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Modulation of vinblastine sensitivity by dipyridamole in multidrug
resistant fibrosarcoma cells lacking mdr1 expression

D.R. Shalinsky!, M.L. Slovak? & S.B. Howell!

'Department of Medicine and the Cancer Center 0812, Laboratory of Pharmacology, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0812, and *City of Hope National Cancer Center, 1500 E. Duarte Road, Duarte,

California 91010-0269, USA.

Summary We examined the ability of dipyridamole (DPM) to act synergistically with vinblastine (VBL) in
HT1080 fibrosarcoma cells and a drug-resistant variant, HT1080/DR4, which lacks mdrl expression, in order
to determine whether DPM requires P-glycoprotein to modulate drug sensitivity. Median effect analysis of
clonogenic assay was used to produce the combination index (Cly,, values <1 indicate synergy). DPM was
mildly synergistic with VBL producing a Cl;, of 0.83£0.13 for HT1080 cells and 0.80+0.16 for HT1080/DR4
cells. HT1080 and HT1080/DR4 cells accumulated 6.7£0.7 and 5.6%0.9 pmol *H-VBL mg cells~! at steady
state (C,,) and 20 uM DPM elevated the C, by 1.8 and 2.9-fold, respectively. In comparison, the CIs, was
1.1£0.2 in parental KB-3-1 cells and 0.1£0.1 in mdr1-expressing KB-GRCI cells. The KB-3-1 and KB-GRCl
cells had a C,, of 3.820.8 and 0.710.2 pmol *H-VBL mg cells~", respectively, and DPM elevated the C by
9.2-fold in KB-GRC1 cells. These studies demonstrate that DPM can produce synergy independently of mdrl
expression but that much greater levels of synergy are achievable in mdrl-expressing tumour cells.

The emergence of multidrug resistance remains a major ob-
stacle to the effective chemotherapy of tumours. Multidrug
resistance has frequently been related to the over-expression
of a 170-180 Kd molecular weight membrane-associated sur-
face P-glycoprotein that is believed to function as an efflux
pump for xenobiotics leading to reduced drug accumulation
(Endicott & Ling, 1989; Juranka er al., 1989). Multidrug
resistance has also been demonstrated in various tumour cells
in which there is no detectable presence of P-glycoprotein or
over-expression of the mdrl gene which codes for this glyco-
protein (Marsh & Center, 1987; Danks et al., 1987; Harker et
al., 1989; Mirski et al., 1987; Slovak et al., 1988; Coley et al.,
1991). Recently, it has been reported that non-P-glycopro-
tein-mediated drug resistance preceded the development of
P-glycoprotein-mediated resistance in human lung cancer
cells repeatedly exposed to DOX? (Baas et al., 1990), indicat-
ing the presence of more than one mechanism for this pheno-
type.

Many agents enhance the sensitivity of multidrug resistant
cells to chemotherapy but the nature of this interaction
(synergy, additivity, antagonism) has not been formally
determined in most cases (Asoh e al., 1989; Ramu & Ramu,
1989; Harker et al., 1986; Slater et al., 1986; Tsuruo et al.,
1981). The concept of overcoming drug resistance is based on
there being a synergistic interaction between the modulator
and the cytotoxic agent. Most modulators produce some
degree of cell kill themselves, complicating the analysis of the
interation and therefore requiring the use of isobologram or
median effect analysis to determine the nature of the inter-
action (Chou & Talalay, 1984; Chou & Chou, 1986).

DPM is a potent inhibitor of nucleoside transport (Plage-
mann et al., 1988), phosphodiesterase activity (Harker et al.,
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1983), lipid peroxidation (Luliano et al., 1989), and can
enhance cellular sensitivity to a variety of anticancer agents
(Howell et al., 1987; Howell et al., 1989a,b). DPM has a long
history of safe use in humans for the assessment and treat-
ment of cardiovascular conditions (Fitzgerald, 1987). We
have previously conducted extensive studies examining the
ability of the modulator DPM to enhance the sensitivity of
VP-16, DOX, colchicine and VBL in a variety of drug-
sensitive and drug-resistant cell lines. There was a good
correlation between the extent of synergy and the DPM-
induced increase in C, cellular drug content (r=0.94) in
human ovarian carcinoma cells (line 2008) that are relatively
sensitive to all three agents (Howell er al., 1989a,b). In con-
trast, DPM did not produce synergy with any cytotoxic agent
in drug-sensitive human KB-3-1 carcinoma cells but did pro-
duce synergy in the drug-resistant variants which were
derived from the KB-3-1 cell line (Shalinsky er al., 1990a).
The KB-GRC1 variant cell line was studied because it was
produced by transfection of the mdrl gene in KB-3-1 cells
and theorectically differed from the KB-3-1 cells only by the
presence of a single protein, P-glycoprotein (Choi et al.,
1988), providing a useful model to study the effect of P-
glycoprotein on DPM’s ability to modulate drug sensitivity.
In KB-GRCI cells expressing mdrl, high levels of synergy
were observed, and it was greatest for the cytotoxic agent for
which expression of mdrl produced the greatest fold-resis-
tance and enhancement of C, (Shalinsky et al., 1990a). How-
ever, despite the fact that DPM binds to P-glycoprotein as
evidenced by its ability to block *H-azidopine labelling (Asoh
et al., 1989), there was no relationship between the extent of
synergy with cytotoxic drugs and the DPM-induced increase
in cellular drug content across drug-sensitive and drug-
resistant KB variants (Shalinsky er al., 1990q), indicating that
DPM must have other effects as well with regard to modulat-
ing drug sensitivity. These effects do not appear to be related
to the ability of DPM to inhibit cAMP phosphodiesterase
activity (Howell ez al., 1989a) or nucleoside transport (Ramu
& Ramu, 1989) which are prominent activities of DPM.
Ramu and Ramu (1989) have reported that DPM selectivity
increased the sensitivity of drug-resistant P388 cells to DOX
but did not alter DOX sensitivity in the parental P388 cells.
The effect of DPM on non-P-glycoprotein-mediated multi-
drug resistance is unknown.

In this study, we have employed human fibrosarcoma
HT1080 cells (Rasheed et al., 1974) and a drug resistant
variant, HT1080/DR4, which was derived from HT1080 cells
following stepwise exposure to DOX and which are 222-fold
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resistant to this anticancer agent. The HT1080/DR4 cells
represent a novel class of non-P-glycoprotein-mediated multi-
drug resistant cells that exhibit a stable multidrug resistant
phenotype, but do not overexpress the mdrl gene as their
primary mechanism of resistance (Slovak et al., 1988; Slovak
et al., 1991). Use of these cells enabled a test of whether
modulation of drug sensitivity by DPM in multidrug resis-
tant tumour cells was dependent on the presence of a func-
tioning P-glycoprotein.

Materials and methods

Chemicals

DPM was a gift from Boehringer Ingelheim Pharmaceuticals,
Inc (Ridgefield, CT). Vinblastine sulfate was obtained from
Eli Lilly & Co (Indianapolis, IN). *H-VBL (20 Ci mmol~")
was purchased from Moravek Biochemicals (Brea, CA), stor-
ed in the dark at —80°C and protected from light during
experiments. The purity of *H-VBL was confirmed as a single
peak by HPLC analysis according to the method of Thim-
maiah and Sethi (1985).

Cell lines and culture

Human fibrosarcoma HT1080 cells were grown in monolayer
culture in T25 culture flasks (Corning, NY) in MEM Earle
medium supplemented with 10% heat-inactivated foetal calf
serum 1% L-glutamine, penicillin/streptomycin (100 units
ml~') and 1% non-essential amino acids. Cultures were
maintained at 37°C under 5% CO, in air and were routinely
tested for mycoplasma by Gen Probe™ (Gen Probe Inc., San
Diego, CA) analysis and were found to be negative. The
DOX-resistant HT1080/DR4 variants were grown as describ-
ed (Slovak et al., 1988) in the presence of 0.8 mM DOX. The
KB-3-1 and KB-GRC1 cells were cultured as previously
described (Shalinsky et al., 1990a).

Clonogenic assay

Cytotoxicity was measured using a colony forming assay as
previously reported (ibid.). Log-phase cells (48—72h in cul-
ture) were harvested with 2 mM trypsin-0.05% EDTA, wash-
ed with medium and plated in triplicate onto 60 mm tissue
culture dishes (Corning Glass Works, NY) at a density of
200 cells/dish in 5 ml of culture medium. Cells were allowed
to attach for 2-4h prior to addition of drug, usually as
<50 ul of stock solution. Cultures were incubated at 37°C
under 5% CO, in air for 10—14 days with continuous expo-
sure to drug. The resulting colonies were stained with Giemsa
dye in methanol and clusters containing 50 or more cells
were scored as a colony. Control dishes usually contained
75-150 colonies. Data were expressed as percent survival
compared to untreated control.

Median effect analysis

Median effect analysis permits a formal assessment of the
nature of the interaction between drugs and yields the Cl, a
measure of the extent of synergy at various levels of cell kill
(Chou & Talalay, 1984). In these studies, the CI at all levels
of cell kill was determined but the CIs, was used as the most
reliable measure of the drug interaction. Cl;, values less than
1 indicate synergy; a value of 1 indicates additivity, and
values of greater than 1 indicates antagonism. In clonogenic
assays employing the median effect design, dose response
curves were determined for modulator and cytotoxic agent
alone, and for the combination of both agents at a fixed ratio
equivalent to the ratio of the ICss. Actual concentrations
used in colony forming assays ranged from 1/100 of the ICs,
up to the actual value of the ICs, for each drug as previously
described (Shalinsky et al., 1990a). The percent survival was
converted to percent kill for calculation of the Cls by com-
puter analysis of the dose response curves (Chou & Chou,
1986).

Modulation of cellular pharmacology

Cells were trypsinised, suspended in culture medium and
plated at a density of 4 X 10° cells per 60 mm dish in 5 mi of
medium. The cells were allowed to grow exponentially for
48-72 h, then the medium in each dish was removed and
replaced with 2 ml of fresh medium containing 6 nM SH-VBL
(6.67 mCi pmol~') in the absence or presence of the indicated
concentration of DPM as previously described (Howell et al.,
1989a,b; Shalinsky et al., 1990a). The C, was reached by
60 min. After 60 min, the medium was aspirated and the cells
were washed three times with ice cold phosphate buffered
saline. The cells were digested overnight with 1 ml of 1N
NaOH. Aliquots were used for determination of protein
content and cell-associated radioactivity. The aliquots that
were assayed for cell-associated radioactivity were neutralised
with equimolar amounts of 1 N HCl. Each experiment was
performed with duplicate cultures.

Statistical analysis

Unless otherwise noted, the data are expressed as the group
mean  s.d. of triplicate determinations from each of ‘n’
experiments. The Student’s t-test for grouped data was used.
In all cases, significance was at the level of P<<0.05.

Results

Table I lists the ICs values for DPM and VBL in the
HT1080 and HT1080/DR4 cell lines. For comparison, the
ICs, values for the drug-sensitive KB-3-1 and its mdrl expres-
sing KB-GRC1 variant are included. Both multidrug resis-
tant lines were resistant to VBL, but the HT1080/DR4 cells
were only slightly resistant whereas the KB-GRC1 cell lines
were highly resistant. The low level of resistance to VBL in
the HT1080/DR4 cells was similar to the 2.2-fold resistance
that has been reported previously (Slovak et al., 1988).

We employed the technique of median effect analysis to
determine the nature of the drug interaction between DPM
and VBL in each of the cell lines. This technique produces
the CI which is a measure of the nature and extent of the
interaction. We utilised the Cls, for analyses. Cls, values less
than 1 represent synergy, a value equal to 1, additivity, and a
value greater than 1, antagonism. Figure 1 compares the
median effect plots for experiments employing HT1080 and
HT1080/DR4 cell lines (panel a) and KB-3-1 and KB-GRCl1
cell lines (panel b). The regression coefficients were >0.9 for
each drug alone and in combination with DPM, indicating
that the drugs followed basic mass action principles. A
similar level of synergy was observed in the HT1080 and
HT1080/DR4 cell lines. The Cls, values obtained with VBL
in combination with DPM was 0.83 £ 0.13 for HT1080 cells
(n=23) and 0.800.16 for HT1080/DR4 cells (n=4). In
contrast, an additive interaction was observed with these
agents in KB-3-1 cells (Cls, of 1.1 = 0.2, n = 5) but there was
a highly synergistic interaction with the KB-GRCI cells (Cly,
of 0.120.1, n=75).

The C, of VBL was measured in the cell lines in the
presence and absence of DPM in order to determine whether
the synergy was related to a change in the intracellular drug
content. Figure 2a shows the accumulation of VBL in the
HT1080 and HT1080/DR4 cell lines and Figure 2b shows the
accumulation in the KB-3-1 and KB-GRCI1 cell lines. Under

Table I Drug sensitivity of tumour cell lines

ICs, meants.d.

Cell line VBL (nM) DPM (pm) n
HT1080 0.210.1 21.716.4 4
HT1080/DR4 04£0.2 143134 3
KB-3-1 0.210.1 18.6+3.1 20
KB-GRC1 13.4+27 313114 20
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Figure 1 Combination index plots for DPM and VBL in a,
HT1080 (O) and HT1080/DR4 cells () and b, in KB-3-1 (O)
and KB-GRC1 (@) cells over the entire range of cell kill. A
combination index of 1 (- - - -) indicates additivity; <1 shows
synergy and >1 shows antagonism. In clonogenic assays em-
ploying the median effect design, dose-response curves were
generated for DPM and VBL alone and in combination as des-
cribed in Materials and methods. Each point is plotted as the
mean combination index from 3-6 experiments, s.d <20%.

control conditions, the HT1080 cells had a C, of 6.7 £ 0.7
pmol VBL mg cellular protein~! compared to a C, of
5.6 £ 0.9 pmol VBL mg cellular protein~! in the HT1080/
DR4 cells. In contrast, whereas the C, was 3.8 £ 0.8 in the
KB-3-1 cells, it was only 0.7 £ 0.2 pmol VBL mg protein~! in
the KB-GRCI cells. The much lower C, in the KB-GRC]1 vs
the KB-3-1 cells is consistent with the presence of a function-
ing P-glycoprotein pump in these cells, whereas the small
difference in C, in the HT1080/DR4 cells relative to the
parental HT1080 cells reflected the lack of P-glycoprotein in
these resistant variants. As shown, the C, was achieved in
each cell line after 1 h incubation. Therefore, further incuba-
tions with VBL were performed using this duration of
exposure. Figure 3a shows the ability of DPM to enhance the
C, of VBL in HT1080 and HT1080/DR4 cells and Figure 3b
illustrates this for the KB-3-1 and KB-GRCI1 cells. DPM
produced maximum increases in the C, of VBL of 1.8 and
2.9-fold in the HT1080 and HT1080/DR4 cells, respectively.
In HT1080 and HT1080/DR4 cells, the dose response curve
reached a plateau by 10 and 20 pM, respectively. DPM pro-
duced increases in the C, of VBL in KB-3-1 and KB-GRClI
cells of 1.7 and 9.2-fold, respectively. In KB-3-1 and KB-
GRCI cells, the dose response curve reached a plateau by
10uM DPM. Hence, DPM had similar effects in approx-
imately doubling the C,, of VBL in each of the drug-sensitive
cell lines but DPM produced a much higher relative increase
in C, in the KB-GRC1 than the HT1080/DR4 cell line.

Discussion

In previous studies (Shalinsky ez al., 1990a), we found a high
degree of synergistic interaction between DPM and VBL in
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Figure 2 Accumulation of VBL to steady state cellular content
levels in a, HT1080 (O) and HT1080/DR4 (M) cells and b, in
KB-3-1 (O) and KB-GRCI1 (®) cells. Each point represents the
mean of three experiments performed in duplicate. Vertical lines,
s.d.; (where vertical lines are missing the s.d. was less than the
size of the symbol).

KBV1 cells which over-express P-glycoprotein compared to
parental KB-3-1 cells which do not. We have now used
another model to address the hypothesis that the synergy is
dependent on the presence of a functioning P-glycoprotein.
The HT1080/DR4 cells were employed to define the nature
of the interaction between DPM and VBL in drug-resistant
cells under the condition where P-glycoprotein-mediated
multidrug resistance was absent. HT1080/DR4 cells possess a
non-mdrl multidrug resistant phenotype that has remained
stable for well over 3 years (Slovak et al., 1991). The results
demonstrate that DPM produces a much smaller degree of
synergy with VBL in multidrug resistant cells that do not
express mdrl compared to those that do.

Although we only observed a low 2-fold level of resistance
to VBL in HT1080/DR4 cells, consistent with the level of
resistance reported previously (Slovak ef al., 1988), these cells
were selected in DOX and possess high levels of cross resis-
tance to DOX, VP-16 and vincristine (222, 837 and 25-fold,
respectively). Hence, these cells are clearly multidrug resis-
tant. For comparative purposes, we have included analogous
data obtained in drug-sensitive KB-3-1 and mdrl-expressing
KB-GRCI cells. Following transfection of the mdrl gene, the
KB-GRCI cells theoretically differ from the parental KB-3-1
cells only by the presence of a single protein, P-glycoprotein
(Choi et al., 1988) and therefore represent a model cell line
exhibiting the mdrl phenotype. In contrast to the situation
observed between the KB-3-1 and KB-GRC1 cells, the simi-
lar accumulation of VBL in the HT1080 and HT1080/DR4
cells corroborated the absence of P-glycoprotein in the HT 1080/
DR4 cells, supporting the contention that the HT1080/DR4
cells served as an appropriate model for non-P-glycoprotein-
mediated multidrug resistance.

DPM produced an equivalent low level of synergy in both
the HT1080 and HT1080/DR4 cell lines with Cls, values of
approximately 0.8 despite the fact that DPM was capable of
enhancing the C,, of HT1080/DR4 cells by 2.9-fold vs only
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Figure 3 Steady state cellular vinblastine content as a function
of DPM concentration in a, HT1080 (00) and HT1080/DR4 (M)
cells and b, in KB-3-1 (O) and KB-GRC1 (@) cells. Cells were
exposed to radiolabelled VBL for 1h in the presence or absence
of DPM. Each point represents the mean of three experiments
performed in duplicate. Vertical lines, s.d. (where vertical lines
are missing the s.d. was less than the size of the symbol).

1.8-fold in the parental cell line. Yet, the ability of DPM to
produce small increases in C, has resulted in the detection of
an appreciable level of synergy. For example, DPM increased
the C,, of VBL by 3.2-fold in human 2008 ovarian carcinoma
cells and produced a Cly of 0.30 % 0.05 (Howell et al.,
19894). Hence, DPM could have reasonably been expected to
have interacted more synergistically with VBL in the
HT1080/DR4 cells. These data demonstrate a lack of correla-
tion between synergy and C, in the HTI1080 cell lines,
indicating that additional factors such as internal compart-
mentalisation or binding of drug determine the nature of the
drug interaction (Beck ez al, 1983; Sirotnak et al., 1986;
Slovak et al., 1988). On the other hand, DPM produced a
very high level of synergy in KB-GRC1 cells (Cly; of
0.1 £0.1) and this degree of synergy was associated with a
9.2-fold increase in C,. We have observed a good correlation
(r=0.92) between level of drug resistance and extent of
synergy within the KB-GRCI1 cell line using different drugs
(Shalinsky et al., 1990a), suggesting that DPM is modulating
drug sensitivity by interacting with P-glycoprotein, the pri-
mary resistance mechanism operating in these cells. It is of
interest that DPM can produce synergy in HT1080 cells but
not in KB-3-1 cells. The KB-3-1 cells accumulated less VBL
than the HT1080 cells (3.8 vs 6.7 pmolmg~') but DPM
increased the C, by an equivalent factor of approximately
1.8-fold, yet the nature of the interaction was additive in
KB-3-1 and synergistic in HT1080 cells, supporting the con-
tention that merely measuring C levels in in vitro studies is
inadequate for predicting the nature of drug interaction.
We have previously reported that DPM produces a high
level of synergy with VBL, DOX and VP-16 in drug-sensitive
2008 human ovarian carcinoma cells (Howell et al., 1989a,b).
These cells do not contain detectable levels of mdrl mRNA
(unpublished observations) and lack detectable levels of a
170 Kd form of P-glycoprotein by either MRK-16 or C219
antibody staining (Shalinsky et al., 1990a), suggesting that

DPM produces synergy independently of P-glycoprotein in
these cells. On the other hand, 2008 cells express a 180 Kd
protein that is detected by the monoclonal antibody, HYB-
2414, which reportedly binds to a 180 Kd form of P-glyco-
protein (Meyers et al., 1989). The 180 Kd protein in 2008
cells may represent an inactive form of P-glycoprotein since
these cells are very semsitive to anticancer drugs in com-
parison with resistant cells known to express P-glycoprotein
(Howell et al., 1989a,b; Shalinsky et al., 1990a). The drug
sensitivity profiles, absence of the 170Kd form of P-
glycoprotein and lack of effect of HYB-241 on the C, of
DOX’ suggest that the 2008 cells are truly drug-sensitive.
Therefore, it appears that DPM can produce high levels of
synergy in some drug-sensitive tumour cells such as the 2008
cells but cannot in others such as KB-3-1. Though the
presence of the 180 Kd P-glycoprotein does not appear to
confer drug resistance to 2008 cells, DPM may possibly act
via this protein to enhance drug cytotoxicity. This possibility
would be consistent with a report that demonstrated that a
mutant form of P-glycoprotein, which lacks viable nucleotide
binding sites, was still able to bind P-glycoprotein substrates
even in the absence of eflux pumping activity (Roninson,
1991). The basis for this apparently P-glycoprotein-
independent mechanism of synergy remains to be elucidated.

Synergy between DPM and agents such as the antimeta-
bolites has been attributed to inhibition of the salvage path-
way by DPM and a simultaneous blockade of the de novo
pathway of nucleoside synthesis by the antimetabolites
(Kusumoto et al., 1988), but DPM apparently acts via a
novel mechanism to enhance the cytotoxicity of drugs that
participate in the multidrug resistant phenotype because the
synergy is unrelated to an ability to inhibit nucleoside trans-
port or CAMP phosphodiesterase activity (Ramu & Ramu,
1989; Howell et al., 1989a). Our data suggest that in KB-
GRC1 cells, DPM produces a high level of synergy by
inhibiting P-glycoprotein activity leading to a much greater
relative increase in the C, of VBL. This hypothesis would be
consistent with the fact that DPM can compete with *H-
azidopine for binding to P-glycoprotein (Asoh et al., 1989).
Comparative studies with VPL in KB-GRC1 cells have
shown that VPL can produce an equally high level of synergy
with VBL (Shalinsky et al., 1990a). VPL also elevates the Cg
of VBL which is consistent with the ability of VPL to bind to
P-glycoprotein as demonstrated by Cornwell et al. (1987) and
Safa (1988). VPL is about one fifth to one half as potent as
DPM in KB-GRCI (Shalinsky et al., 1990b) and 2008 cells
(Howell et al., 1989b), respectively, suggesting that VPL, as
well as DPM, has a P-glycoprotein-dependent and -indepen-
dent mechanism for elevating C,, and producing synergy in
tumour cells. The identification of P-glycoprotein-indepen-
dent mechanism(s) may permit broader use a modulators for
enhancement of cytotoxicity against drug-sensitive as well as
drug-resistant neoplasms, but this potential can not be
realised until the underlying mechanisms in drug-sensitive
tumour cells are identified.

This study demonstrates that a very high level of synergy is
achievable with VBL in combination with DPM in multidrug
resistant tumour cells that overexpress mdrl. VPL also pro-
duces an equally high level of synergy with VBL in KB-
GRCI1 cells (Shalinsky et al., 1990a). Furthermore, both
DPM and VPL alone produced a superior level of synergy
with VBL compared to that for VP-16 or colchicine (Shalin-
sky et al., 1990q), suggesting that these modulators may have
a better potential for an improved chemotherapeutic response
with VBL. We conclude that while DPM does not absolutely
require the presence of a functioning P-glycoprotein to pro-
duce synergy with VBL in resistant cell lines, the presence of
a functioning P-glycoprotein results in a much higher degree
of synergy. If modulators of drug sensitivity are going to
have a significant clinical impact, than high levels of synergy
will likely be required. It therefore appears that DPM is
unlikely to be a useful modulator for the treatment of mul-
tidrug resistant neoplasms that lack P-glycoprotein expres-
sion, but has more promise for the treatment of mdrl-
expressing multidrug resistant tumours.
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