHD7) was the only gene with significantly higher copy numbers in the AR-/NE- tumors 346 

compared to the other subtypes (57% vs. 17%, Fisher’s exact p = 0.031, Figure 3A-B). Copy 347 

number gain of CHD7, located at 8q12, was distinct from gain of MYC, located at 8q24. Notably, 348 

CHD7 expression was significantly higher in AR- tumors compared to AR+ tumors (Kruskal-349 

Wallis p = 0.0031, Figure 4A) and was positively correlated with SOX2 expression (R = 0.25, p < 350 

0.001, Supplementary Figure 5). CHD7 was expressed at the highest levels in AR-/NE+ tumors, 351 

despite a very low rate of somatic alterations in this subtype (Figure 3A-B). CHD7 was also 352 

expressed at significantly higher levels in AR-/NE+ tumors than other subtypes in an independent 353 

cohort (7) of mCRPC tumors (Supplementary Figure 6). CHD7 is an ATP-dependent chromatin 354 

remodeler essential for multipotent neural crest formation (46). CHD7 plays a key role in 355 

promoting neural progenitor differentiation in embryonic stem cells (ESCs), where it co-localizes 356 

with active gene enhancers such as SOX2 and subsequently modulates the expression of ESC-357 

related genes (47–49). SOX2 plays an important role in disease progression, promoting androgen 358 

independence and lineage plasticity in prostate cancer (50–52). The consistent elevated 359 

expression of CHD7 in AR- tumors led us to hypothesize that CHD7 plays a role in AR- mCRPC. 360 
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 361 

We observed that elevated CHD7 expression in AR-/NE+ tumors was not associated with 362 

increased CDH7 copy number; thus, we investigated the hypothesis that DNA methylation 363 

changes impact CHD7 expression in this subtype. DNA methylation plays a prominent role in the 364 

modulation of cellular states such as cell differentiation and tumorigeneses (53,54). Increased 365 

methylation at DNA enhancer regions can reduce the expression of the targets of that enhancer 366 

(55,56) by preventing transcription factor (TF) binding (57–59). We tested for differential 367 

methylation at the CHD7 promoter and nearby genomic loci and predicted the presence of 368 

enhancers by intersecting these loci with regions marked by H3K27ac ChIP-seq in localized 369 

prostate tumors (31), and by DNase I sensitivity, assays that predict enhancer activity (30) (Figure 370 

4B). We identified four statistically significant differentially methylated regions (DMRs) 371 

overlapping with H3K27ac ChIP-seq and DNase I hypersensitive site peaks. The loci were 372 

designated DMR1 (Chr8: 60714901-60714964), DMR2 (Chr8: 60791842-60794175), DMR3 373 

(Chr8: 60846924-60850679) and DMR4 (Chr8: 60864944-60866961). DMR2 and DMR3 had 374 

43% lower methylation levels in AR-/NE+ tumors compared to AR+/NE- tumors (Figure 4C-F). 375 

Methylation levels in DMR2 and DMR3 were negatively correlated with CHD7 gene expression 376 

level, consistent with a role as enhancers of CHD7 expression (R = -0.43, p < 0.001 and  R = -377 

0.27, p = 0.010, respectively; Figure 4D, 4E).  378 

 379 

Having identified two candidate enhancer regions that are preferentially hypomethylated in AR-380 

/NE+ compared to AR+/NE-, we next performed a DNA motif enrichment analysis on the DMR2 381 

and DMR3 regions to identify TFs that may affect CHD7 expression. Unbiased motif enrichment 382 

analyses indicated that DMR2 was most significantly enriched for neuronal lineage TFs including 383 

BCL11B (60) (q value = 0.003) and ASCL1 (10) (q value = 0.009). In DMR3, NEUROG2 (q value 384 

= 0.006) and OLIG2 (10,61) (q value = 0.01) were the most significantly enriched TFs. In contrast, 385 

DMR1 and DMR4, whose methylation levels were not significantly correlated with CHD7 386 
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expression, do not contain these motifs (Figure 4G). These data are consistent with a model in 387 

which hypomethylation at these neuroendocrine TF binding regions of CHD7 could contribute to 388 

the upregulation of CHD7 expression in AR-/NE+ tumors via binding of neuronal transcription 389 

factors such as ASCL1. 390 

 391 

Expression and methylation analysis converges on KLF5 in AR-/NE- tumors. 392 

We next extended this analysis to nominate transcription factors that influence the development 393 

and activity in all mCRPC subtypes. We combined two orthogonal unbiased methods to identify 394 

the strongest candidates: 1) subtype-specific differential expression analysis, and 2) motif 395 

enrichment analysis at regions preferentially hypomethylated in each subtype. We hypothesized 396 

that subtype-specific driver TFs would be both upregulated and would have an increased number 397 

of hypomethylated binding sites in that subtype. Differential expression analysis across all 398 

subtypes, restricted to established TFs (62), identified subtype-specific upregulation of numerous 399 

TFs previously associated with AR+/NE- and AR-/NE- disease. As expected, AR+/NE- tumors 400 

expressed AR, GATA2, NKX3-1, and MYC at significantly higher levels than other subtypes 401 

(Figure 5A). Consistent with prior reports, AR-/NE+ tumors had significantly higher expression of 402 

ASCL1, INSM1, and NKX2-1 (Figure 5A). We then focused on double-negative tumors, which 403 

have been less well-studied. We found that many TFs previously linked to AR- mCRPC such as 404 

KLF5, MYCN, and FOXA2 were expressed at significantly higher levels in AR-/NE- tumors.  405 

 We next performed genome-wide differential methylation analysis comparing each 406 

subtype to AR+/NE- tumors, followed by motif enrichment analysis to identify TF binding sites that 407 

were preferentially exposed in that subtype. Hypomethylated regions in AR+/NE- tumors were 408 

enriched for motifs associated with Androgen Response elements, FOX family motifs, GRE 409 

motifs, and GRHL2 (Figure 5B). This positive control result demonstrated differential methylation 410 

analysis could identify binding sites associated with driver TF and pioneer factors. Complementing 411 

these observations, hypermethylated regions in AR- tumors were enriched for ETS family motifs 412 
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such as ETV2 and ERG, and androgen-associated motifs including HOXB13 and GRHL2 413 

(Supplementary Figure 7). Hypomethylated regions in AR-/NE+ tumors were significantly 414 

enriched for NE lineage-related TFs such as ASCL1 and NEUROD1 as well as TFs that promote 415 

epithelial-mesenchymal transition (EMT) including SNAIL1 and SLUG (63,64) (Figure 5B).  416 

 Focusing next on AR-/NE- tumors, we observed enrichment for motifs associated with 417 

SOX family and Krüppel-like factor (KLF) motifs in the hypomethylated regions of this subtype 418 

(Figure 5B). The KLF5 motif was the most highly enriched motif identified in AR-/NE- tumors, but 419 

it ranked 257th out of 433 motifs in the AR-/NE+ subtype and was not enriched in AR+ subtypes 420 

(Figure 6A, Supplementary Data 2). Among the KLF family genes with binding motifs enriched 421 

in AR-/NE- tumors (KLF5, KLF3, KLF1, KLF14, KLF6, KLF9), only KLF5 had significantly higher 422 

expression in AR-/NE- tumors (Figure 5A, Supplementary Figure 8). Genes harboring KLF5 423 

binding sites that were hypomethylated in AR-/NE- tumors were enriched for roles in EMT, 424 

myogenesis, and estrogen response (Figure 6B). This result was consistent with prior reports 425 

that KLF5 maintains epithelial cell identity in normal prostate and mammary tissues (65–67). To 426 

nominate subtype-specific associations between KLF5 and other genes linked to lineage 427 

phenotypes, we performed differential correlation analysis centered on KLF5. KLF5 expression 428 

was significantly correlated with luminal markers such as KRT18 in AR-negative and AR-low 429 

subtypes (Figure 6C). KLF5 was not correlated with basal markers such as KRT5, which were 430 

expressed at low levels in all subtypes, though at significantly higher levels in AR-/NE- tumors 431 

than other subtypes (Figure 6C). KLF5 expression levels were positively correlated with mitotic 432 

cyclin CCNB2 (Figure 6C). 433 

 One of the strongest significant correlations we observed was an inverse correlation 434 

between expression of KLF5 and RB1 in AR-/NE- tumors (Figure 6C, 4F). RB1 and KLF5 are 435 

located on chromosome 13 at 48.3 and 73 Mb, respectively. RB1 is frequently deleted in mCRPC 436 

(5), and expression levels of RB1 were correlated with RB1 copy number in both AR-/NE- and 437 

AR+/NE- tumors (Figure 6D, top row). KLF5 was rarely deleted or amplified in AR-/NE- tumors, 438 
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and there was no significant association between KLF5 expression and KLF5 copy number 439 

(Figure 6D, middle row). KLF5 expression was, however, negatively correlated with RB1 copy 440 

levels only in AR-/NE- tumors (Figure 6D, bottom row). The RB1 inverse correlation with KLF5 441 

was the 22nd strongest correlation among all genes in the genome for AR-/NE- tumors. These 442 

observations were consistent with RB1 loss being linked to increased KLF5 activity in AR-/NE- 443 

tumors.  444 

Discussion 445 

Several studies have shown subtype heterogeneity among mCRPC tumors (5,11,13) and have 446 

identified that a subtype variously called small cell, neuroendocrine (7), t-SCNC (8), and 447 

aggressive variant (68) disease exists and has worse prognosis than prostate adenocarcinoma 448 

(8). This study characterized genomic and epigenomic drivers of mCRPC by integrating RNA-449 

seq, deep WGS and WGBS, and clinical outcomes from 210 mCRPC tumors to assess subtypes 450 

defined by AR and NE status including adenocarcinoma (AR+/NE-), double-positive (AR+/NE+), 451 

low AR (ARL/NE-), neuroendocrine (AR-/NE+) and double-negative (AR-/NE-). We demonstrated 452 

that AR-/NE- tumors have the worst survival outcomes of these subtypes and harbor distinct 453 

genomic and epigenomic changes compared to the AR-/NE+ subtype, which may facilitate the 454 

identification of novel therapeutic targets in AR-independent tumors. We identified transcriptional 455 

subtypes that were consistent with five molecular subtypes reported by Labrecque et al. (13). 456 

These five subtypes were not observed in primary prostate tumors. This suggests mCRPC tumors 457 

evolve from the AR+/NE- phenotype concurrently with the development of castration-resistant 458 

disease in response to therapeutic pressure from androgen-targeting therapy (69). Our 459 

observation that patients with AR-/NE- tumors had the worst survival outcome among men with 460 

mCRPC who are actively being treated supports the expansion of the adenocarcinoma vs. 461 

neuroendocrine dichotomy to include these five subtypes in genomic and clinical studies of 462 

mCRPC. The small number of tumors with the AR-/NE- phenotype in our cohort limited our 463 

statistical power to perform multivariate survival analysis. 464 
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 AR-/NE- tumors were enriched for biallelic inactivation of PTEN and amplification of a DNA 465 

region that included CHD7, an ATP-dependent chromatin remodeling gene. Despite a low 466 

frequency of somatic changes in CHD7 among AR-/NE+ tumors, these tumors express the 467 

highest levels of CHD7. In normal tissues, CHD7 is abundantly expressed only in the cerebellum. 468 

CHD7 is essential for proper formation of the multipotent migratory neural crest (46), it plays an 469 

important role in promoting neural progenitor differentiation in ESCs, and it co-localizes 470 

with SOX2 (47–49). We identified two intragenic candidate enhancer regions of CHD7 (DMR2 471 

and DMR3) that were hypomethylated in the AR-/NE+ subtype. Hypomethylation of DMR2 and 472 

DMR3 was significantly correlated with higher CHD7 expression, consistent with the profile of an 473 

enhancer. Published ChIP-seq experiments in neuroendocrine lineage tumors showed ASCL1 474 

binds at DMR2 at the location of an ASCL1 binding motif. Analysis of chromatin interactions in 475 

models of prostate cancer using Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) 476 

techniques (70) would be informative to explore this relationship further; our observations predict 477 

influence of DMR2 and DMR3 would be conditional on whether the cells have a neuroendocrine 478 

phenotype. Ectopic overexpression of CHD7 in pre-clinical models of glioblastoma cell-line 479 

increases cell motility and invasiveness (71). Abundant prior evidence therefore links CHD7 to 480 

neural development, though to our knowledge this is the first study linking CHD7 to 481 

neuroendocrine mCRPC.  482 

 We nominated transcription factors specifically relevant to each subtype by unbiased 483 

genome-wide methylation analysis of transcription factor binding motifs. This analysis 484 

underscored the profound differences in transcriptional control of AR-/NE- and AR-/NE+ tumor 485 

cells. ASCL1 binding motifs had the strongest enrichment in AR-/NE+ tumors. Together with our 486 

CHD7 analysis, this observation adds to emerging evidence that ASCL1 plays a key role driving 487 

lineage plasticity in this subtype (10). This analysis also showed KLF-family motifs were 488 

significantly enriched in the hypomethylated regions of AR-/NE- tumors. Among KLF family genes, 489 

KLF5 was most highly expressed in this subtype. A positive association has been reported 490 
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between KLF5 gene expression and SPOP gene expression in an early-onset primary prostate 491 

tumors (72). It has been proposed that KLF5 plays contrasting roles in advanced prostate cancer 492 

depending on AR activity (65). In AR+ tumors, KLF5 interacts with AR and decreases AR 493 

expression. In the absence of AR, KLF5 has been reported to function as an oncogene that 494 

promotes cell migration and invasion(65). We observe highly divergent enrichment in our 495 

methylation analysis for KLF5 binding sites in AR-/NE- and AR-/NE+ subtypes. Notably, KLF5 496 

was the most enriched motif in AR-/NE- tumors, while it ranked 257th in AR-/NE+ tumors. These 497 

observations, combined with elevated expression of KLF5 in AR-/NE- tumors, support our 498 

hypothesis that KLF5 drives AR-/NE- tumors. The link that we observed between elevated KLF5 499 

expression and RB1 inactivation was striking, but further studies will be required to determine 500 

whether RB1 loss directly impacts KLF5 expression in AR-negative disease. 501 
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 706 

Figure legends 707 

 708 

Figure 1. mCRPC tumors cluster into five groups using the expression of Androgen (AR), 709 

Neuroendocrine (NE) and Squamous (SQUAM) gene panels 710 
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Heatmap representing RNA-sequencing gene expression level of AR, NE and SQUAM gene 711 

panels of mCRPC tumors from A) the WCDT cohort (5,11) and B) the Beltran et al. cohort (7). 712 

Results are expressed as log2 TPM (z-score) and colored from low (blue) to high (yellow) 713 

expression level. AR gene panel includes AR and AR-regulated genes, NE gene panels (NE1 714 

and NE2) include NE-related genes, and SQUAM panel includes genes associated with 715 

squamous cell differentiation. The expression levels of genes included in neuroendocrine prostate 716 

cancer (NEPC) panel from Beltran et al. cohort (7) were used to assign a binary classification 717 

(Binary Class) of the samples based on their gene expression. Adenocarcinoma tumors were 718 

represented in white, while small cell NEPC were represented in black. AR and NEPC signature 719 

scores were calculated based on the AR and NEPC-related gene expression values as reported 720 

previously (7). The tumor subtypes can be read as follows: AR+/NE- in dark turquoise, ARL/NE- 721 

in dark orange, AR-/NE- in light purple, AR-/NE+ in pink and AR+/NE+ in light green. 722 

 723 

Figure 2. Distinct clinical outcomes associated with the five subtypes of metastatic 724 

castration-resistant prostate cancer  725 

A) Heatmap representing results of single sample gene set enrichment analyses (ssGSEA) and 726 

colored according to the figure legends. B) Kaplan-Meier curves representing clinical outcome of 727 

patients in the WCDT cohort, using survival from date of biopsy acquisition as the clinical 728 

outcome. Pairwise test conducted between AR-/NE- and other subtypes. The tumor subtypes can 729 

be read as follows: AR+/NE- in dark turquoise, ARL/NE- in dark orange, AR-/NE- in light purple, 730 

AR-/NE+ in pink and AR+/NE+ in light green. 731 

 732 

Figure 3. Somatic and structural alterations associated with subtypes of metastatic 733 

castration-resistant prostate cancer 734 

A) Top rows show mCRPC subtypes, ETS family fusions, TMPRSS2-ERG fusions, tumor purity, 735 

and tumor ploidy in the WCDT cohort.  Bottom rows show occurrence of AR, AR enhancer, PTEN, 736 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



RB1, TP53, MYC, BRCA2, and CHD7 alterations in each sample. Tumors are sorted by their 737 

subtypes. Alteration frequency shown to the right. B) Bar plots representing alteration frequency 738 

(%) of AR, PTEN, RB1, TP53, MYC, BRCA2, and CHD7 genes within each subtype. In both 739 

panels, types of alterations are colored (and/or marked with symbols) according to the figure 740 

legends.  741 

 742 

Figure 4. Hypomethylation in the putative enhancer regions of CHD7 is correlated with 743 

elevated gene expression in AR-/NE+ 744 

Integration of gene expression and DNA-methylation data for the CHD7 gene. A) Box plots 745 

representing CHD7 gene expression in the five mCRPC subtypes, colored according to the key 746 

below the plot. B) Top panels represent the chromosomal location of the CHD7 gene along with 747 

H3K27ac ChIP-seq marker, DNAse I hypersensitive site (DHS), and differentially methylated 748 

regions (DMRs) in AR-/NE+ tumors compared to AR+/NE-. Bottom panel representing ChIP-seq 749 

data for ASCL1 in different cell lines as indicated in the panels. The vertical dashed green and 750 

red lines show the transcription start site and transcription end site of the CHD7 gene, 751 

respectively. The yellow bar indicates the canonical promoter region of CHD7. Boxplots showing 752 

mean methylation level per sample in C) DMR1 D) DMR2, E) DMR3 and F) DMR4 for AR-/NE-, 753 

AR-/NE+ and AR+/NE- subtypes. Pearson’s correlations were calculated between CHD7 gene 754 

expression and mean methylation of each sample at DMRs1-4. Boxplots should be interpreted 755 

as follows: horizontal lines denote median values; boxes extend from the 25th to the 75th percentile 756 

of each group's distribution of values; vertical extending lines denote adjacent values (the most 757 

extreme values within 1.5 interquartile range of the 25th and 75th percentile of each group). 758 

Differences between groups were assessed by the Kruskal-Wallis test. Significance is indicated 759 

as follows: ns = not significant; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. G) Venn 760 

diagram representing the overlap between the top 10 transcription factor motifs enriched at each 761 

DMR location. Neuroendocrine-lineage motifs found in DMRs are labeled in the panel. 762 
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 763 

Figure 5. Gene expression and DNA-methylation analysis converges on Krüppel-like factor 764 

5 transcription factor (KLF5) in AR-/NE- tumors 765 

A) Heatmap representing differentially expressed transcription factors (TFs) in five subtypes of 766 

mCRPC. B) Heatmap representing top 20 enriched TFs in hypomethylated regions of the five 767 

mCRPC subtypes. TFs are ranked by log (p-value). The color intensity indicates the rank of the 768 

TFs from most enriched (dark red) to least enriched (white). 769 

 770 

Figure 6. Association between KLF5 transcription factor enrichment and RB1 gene loss in 771 

AR-/NE- tumors 772 

A) Rank order plots show the enrichment rank of KLF5 in AR-/NE- and AR-/NE+ subtypes on the 773 

left to right. Dashed red color indicates rank 20. B) Bar plots showing the gene set enrichment 774 

analyses for genes mapped to the KLF5 motif. Dashed line indicates FDR = 0.05. C) Scatterplots 775 

representing Spearman’s correlation between KLF5 gene expression and KRT5, KRT8, RB1 and 776 

CCNB2 genes. D) Scatterplots showing the relation between RB1 gene expression and RB1 copy 777 

numbers (top row), KLF5 gene expression and KLF5 copy numbers (middle row) and KLF5 gene 778 

expression and RB1 copy number (bottom row).  779 

 780 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



WCDT cohort

Beltran et al. cohort

Figure 1.

A

B

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



0 12 24 36 48 60 72 84 96

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0%

20%

40%

60%

80%

100%

Log rank p.value < 0.001

10 1

8 4 1 1 1 1
89 56 36 22 13 4 1

7 3 3 1

62 33 16 10 8 7 4 1 1

AR-/NE-

AR-/NE+
AR+/NE-

AR+/NE+

ARL/NE-

Months

Pair-wise p vs. AR-/NE- 

 0.06

< 0.001

< 0.001

AR+/NE+ 0.008

AR-/NE+

ARL/NE-

AR+/NE-

WCDT cohort
Survival time: date tumor biopsies obtained

Figure 2.

A B

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



Figure 3.

A

B

TMPRSS2-ERG
ETS family fusion

Tumor purity
Tumor ploidy

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



Figure 4.

A B

G

E F

C D

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



Figure 5.

AR−/NE−
AR−/NE+
ARL/NE−
AR+/NE−
AR+/NE+

KLF
5
LE

F1
KLF

3
TCF3

KLF
1

KLF
14SP2

KLF
4
KLF

6
SP5

SOX21
TCF7

RUNX
SOX3

SOX10
KLF

9
MAZ

SOX2

RUNX1

ZFP28
1

ASCL1HEB
E2A
AT

OH1

BHLH
A15

TWIST2
TCF4

NEUROG2

NEUROD1

ASCL2

PTF1A
TCF21

SNAIL1
MYO

G
ZEB1

OLIG
2
AP4

SLU
G

NKX2.5ERG
JU

NB
FRA2

AT
F3
BAT

F
AP
−1
FRA1

FOS
ETV2

FOSL2
ETS1

ETV4
FLI1EHF

ELF
4

JU
N−
AP
1 PR

EW
S:E
RG
−F
US
IO
N
ETV1

STA
T3+

IL2
1
PGR

GRE

FOXM1

FOXA1
ARE

GRHL2

FOXA2

FOXA1:A
R

FOXF1
GAT

A
FOXL2

FOXA3

FOX:EBOX

DMRT1

FOXP1

FOXO3
NRF1

Rank

1 10 50 100 200 300 400

A

B

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-0593/3339591/can-23-0593.pdf by C

D
L-U

niversity of C
alifornia - San Francisco user on 26 June 2023



A B

C D

Figure 6.
D

ow
nloaded from

 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C
AN

-23-0593/3339591/can-23-0593.pdf by C
D

L-U
niversity of C

alifornia - San Francisco user on 26 June 2023


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6



