
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
PHEV Power Management Optimization Using Trajectory Forecasting Based Machine 
Learning

Permalink
https://escholarship.org/uc/item/2cw3d5pb

Author
Garcia, Joseph Augusto

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cw3d5pb
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA, 

IRVINE 

 

PHEV Power Management Optimization Using Trajectory Forecasting Based Machine Learning 

 

DISSERTATION 

submitted in partial satisfaction of the requirements 

for the degree of 

 

DOCTOR OF PHILOSOPHY 

in Mechanical and Aerospace Engineering 

by 

Joseph Garcia 

                                                               Dissertation Committee: 

                               Doctor Gregory Washington, Chair 

                                     Professor Faryar Jabbari 

                                              Professor Fadi Kurdahi 

 

2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Joseph Augusto Garcia



ii 

 

TABLE OF CONTENTS 

List of Figures ................................................................................................................................. v 

List of Tables ............................................................................................................................... viii 

Acknowledgements ......................................................................................................................... x 

Abstract of Dissertation ................................................................................................................. xi 

 Introduction ............................................................................................................................. 1 

 PHEV Technology .................................................................................................................. 3 

2.1. PHEV Vehicle Design ...................................................................................................... 3 

2.2. PHEV Energy Management Control Strategy Research .................................................. 6 

 Control Strategy .................................................................................................................... 11 

3.1. Trajectory Forecasting.................................................................................................... 11 

3.1.1. Setup ....................................................................................................................... 11 

3.1.2. Implementation ....................................................................................................... 22 

3.1.3. Rule-based Classification........................................................................................ 25 

3.1.4. Fuzzy Logic Control ............................................................................................... 26 

3.2. Trajectory Forecasting Testing....................................................................................... 35 

3.2.1. Route Data .............................................................................................................. 35 

3.2.2. Simulation Parameters ............................................................................................ 37 

3.2.3. TF Performance ...................................................................................................... 40 

3.3. Convolution Neural Network ......................................................................................... 45 



iii 

 

3.3.1. CNN Input Data Preprocessing ............................................................................... 45 

3.3.2. CNN Architecture ................................................................................................... 48 

3.3.3. CNN Performance ................................................................................................... 53 

3.4. Implementation............................................................................................................... 55 

 Simulation ............................................................................................................................. 57 

4.1. Route Data ...................................................................................................................... 57 

4.2. Simulation Parameters.................................................................................................... 59 

4.3. Results ............................................................................................................................ 60 

4.3.1. PHEV #1, FC_SI41_emis/ ESS_PB25 Combination ............................................. 61 

4.3.2. PHEV #2, FC_SI41_emis/ ESS_PB28 Combination ............................................. 62 

4.3.3. PHEV #3, FC_SIPrime_emis/ ESS_PB25 Combination ........................................ 64 

4.3.4. PHEV #4, FC_SIPrime_emis/ ESS_PB28 Combination ........................................ 65 

4.3.5. Results Summary .................................................................................................... 66 

 Conclusions and Future Work .............................................................................................. 69 

 References ............................................................................................................................. 71 

 Appendix ............................................................................................................................... 75 

7.1. Original Trajectory Forecasting Development ............................................................... 75 

7.1.1. Performance Results Figures .................................................................................. 75 

7.1.2. Original Trajectory Forecasting Code .................................................................... 98 

7.1.3. ADVISOR Code Additives ................................................................................... 112 

7.2. Convolutional Neural Network Code ........................................................................... 120 



iv 

 

7.2.1. Data Preprocessing................................................................................................ 120 

7.2.2. Training ................................................................................................................. 124 

7.3. Complete Trajectory Forecasting Based Machine Learning Control Strategy ............ 126 

7.3.1. Original Route Data .............................................................................................. 126 

7.3.2. MATLAB Code .................................................................................................... 131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

List of Figures 

Figure 1: Hybrid Electric Vehicle Design [11] ............................................................................... 4 

Figure 2: Plug-in Hybrid Electric Vehicle Design [12] .................................................................. 4 

Figure 3: Typical Google Maps Route [46] .................................................................................. 13 

Figure 4: Google Maps Route [46]; modes assigned according to only traffic conditions .......... 14 

Figure 5: Google Maps Route [46]; modes assigned according to traffic and speed limits ......... 15 

Figure 6: ADVISOR PHEV Configuration [47] ........................................................................... 16 

Figure 7: Plot for Amps/mph ........................................................................................................ 19 

Figure 8: Plot for Amp-hours/mile/mph ....................................................................................... 20 

Figure 9: ADVISOR PHEV Simulink Model; control strategy block in red [47] ........................ 23 

Figure 10: Control Strategy Block Interior [47]; TF control strategy function block additive in red; 

SOC min assignment function block additive in blue .................................................................. 23 

Figure 11: ADVISOR Route and PHEV Battery Parameters [47] ............................................... 24 

Figure 12: Fuzzy Logic Controller [52] ........................................................................................ 27 

Figure 13: Error and Change in Error Membership Functions ..................................................... 29 

Figure 14: K Output Membership Functions ................................................................................ 30 

Figure 15: Fuzzification Example ................................................................................................. 31 

Figure 16: Google Maps Route 1 [46] .......................................................................................... 36 

Figure 17: Route 1 Drive Cycle .................................................................................................... 36 

Figure 18: EPA Created UDDS Drive Cycle [53] ........................................................................ 36 

Figure 19: Route 1 Drive Cycle .................................................................................................... 40 

Figure 20: Route 2 Drive Cycle .................................................................................................... 40 

Figure 21: Route 3 Drive Cycle .................................................................................................... 41 



vi 

 

Figure 22: Route 4 Drive Cycle .................................................................................................... 41 

Figure 23: Route 5 Drive Cycle .................................................................................................... 42 

Figure 24: Route 6 Drive Cycle .................................................................................................... 42 

Figure 25: Route 7 Drive Cycle .................................................................................................... 43 

Figure 26: Route 8 Drive Cycle .................................................................................................... 43 

Figure 27: Topić’s Preprocessing 2D Matrix................................................................................ 46 

Figure 28: CNN Architecture ........................................................................................................ 49 

Figure 29: Convolutional Layer Calculation Example [57] ......................................................... 50 

Figure 30: Max Pooling, 2D with 2x2 Filter................................................................................. 51 

Figure 31: Original Route 6, 60 miles .......................................................................................... 58 

Figure 32: Original route 6 compared to route 6 with added traffic and alternate route choices after 

first update at identified point circled in red ................................................................................. 59 

Figure 33: Route 1 TF control strategy ADVISOR simulation results ......................................... 75 

Figure 34: Route 1 CS control strategy ADVISOR simulation results ........................................ 76 

Figure 35: Route 1 CD control strategy ADVISOR simulation results ........................................ 77 

Figure 36: Route 2 TF control strategy ADVISOR simulation results ......................................... 78 

Figure 37: Route 2 CS control strategy ADVISOR simulation results ........................................ 79 

Figure 38: Route 2 CD control strategy ADVISOR simulation results ........................................ 80 

Figure 39: Route 3 TF control strategy ADVISOR simulation results ......................................... 81 

Figure 40: Route 3 CS control strategy ADVISOR simulation results ........................................ 82 

Figure 41: Route 3 CD control strategy ADVISOR simulation results ........................................ 83 

Figure 42: Route 4 TF control strategy ADVISOR simulation results ......................................... 84 

Figure 43: Route 4 CS control strategy ADVISOR simulation results ........................................ 85 



vii 

 

Figure 44: Route 4 CD control strategy ADVISOR simulation results ........................................ 86 

Figure 45: Route 5 TF control strategy ADVISOR simulation results ......................................... 87 

Figure 46: Route 5 CS control strategy ADVISOR simulation results ........................................ 88 

Figure 47: Route 5 CD control strategy ADVISOR simulation results ........................................ 89 

Figure 48: Route 6 TF control strategy ADVISOR simulation results ......................................... 90 

Figure 49: Route 6 CS control strategy ADVISOR simulation results ........................................ 91 

Figure 50: Route 6 CD control strategy ADVISOR simulation results ........................................ 92 

Figure 51: Route 7 TF control strategy ADVISOR simulation results ......................................... 93 

Figure 52: Route 7 CS control strategy ADVISOR simulation results ........................................ 94 

Figure 53: Route 7 CD control strategy ADVISOR simulation results ........................................ 95 

Figure 54: Route 8 TF control strategy ADVISOR simulation results ......................................... 96 

Figure 55: Route 8 CS control strategy ADVISOR simulation results ........................................ 97 

Figure 56: Route 8 CD control strategy ADVISOR simulation results ........................................ 98 

Figure 57: Original Route 1, 10 miles ........................................................................................ 126 

Figure 58: Original Route 2, 20 miles ........................................................................................ 127 

Figure 59: Original Route 3, 30 miles ........................................................................................ 128 

Figure 60: Original Route 4, 40 miles ........................................................................................ 129 

Figure 61: Original Route 5, 50 miles ........................................................................................ 130 

Figure 62: Original Route 6, 60 miles ........................................................................................ 131 

 

 

 



viii 

 

List of Tables 

Table 1: ADVISOR PHEV Configuration Component Descriptions [47] ................................... 17 

Table 2: Route 5 (20.1 miles) SOC Estimation Comparison ........................................................ 20 

Table 3: Route 7 (17.1 miles) SOC Estimation Comparison ........................................................ 20 

Table 4: Route 8 (6.5 miles) SOC Estimation Comparison .......................................................... 21 

Table 5: Priority Value Table ....................................................................................................... 26 

Table 6: Approximated Speed Value Table .................................................................................. 26 

Table 7: Qualitative Input/Output Summary ................................................................................ 29 

Table 8: Rule Table ....................................................................................................................... 32 

Table 9: ADVISOR Parallel Hybrid Control Strategy Parameters ............................................... 38 

Table 10: ADVISOR Parallel Hybrid Control Strategy Parameter Values .................................. 39 

Table 11: ADVISOR MPGGE Results ......................................................................................... 44 

Table 12: Input Matrix Parameters for MPGGE Output .............................................................. 48 

Table 13: Input Matrix Parameters for Emission Outputs ............................................................ 48 

Table 14: ADVISOR PHEV Fuel Converter and Energy Storage Options [47] .......................... 54 

Table 15: MATLAB Machine Learning Training Options [61] ................................................... 54 

Table 16: TFCNN’s Test Data Average Accuracy ....................................................................... 54 

Table 17: Distance Based Starting Initial SOC............................................................................. 57 

Table 18: PHEV #1, Raw Output Results for all Routes and Strategies ...................................... 61 

Table 19: PHEV #1, Percent Difference Between Strategies ....................................................... 61 

Table 20: PHEV #1, Best and Worst Performance ....................................................................... 62 

Table 21: PHEV #2, Raw Output Results for all Routes and Strategies ...................................... 62 

Table 22: PHEV #2, Percent Difference Between Strategies ....................................................... 63 



ix 

 

Table 23: PHEV #2, Best and Worst Performance ....................................................................... 63 

Table 24: PHEV #3, Raw Output Results for all Routes and Strategies ...................................... 64 

Table 25: PHEV #3, Percent Difference Between Strategies ....................................................... 64 

Table 26: PHEV #3, Best and Worst Performance ....................................................................... 65 

Table 27: PHEV #4, Raw Output Results for all Routes and Strategies ...................................... 65 

Table 28: PHEV #4, Percent Difference Between Strategies ....................................................... 66 

Table 29: PHEV #4, Best and Worst Performance ....................................................................... 66 

 

 

 

 

 

 

 

 

 

 

 



x 

 

Acknowledgements 

 I would like to first thank Dr. Washington for all the help and guidance he has given me 

over the years. He has pushed and guided me throughout my academic career into becoming the 

student I am today. I owe a large portion of who I am as a researcher and engineer to him. I would 

also like to thank Professor Jabbari and Professor Kurdahi for serving on my defense committee. 

 I would next like thank the many members of the ISSL lab. Joseph Bell and Vatche 

Donikian provided me with the resources to obtain the ADVISOR simulation software required 

for the basis of my research. Most notably, I would like to thank my lab mate and good friend 

Theron Smith. He helped me formulate a lot of my research’s main ideas, as well advise me in the 

development of my research’s control strategy. 

 Lastly, I would like to thank my family and many loved ones. Most important are my 

mother, Mirna Guardado, and sister, Karla Peña. They have sacrificed much throughout their lives 

to ensure my success and education. Next is Robin Jeffers, whose help in my undergraduate studies 

played a large role in leading me to my current position. For always being by my side, I would like 

to thank my remaining loved ones and friends who have supported me throughout my academic 

career. Thank you to all of you for always supporting me and motivating me to continue forward. 

 

 

 

 



xi 

 

Abstract of Dissertation 

Real-Time Route Optimization of PHEVs using Trajectory Forecasting Based Machine Learning 

By 

Joseph Augusto Garcia 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

University of California, Irvine, 2021 

Professor Gregory Washington, Chair 

 

 In hopes of lessening the reliance on fossil fuels, Plug-in Hybrid Electric Vehicles (PHEVs) 

have become an attractive option as an alternative fuel vehicle due to their larger electric motors 

and energy storage systems (ESS). PHEVs can propel themself relying solely on their internal 

combustion engine (ICE), electric motor (EM), and or a combination of both. To improve their 

fuel efficiency, many studies have been done to investigate the use of a priori route information to 

optimize the use of a PHEV’s ICE and EM. This study introduces a real-time machine learning 

application of a supervisory control strategy known as Trajectory Forecasting (TF). TF takes a 

priori knowledge of a PHEV’s pre-planned route to determine when the vehicle will use its 

different forms of propulsion in the form of propulsion mode scheduling. However, it assumes 

constant route data such as traffic and resulting driving speed for its scheduling to be applicable. 

To automatically account for changing traffic as well as choose better alternative routes, this study 

looks at the use of a Convolutional Neural Network (CNN) to simulate a PHEV’s operation along 

available routes beforehand according to the rules of TF to choose a route that best satisfies a 

driver’s want, better fuel efficiency and possibly lower emissions. This novel real-time TF based 

machine learning control strategy is evaluated and compared to common PHEV control strategies 

such as Charge Sustaining (CS) and Charge Depletion (CD) using National Renewable Energy 



xii 

 

Laboratory’s vehicle simulator ADVISOR. Results show possible increases in MPGGE from 

1.72%-130%, decreases in emitted hydrocarbons (HC), carbon monoxide (CO), and nitrous oxides 

(NOx) from 0.05%-70%, and 0.05%-90.35% reduction in gasoline consumption depending on 

overall route length and PHEV configuration.



1 

 

 Introduction 

Daily transportation has become extremely dependent upon fossil fuels. Currently, the 

United States has less than 5% of the world’s population, but approximately one-fifth of the 

world’s automobiles [1]. Serving as the primary fuel source for this vast amount of transportation 

is petroleum. In 2017, the United States led the world in petroleum consumption at a rate of 19.88 

million barrels per day and had a net petroleum import of 3.8 million barrels per day [2]. In 2018, 

the consumption of petroleum in the United States increased to a rate of 20.5 million barrels per 

day [3] while the net petroleum import decreased to 2.34 million barrels per day [4]. In 2019, the 

United States had a petroleum consumption of 20.46 million barrels per day [5] and a net petroleum 

import of 670 thousand barrels per day [4]. Even with a decreased net petroleum import, the current 

use of such fossil fuels forces the United States to heavily rely on them with the combustion of 

petroleum distillates from use as fuel in transportation leading to serious environmental issues 

from pollution. 

When fossil fuels are burned, nitrogen oxides, hydrocarbons, particulate matter, and other 

pollutants are released into the atmosphere. These pollutants lead to harmful respiratory issues in 

people, the formation of smog, and function as a heat trapping greenhouse gas that worsen the 

effects of climate change [1]. In response to the problems from burning fossil fuels, many states 

have begun to implement legislation to promote the search of alternatives and solutions. California 

established its Renewables Portfolio Standard (RPS) in 2002 under Senate Bill 1078, requiring 

that electrical corporations increase their procurement of eligible renewable resources by 1% per 

year until 20% of its total retail sales are procured from renewable resources [6]. In 2015, the 

passing of Senate Bill 350 then required electrical retail sellers and publicly owned utilities in 

California to procure 50% of their electricity from renewable resources by 2030 [7]. California’s 



2 

 

latest RPS goal, according to Senate Bill 100 passed in 2018, is now 60% by 2030 with all state’s 

electricity being required to come from carbon-free resources by 2045 [8]. 

To add to the list of practical solutions for lessening the effects of fossil fuels, alternative 

fuel vehicles have been identified as viable options. Currently, drivers can choose to drive vehicles 

that use alternative fuels such as biodiesel, electricity, ethanol, hydrogen, natural gas, or propane 

[9]. Increased interest in fuel efficiency over the past few decades has made them, specifically 

hybrid electric and plug-in hybrid electric vehicles (PHEVs), more accepted with increased 

attention leading to numerous technological improvements and cost reduction. 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 PHEV Technology 

2.1. PHEV Vehicle Design 

On the market today, two main types of hybrid electric vehicles (HEV) are sold; plug-ins 

and non-plug-ins. A non-plugin HEV, as shown in Figure 1, is propelled by a combination of both 

an internal combustion engine (ICE) and an electric motor (EM). The electricity that powers the 

EM can be generated by the vehicle’s own regenerative braking system and/or on-board generator. 

The use of regenerative braking is a process where the electric motor helps to slow the vehicle and 

converts the resulting kinetic energy into usable electricity [10]. Its on-board generator is powered 

by the ICE, producing electricity to power the EM and recharge the vehicle’s battery. A PHEV, as 

shown in Figure 2, is similar but has the added ability to have its battery re-energized by being 

plugged into an external electrical charging source. This allows PHEVs to carry larger electric 

motors and batteries, giving PHEVs’ electric vehicle (EV) mode an increased driving range with 

the ability to produce zero emissions. As a result, PHEVs can have higher overall miles per gallon 

(MPG) compared to vehicle that depend solely on an ICE. The added features and capabilities of 

PHEVs have made them a great area of focus, with companies and consumers looking for ways to 

further increase their electric driving range in between charges. 

PHEVs can have a series, parallel, or a series-parallel drivetrain configuration. In a series 

configuration, a PHEV runs solely on the EM with an ICE only being used to power a generator 

and recharge the vehicle’s battery. In a parallel configuration, a PHEV can run on an ICE and 

electric motor individually or in a blended mode. The series-parallel configuration allows the 

PHEV to behave with a series or parallel configuration depending on which is more efficient at 

the given speed and torque request. A PHEV with the ability to run solely powered by its ICE, 

EM, or a combination of both is categorized as a full hybrid, or strong hybrid. In comparison, non-



4 

 

plugin hybrids are typically categorized as mild hybrids, which comprise vehicles with limited 

hybrid technology, as they generally cannot run as a full EV due to the limited size of their batteries 

and electric motors. 

 

 

Figure 1: Hybrid Electric Vehicle Design [11] 

 

Figure 2: Plug-in Hybrid Electric Vehicle Design [12] 



5 

 

A larger battery will increase the all-electric range of a PHEV compared to an HEV, 

decreasing the fuel consumption over a given distance, thus leading to improved tank to wheel fuel 

economy for the vehicle and decreased harmful emissions [13]. This has resulted in sales rising 

over the years with 72,885 sold in 2016 as reported by the Office of Energy Efficiency and 

Renewable Energy. However, it is important to keep in consideration that additional battery weight 

decreases the attainable efficiency in miles per kWh and miles per gallon for a PHEV [14]. 

Therefore, an optimum in tank to wheel fuel economy can be reached when larger battery capacity 

and addition battery weight are both properly taken into consideration. 

 From data taken from 2015 modeled light duty passenger vehicles, on-road fuel economy 

was averaged at about 31 mpg [15]. Compared to a traditional HEV, a PHEV has the capability of 

alternating between using an electric motor, the internal combustion engine, and a mixture of both 

depending upon which driving mode is chosen. The modes include electric vehicle (EV) mode, 

charge depletion (CD) mode, charge sustaining (CS) mode, and internal combustion engine (ICE) 

mode. EV mode is when the PHEV runs solely on the battery and electric motor until it completes 

a predefined cycle or reaches a predefined minimum state of charge (SOC) in the vehicle’s storage 

system [16]. CD mode is when the PHEV runs primarily using the electric motor with a net 

decrease in SOC, with the ICE turning on when the power demand is too high for the electric motor 

to handle or if the SOC drops too low [16]. CS mode is when the PHEV is propelled by the electric 

motor, ICE, or a combination of both, with the constraint of maintaining a constant SOC in the 

battery [16]. ICE mode is where the PHEV runs solely on the ICE to propel itself. These modes 

allow maximum flexibility in reducing overall fuel consumption when coupled to a supervisory 

control that optimally chooses the driving mode that is most efficient for vehicle operation from 

those available.  For example, in stop-and-go urban driving EV mode will be more efficient as 



6 

 

internal combustion engines are less efficient at low engine speed, usually characterized by 

revolutions per minute (RPM).     

2.2. PHEV Energy Management Control Strategy Research 

To further optimize and expand the all-electric range that a PHEV can travel, an onboard 

computer can use specific energy management strategies to determine which of its various modes 

to run in. With a proper control strategy, a PHEV can autonomously decide when and to what 

extent to use its two energy sources (battery energy or fuel) to increase its overall efficiency over 

a given drive cycle. This feature allows power management systems to strongly influence and 

increase PHEV fuel efficiency [17]–[19]. Giving some insight into the energy management 

strategies, switching between a PHEV’s various modes can be controlled automatically as a 

function of battery SOC, vehicle speed, engine speed, engine torque, environment temperature, 

battery temperature, and air conditioning need [20]. It is important to note that these decision 

factors all deal with the state of the PHEV itself in real-time. Therefore, having accurate readings 

of these factors proves to be very important. A battery’s SOC has proven to be the most difficult 

to measure with extensive research into improving measurement accuracy through open circuit 

voltage and coulomb counting (current integration) measurement techniques. Fortunately, research 

has shown that with proper evaluation of a battery’s state of health (SOH) at recharging and 

discharging, estimation error for SOC can be reduced to 1% at the operating cycle [21]. 

In many actual cases a PHEV’s driving mode can also be manually selected by the driver 

based upon which mode they desire to use at a given moment. It is this manual control option that 

has led to the consideration of a new energy management strategy that considers factors beyond 

the confines of the PHEV. Drivers of PHEVs have been known to manually switch between 

operating modes based on road conditions, such as traffic, that they anticipate facing on their 



7 

 

commutes. Choosing to run in EV mode as often as possible in instances of medium traffic or 

forcing the vehicle to run in CS mode in small instances of stop-and-go traffic, are strategies that 

consider a driver’s knowledge of their route to further improve their vehicle’s fuel economy.  

Given that modern vehicles have on-board global positioning systems (GPS) with included traffic, 

weather, road grade and hazard information, supervisory controllers like the one outlined in this 

research can optimize which driving mode will be utilized at what time to optimize fuel economy 

over the whole route.   

The most examined strategies used to enhance PHEV fuel efficiency over a particular route 

use optimal control and optimization [22]. From the perspective of optimal control, many have 

considered the use of rule-based control strategies, such as fuzzy logic controls (FLC), driving 

mode classification, and dynamic feedback control [22]. Studies in [22]–[24] have shown that FLC 

type techniques make controllers easier to implement as operation merely requires matching 

immediate driving conditions to different prearranged scenarios for which to adjust the power 

contributions from the electric motor and ICE. In a similar fashion, driving mode classification 

techniques rely upon different parameters obtained from past and current driving conditions to 

characterize real-time driving patterns and adjust driving control strategies accordingly [25]. 

Studies investigating the benefits of using a combination of both FLC and driving mode 

classification techniques have been presented in the past by Langari and Won [26], [27]. As 

discussed in [28] and [29], dynamic feedback control approaches solve for the control strategies 

based on current and previous operations, which are easier for real-time implementation. 

Unfortunately, these algorithms are not able to reach global optimality in terms of power 

distribution over an entire route [22], thus investigations have then been made into dynamic 

programming (DP). 



8 

 

DP is a common optimization technique that has been used to obtain global optimality 

[30]–[34]. However, it uses a distinct few standardized dive cycles from the U.S. Department of 

Transportation to optimize power management for various other routes, serving more as a 

reference than an exact solution [22]. Fortunately, with the development and accessibility of trip 

prediction and modeling such as intelligent transportation systems, geographical information 

systems (GIS), and global positioning systems (GPS), models for individual trips can be accessed 

a priori [22]. These models can include information such as speed limits, traffic flow, and road 

grade from one location to another. In combination with a priori drive cycle knowledge, DP has 

been studied as a near globally optimized power management approach reinforcing the charge-

depletion approach [22], [35]. While proven to efficiently optimize PHEV power management, 

especially with the integration of advanced route modeling, DP is a very computationally 

expensive technique that would require the optimization be performed offline [22]. Studies have 

been conducted to reduce the algorithm’s computational load to implement it in real-time. A two-

scale dynamic programming approach solves for a globally optimized state of charge (SOC) model 

offline on a macro-level and then adapts the model on a micro-level in real-time onboard the 

vehicle [36]. However, all these methods still require significant computing power prior and during 

vehicle operation, especially when trying to adjust to changes in a vehicle’s route in real-time. 

Another, easier implementable approach is that of a driver-centric approach. In many real-

life situations, a PHEV’s driving mode is manually selected by the driver based upon which mode 

they desire to use at a given moment. Drivers of PHEVs have been known to manually switch 

between operating modes based on road conditions, such as traffic, that they anticipate facing on 

their commutes. It is this manual control option that has led to the consideration of a new energy 

management strategy that considers factors beyond the confines of the PHEV. Given that modern 



9 

 

vehicles have on-board global positioning systems (GPS) with included traffic, weather, road 

grade and hazard information, supervisory control strategies can optimize driving mode choice to 

optimize fuel economy over a whole route. Most notably, works by Chau [37], [38], Murakami 

[39], and Nejad [40] have begun to focus on this driver-centric type approach to improve fuel 

efficiency. Using extracted road network data from Southeast Michigan, Nejad creates multigraphs 

of plausible routes broken up into segments according to road characteristics [40]. Calculating the 

gasoline consumption according to fuel economy vs speed plots from public domains and charge 

consumption according to battery consumption rates posted by actual hybrid users along road 

sections, Nejad uses DP to iteratively find a charge sustaining (CS) and charge depleting (CD) 

drive mode schedule that minimizes gasoline consumption [40]. Murakami then extends the model 

created by Nejad to consider time constraints and the availability of using recharging stations on a 

route [39]. Similarly, Chau develops a DP based strategy to optimize fuel efficiency using path 

planning to consider both filling and charging stations [37], [38]. These works use constant road 

characteristics for path planning in their driver-centric approach to implement less computationally 

intensive dynamic programming strategies. However, they are not designed for considering 

changing route conditions such as traffic, a characteristic capable of indirectly accounting for 

things like weather and construction, not to mention the increasing complexity and computational 

cost from larger scale implementation. 

In the area of fuel efficiency approximation, the automobile miles per gallon (MPG) 

prediction problem is classified as a typical nonlinear regression problem with several car 

attributes as inputs [41]. Machine learning techniques such as neural networks can solve complex 

problems by imitating animal brain processes in a simplified manner [42], performing well with 

non-linear problems due to their ability to learn complex feature relations. Studies by Jamala [42], 



10 

 

Aliyu [43], and Meng [41] have been done to better approximate the fuel efficiency of common 

automobiles using back-propagation neural network computing algorithms. They utilize input 

features such as number of cylinders, displacement horsepower, weight, acceleration, model year, 

and origin to estimate a vehicle’s MPG with high accuracy. Expanding on the area of fuel 

efficiency, Topić introduces the use of a convolutional neural network (CNN) to accurately 

estimate the fuel consumption and remaining state of charge (SOC) of hybrid vehicles at the end 

of varied routes using only on preprocessed velocity and acceleration data taken from a vehicle’s 

duty cycle [44]. As hybrids switch from CD to CS mode along a route depending on their SOC, 

Topić shows the capability of neural networks to learn and simulate the inner non-linear dynamics 

of a hybrid vehicle’s powertrain. 

This research will focus on implementing machine learning to capture the inner workings 

of a PHEV using a more fuel-efficient control algorithm known as Trajectory Forecasting (TF) to 

create an adaptable driver-centric control strategy. TF uses a combination of classification and 

FLC type rule-based controls to plan and execute an efficient SOC distribution for any given route 

based upon a priori knowledge (of the route and initial SOC) to improve fuel economy. Studies 

on similar algorithms [45], [17] show the possibility of using a priori route information to optimize 

fuel usage in PHEVs. Creating a machine learning algorithm to estimate the fuel economy and 

emissions of a PHEV using TF rules will produce a control strategy that will continuously look at 

updated route options, then choose and optimize the best choice according to fuel economy and 

then fuel consumption or emissions for the driver while being scalable, computationally fast, and 

adaptable to changing route data in real-time. 

 

 



11 

 

 Control Strategy 

 The Trajectory Forecasting based machine learning control strategy proposed in this study 

is formed using a combination of the newly developed control algorithm known as Trajectory 

Forecasting and a Convolution Neural Network machine learning algorithm.  

3.1. Trajectory Forecasting 

A PHEV’s driving mode is chosen based on internal factors, such as engine power output, 

needed acceleration, and SOC, usually not considering the impacts that outside factors also have 

on the fuel economy. Driving routes can have numerous factors, such as traffic conditions and 

physical road conditions, that affect a PHEV’s entire drive cycle and required power output. Many 

PHEV drivers manually control the modes of operation of their PHEVs based on information they 

have regarding their commute. In this study, the term TF will be used to enhance the range of 

operation of a PHEV by using information of a predetermined route to decide the best time to run 

in either all-electric (EV) mode, hybrid mode, or ICE mode. The first part of the TF control 

algorithm will develop an optimal SOC distribution that uses both charge depletion (CD) and 

charge sustaining (CS) operation, while the second part of the algorithm will implement the 

distribution. 

3.1.1. Setup 

The setup of the TF algorithm (corresponding MATLAB code is presented in the appendix 

section as Trajectory Forecasting Setup Code) initializes by taking the speed limits and traffic flow 

along the entire distance of a desired route as inputs. This is information that is easily accessible 

because of the widely available trip prediction and modeling services mentioned earlier. Examples 

of such a service, the service used as a reference for the route data used in this study, is Google 



12 

 

Maps. Here we present a full traffic flow breakdown of a 64.4-mile route from Irvine, CA in 

Orange County to Panorama City, CA in Los Angeles County, shown in Figure 3. Due to the long 

distance of the route, the battery capacity of a PHEV would not be able to sustain the use of EV 

and hybrid mode through the entirety of it. Thus, a decision must be made for when and how to 

use the battery so that an improved fuel efficiency for the overall route rather than instantaneous 

efficiency can be achieved. Using the traffic information, a driver can formulate a general plan for 

which PHEV propulsion mode to use during different flows of traffic. Shown in Figure 4, the 

following example explains the reasoning for assigning driving modes along the first quarter of 

the route.  

The planned route takes a PHEV from an apartment on the campus of UC Irvine to an 

uncongested freeway known as the 73 freeway for a few miles, merging onto the well-known 

congested 405 freeway and continuing for a long distance. Uncongested traffic, symbolized by the 

blue colored route portions, from the starting location in Irvine to the merging point between the 

two freeways indicates that the PHEV can run in ICE mode, hybrid mode, or EV mode with high 

efficiency. Large amounts of traffic congestion, shown by the red, in following section of the route 

resulting from the merging of cars between the freeways can then cause extremely reduced speeds 

and stops. Such stop-and-go traffic is handled more efficiently by a PHEV in EV and/or hybrid 

mode when charge from the battery is available for use. Experiencing medium traffic, as shown in 

orange a slight distance after the merging, hybrid mode and EV mode can both efficiently handle 

any remaining speed variations and reductions when charge is available. In consideration of overall 

route efficiency, conserving battery charge in sections of little to no traffic by using ICE mode 

would enable the use of EV and/or hybrid mode in later sections that contain higher traffic 



13 

 

congestion when the amount of charge in the vehicle’s battery is not enough to support their 

consistent use.  

 

Figure 3: Typical Google Maps Route [46] 

 Heavy Traffic 

 Medium Traffic 

 Light/No Traffic 

 



14 

 

 

Figure 4: Google Maps Route [46]; modes assigned according to only traffic conditions 

Solely relying on traffic flow information, however, is not enough to optimize mode uses 

in PHEVs. Speed limits and traffic flow must both be used together to estimate the speed a vehicle 

will most likely drive at each second of the route. This is done using a rule-based classification 

strategy that assigns the estimated speed using the combination of speed limits and traffic flow. 

Along each second of the route, a suggested priority driving mode is also assigned using a similar 

rule-based classification strategy according to the combination of speed limits and traffic flow. 

Both rule-based classification strategies can be seen in Section 3.1.3 Rule-based Classification. 

Consecutive seconds with the same suggested priority driving mode classification are then grouped 

together into sections. The classifications are set as priority 3, priority 2, and priority 1. A section 

classified as priority 3 is suggested to be run in EV mode. A section classified as priority 2 is 

ICE 

Elec 

Hybrid 

ICE 

Hybrid 

ICE 

Hybrid 

ICE 

Elec 

Hybrid 

 Heavy Traffic 

 Medium Traffic 

 Light/No Traffic 

 

Elec 



15 

 

suggested to be run in hybrid mode. A section classified as priority 1 is suggested to be run in ICE 

mode. The resulting plan for the example route is shown in Figure 5. 

 

Figure 5: Google Maps Route [46]; modes assigned according to traffic and speed limits 

The algorithm is then completed by approximating how much SOC is allocated to the 

different sections based upon their assigned priority classification, battery type, initial SOC level, 

max SOC level allowed, and minimum SOC level allowed. In this study, the vehicle simulator 

ADVISOR, developed by the National Renewable Energy Laboratory, is used perform advanced 

vehicle simulations. ADVISOR is a simulation program developed to perform rapid analyses of 

the performance and fuel economy of conventional, electric, and hybrid vehicles, providing 

support for detailed simulations and studies of user defined vehicle components [47]. Given a 

required/desired speed input, ADVISOR determines the drivetrain torques, speeds, and power 

requirements needed to meet the required/desired speed input [47]. This flow of information back 

ICE 

Elec 

Elec 

ICE 

Hybrid 

ICE 

Hybrid 

ICE 

Elec 

Hybrid 

 Heavy Traffic 

 Medium Traffic 

 Light/No Traffic 

 



16 

 

through the drivetrain, from the tire to the axle to the gearbox and so on, makes it a backward-

facing vehicle simulation type program [47].  For all simulations, a common test parallel hybrid 

vehicle with the configuration shown in Figure 6 and described in Table 1 was used as the PHEV. 

 

 

Figure 6: ADVISOR PHEV Configuration [47] 

 

 

 

 

 



17 

 

Parameter Component Description 

Vehicle VEH_SMCAR 

Defines road load parameters for 

a hypothetical small car, roughly 

based on a 1994 Saturn SL1 

vehicle 

Fuel Converter FC_SIPrime_emis 

2017 Prius Prime 1.8L 4 cylinder 

engine with maximum power of 

71 kW @ 5200 rpm and peak 

torque of 142 Nm @ 3600 rpm 

Exhaust After Treatment EX_SI 

Defines exhaust aftertreatment 

catalyst parameters for 

hypothetical vehicle equipped 

with a gasoline-powered SI 

engine 

(Masses, areas, etc. are scaled 

based on engine peak power) 

Energy Storage ESS_PB25 

Parameters describe the Hawker 

Genesis 12V 25Ah 10EP sealed 

valve-regulated lead-acid 

(VRLA) battery 

Motor MC_AC75 

Westinghouse, 75 kW, AC 

Induction motor with 

efficiency/loss data appropriate 

for a 320 V system 

Transmission TX_5SPD 

Defines a 5-speed gearbox by 

defining gear ratios and gear 

number, and calling TX_VW to 

define loss characteristics 

Torque Coupling TC_DUMMY 

Defines lossless belt drive with a 

motor-to-engine speed ratio that 

ensures the motor is at top speed 

when the engine is at top speed 

Wheel Axle WH_SMCAR 

Defines tire, wheel, and axle 

assembly parameters for use of a 

hypothetical small car 

Accessory ACC_HYBRID 

Defines standard accessory load 

data for use with a hybrid in 

ADVISOR 

Powertrain Control PTC_PAR 

Defines all powertrain control 

parameters, including gearbox, 

clutch, hybrid and engine 

controls, for a parallel hybrid 

using a multi-speed gearbox 

 

Table 1: ADVISOR PHEV Configuration Component Descriptions [47] 



18 

 

For approximating the SOC profile along the path, the program’s configured PHEV 

simulation was performed at different constant speeds in EV mode, 0 mph, 20 mph, 40 mph, 55 

mph, and 60 mph, and the average current drawn by the selected motor for the test PHEV at each 

constant speed was recorded to form an equation for Amps per mph, shown in Figure 7 and 

Equation 1. To obtain an equation to understand the number of Amp-hours used per mile driven 

at a specific speed, Equation 2 is formed by taking the derivative of Equation 1. This 

𝑦 =  0.0099𝑥22 +  0.1689𝑥 +  0.7278 (1) 

𝑦 =  0.0198𝑥 +  0.1689 (2) 

approximation is for determining the PHEV’s battery usage in Amp-hours over the sections’ 

distance, as shown in Figure 8. The number of Amp-hours needed to run in EV mode for each 

segment are calculated and then used to determine the total needed for larger sections. Taking 

these values and dividing them by the total Amp-hour capacity of the chosen battery, we use the 

known initial SOC and determine the preferred total initial SOC profile for the route sections. This 

application of SOC profile approximation using only current from and to the battery and 

corresponding vehicle speed aims at using a linear version of the relation between SOC estimation 

and battery current draw found in coulomb counting. Coulomb counting is an efficient SOC 

estimation method currently used and researched in many battery applications that, with the pre-

known capacity of the battery, calculates SOC by integrating the charging and discharging currents 

over the operating periods of the vehicle [48]. 

To address any issues of over or under approximating the total charge needed, an 

adjustment coefficient (AC) in terms of a percentage is added to the equation to increase or 

decrease the approximation and make it more fail-safe, giving Equation 3. To determine the value  



19 

 

𝑦 =  𝐴𝐶(0.0198𝑥 +  0.1689) (3) 

of AC, the 3 shortest routes of the 8 used in this thesis, routes 5, 7, and 8 whose characteristics are 

found in the route data section, are run with the test PHEV as a zero emissions vehicle and the 

SOC profile for every section along the routes is then recorded. The complete SOC profile recorded 

for each section priority type of the 3 routes is then compared to the amount approximated using 

Equation 3, shown in Table 2, Table 3, and Table 4. In comparing the actual SOC profile to the 

approximated SOC profile, it becomes noticeable that using different AC values for the different 

speed ranges of the three types of section priorities is more efficient. An AC value is chosen for 

each of the three section priorities based upon use of the value that results in the expected SOC 

profile that best matches the actual SOC profile across the multiple sections of the same priority. 

For this study, the SOC profile is estimated using this method to simplify the non-linear dynamic 

nature of the vehicle’s EM and electronics. These AC values are only valid for the specific PHEV 

configuration shown earlier that will be consistently used throughout the study. To approximate 

the SOC profile for any other PHEV EM and electronics setup, another equation fit will have to 

be done.  

 

Figure 7: Plot for Amps/mph 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

A
m

p
s

mph

Amps vs mph



20 

 

 

Figure 8: Plot for Amp-hours/mile/mph 

 Using AC = 0.87 for priority 3 sections, AC = 0.42 for priority 2 sections, and AC = 0.34 

for priority 1 sections, the preferred SOC profile for each section and possible SOC profile allowed 

by the available charge in the battery are used to assess the viability of the suggested modes of 

each section. The comparison of the SOC profile using the AC values for the three routes can be 

seen in Table 2, Table 3, and Table 4. Depending upon what the estimated SOC profile along the 

entire route and the current battery SOC is, four different proposed high efficiency driving 

scenarios for how to switch between the PHEV’s driving modes along the route can occur. 

Section Priority Type Estimated SOC Use Actual SOC Use % Error 

Priority 1 0.2415 0.2259 6.906 

Priority 2 0.2053 0.2041 0.5879 

Priority 3 0.2027 0.1991 1.808 

 

Table 2: Route 5 (20.1 miles) SOC Estimation Comparison 

Section Priority Type Estimated SOC Use Actual SOC Use % Error 

Priority 1 0.2361 0.2216 6.543 

Priority 2 0.1882 0.1753 7.359 

Priority 3 0.1376 0.1431 -3.843 

 

Table 3: Route 7 (17.1 miles) SOC Estimation Comparison 

 

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
A

h
/m

ile

mph

Ah/m vs mph



21 

 

Section Priority Type Estimated SOC Use Actual SOC Use % Error 

Priority 1 0.0897 0.091 -1.429 

Priority 2 0.0672 0.0765 -12.16 

Priority 3 0.0535 0.062 -13.71 

 

Table 4: Route 8 (6.5 miles) SOC Estimation Comparison 

A newly proposed construct for achieving high efficiency is broken down with the 

following four driving scenarios:  

1) within +0.125 SOC of the PHEV’s all-electric range, EV mode will be used to drive all 

sections of the route  

2) enough SOC to drive suggested EV and hybrid mode sections in EV mode, and drive 

suggested ICE mode sections in hybrid mode using the leftover SOC 

3) enough SOC to drive suggested EV sections in EV mode with the leftover SOC being 

used to drive suggested hybrid mode sections in hybrid mode, and remaining ICE 

suggested sections driven in ICE mode 

4) enough SOC to drive some suggested EV mode sections in EV mode and all remaining 

sections of the route in ICE mode 

According to the resulting driving scenario, the current SOC of the battery is distributed among all 

the sections according to highest priority, attempting to fulfill the sections’ SOC needs. Among 

multiple sections with the same priority, a sublevel priority is given based on length of sections 

where longer sections have a higher sublevel priority. In driving scenarios where there are sections 

driven in hybrid mode, the remaining SOC is taken and distributed between all hybrid mode driven 

sections according to the percentage of the total hybrid mode section distance each one contains, 

Equation 4. Finalizing the SOC distribution, the created plan dictates how much of the PHEV’s 

total SOC can be used by each section, setting a profile of minimum SOC levels the battery can 



22 

 

drain to during each categorized section of the route. This part of the control strategy then outputs 

the SOC minimum profile, the priority levels of the sections, and preferred high efficiency driving 

scenario. 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑂𝐶 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑂𝐶 ∗
𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

∑ 𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑐𝑛𝑐𝑒𝑖
𝑛
𝑖=1

 (4) 

3.1.2. Implementation 

For part two of the control algorithm, the outputs from part one are sent as variables to the 

ADVISOR Simulink PHEV model and TF control strategy block, shown in Figure 9 and Figure 

10, respectively. The PHEV simulation is then initialized with ADVISOR’s default battery 

parameters and the set route from part 1 in Section 3.1, both shown in Figure 11. The starting SOC 

value will be set at 0.8 (80%). Detailed descriptions of ADVISOR’s default battery parameters can 

be found within its documentation [47]. Once the simulation begins, the PHEV’s drivetrain 

experiences a desired torque load request that tries to be met every iteration of the simulation to 

properly drive at the requested speed along the route. The first step in the TF control strategy block 

is setting the current SOC minimum, done within the SOC min assignment function block boxed 

in blue within Figure 10. It takes the vehicle’s current distance traveled as an input and uses it to 

output what SOC minimum from the SOC distribution plan it should follow. The TF control 

strategy block, boxed in red within Figure 10, then takes the ICE’s torque load request as an input 

and gives a percentage of the ICE’s available torque load as an output to satisfy the request. The 

amount of desired torque that is left to be satisfied is left for the electric motor (EM) to fulfill, 

represented by Equation 5. The code used in the control strategy function block, boxed in red 

within Figure 10, and the SOC min assignment function block can be found in the appendix section 

of this study. A block-by-block walk-through of the ADVISOR Simulink model with 



23 

 

corresponding descriptions can be found in the online ADVISOR documentation [47] and the 

study of Intelligent Control of Parallel Hybrid Electric Vehicles performed by Glenn [49]. 

 

𝑇𝐸𝑀 =  𝑇𝐿𝑂𝐴𝐷 −  𝑇𝐼𝐶𝐸     (5) 

 

 

Figure 9: ADVISOR PHEV Simulink Model; control strategy block in red [47] 

 

 

Figure 10: Control Strategy Block Interior [47]; TF control strategy function block additive in 

red; SOC min assignment function block additive in blue 

 

 



24 

 

 

Figure 11: ADVISOR Route and PHEV Battery Parameters [47] 

 Considering the propulsion modes in a PHEV, the control strategy can attempt to satisfy 

the desired torque load with the ICE and no contribution from the EM, with the EM and no 

contribution from the ICE, or with contributions from both. EV and ICE modes are implemented 

by setting the output of the TF control strategy block to 100% or 0% of the ICE’s available torque 

output, respectively. In an EV mode driven route section, the PHEV will run only using the battery 

until the assigned SOC minimum is reached or it reaches the end of the route section. Hybrid mode 

is implemented by using the heuristic control approach, FLC, because of its easy implementation, 

low computational cost, and ability to work on complex non-linear models. The use of FLC will 

work to ensure that the specific amount of SOC distributed to each of the hybrid sections will be 

used evenly along each of their lengths by determining what percentage of the ICE’s available 

torque output will be used. The exact breakdown of the FLC method specific to this study’s control 

strategy will be explained in further detail in a later section. For driving scenarios 3 and 4, the 



25 

 

sections along a route that require only the use of the ICE may require safety conditions that ensure 

any SOC recovered through regenerative braking is accounted for and used. This is done by having 

the torque contribution from the ICE be only 85% or 90% of its available load if the amount of 

SOC regenerated puts the overall battery SOC at 0.01 or 0.005, respectively, above the section’s 

assigned SOC minimum. The remaining 10% or 15% of the requested torque load will then be 

fulfilled by the EM. During the use of EV mode, if the available power and torque output from the 

EM is slightly insufficient to allow the PHEV to achieve a desired speed and the vehicle’s SOC is 

above the current minimum, the control strategy will prioritize efficiency by keeping the ICE off 

and not permit it to assist in providing the remaining needed torque. This will cause a slight 

throttling of the PHEV’s requested speed in return for less fuel burning, where the requested speeds 

and resulting accelerations are not fully met by the vehicle. The methodology behind this algorithm 

allows the PHEV’s fuel efficiency to be improved from a global standpoint. 

3.1.3. Rule-based Classification 

 The rule-based classification in the TF algorithm mimics the use of if-then statements for 

its logic, where explicit outcomes are triggered from different combinations of input parameters. 

When implementing, we consider the traffic flow and speed limits along a route as the input 

parameters to the logic. Traffic flow can be broken down into three categories, zero-to-light traffic, 

medium traffic, and heavy traffic, similarly to how GPS services define traffic flow. What these 

categories represent is how close to the speed limit a driver can drive their vehicles, setting zero-

to-light traffic as driving at 100% of the speed limit, medium traffic as driving at 65% of the speed 

limit, and heavy traffic as driving at 25% of the speed limit. For speed limits, we consider a total 

of 7 different possibilities based on different speed limits a driver can encounter, from parking lots 

to school areas, to residential streets, to rural streets, to business districts, to different highways. 



26 

 

The proposed combinations of the different traffic flow and speed limits, along with their triggered 

outcomes created in this study for use as desired input parameters for the control strategy can be 

expressed in Table 5 and Table 6. Table 5 shows the resulting priority the different input parameter 

combinations trigger, while Table 6 shows an approximated speed a car would drive at the given 

traffic and speed limit combination. The values from Table 6 are used as approximated speed 

inputs into Equation 3 for approximating the SOC for the PHEV during different sections of the 

route. 

 Traffic Flow 

Zero/Light Traffic Medium Traffic Heavy Traffic 

S
p
ee

d
 L

im
it

 

10 3 3 3 

15 3 3 3 

25 3 3 3 

35 2 3 3 

45 2 2 3 

55 1 2 3 

65 1 2 3 

 

Table 5: Priority Value Table 

 Traffic Flow 

Zero/Light Traffic Medium Traffic Heavy Traffic 

S
p
ee

d
 L

im
it

 

10 10 6.75 2.5 

15 15 9.75 3.75 

25 25 16.25 6.25 

35 35 22.75 8.75 

45 45 29.25 11.25 

55 55 35.75 13.75 

65 65 42.25 16.25 

 

Table 6: Approximated Speed Value Table 

3.1.4. Fuzzy Logic Control 

FLC is a heuristic form of control logic that focuses on using a practical method to produce 

a solution not guaranteed to be the optimal solution, but rather a solution that is enough for the 



27 

 

immediate goal. It relies on the concept of partial truth, or the degree of truth, to determine which 

user defined rules are active in calculation of the desired solution [50]. The basics of fuzzy logic 

can be explained by breaking it down into four main parts: fuzzification, rule-base, inference 

mechanism, and defuzzification. A more comprehensive breakdown of fuzzy logic control can be 

found in Fuzzy Control [51]. 

 

Figure 12: Fuzzy Logic Controller [52] 

Before the step of fuzzification, we take the input and output control variables, referred to 

as linguistic variables, 𝑢𝑖, and categorize them into areas called membership functions. For each 

hybrid mode section in the route, their given amount of SOC is used up along their distance 

according to a rate, SOC per mile, found initially at the beginning of the section. This desired rate 

is found using Equation 6, taking the initial SOC at the start of the hybrid section, subtracting the 

minimum SOC value it can drain the battery to in the section, and dividing it by the hybrid section’s 

length. The current rate is calculated every iteration along the section in a similar way using 

Equation 7, but instead uses the difference in SOC between the previous simulation iteration and  

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑅𝑎𝑡𝑒 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑂𝐶−𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑂𝐶 𝑀𝑖𝑛

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (6) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 =
𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑆𝑂𝐶 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑂𝐶

𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (7) 



28 

 

the current simulation iteration, dividing it by the distance traveled between them. Its value 

changes according to how much of the desired torque load is met by the EM each iteration. How 

much higher or lower the current rate is compared to the desired rate is taken as a percentage and 

referred to as the error, Equation 8. From one iteration to the next, we determine the change in 

error to understand the speed at which the error increases or decreases, Equation 9.  

𝑒(𝑡) =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑅𝑎𝑡𝑒−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑒

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑅𝑎𝑡𝑒
       (8) 

∆𝑒(𝑡) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐸𝑟𝑟𝑜𝑟       (9) 

The error and change in error are the input linguistic variables that will be categorized into 

membership functions with corresponding linguistic values, shown in Figure 13. Membership 

functions are chosen to be a set of shapes, overlapping triangles for the purpose of this study, that 

break up the domain of the linguistic variables into smaller sections. For the input linguistic 

variables, each triangular membership function corresponds to a linguistic value, ranging from 1 

to 7 for the purpose of this study. These values are descriptors for how a human would describe 

the size of the input linguistic variables. The linguistic values represent the size of the variables as 

follows: 

1 to represent “large negative” 

2 to represent “medium negative” 

3 to represent “small negative” 

4 to represent “zero” 

5 to represent “small positive” 

6 to represent “medium positive” 

7 to represent “large positive” 

 



29 

 

The output linguistic variable, defined as K(t), will be a coefficient that regulates the percentage 

of ICE torque used from what is available at the current engine speed. The possible linguistic 

values it can take, and corresponding membership functions, will be formed the similarly to those 

of the input linguistic variables. A difference will be that for the K(t) output, the positive linguistic 

values will refer to numerical values greater 0.4, the negative linguistic values will refer to values 

less than 0.4, and the zero linguistic value will refer to values of about 0.4, as shown in Figure 14. 

Cases showing the general effects of the input variables’ values on the output variable value can 

be seen in Table 7. 

Case 𝑒(𝑡) ∆𝑒(𝑡) K(t) 

1 <0 <0 >0.4 

2 <0 >0 >0.4 

3 >0 <0 <0.4 

4 >0 >0 <0.4 

 

Table 7: Qualitative Input/Output Summary 

          

Figure 13: Error and Change in Error Membership Functions 

     1        2         3            4 5  6            7 

  

     1        2         3            4 5  6            7 

  

 



30 

 

 

Figure 14: K Output Membership Functions 

3.1.4.1.Fuzzification 

It is possible for a linguistic variable to be categorized as more than one linguistic value 

due to the overlapping of membership functions. The plots within Figures 13 and 14 are of a 

function 𝜇𝑖 versus the numerical values of the linguistic variables. The function 𝜇𝑖 quantifies the 

certainty, or degree of truth, that a linguistic variable can be classified as a specific linguistic value 

and can range from 0 to 1. With the numerical value of a linguistic variable possibly falling into 

one or two membership functions, there will be a certainty value, 𝜇𝑖, given to each membership 

function’s corresponding linguistic value. A set of numerical values that can be described by 𝜇𝑖 

being a distinct linguistic value is called a fuzzy set and is denoted by 𝐴𝑖. Membership functions 

can define a fuzzy set of 𝐴𝑖 for a linguistic variable of 𝑢𝑖 in the form of Equation 10 [51]. 

𝜇𝐴𝑖
(𝑢𝑖) =  𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦       (10) 

For example, Figure 15 shows an instant in time during the drive cycle when the error input 

is 0.025 and the change in error is 0.039. For the error input, the line crosses the 4 membership 

function at 0.5 and crosses the 5 membership function at 0.5. The fuzzification of the input variable 

says that there is a 50% certainty that the error input is a 4, meaning about “zero” error, and a 50% 

certainty that error input is a 5, meaning a “small positive” error. For the change in error input, the 

line crosses the 5 membership function at 0.44 and crosses the 6 membership function at 0.56. The 

fuzzification of the input variable says that there is a 44% certainty that the change in error input 

           1          2          3          4          5          6          7 

 

K(t) 



31 

 

is a 5, meaning a “small positive” change in error, and a 56% certainty that change in error input 

is a 6, meaning a “medium positive” change in error. 

          

Figure 15: Fuzzification Example 

𝜇𝑧𝑒𝑟𝑜(𝑒(𝑡)) =  𝜇𝑠𝑚𝑎𝑙𝑙_𝑝𝑜𝑠(𝑒(𝑡)) = 0.5 

𝜇𝑠𝑚𝑎𝑙𝑙_𝑝𝑜𝑠(∆𝑒(𝑡)) =  0.44,  𝜇𝑚𝑒𝑑_𝑝𝑜𝑠(∆𝑒(𝑡)) = 0.56 

3.1.4.2. Rule-Bases 

Linguistic values can be used to specify a set of rules that capture an expert’s knowledge 

about how to control a system and its dynamics, a rule-base [51]. The rules take the following 

general form, 

If premise, Then consequent.        (11) 

where the premise is associated with the fuzzy linguistic inputs and the consequent is associated 

with the resulting linguistic output. A generic rule form for two inputs and one output that will be 

used for the purpose of this study is 

 

     1        2         3            4 5  6            7 

  

     1        2         3            4 5  6            7 

  

 



32 

 

If the error is “ ” and the change in error is “ ”,  

Then the percentage of ICE torque, K, used is “ ”.        (12) 

With two inputs and seven linguistic values for each of them, there are at most 72 = 49 possible 

rules within the fuzzy logic of this study. A tabular representation referred to as a rule table, is 

used to properly list all possible rules in a convenient way, as shown in Table 8. 

 Change in Error 

1 2 3 4 5 6 7 

E
rr

o
r 

1 7 7 7 7 6 5 4 

2 7 7 7 6 5 4 3 

3 7 7 6 5 4 3 2 

4 7 6 5 4 3 2 1 

5 6 5 4 3 2 1 1 

6 5 4 3 2 1 1 1 

7 4 3 2 1 1 1 1 

 

Table 8: Rule Table 

3.1.4.3. Inference Mechanism 

The inference mechanism, consisting of two steps, represents the decision-making process 

of an expert. The first step is referred to as matching, where it is determined which rules apply to 

the current situation or are considered on. Continuing with the example from the fuzzification step, 

the following rules are determined to be on: 

1. If the error is “zero” and the change in error is “small positive”, Then the percentage of ICE 

torque, K, used is “small negative”. 

2. If the error is “zero” and the change in error is “medium positive”, Then the percentage of ICE 

torque, K, used is “medium negative”. 



33 

 

3. If the error is “small positive” and the change in error is “small positive”, Then the percentage 

of ICE torque, K, used is “medium negative”. 

4. If the error is “small positive” and the change in error is “medium positive”, Then the 

percentage of ICE torque, K, used is “large negative”. 

Before the second step, a method for quantifying the overall linguistic premise of each active rule 

must be agreed upon. The main idea behind this is agreeing on how to quantify the logical “and” 

operation that combines the individual linguistic input variables into the premise [51]. This value 

represents the certainty that the rule to which the premise belongs to applies to the current situation 

and is denoted by 𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖). Common methods for doing this are known as the minimum and the 

product. The minimum method uses the minimum of the two membership function certainties, 

while the product method multiplies them together [49]. The minimum method is used for the 

purpose of this study, as shown in Equation 13. 

𝜇𝑝𝑟𝑒𝑚𝑖𝑠(𝑖) = min{𝜇𝐴𝑖
(𝑒(𝑡)), 𝜇𝐴𝑖

(∆𝑒(𝑡))}   (13) 

𝜇𝑝𝑟𝑒𝑚𝑖𝑠(1) = min{0.5,0.44} = 0.44 

𝜇𝑝𝑟𝑒𝑚𝑖𝑠(2) = min{0.5, 0.56} = 0.5 

𝜇𝑝𝑟𝑒𝑚𝑖𝑠(3) = min{0.5, 0.44} = 0.44 

𝜇𝑝𝑟𝑒𝑚𝑖𝑠(4) = min{0.5, 0.56} = 0.5 

The second step then establishes the conclusion for each active rule. The membership 

function for the consequent reached by each rule quantifies how certain the rule is that the output 

variable should take on a certain linguistic value, Equation 14. These membership functions now 

define the implied fuzzy sets. The justification for using the minimum operator in Equation 14 to 



34 

 

quantify the certainty is that we can be no more certain about our consequent than our premise 

[51]. 

𝜇𝑖(𝐾(𝑡)) = min {𝜇𝑝𝑟𝑒𝑚𝑖𝑠(𝑖), 𝜇𝐴𝑖
(𝐾(𝑡))}  (14) 

𝜇1(𝐾(𝑡)) = min {0.44, 𝜇𝑠𝑚𝑎𝑙𝑙𝑛𝑒𝑔
(𝐾(𝑡))} = 0.44 

𝜇2(𝐾(𝑡)) = min {0.5, 𝜇𝑚𝑒𝑑𝑛𝑒𝑔
(𝐾(𝑡))} = 0.5 

𝜇3(𝐾(𝑡)) = min {0.44, 𝜇𝑚𝑒𝑑𝑛𝑒𝑔
(𝐾(𝑡))} = 0.44 

𝜇4(𝐾(𝑡)) = min {0.5, 𝜇𝑙𝑎𝑟𝑔𝑒𝑛𝑒𝑔
(𝐾(𝑡))} = 0.5 

3.1.4.4. Defuzzification 

The defuzzification process operates on the implied fuzzy sets produced by the inference 

mechanism and combines their effects to provide the most certain control output 𝜇𝑐𝑟𝑖𝑠𝑝 [51]. For 

the scope of this study, this output will be achieved using the most popular method, the “center of 

gravity” (COG) method. The method is defined by Equation 15 as: 

𝐾 = 𝜇𝑐𝑟𝑖𝑠𝑝 =
∑ 𝑏𝑖 ∫ 𝜇𝑖

𝑛
𝑖=1

∑ ∫ 𝜇𝑖
𝑛
𝑖=1

      (15) 

where 𝑏𝑖 is the center of the output membership for the consequent of rule 𝑖 and ∫ 𝜇𝑖 is the area 

underneath the output membership function “chopped off” at a height of 𝜇𝑖(𝐾(𝑡)) for the 

consequent of rule 𝑖. The calculation gives the K coefficient that will best regulate the ICE torque 

output so that the desired charge consumption rate and resulting preferred SOC profile can be 

achieved in the hybrid section. 

𝐾 =
(0.2667 ∗ 0.0915) + (0.1333 ∗ 0.1000) + (0.1333 ∗ 0.0915) + (0 ∗ 0.1000)

0.0915 + 0.1000 + 0.0915 + 0.1000
= 0.1303 



35 

 

3.2. Trajectory Forecasting Testing 

3.2.1. Route Data 

 The data used to test TF is a set of 8 different routes planned out using Google Maps 

services. Distances are varied between every route, from 6.5 miles to 70 miles. The traffic flow 

breakup from Google Maps, e.g., route 1 shown in Figure 16, is based on historical and real-time 

data gathered from traffic sensors and cellphone users. Each Google Maps route is used to portion 

out the changing traffic sections of the route data for the purpose of testing. Traffic is a rough 

representation of the speed relative to the speed limit a vehicle is likely to experience when on the 

road. This usage of traffic information and different speed limits according to road type along the 

route allows for the use of Table 6, shown earlier, to approximate the speed a vehicle would have 

at different points along a route. However, using the constant values that each combination in 

Table 6 provides would result in the vehicle unrealistically traveling at constant speeds during 

every portioned-off section of the route. To produce more realistic route data, randomized 

variations are added to the approximated speed values. The variations reduce the speeds presented 

in Table 6 an additional 0%-5% for each type of traffic. This results in new drive cycles, e.g., 

shown in Figure 17 derived from Figure 16, that appears to be more realistic as compared to the 

EPA developed Urban Dynamometer Driving Schedule (UDDS) used for light duty vehicle 

emissions and fuel economy testing, as shown in Figure 18 [53]. 

 

 

 

 



36 

 

 

Figure 16: Google Maps Route 1 [46] 

 

Figure 17: Route 1 Drive Cycle 

 

Figure 18: EPA Created UDDS Drive Cycle [53] 



37 

 

3.2.2. Simulation Parameters 

 The test results for showing the functionality of TF will be for the parallel hybrid PHEV 

control strategies in ADVISOR, charge depletion (CD) and charge sustaining (CS), and the 

trajectory forecasting (TF) control algorithm. The numerical values usable for comparing the 

performance of the three control algorithms are the “Fuel Economy” (FE) value in miles per gallon 

(mpg) and the “Gas Equivalent” (MPGGE) value in miles per gallon of gasoline equivalent 

(MPGGE) given in the results window of the ADVISOR simulations. The FE value is calculated 

using Equation 16 and the MPGGE value is calculated using Equation 17. The MPGGE value 

gives a better understanding of the PHEV’s fuel efficiency because it considers the consumption 

of both the liquid fuel and electric power source in the vehicle. In instances where the vehicle’s 

route can be driven nearly all in EV mode, with only a small portion left to be driven in ICE or 

Hybrid mode, the amount of liquid fuel that would be used would significantly smaller numerically 

than the length of route. These scenarios would then result in very skewed FE values that would 

seem unrealistic. Thus, the FE value will be ignored, and the MPGGE value will serve as the key 

value for quantifying and comparing control strategy performance. The parameters of the parallel 

hybrid control strategies in ADVISOR are defined as shown in Table 9. 

 

𝐹𝑢𝑒𝑙 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
         (16) 

𝐺𝑎𝑠 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛+ 
𝑘𝑊ℎ 𝑁𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑜 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑂𝐶

𝑘𝑊ℎ 𝑝𝑒𝑟 𝐺𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒

 (17) 

 

 



38 

 

Parameter Definition 

cs_hi_soc highest desired SOC, used as initial SOC for every case 

cs_lo_soc lowest desired battery SOC 

cs_electric_launch_spd_lo speed below which vehicle operates as ZEV at low SOC 

cs_electric_launch_spd_hi speed below which vehicle operates as ZEV at low SOC 

cs_off_trq_frac 
required fraction of max torque when SOC < cs_lo_soc below 

which engine shuts off 

cs_min_trq_frac 
torque as a fraction of max torque engine puts out when required 

is below this value, when SOC < cs_lo_soc 

cs_charge_trq 
accessory-like torque load on engine that goes to recharging the 

batteries whenever the engine is on 

cs_charge_deplete_bool 
charge depleting hybrid strategy flag, 1=> use charge deplete 

strategy, 0=> use charge sustaining strategy 

cs_electric_decel_spd 
speed above which no engine shut down occurs due to low 

torque requests 

 

Table 9: ADVISOR Parallel Hybrid Control Strategy Parameters 

The cs_charge_deplete_bool parameter is set to 0 to enable the CS strategy and set to 1 to 

enable the CD strategy. The parameter of interest for running these simulations is 

cs_electric_launch_spd_hi. For the CS strategy, the parameter is set to 11.18 m/s (≈ 25.0 mph), 

shown in Table 10, to allow EV mode to be used when the vehicle is at or below 25 mph and has 

adequate SOC. This allows the normal parallel hybrid PHEV control strategy to save electrical 

energy, represented by the level of SOC, at higher speeds where the ICE and hybrid modes are 

more efficient, leaving more usable SOC for EV mode at low speeds. The CS strategy will result 

in the PHEV using its battery sparingly, making it available for use during large amounts of the 

route. Using the CD strategy, the parameter is set to 33.53 m/s (≈ 75.0 mph), shown in Table 10, 

to allow EV mode to be used when the vehicle is at or below 75 mph and has adequate SOC. The 

max speed achievable in any of the routes is 75 mph, allowing the PHEV to use the EV mode 

regardless of speed provided there is adequate SOC. The PHEV will start the beginning a route in 

EV mode and continue until the vehicle’s usable SOC is depleted, sustaining its SOC at the 



39 

 

minimum allowable level until the end of the route. The CD strategy will have the PHEV always 

attempt to use up all its SOC first regardless of current and future route conditions. 

 For testing the TF control strategy, its ADVISOR parameters, shown in Table 10, will 

match the parameters used for the CS control strategy in all except the cs_electric_launch_spd_hi 

and cs_electric_decel_spd. These parameter values will change according to one of the four high 

efficiency driving scenarios explained earlier in the methodology. The value for 

cs_charge_deplete_bool will not have any effect on the strategy’s performance due to its Simulink 

additives, therefore it will be left as 0. 

Parameter 
Values 

CS CD TF 

cs_hi_soc 0.8 0.8 0.8 

cs_lo_soc 0.25 0.25 0.25 

cs_electric_launch_spd_lo 0 m/s 0 m/s 0 m/s 

cs_electric_launch_spd_hi 11.18 m/s 33.53 m/s 

11.18 m/s (driving 

scenarios 3 & 4) 

24.59 m/s (driving 

scenario 2) 

33.53 m/s (driving 

scenario 1) 

cs_off_trq_frac 0.35 0.35 0.35 

cs_min_trq_frac 0.48 0.48 0.48 

cs_charge_trq 0.25*min(fc_max_trq) 0.25*min(fc_max_trq) 0.25*min(fc_max_trq) 

cs_charge_deplete_bool 0 1 0 

cs_electric_decel_spd 11 m/s 33 m/s 

11 m/s (driving 

scenarios 3 & 4) 

24 m/s (driving 

scenario 2) 

33 m/s (driving 

scenario 1) 

 

Table 10: ADVISOR Parallel Hybrid Control Strategy Parameter Values 



40 

 

3.2.3. TF Performance 

The route 1 drive cycle, shown in Figure 19, is 62 miles long with the TF control strategy 

resulting in the best MPGGE value, 53.3 MPGGE. Its MPGGE value is 4.7% greater than that 

produced by the CS control strategy, 50.9 MPGGE, and 3.5% greater than that produced by the 

CD control strategy, 51.5 MPGGE. 

 

Figure 19: Route 1 Drive Cycle 

 The route 2 drive cycle, shown in Figure 20, is 65 miles long with the TF control strategy 

resulting in the best MPGGE value, 52.8 MPGGE. Its MPGGE value is 10.2% greater than that 

produced by the CS control strategy, 47.9 MPGGE, and 10.2% greater than that produced by the 

CD control strategy, 47.9 MPGGE. 

 

Figure 20: Route 2 Drive Cycle 



41 

 

 The route 3 drive cycle, shown in Figure 21, is 70.7 miles long with the TF control strategy 

resulting in the best MPGGE value, 51.1 MPGGE. Its MPGGE value is 6.2% greater than that 

produced by the CS control strategy, 48.1 MPGGE, and 8.3% greater than that produced by the 

CD control strategy, 47.2 MPGGE.  

 

Figure 21: Route 3 Drive Cycle 

 The route 4 drive cycle, shown in Figure 22, is 52.2 miles long with the TF control strategy 

resulting in the best MPGGE value, 50.5 MPGGE. Its MPGGE value is 0.60% greater than that 

produced by the CS control strategy, 50.2 MPGGE, and 2.4% greater than that produced by the 

CD control strategy, 49.3 MPGGE. 

 

Figure 22: Route 4 Drive Cycle 



42 

 

 The route 5 drive cycle, shown in Figure 23, is 20.1 miles long with the TF control strategy 

resulting in the best MPGGE value, 79.1 MPGGE. Its MPGGE value is 49.81% greater than that 

produced by the CS control strategy, 52.8 MPGGE, and 10.47% greater than that produced by the 

CD control strategy, 71.6 MPGGE. 

 

Figure 23: Route 5 Drive Cycle 

 The route 6 drive cycle, shown in Figure 24, is 40.7 miles long with the TF control strategy 

resulting in the best MPGGE value, 53.1 MPGGE. Its MPGGE value is 0.19% greater than that 

produced by the CS control strategy, 53 MPGGE, and 2.7% greater than that produced by the CD 

control strategy, 51.7 MPGGE. 

 

Figure 24: Route 6 Drive Cycle 



43 

 

 The route 7 drive cycle, shown in Figure 25, is 17.1 miles long with the TF control strategy 

resulting in the best MPGGE value, 93.7 MPGGE. Its MPGGE value is 84.45% greater than that 

produced by the CS control strategy, 50.8 MPGGE, and 41.98% greater than that produced by the 

CD control strategy, 66 MPGGE. 

 

Figure 25: Route 7 Drive Cycle 

 The route 8 drive cycle, shown in Figure 26, is 6.5 miles long with the TF control strategy 

resulting in the best MPGGE value, 88.3 MPGGE. Its MPGGE value is 105.3% greater than that 

produced by the CS control strategy, 43 MPGGE, and 87.9% greater than that produced by the CD 

control strategy, 47 MPGGE. 

 

Figure 26: Route 8 Drive Cycle 



44 

 

Route Control Strategy Gas Equivalent (MPGGE) Distance (miles) 

1 

CS 50.9 

62 CD 51.5 

TF 53.3 

2 

CS 47.9 

65 CD 47.9 

TF 52.8 

3 

CS 48.1 

70.7 CD 47.2 

TF 51.1 

4 

CS 50.2 

52.2 CD 49.3 

TF 50.5 

5 

CS 52.8 

20.1 CD 71.6 

TF 79.1 

6 

CS 53 

40.7 CD 51.7 

TF 53.1 

7 

CS 50.8 

17.1 CD 66 

TF 93.7 

 

Table 11: ADVISOR MPGGE Results  

Figures showing the ADVISOR results window for each route simulation for each of the 

three control strategies can be found in the appendix section of this study. These figures will show 

graphs of the vehicle’s drive cycle, SOC profile, emissions output, and actual torque output of the 

engine and transmission. In all the routes tested, the TF-based control algorithm achieved similar 

or greater fuel economy. This is important because PHEV fuel economy enhancements can lead 

to a tremendous reduction in fuel consumption for the nation and possibly shorter payback time 

for customers in terms of vehicle investment [36]. The TF-based control strategy proved to be the 

most beneficial in routes 2, 3, 5, 7, and 8. In routes 1, 4, and 6, the TF-based control strategy gave 

results that were only slightly better than the other control strategies. 

 

 



45 

 

3.3. Convolution Neural Network 

Furthering advancing the application of the TF algorithm, a TF Convolutional Neural 

Network (TFCNN) machine learning algorithm is created to complete this research’s control 

strategy. A CNN is a type of deep learning machine learning algorithm that can assign importance 

to different aspects within an image and learn to differentiate them from one another [54]. This 

type of machine learning algorithm is especially useful for the purpose of this research since route 

data can treated and analyzed as images when processed correctly. This study will extend the work 

of Topić [44] by using his developed CNN architecture and input feature preprocessing strategy 

as a starting point for preprocessing the drive cycle and TF setup variables to estimate to 

greenhouse gas emissions (GGE) and MPGGE of the PHEV. Once properly trained, this machine 

learning algorithm can allow for computationally fast and inexpensive calculations that can be 

used for any size route due to its powerful generalization capabilities. This makes it possible for 

the vehicle to automatically assess and switch to new more efficient routes in real-time during 

travel.  

3.3.1. CNN Input Data Preprocessing 

 To train, validate, and test the CNN, 8750 drive cycles containing both velocity and 

acceleration data collected by the NREL using in-vehicle GPS devices in its 2010-2012 California 

Household Travel Survey [55] are processed and used as inputs to the TFCNN. The drive cycles 

are made up of an equal 2750 routes from three different distance ranges, less than 10 miles, 

between 10 and 30 miles, and greater than 30 miles. This equal distribution of route distance ranges 

is done to remove possible bias in performance due to route distance, ensuring the CNN can 

perform consistently across all routes. Each drive cycle will be driven using the TF algorithm 

within ADVISOR, and have their resulting SOC schedule plot, mpg gas equivalent (MPGGE), 



46 

 

GGE (HC, CO, and NOx) in g/mile, and used gal. of gasoline recorded. Designed as a tool for 

rapid analysis of performance and fuel economy of conventional, electric, and hybrid vehicles that 

many companies such as Ford Motor Company and General Motors Corp. use [47], we can 

confidently use its MPGGE and GGE outputs as truth values to use for training the CNN. 

 To ensure the use of a single CNN that can take a route of varying length of time and 

distance as an input, there is a need to preprocess route data into a statically sized input. Thus, the 

preprocessing method for the TFCNN will be based off of the method developed by Topić [44]. 

Topić takes the expected speed and acceleration a vehicle will face and transforms it into a 

statically sized 2D matrix, as shown in Figure 27, with columns representing the range of speed as 

discrete values and the rows representing the range of acceleration as discrete values. Once the  

 

Figure 27: Topić’s Preprocessing 2D Matrix 

matrix is formed, he then incorporates the initial SOC value of the PHEV by adding it to the 

elements of the matrix. Building off this, the TFCNN input will be of the same format for its rows, 

columns, and incorporation of initial SOC, but with 3 layers. This will make the input a 3D matrix 

with each layer representing the following: 

• Layer 1 – count of the number of times the PHEV uses ICE mode at a specific combination 

of discrete speed and acceleration values 



47 

 

• Layer 2 – sum of percentage of lacking SOC needed to run each hybrid mode section, i, in 

EV mode  

∑ 1 −
𝐴𝑙𝑙𝑜𝑡𝑡𝑒𝑑_𝑆𝑂𝐶(𝑖)

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑆𝑂𝐶(𝑖)

𝑛
𝑖=1  (18) 

• Layer 3 – count of the number of times the PHEV uses EV mod at a specific combination 

of discrete speed and acceleration values 

However, it is important to note that when attempting to determine any one of the vehicle’s well-

to-wheel emissions as an output from the TFCNN, layer 3 can be omitted from the 3D input matrix. 

The reason is that it is the consumption of gasoline during the vehicle’s use of ICE and hybrid 

mode that contributes to the creation of emissions. All three layers will still be needed for the 3D 

input matrix when attempting to determine the vehicle’s MPGGE, as it depends on the 

consumption of both gasoline and battery charge. 

 The range of speed and acceleration used for setting the row and column dimensions of the 

input matrix are determined by first extracting the maximum and minimum values the vehicle sees 

throughout the 8250 drive cycles used in the training data. These lower and upper boundaries are 

then rounded to a desired resolution, with the columns of the matrix corresponding to the values 

from the minimum speed to maximum speed in intervals of the desired speed resolution, and the 

rows of the matrix corresponding to the values from the minimum acceleration to the maximum 

acceleration in intervals of the desired acceleration resolution. The resulting range of speed and 

acceleration, desired resolutions, and input matrix dimensions are shown in Table 12 and Table 

13. If the speed and acceleration value the vehicle experiences exceed the limits extracted from 

the training data, they will be counted as the limit values. 

 



48 

 

Dimension 
Speed (mph) Acceleration (m/s2) 

Drive 

Modes 

Range Resolution Range Resolution 
3 

107 x 201 x 3 [0,100] 0.5 [-5.3,5.3] 0.1 

 

Table 12: Input Matrix Parameters for MPGGE Output 

Dimension 
Speed (mph) Acceleration (m/s2) 

Drive 

Modes 

Range Resolution Range Resolution 
2 

107 x 201 x 2 [0,100] 0.5 [-5.3,5.3] 0.1 

 

Table 13: Input Matrix Parameters for Emission Outputs 

3.3.2. CNN Architecture 

 Looking at the preprocessed matrix input, they can be considered informational images 

containing important features of a PHEV’s EV, hybrid, and ICE mode usage along a route. Thus, 

a CNN type architecture can give the most accurate learning results when paired with these inputs, 

as they have been proven to be very successful in image classification due to its effectiveness in 

automatic feature extraction [44]. Using the CNN architecture developed by Topić as a starting 

point, extensive testing was used to develop the working architecture shown in Figure 28. The 

CNN is made up of a mixture of two-dimensional convolutional layers characterized by (# of 

filters)@(filter size), max pooling layers characterized by (filter dimension)@(filter size), a 

flattening layer, fully connected layers characterized by (# of nodes), and activation layers. 



49 

 

 

 

Figure 28: CNN Architecture 



50 

 

 The convolutional layers work to extract features from images by using a set of weights 

known as a convolutional filter, 𝐾𝑖, to slide over inputted data, 𝑋𝑖, and generate a filtered version, 

𝑍𝑖, for a given layer, 𝑛. This filtered version of the image data is a feature map. Different 

convolutional filters extract different features, and it is the combination of the resulting feature 

maps that helps power the CNN’s predictions [56]. An example of the convolutional layer process 

is shown in Figure 29, with Equation 19 showing the process being akin to simple matrix 

 

Figure 29: Convolutional Layer Calculation Example [57] 

𝑍𝑖 = 𝑋𝑖 ∗ 𝐾𝑖 (19) 

multiplication. Enhancing the feature maps obtained from the convolutional layers, activation 

functions, 𝑔, are used to determine what node signals are sent forward through the network and to 

what extent [56]. The activation function chosen for this research’s CNN is a non-linear activation 

function known as ReLU, rectifier linear unit. It prevents negative numbers from being passed 



51 

 

forward by following Equation 20, 𝑥 being an individual element, resulting in a layer’s final 

processed output and the following layer’s input, Equation 21. 

ReLU(x) = max (0, 𝑥) (20) 

𝑋𝑖+1 = 𝑔𝑖(𝑍𝑖)          (21) 

 With inputs to CNNs being so large and the number of filters chosen for convolutional 

layers possibly increasing the number of parameters through feature extraction, the issue of 

compression and increasing processing power come into play. To help remedy this, pooling layers 

are used to help reduce feature map size without loss of information [56]. This is especially helpful 

as it reduces the amount of processing time and power needed during the training stage of CNN 

development. The pooling method chosen for this research’s CNN is the max pooling method, 

shown in Figure 30 and Equation 22. Max pooling is commonly chosen because of how efficient 

it is at maintaining features [56]. 

 
Figure 30: Max Pooling, 2D with 2x2 Filter 

𝑋𝑖+1 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑋𝑖)       (22) 

 Once processed through a series of alternating convolutional layers, activation functions, 

and pooling layers, the resulting data is flattened into a vector and fed through a series of fully 



52 

 

connected layers to be able to produce the regression outputs needed for the control strategy. ReLU 

activation functions are also used to enhance the data outputted by each fully connected layer. 

Each fully connected layer and accompanying activation can be described by Equation 23, where 

𝑋𝑖 is that layer’s input data and 𝜃𝑖 is its set of weights by which the input data is multiplied. 

Depending on the output being solved for, however, a ReLU activation function may or may not 

be needed for the output of the last fully connected layer of the CNN architecture, 𝑌𝑛𝑒𝑡. This is 

determined through trial and error. 

𝑋𝑖+1 = 𝑔𝑖(𝜃𝑖
𝑇𝑋𝑖) (23) 

𝑌𝑛𝑒𝑡 = 𝑔(𝜃𝑙
𝑇𝑋𝑙) (24) 

 The cost function, 𝐽, being optimized throughout the training of the CNN is the mean square 

error between the network’s output 𝑌𝑛𝑒𝑡 (MPGGE, g/mile HC, g/mile CO, g/mile NOx, or gal. of 

gasoline used) and the desired outputs 𝑌𝑡𝑟𝑢𝑡ℎ for all 𝑛 sets of training date as shown: 

𝐽 =
1

2𝑛
∑ (𝑌𝑛𝑒𝑡,𝑖 − 𝑌𝑡𝑟𝑢𝑡ℎ,𝑖)

2𝑛
𝑖=1        (25) 

To train the CNN, the adaptive moment estimation optimization algorithm for stochastic gradient 

descent known as Adam is used during the process of backpropagation [58]. In this process, 

Adam optimizes and updates the CNN’s learnable parameters, 𝜃, the convolutional layers’ and 

fully connected layers’ weights, in a backwards fashion from the last layer to the first layer using 

adaptive learning rates and moment estimation. This is shown in Equation 26, where a current 

time step’s weights, 𝜃𝑡+1, is calculated from the previous time step, 𝜃𝑡, and an update vector 

made up of a bias-corrected exponentially decaying average of past gradients and past squared 

gradients, 𝑚̂𝑡 and 𝑣𝑡, taken of the cost function in respect to the learnable parameters [59]. 



53 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡+𝜖
𝑚̂𝑡       (26) 

Suggestions for the learning rate, 𝜂, and smoothing term, 𝜖, can be found in [58]. The 8250 drive 

cycles used to develop the TFCNN are split using a 68/17/15 ratio, where 68% of the drive 

cycles are allocated for training, 17% for validation, and 15% for testing purposes. For more 

information regarding the intricacies and math behind neural networks, a detailed explanation 

can be found in [60]. 

3.3.3. CNN Performance 

 A TFCNN for each of the 5 possible outputs (MPGGE, HC, CO, NOx, or gal. of gasoline) 

for four different vehicles is created and trained. Each of the four vehicles uses the same 

ADVISOR vehicle configuration previously described in Table 1, but with a specific combination 

of fuel converter (FC) and energy storage system (ESS) as shown in Table 14. This results in a 

total of 20 TFCNNs, all trained according to the machine learning training options within 

MATLAB shown in Table 15. To show their performance, the average percent accuracy across 

each TFCNN’s test data set is taken between the obtained truth output values from ADVISOR and 

the corresponding network output, as shown in Table 16. 

 

 

 

 

 



54 

 

Fuel Converter 

FC_SI41_emis 

1991 Geo Metro 1.0L SI 

engine with maximum power 

of 41 kW @ 5700 rpm and 

peak torque of 81 Nm @ 

3477 rpm 

FC_SIPrime_emis 

2017 Prius Prime 1.8L 4 

cylinder engine with 

maximum power of 71 kW @ 

5200 rpm and peak torque of 

142 Nm @ 3600 rpm 

Energy Storage System 

ESS_PB25 

Hawker Genesis 12V 25Ah 

10EP sealed valve-regulated 

lead-acid (VRLA) battery 

ESS_PB28 
Johnson Controls 12-95 lead-

acid battery 

 

Table 14: ADVISOR PHEV Fuel Converter and Energy Storage Options [47] 

Optimization Solver Adam Solver for training network 

Mini Batch Size 50 
Size of the mini batch to use 

for each training iteration 

Max Epochs 1000 Maximum number of epochs 

Initial Learning Rate 0.0001 
Initial learning rate for 

training 

Shuffle Every-Epoch 
Frequency of training data 

shuffling 

Validation Frequency 25 
Frequency of network 

validation in # of iterations 

Validation Patience 30 

Number of times the loss on 

the validation set can be 

larger than or equal to the 

previously smallest loss 

 

Table 15: MATLAB Machine Learning Training Options [61] 

FC/ESS Combination MPGGE HC CO NOx  Gal Gas Used  

FC_SI41_emis/ ESS_PB25 96.22% 91.94% 73.62% 87.57% 81.73% 

FC_SI41_emis/ ESS_PB28 95.64% 89.89% 73.05% 84.66% 80.34% 

FC_SIPrime_emis/ ESS_PB25 95.63% 90.49% 73.29% 88.05% 84.15% 

FC_SIPrime_emis/ ESS_PB28 94.93% 87.77% 68.20% 84.23% 80.64% 

 

Table 16: TFCNN’s Test Data Average Accuracy 



55 

 

 When looking at the data, it becomes apparent that for each type of fuel converter, a higher 

average accuracy is produced when paired with the larger energy storage system. CO also 

consistently produces the lowest average accuracy across all four vehicles. To increase this 

performance, more research can be conducted relative to fine-tuning the preprocessing 

methodology and improving the efficiency of CO’s network with different optimization strategies. 

Regardless, the current levels of average accuracy the TFCNNs can achieve for the various outputs 

show that a machine learning algorithm has the capability to learn the complex dynamics of a 

PHEV and its control algorithms. It can perform this feat as an input/output calculation that is as 

simple as a linear equation. Thus, the overall goal of this research to develop a working globally 

oriented control strategy that automatically chooses and optimizes the best choice according to 

MPGGE and/or emissions for the driver while being scalable, computationally fast, and adaptable 

to changing route data in real-time becomes plausible. 

3.4. Implementation 

 With the Trajectory Forecasting and machine learning control algorithms properly 

performing, the implementation of the complete Trajectory Forecasting based machine learning 

control strategy can be broken down into the following: 

1. Take in a priori drive cycle data (speed and acceleration) of multiple available routes going 

from the driver’s starting point to their desired end point 

2. Create a drive-mode and SOC discharge schedule for each possible route using the TF 

control algorithm 

3. Preprocess the drive cycle (speed and acceleration) and drive-mode schedule of each 

available route along with the current initial SOC into the input matrix for the chosen 

TFCNN 



56 

 

4. Plug-in input matrix for each available route into the TFCNN to approximate the value of 

interest (MPGGE, g/mile HC, g/mile CO, g/mile NOx, or gal. of gasoline used) 

5. Choose the route that best fits the driver’s request, e.g. higher MPGGE, lower emissions, 

lower gas usage, as ideal choice 

6. Implement drive-mode and SOC discharge schedule derived for a chosen route from TF 

control algorithm during travel in real-time 

7. Repeatedly check updated route data, rerunning control strategy from step 1 if changes are 

detected, and changing routes if the current one is no longer the ideal choice 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

 Simulation 

 To evaluate the performance of the complete Trajectory Forecasting based machine 

learning control strategy, ADVISOR will be used to simulate its usage with the four different 

PHEV vehicle configurations used in Section 3.3.3. For the simulation, there are two important 

details to consider, route updates experienced while driving and a PHEV’s starting SOC. Route 

updates can happen at random times along a route in real life, they will instead be preset to happen 

after driving specific amounts of distance in the simulations. Routes where the distance is 30 miles 

or less will encounter a single update after traveling a distance equal to 20% of the original route 

distance, and routes greater than 30 miles will encounter two updates, one after traveling a distance 

equal to 20% of the original route distance and another at 40%. This is done to properly extract 

the vehicle’s SOC at the time of updates and set it as the new initial SOC value to use in the input 

matrix when using the control strategy. The updates of traffic at the preset distances are also chosen 

randomly at the time of the simulations’ execution, with traffic having the ability to improve, 

worsen, or stay relatively the same at each update. For the starting SOC of the PHEV’s, the value 

will vary according to Table 17. 

Distance (miles) Initial SOC 

𝑥 < 5 0.4 

5 ≤ 𝑥 < 10 0.5 

10 ≤ 𝑥 < 25 0.6 

25 ≤ 𝑥 < 40 0.7 

𝑥 ≥ 40 0.8 

 

Table 17: Distance Based Starting Initial SOC 

4.1. Route Data 

 Similar to the eight routes developed to test the performance of the TF control algorithm 

in Section 3.2.1, six different routes of distances from 10-60 miles in increments of 10 miles are 



58 

 

created to test the performance of the research’s Trajectory Forecasting based machine learning 

control strategy. They will serve as the original routes each vehicle will drive along before any 

updates are seen. The routes use the same speed limit and traffic conditions listed in Table 6 to 

derive the approximated speeds the PHEVs will experience. As mentioned in Section 3.2.1, 

assuming the speeds stay constant wherever the speed limit and traffic conditions are the same 

would result in the vehicle unrealistically traveling at constant speeds during various sections of 

the routes. To counteract this, additional random drops in speed ranging from 0%-5% are added to 

all approximated speed values. The largest of the original routes, route 6 of 60 miles, can be seen 

in Figure 31 below, with the others available in Section 7.3.1 of the Appendix. An example of how 

a route looks after a traffic update is applied, simulating changing traffic conditions in the original 

route and alternative route choices, is shown in Figure 32. To assure a more consistent and fair 

analysis across all control strategies used in performance comparisons, every route driven by each 

control strategy will always result in a distance equal to that of the original route it is derived from. 

 
Figure 31: Original Route 6, 60 miles 



59 

 

 
Figure 32: Original route 6 compared to route 6 with added traffic and alternate route choices 

after first update at identified point circled in red 

4.2. Simulation Parameters 

 The results shown in this study show the performance of the TF based machine learning 

control strategy in comparison to the default PHEV control strategies, charge depletion (CD) and 

charge sustaining (CS), included within ADVISOR, and commonly used is PHEV now. The 

parameters used to compare the strategies are the MPGGE, g/mile HC, g/mile CO, g/mile NOx, 

and total gal. of gasoline used. For the CD and CS strategies, they will be used in ADVISOR on 

the original routes with the added traffic from the route updates. The comparison values are then 

simply taken from the ADVISOR simulation results. To obtain the comparison values for the TF 

based machine learning control strategy, however, each of the ideal route options chosen by the 

strategy in going from point A to B are individually run in ADVISOR using the TF control 

algorithm. The raw ADVISOR data for each chosen route option, grams of HC, grams of CO, 



60 

 

grams of NOx, and gal. of gasoline used, is then taken, and used in equations 27-29 to obtain the 

desired comparison values. In the equations, 𝑛 is the number of chosen route options, 𝐸 is the 

grams of an emission emitted during a chosen route option, and 𝐺 is the gallons of gasoline 

consumed during a chosen route option. For a detailed explanation of the parameters within 

ADVISOR that enable to the use of CD, CS, and TF within a PHEV, refer to Section 3.2.2. 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑚𝑖𝑠𝑖𝑜𝑛𝑠 =
∑ 𝐸𝑖

𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (27) 

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑ 𝐺𝑖
𝑛
𝑖=1  (28) 

𝑀𝑝𝑔𝑔𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛+ 
𝑘𝑊ℎ 𝑁𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑜 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑂𝐶

𝑘𝑊ℎ 𝑝𝑒𝑟 𝐺𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒

  (29) 

4.3. Results 

 For the results displayed below for each PHEV, a strategy proves to be better regarding 

optimizing MPGGE when its value is greater than that of the other strategies. This means we desire 

a positive percent difference between the TF based machine learning control strategy and the other 

strategies. Regarding optimizing emissions and gasoline consumption, a strategy is better if its 

value is less than that of the other strategies. For these outputs, we desire a negative percent 

difference between the TF based machine learning control strategy and the other strategies. The 

best raw output between the three strategies for each output type for each route is highlighted in 

yellow within the raw output result tables. 

 

 

 



61 

 

4.3.1. PHEV #1, FC_SI41_emis/ ESS_PB25 Combination 

  Strategy MPGGE HC (g/mile) CO (g/mile) NOx (g/mile) Gas (gal) 

Route 1 

CD 56.687 0.495 3.780 0.390 0.102 

CS 50.877 0.476 4.542 0.380 0.101 

TF CNN 60.431 0.413 1.388 0.244 0.095 

Route 2 

CD 33.433 0.355 2.772 0.251 0.465 

CS 31.840 0.385 2.793 0.247 0.460 

TF CNN 39.173 0.286 1.861 0.228 0.338 

Route 3 

CD 27.654 0.321 2.383 0.310 0.892 

CS 27.732 0.319 2.979 0.288 0.908 

TF CNN 43.965 0.298 2.632 0.205 0.612 

Route 4 

CD 32.245 0.266 1.357 0.304 1.126 

CS 32.592 0.281 2.514 0.318 1.127 

TF CNN 40.062 0.332 3.759 0.224 0.805 

Route 5 

CD 28.854 0.280 1.505 0.341 1.375 

CS 29.363 0.282 1.712 0.328 1.358 

TF CNN 32.640 0.314 1.956 0.259 1.170 

Route 6 

CD 34.728 0.246 1.825 0.245 1.760 

CS 34.173 0.249 2.031 0.243 1.726 

TF CNN 36.215 0.282 3.064 0.233 1.565 

 

Table 18: PHEV #1, Raw Output Results for all Routes and Strategies 

  Comparison MPGGE % Diff HC % Diff CO % Diff NOx % Diff Gas % Diff 

Route 1 
TF CNN vs CD 6.60 -16.58 -63.27 -37.36 -6.88 

TF CNN vs CS 18.78 -13.21 -69.44 -35.74 -6.57 

Route 2 
TF CNN vs CD 17.17 -19.68 -32.87 -9.21 -27.27 

TF CNN vs CS 23.03 -25.75 -33.36 -7.79 -26.54 

Route 3 
TF CNN vs CD 58.98 -7.34 10.48 -33.82 -31.37 

TF CNN vs CS 58.53 -6.62 -11.65 -28.95 -32.54 

Route 4 
TF CNN vs CD 24.24 24.57 177.04 -26.29 -28.51 

TF CNN vs CS 22.92 18.12 49.51 -29.68 -28.56 

Route 5 
TF CNN vs CD 13.12 12.21 29.95 -24.14 -14.92 

TF CNN vs CS 11.16 11.51 14.24 -21.11 -13.81 

Route 6 
TF CNN vs CD 4.28 14.65 67.86 -5.21 -11.10 

TF CNN vs CS 5.97 13.27 50.88 -4.43 -9.33 

 

Table 19: PHEV #1, Percent Difference Between Strategies 



62 

 

Comparison 
Strategy 

Performance 
MPGGE % 

Diff 
HC % Diff CO % Diff NOx % Diff Gas % Diff 

CD 
Best 58.98 -19.68 -63.27 -37.36 -31.37 

Worst 4.28 24.57 177.04 -5.21 -6.88 

CS 
Best 58.53 -25.75 -69.44 -35.74 -32.54 

Worst 5.97 18.12 50.88 -4.43 -6.57 

 

Table 20: PHEV #1, Best and Worst Performance 

4.3.2. PHEV #2, FC_SI41_emis/ ESS_PB28 Combination 

  Strategy MPGGE HC (g/mile) CO (g/mile) NOx (g/mile) Gas (gal) 

Route 1 

CD 47.038 0.459 1.260 0.294 0.027 

CS 46.813 0.504 3.713 0.323 0.110 

TF CNN 75.344 0.459 1.251 0.302 0.025 

Route 2 

CD 31.430 0.339 2.585 0.355 0.369 

CS 32.064 0.381 2.718 0.382 0.362 

TF CNN 38.370 0.260 1.690 0.178 0.329 

Route 3 

CD 39.160 0.317 2.115 0.339 0.866 

CS 38.538 0.335 2.168 0.371 0.823 

TF CNN 40.489 0.274 2.079 0.190 0.575 

Route 4 

CD 31.195 0.253 2.233 0.277 1.058 

CS 31.098 0.266 2.363 0.315 1.082 

TF CNN 41.796 0.324 2.208 0.182 0.840 

Route 5 

CD 27.468 0.259 1.180 0.314 1.310 

CS 27.850 0.263 1.912 0.307 1.335 

TF CNN 38.529 0.308 1.791 0.284 1.210 

Route 6 

CD 32.423 0.241 2.223 0.270 1.750 

CS 33.268 0.247 1.725 0.278 1.748 

TF CNN 37.127 0.276 3.628 0.224 1.533 

 

Table 21: PHEV #2, Raw Output Results for all Routes and Strategies 

 

 

 

 



63 

 

  Comparison MPGGE % Diff HC % Diff CO % Diff NOx % Diff Gas % Diff 

Route 1 
TF CNN vs CD 60.18 -0.05 -0.71 2.67 -7.44 

TF CNN vs CS 60.95 -8.97 -66.31 -6.53 -77.72 

Route 2 
TF CNN vs CD 22.08 -23.36 -34.64 -49.78 -10.72 

TF CNN vs CS 19.67 -31.92 -37.83 -53.35 -8.94 

Route 3 
TF CNN vs CD 3.40 -13.58 -1.68 -43.94 -33.60 

TF CNN vs CS 5.06 -18.38 -4.09 -48.75 -30.10 

Route 4 
TF CNN vs CD 33.98 28.13 -1.08 -34.32 -20.62 

TF CNN vs CS 34.40 21.79 -6.56 -42.43 -22.40 

Route 5 
TF CNN vs CD 40.27 18.97 51.80 -9.35 -7.70 

TF CNN vs CS 38.34 17.31 -6.36 -7.32 -9.42 

Route 6 
TF CNN vs CD 14.51 14.53 63.19 -17.09 -12.38 

TF CNN vs CS 11.60 11.88 110.36 -19.51 -12.30 

 

Table 22: PHEV #2, Percent Difference Between Strategies 

Comparison 
Strategy 

Performance 
MPGGE % 

Diff 
HC % Diff CO % Diff NOx % Diff Gas % Diff 

CD 
Best 60.18 -23.36 -34.64 -49.78 -33.60 

Worst 3.40 28.13 63.19 2.67 -7.44 

CS 
Best 60.95 -31.92 -66.31 -53.35 -77.72 

Worst 5.06 21.79 110.36 -6.53 -8.94 

 

Table 23: PHEV #2, Best and Worst Performance 

 

 

 

 

 

 



64 

 

4.3.3. PHEV #3, FC_SIPrime_emis/ ESS_PB25 Combination 

  Strategy MPGGE HC (g/mile) CO (g/mile) NOx (g/mile) Gas (gal) 

Route 1 

CD 42.733 0.683 3.277 0.420 0.157 

CS 40.600 0.678 3.864 0.417 0.149 

TF CNN 63.700 0.524 1.399 0.318 0.015 

Route 2 

CD 36.242 0.401 2.373 0.323 0.439 

CS 36.905 0.408 2.558 0.298 0.431 

TF CNN 39.672 0.326 1.846 0.227 0.393 

Route 3 

CD 28.108 0.403 2.064 0.405 0.967 

CS 27.740 0.402 2.078 0.408 0.966 

TF CNN 44.963 0.399 2.610 0.224 0.760 

Route 4 

CD 31.190 0.307 2.049 0.319 1.154 

CS 30.560 0.321 2.248 0.334 1.168 

TF CNN 38.412 0.377 2.596 0.315 0.898 

Route 5 

CD 32.475 0.317 1.868 0.280 1.518 

CS 32.374 0.314 2.011 0.278 1.554 

TF CNN 35.203 0.458 2.907 0.250 1.380 

Route 6 

CD 35.189 0.268 1.832 0.324 1.646 

CS 33.913 0.278 1.968 0.320 1.705 

TF CNN 35.794 0.353 3.265 0.236 1.622 

 

Table 24: PHEV #3, Raw Output Results for all Routes and Strategies 

  Comparison MPGGE % Diff HC % Diff CO % Diff NOx % Diff Gas % Diff 

Route 1 
TF CNN vs CD 49.06 -23.37 -57.33 -24.38 -90.35 

TF CNN vs CS 56.90 -22.73 -63.81 -23.75 -89.84 

Route 2 
TF CNN vs CD 9.46 -18.80 -22.21 -29.76 -10.47 

TF CNN vs CS 7.50 -20.14 -27.83 -23.96 -8.79 

Route 3 
TF CNN vs CD 59.96 -1.05 26.45 -44.57 -21.41 

TF CNN vs CS 62.09 -0.74 25.61 -44.99 -21.38 

Route 4 
TF CNN vs CD 23.15 22.81 26.69 -1.32 -22.17 

TF CNN vs CS 25.69 17.57 15.44 -5.65 -23.11 

Route 5 
TF CNN vs CD 8.40 44.54 55.61 -10.57 -9.08 

TF CNN vs CS 8.74 45.60 44.57 -10.00 -11.19 

Route 6 
TF CNN vs CD 1.72 31.65 78.27 -26.96 -1.45 

TF CNN vs CS 5.55 27.20 65.94 -26.06 -4.85 

 

Table 25: PHEV #3, Percent Difference Between Strategies 



65 

 

Comparison 
Strategy 

Performance 
MPGGE % 

Diff 
HC % Diff CO % Diff NOx % Diff Gas % Diff 

CD 
Best 59.96 -23.37 -57.33 -44.57 -90.35 

Worst 1.72 44.54 78.27 -1.32 -1.45 

CS 
Best 62.09 -22.73 -63.81 -44.99 -89.84 

Worst 5.55 45.60 65.94 -5.65 -4.85 

 

Table 26: PHEV #3, Best and Worst Performance 

4.3.4. PHEV #4, FC_SIPrime_emis/ ESS_PB28 Combination 

  Strategy MPGGE HC (g/mile) CO (g/mile) NOx (g/mile) Gas (gal) 

Route 1 

CD 39.444 0.643 1.394 0.298 0.081 

CS 41.660 0.667 4.643 0.295 0.122 

TF CNN 91.954 0.642 1.381 0.299 0.080 

Route 2 

CD 40.661 0.400 2.187 0.320 0.495 

CS 40.442 0.451 2.688 0.347 0.518 

TF CNN 44.958 0.395 1.848 0.242 0.411 

Route 3 

CD 29.089 0.387 2.317 0.327 0.619 

CS 30.095 0.401 2.396 0.338 0.583 

TF CNN 43.322 0.384 2.268 0.272 0.557 

Route 4 

CD 32.419 0.293 2.414 0.281 1.036 

CS 32.536 0.312 2.284 0.314 1.015 

TF CNN 37.524 0.414 3.327 0.228 0.881 

Route 5 

CD 35.779 0.312 1.183 0.305 1.524 

CS 36.278 0.303 1.925 0.300 1.521 

TF CNN 39.445 0.472 3.169 0.249 1.287 

Route 6 

CD 32.626 0.254 2.124 0.278 1.772 

CS 32.773 0.257 1.806 0.281 1.766 

TF CNN 34.152 0.345 4.879 0.224 1.765 

 

Table 27: PHEV #4, Raw Output Results for all Routes and Strategies 

 

 

 

 



66 

 

  Comparison MPGGE % Diff HC % Diff CO % Diff NOx % Diff Gas % Diff 

Route 1 
TF CNN vs CD 133.13 -0.05 -0.94 0.22 -1.90 

TF CNN vs CS 120.72 -3.67 -70.25 1.21 -34.61 

Route 2 
TF CNN vs CD 10.57 -1.41 -15.49 -24.41 -17.02 

TF CNN vs CS 11.17 -12.48 -31.24 -30.27 -20.72 

Route 3 
TF CNN vs CD 48.93 -0.75 -2.13 -16.86 -10.06 

TF CNN vs CS 43.95 -4.39 -5.35 -19.52 -4.45 

Route 4 
TF CNN vs CD 15.75 41.17 37.81 -18.70 -14.93 

TF CNN vs CS 15.33 32.71 45.62 -27.20 -13.19 

Route 5 
TF CNN vs CD 10.25 51.41 167.84 -18.35 -15.54 

TF CNN vs CS 8.73 55.90 64.68 -17.03 -15.38 

Route 6 
TF CNN vs CD 4.68 36.07 129.68 -19.57 -0.43 

TF CNN vs CS 4.21 34.32 170.08 -20.36 -0.05 

 

Table 28: PHEV #4, Percent Difference Between Strategies 

Comparison 
Strategy 

Performance 
MPGGE % 

Diff 
HC % Diff CO % Diff NOx % Diff Gas % Diff 

CD 
Best 133.13 -1.41 -15.49 -24.41 -17.02 

Worst 4.68 51.41 167.84 0.22 -0.43 

CS 
Best 120.72 -12.48 -70.25 -30.27 -34.61 

Worst 4.21 55.90 170.08 1.21 -0.05 

 

Table 29: PHEV #4, Best and Worst Performance 

4.3.5. Results Summary 

 Looking over the results, the TF based machine learning control strategy proves to be a 

viable and efficient option when compared to the CD and CS control strategies in terms of better 

MPGGE, gasoline consumption, and NOx emissions. It outperforms the CD and CS strategies in 

every PHEV across all routes in terms of MPGGE and gasoline consumption. This type of 

performance is extremely beneficial to buyers of PHEVs, as it can lead to shorter payback time in 

terms of vehicle investment [36]. Similarly, it produces the least amount of NOx emissions across 

all routes for PHEV #1 and PHEV #3. For PHEV #2 and PHEV #4, it produces the least amount 

of NOx emissions in all except Route 1, producing only 2.67% and 1.21% more g/mile of NOx, 



67 

 

respectively, than the leading control strategy. With such a small negative difference in 

performance occurring in only one route for two of the PHEVs, the TF based machine learning 

control strategy still proves to be a better and more efficient control strategy overall in improving 

MPGGE, gasoline consumption, and NOx emissions. 

 In attempting to improve HC emissions, the control strategy’s performance becomes less 

competitive compared to the CD and CS strategies after a certain distance. For all the PHEVs, the 

TF based machine learning strategy is only able to outperform the other two strategies in HC 

emissions for Routes 1 (10 miles), Route 2 (20 miles), and Route 3 (30 miles). For these routes, 

the control strategy produces 0.05%-23.37% less g/mile of HC than the CD strategy and 0.74%-

31.92% less g/mile of HC than the CS strategy. In Route 4 (40 miles), Route 5 (50 miles), and 

Route 6 (60 miles), the TF based machine learning strategy underperforms, producing 12.21%-

51.41% more g/mile of HC than the CD strategy and 11.51%-55.90% more g/mile of HC than the 

CS strategy. For these three routes, the performance worsened going from the 1.0L engine to the 

1.8L engine and from the 25 Ah lead-acid battery to the 28 Ah lead-acid battery, possibly because 

of the increase in mass. Vehicle mass is one of the main factors influencing a vehicle’s fuel 

consumption, as increases in the operating mass increases fuel consumption, as more power is 

needed to accelerate the vehicle during acceleration phases and rolling resistance is also increased 

proportionally [62]. Regardless of engine and battery choice, however, past 30 miles, the TF based 

machine learning control strategy is not effective for reducing the HC emissions compared to the 

CD and CS strategies. 

 Similarly, the TF based machine learning strategy is only more effective than the CD and 

CS strategies at reducing g/mile of CO emissions at certain distances depending on the 

configuration. In PHEV #1, 1.0L engine and 25 Ah battery, and PHEV #3, 1.8L engine and 25 Ah 



68 

 

battery, the strategy outperforms both the CD and CS strategy in Route 1 and 2, outputting 22.21%-

63.27% less g/mile of CO than the CD strategy and 27.83%-69.44% less g/mile of CO than the CS 

strategy. Pairing the engines with a larger battery in PHEV #2, 1.0L engine and 28 Ah battery, and 

PHEV #4, 1.8L engine and 28 Ah battery, further increases the number of routes the strategy 

outperforms the CD and CS strategies. In PHEV #2, it outperforms both strategies in Routes 1, 2, 

3, and 4, outputting 0.71%-34.64% less g/mile of CO than the CD strategy and 4.09%-66.31% less 

g/mile than the CS strategy. In PHEV #4, it outperforms both strategies in Routes 1, 2, and 3, 

outputting 0.94%-15.49% less g/mile of CO than the CD strategy and 5.35%-70.25% less g/mile 

of CO than the CS strategy. With the increase in battery size for each type of engine, the range in 

distance that the strategy can outperform the CD and CS strategies increases while the overall 

amount of improvement decreases. This is most likely due to the increase in operating mass as 

well. Inconsistent performance like this makes the strategy ineffective for reducing the CO 

emissions compared to the CD and CS strategies for distances past 20-30 miles. 

 

 

 

 

 

 

 



69 

 

 Conclusions and Future Work 

 Two of the parameters that the TF based machine learning strategy consistently 

outperforms the other strategies in, NOx and gasoline consumption, received lower average 

accuracies in the testing data when training the CNNs than one of the parameters it falls short in, 

HC. In addition, the strategy performed comparably in terms of HC and CO overall, even though 

the HC parameter received the second-best set of average accuracies in CNN training across all 

PHEVs and the CO parameter received the worst. With these observations, it can be reasoned that 

the strategy’s lack of performance in HC and CO emissions has little to do with a lack of accuracy 

in the trained CNNs. This shows a possible benefit, perfect accuracy in the TFCNN is not a 

requirement for the strategy’s good performance. We then look at the laws used in TF for mode 

scheduling and SOC distribution in the PHEVs for why the strategy proves less effective for HC 

and CO emissions. The TF control algorithm the strategy is based on was made with laws meant 

for improving fuel economy, MPGGE, by intelligently choosing modes of propulsion and SOC 

usage along a route based on expected speeds. It does this even at the cost of forcing the PHEV to 

rely solely on the ICE at very inefficient torque and speed combinations if deemed needed. 

Unfortunately, the improved fuel economy and fuel consumption that the TF control algorithm can 

produce in PHEVs using the TF based machine learning strategy is not enough to always overcome 

the production of HC and CO emissions from fuel at inefficient torque and speed combinations. 

 While further investigation can be done on improving the strategy’s performance for HC 

and CO emissions at longer distances, at shorter distances it proves to be a viable option for 

decreasing emissions. Its remarkable performance in fuel economy, fuel consumption, and NOx 

emissions may make it a worthwhile strategy to use for all lengths of distance and PHEV 

configurations. These are all due to the effectiveness of the TF control algorithm and the TFCNN’s 



70 

 

main benefit, its ability to simplify the inner workings of a PHEV and its supervisory control 

strategy into a fast input/output relation. Furthermore, the TFCNN can perform its task while only 

needing a minimum amount of already available information, expected speed on a route and its 

own SOC. 

 The main contributions of this work are the TF based machine learning strategy and the 

methodology used to create it.  The strategy itself is scalable, computationally fast, and adaptable 

to changing route data in real-time, with potential for more. It is effective at improving fuel 

economy, fuel consumption, and NOx emissions, so much so that real world testing and application 

is a plausible close next step. The methodology outlined in this work to develop the TF based 

machine learning strategy can serve as a guide for other researchers to implement their own 

supervisory control algorithms in a less computationally heavy way in real-time. The TF control 

algorithm may even be fine-tuned to prioritize optimizing emission output rather than fuel 

economy, and then be implemented with the same methodology. These contributions confirm the 

significance of this work in the field of PHEV power management. 

 Future work for this research would consists of two main steps. The first step would be a 

deeper investigation into the conditions in which the strategy’s performance begins to fall below 

that of other strategies for HC and CO emissions. The reason for this would be to modify the 

strategy so that its performance in HC and CO emission reduction can be improved, possibly 

without sacrificing its performance in other outputs. The second step would be further testing of 

the strategy with more PHEV models and routes. This would show whether application of the 

strategy is limited by PHEV configuration and/or route, key information to have before going into 

real-life testing. 



71 

 

 References 

[1] The National Academies, “How We Use Energy, Transportation — The National 

Academies,” What You Need To Know About Energy. 

http://needtoknow.nas.edu/energy/energy-use/transportation/ (accessed Feb. 05, 2020). 

[2] “Fossil Fuels | EESI.” https://www.eesi.org/topics/fossil-fuels/description (accessed Jan. 29, 

2021). 

[3] “In 2018, the United States consumed more energy than ever before - Today in Energy - U.S. 

Energy Information Administration (EIA).” 

https://www.eia.gov/todayinenergy/detail.php?id=39092 (accessed Jan. 29, 2021). 

[4] “U.S. Net Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day).” 

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=mttntus2&f=a (accessed Jan. 

29, 2021). 

[5] “Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA).” 

https://www.eia.gov/tools/faqs/faq.php (accessed Jan. 29, 2021). 

[6] “Bill Text - SB-1078 Renewable energy: California Renewables Portfolio Standard 

Program.” 

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200120020SB1078 

(accessed Jan. 29, 2021). 

[7] C. E. Commission, “Clean Energy and Pollution Reduction Act - SB 350,” California Energy 

Commission, current-date. https://www.energy.ca.gov/rules-and-regulations/energy-

suppliers-reporting/clean-energy-and-pollution-reduction-act-sb-350 (accessed Jan. 29, 

2021). 

[8] “RPS.” https://www.cpuc.ca.gov/rps/ (accessed Jan. 29, 2021). 

[9] “Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles.” 

https://afdc.energy.gov/fuels/ (accessed Jan. 29, 2021). 

[10] E. Energy, “Types Of Electric Cars,” Ergon Energy, Aug. 25, 2015. 

https://www.ergon.com.au/network/smarter-energy/electric-vehicles/types-of-electric-

vehicles (accessed Jan. 29, 2021). 

[11] “Alternative Fuels Data Center: How Do Hybrid Electric Cars Work?” 

https://afdc.energy.gov/vehicles/how-do-hybrid-electric-cars-work (accessed Jan. 29, 2021). 

[12] “Alternative Fuels Data Center: How Do Plug-In Hybrid Electric Cars Work?” 

https://afdc.energy.gov/vehicles/how-do-plug-in-hybrid-electric-cars-work (accessed Jan. 

29, 2021). 

[13] H. Banvait, S. Anwar, and Y. Chen, “A rule-based energy management strategy for Plug-in 

Hybrid Electric Vehicle (PHEV),” in 2009 American Control Conference, Jun. 2009, pp. 

3938–3943, doi: 10.1109/ACC.2009.5160242. 

[14] C.-S. N. Shiau, C. Samaras, R. Hauffe, and J. J. Michalek, “Impact of battery weight and 

charging patterns on the economic and environmental benefits of plug-in hybrid vehicles,” 

Energy Policy, vol. 37, no. 7, pp. 2653–2663, Jul. 2009, doi: 10.1016/j.enpol.2009.02.040. 

[15] D. Stone and M. Hamilton, “Fuel economy improvements are projected to reduce future 

gasoline use,” U.S. Energy Information Administration - Today In Energy, May 23, 2017. 

https://www.eia.gov/todayinenergy/detail.php?id=31332 (accessed Jan. 29, 2021). 

[16] S. G. Wirasingha and A. Emadi, “Classification and Review of Control Strategies for Plug-

In Hybrid Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111–122, Jan. 

2011, doi: 10.1109/TVT.2010.2090178. 



72 

 

[17] S. Cordiner, M. Galeotti, V. Mulone, M. Nobile, and V. Rocco, “Trip-based SOC 

management for a plugin hybrid electric vehicle,” Appl. Energy, vol. 164, pp. 891–905, Feb. 

2016, doi: 10.1016/j.apenergy.2015.06.009. 

[18] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,” IEEE Control Syst. Mag., 

vol. 27, no. 2, pp. 60–70, Apr. 2007, doi: 10.1109/MCS.2007.338280. 

[19] X. Hu, N. Murgovski, L. Johannesson, and B. Egardt, “Energy efficiency analysis of a series 

plug-in hybrid electric bus with different energy management strategies and battery sizes,” 

Appl. Energy, vol. 111, pp. 1001–1009, Nov. 2013, doi: 10.1016/j.apenergy.2013.06.056. 

[20] T. H. Bradley and A. A. Frank, “Design, demonstrations and sustainability impact 

assessments for plug-in hybrid electric vehicles,” Renew. Sustain. Energy Rev., vol. 13, no. 

1, pp. 115–128, Jan. 2009, doi: 10.1016/j.rser.2007.05.003. 

[21] M. Murnane and A. Ghazel, “A Closer Look at State Of Charge (SOC) and State Of Health 

(SOH) Estimation Techniques for Batteries,” p. 8, 2017. 

[22] Q. Gong, Y. Li, and Z.-R. Peng, “Trip-Based Optimal Power Management of Plug-in Hybrid 

Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp. 3393–3401, Nov. 2008, 

doi: 10.1109/TVT.2008.921622. 

[23] B. M. Baumann, G. Washington, B. C. Glenn, and G. Rizzoni, “Mechatronic design and 

control of hybrid electric vehicles,” IEEEASME Trans. Mechatron., vol. 5, no. 1, pp. 58–72, 

Mar. 2000, doi: 10.1109/3516.828590. 

[24] N. J. Schouten, M. A. Salman, and N. A. Kheir, “Fuzzy logic control for parallel hybrid 

vehicles,” IEEE Trans. Control Syst. Technol., vol. 10, no. 3, pp. 460–468, May 2002, doi: 

10.1109/87.998036. 

[25] S. Jeon, S. Jo, Y. Park, and J. Lee, “Multi-Mode Driving Control of a Parallel Hybrid Electric 

Vehicle Using Driving Pattern Recognition,” J. Dyn. Syst. Meas. Control, vol. 124, no. 1, pp. 

141–149, Mar. 2002, doi: 10.1115/1.1434264. 

[26] R. Langari and Jong-Seob Won, “Intelligent energy management agent for a parallel hybrid 

vehicle-part I: system architecture and design of the driving situation identification process,” 

IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 925–934, May 2005, doi: 

10.1109/TVT.2005.844685. 

[27] Jong-Seob Won and R. Langari, “Intelligent energy management agent for a parallel hybrid 

vehicle-part II: torque distribution, charge sustenance strategies, and performance results,” 

IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 935–953, May 2005, doi: 

10.1109/TVT.2005.844683. 

[28] S. Delprat, J. Lauber, T.-M. Guerra, and J. Rimaux, “Control of a Parallel Hybrid Powertrain: 

Optimal Control,” IEEE Trans. Veh. Technol., vol. 53, pp. 872–881, Jun. 2004, doi: 

10.1109/TVT.2004.827161. 

[29] A. Sciarretta, M. Back, and L. Guzzella, “Optimal control of parallel hybrid electric 

vehicles,” IEEE Trans. Control Syst. Technol., vol. 12, no. 3, pp. 352–363, May 2004, doi: 

10.1109/TCST.2004.824312. 

[30] U. Zoelch and D. Schroeder, “Dynamic optimization method for design and rating of the 

components of a hybrid vehicle,” Int. J. Veh. Des., vol. 19, no. 1, pp. 1–13, Jan. 1998, doi: 

10.1504/IJVD.1998.062090. 

[31] A. Brahma, Y. Guezennec, and G. Rizzoni, “Optimal energy management in series hybrid 

electric vehicles,” in Proceedings of the 2000 American Control Conference. ACC (IEEE 

Cat. No.00CH36334), Jun. 2000, vol. 1, pp. 60–64 vol.1, doi: 10.1109/ACC.2000.878772. 



73 

 

[32] Chan-Chiao Lin, Huei Peng, J. W. Grizzle, and Jun-Mo Kang, “Power management strategy 

for a parallel hybrid electric truck,” IEEE Trans. Control Syst. Technol., vol. 11, no. 6, pp. 

839–849, Nov. 2003, doi: 10.1109/TCST.2003.815606. 

[33] L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. García, “Optimization of power management 

in an hybrid electric vehicle using dynamic programming,” Math. Comput. Simul., vol. 73, 

no. 1, pp. 244–254, Nov. 2006, doi: 10.1016/j.matcom.2006.06.016. 

[34] M. Koot, J. T. B. A. Kessels, B. de Jager, W. P. M. H. Heemels, P. P. J. van den Bosch, and 

M. Steinbuch, “Energy management strategies for vehicular electric power systems,” IEEE 

Trans. Veh. Technol., vol. 54, no. 3, pp. 771–782, May 2005, doi: 

10.1109/TVT.2005.847211. 

[35] Yang Bin, Y. Li, Q. Gong, and Z.-R. Peng, “Multi-information integrated trip specific 

optimal power management for plug-in hybrid electric vehicles,” in 2009 American Control 

Conference, Jun. 2009, pp. 4607–4612, doi: 10.1109/ACC.2009.5160626. 

[36] Q. Gong, Y. Li, and Z.-R. Peng, “Trip Based Power Management of Plug-in Hybrid Electric 

Vehicle with Two-Scale Dynamic Programming,” in 2007 IEEE Vehicle Power and 

Propulsion Conference, Sep. 2007, pp. 12–19, doi: 10.1109/VPPC.2007.4544089. 

[37] C.-K. Chau, K. Elbassioni, and C.-M. Tseng, “Drive Mode Optimization and Path Planning 

for Plug-In Hybrid Electric Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 

3421–3432, Dec. 2017, doi: 10.1109/TITS.2017.2691606. 

[38] C.-K. Chau, K. Elbassioni, and C.-M. Tseng, “Fuel minimization of plug-in hybrid electric 

vehicles by optimizing drive mode selection,” in Proceedings of the Seventh International 

Conference on Future Energy Systems, Waterloo, Ontario, Canada, Jun. 2016, pp. 1–11, doi: 

10.1145/2934328.2934341. 

[39] K. Murakami, “Formulation and algorithms for route planning problem of plug-in hybrid 

electric vehicles,” Oper. Res., vol. 18, no. 2, pp. 497–519, Jul. 2018, doi: 10.1007/s12351-

016-0274-5. 

[40] M. M. Nejad, L. Mashayekhy, D. Grosu, and R. B. Chinnam, “Optimal Routing for Plug-In 

Hybrid Electric Vehicles,” Transp. Sci., vol. 51, no. 4, pp. 1304–1325, Mar. 2017, doi: 

10.1287/trsc.2016.0706. 

[41] J. Meng and X. Liu, “MPG Prediction based on BP Neural Network,” in 2006 1ST IEEE 

Conference on Industrial Electronics and Applications, May 2006, pp. 1–3, doi: 

10.1109/ICIEA.2006.257357. 

[42] M. Jamala and S. Abu-Naser, “Predicting MPG for Automobile Using Artificial Neural 

Network Analysis,” Inf. Syst. Res., vol. 2, pp. 5–21, Oct. 2018. 

[43] A. Aliyu and S. A. Adeshina, “Classifying auto-MPG data set using neural network,” 2014 

11th Int. Conf. Electron. Comput. Comput. ICECCO, pp. 1–4, 2014, doi: 

10.1109/ICECCO.2014.6997582. 

[44] J. Topić, B. Škugor, and J. Deur, “Neural Network-Based Modeling of Electric Vehicle 

Energy Demand and All Electric Range,” Energies, vol. 12, no. 7, p. 1396, Apr. 2019, doi: 

10.3390/en12071396. 

[45] H. Alipour, B. Asaei, and G. Farivar, “Fuzzy Logic Based Power Management Strategy for 

Plug-in Hybrid Electric Vehicles with Parallel Configuration,” Mar. 2012. 

[46] “Google Maps,” Google Maps. https://www.google.com/maps (accessed Jan. 30, 2020). 

[47] A. Brooker et al., “ADVISOR Documentation,” ADVISOR Advanced Vehicle Simulator, 

Mar. 26, 2013. http://adv-vehicle-sim.sourceforge.net/ (accessed Jan. 30, 2020). 



74 

 

[48] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb counting method for 

estimating state-of-charge and state-of-health of lithium-ion batteries,” Appl. Energy, vol. 86, 

no. 9, pp. 1506–1511, Sep. 2009, doi: 10.1016/j.apenergy.2008.11.021. 

[49] B. C. Glenn, “Intelligent Control of Parallel Hybrid Electric Vehicles,” The Ohio State 

University, 1999. 

[50] R. Belohlavek and G. J. Klir, Eds., Concepts and Fuzzy Logic. The MIT Press, 2011. 

[51] K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, Calif: Addison-Wesley 

Longman, Inc., 1998. 

[52] O. Akyazi, M. A. Usta, and A. S. Akpinar, “A Self-Tuning Fuzzy Logic Controller for 

Aircraft Roll Control System,” Int. J. Control Sci. Eng., vol. 2, no. 6, pp. 181–188, 2012. 

[53] “Vehicle and Fuel Emissions Testing  - Dynamometer Drive Schedules,” US EPA, Sep. 16, 

2015. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-

schedules. 

[54] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,” 

Medium, Dec. 15, 2018. https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed Mar. 01, 2021). 

[55] “Transportation Secure Data Center,” National Renewable Energy Laboratory, 2017. 

www.nrel.gov/tsdc (accessed Feb. 04, 2020). 

[56] M. West, “Convolutional Neural Networks : The Theory,” Bouvet Norge. 

https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-1 

(accessed Feb. 04, 2020). 

[57] “Convolutional neural networks.,” Jeremy Jordan, Jul. 26, 2017. 

https://www.jeremyjordan.me/convolutional-neural-networks/ (accessed Feb. 12, 2021). 

[58] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ArXiv14126980 

Cs, Jan. 2017, Accessed: Feb. 04, 2020. [Online]. Available: http://arxiv.org/abs/1412.6980. 

[59] “An overview of gradient descent optimization algorithms,” Sebastian Ruder, Jan. 19, 2016. 

https://ruder.io/optimizing-gradient-descent/ (accessed Mar. 02, 2021). 

[60] A. Ng, K. Katanforoosh, and A. Avati, “Deep Learning.” Accessed: Feb. 12, 2021. [Online]. 

Available: http://cs229.stanford.edu/notes2019fall/cs229-notes-deep_learning.pdf. 

[61] “Options for training deep learning neural network - MATLAB trainingOptions.” 

https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html (accessed Feb. 12, 

2021). 

[62] G. Fontaras, N.-G. Zacharof, and B. Ciuffo, “Fuel consumption and CO2 emissions from 

passenger cars in Europe – Laboratory versus real-world emissions,” Prog. Energy Combust. 

Sci., vol. 60, pp. 97–131, May 2017, doi: 10.1016/j.pecs.2016.12.004. 



75 

 

 Appendix 

7.1. Original Trajectory Forecasting Development 

7.1.1. Performance Results Figures 

7.1.1.1. Route 1 

 

Figure 33: Route 1 TF control strategy ADVISOR simulation results 



76 

 

 

Figure 34: Route 1 CS control strategy ADVISOR simulation results 



77 

 

 

Figure 35: Route 1 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 



78 

 

7.1.1.2. Route 2 

 

Figure 36: Route 2 TF control strategy ADVISOR simulation results 



79 

 

 

Figure 37: Route 2 CS control strategy ADVISOR simulation results 



80 

 

 

Figure 38: Route 2 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



81 

 

7.1.1.3. Route 3 

 

Figure 39: Route 3 TF control strategy ADVISOR simulation results 



82 

 

 

Figure 40: Route 3 CS control strategy ADVISOR simulation results 



83 

 

 

Figure 41: Route 3 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



84 

 

7.1.1.4. Route 4 

 

Figure 42: Route 4 TF control strategy ADVISOR simulation results 



85 

 

 

Figure 43: Route 4 CS control strategy ADVISOR simulation results 



86 

 

 

Figure 44: Route 4 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



87 

 

7.1.1.5. Route 5 

 

Figure 45: Route 5 TF control strategy ADVISOR simulation results 



88 

 

 

Figure 46: Route 5 CS control strategy ADVISOR simulation results 



89 

 

 

Figure 47: Route 5 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



90 

 

7.1.1.6. Route 6 

 

Figure 48: Route 6 TF control strategy ADVISOR simulation results 



91 

 

 

Figure 49: Route 6 CS control strategy ADVISOR simulation results 



92 

 

 

Figure 50: Route 6 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



93 

 

7.1.1.7. Route 7 

 

Figure 51: Route 7 TF control strategy ADVISOR simulation results 



94 

 

 

Figure 52: Route 7 CS control strategy ADVISOR simulation results 



95 

 

 

Figure 53: Route 7 CD control strategy ADVISOR simulation results 

 

 

 

 

 

 

 



96 

 

7.1.1.8. Route 8 

 

Figure 54: Route 8 TF control strategy ADVISOR simulation results 



97 

 

 

Figure 55: Route 8 CS control strategy ADVISOR simulation results 



98 

 

 

Figure 56: Route 8 CD control strategy ADVISOR simulation results 

7.1.2. Original Trajectory Forecasting Code 

%% Route Setup Version 5 %% 
clear; clc; 

  
%%Inputs 
dist = input('Length of route in miles: '); 

  
if dist < 11 
    interval_dist = 0.05; 
elseif (dist >= 11) && (dist < 26) 
    interval_dist = 0.15; 
else 
    interval_dist = 0.25; 
end     

  
fprintf('\n') 
while 1 
    speed_lim_per = input('Percentages of route speed limit sections: ')/100; 



99 

 

    if (sum(speed_lim_per)-1) > 0.01 
        disp('Percentages must add to 100%') 
    else 
        break 
    end 
end 

  
fprintf('\n') 
while 1 
    speed_lim_cond = input('Corresponding speed limit conditions: '); 
    if length(speed_lim_cond) ~= length(speed_lim_per) 
        disp('Number of speed limit conditions must match number of speed 

limit sections') 
    else 
        break     
    end 
end 

  
fprintf('\n') 
while 1 
    traffic_per = input('Percentages of route traffic sections: ')/100; 
    if (sum(traffic_per)-1) > 0.01 
        disp('Percentages must add to 100%') 
    else 
        break 
    end 
end 

  
fprintf('\n') 
while 1 
    traffic_cond = input('Corresponding traffic conditions: '); 
    if length(traffic_cond) ~= length(traffic_per) 
        disp('Number of traffic conditions must match number of traffic 

sections') 
    else 
        break 
    end 
end 

  
fprintf('\n') 
while 1 
    slope_per = input('Percentages of route slope sections: ')/100; 
    if (sum(slope_per)-1) > 0.01 
        disp('Percentages must add to 100%') 
    else 
        break 
    end 
end 

  
fprintf('\n') 
while 1 
    slope_cond = input('Corresponding slope conditions: '); 
    if length(slope_cond) ~= length(slope_per) 
        disp('Number of slope conditions must match number of slope 

sections') 
    else 



100 

 

        break 
    end 
end 

  
fprintf('\n') 
Slope_Option = input('Slope consideration, 1 for On or 2 for Off: '); 

  
%%Route Data (miles) 
if (rem(dist,interval_dist) ~= 0) 
    segments = (dist-rem(dist,interval_dist))/interval_dist + 1; 
else 
    segments = round(dist/interval_dist); 
end 

  
route = zeros(1,(segments+1)); 
route(end) = dist; 

  
for i = 1:(segments) 
   route(i) = (i-1)*interval_dist; 
end 

  
%%Speed Limit Data (mph) 
speed_lim = zeros(1,segments+1); 
speed_lim_marker = 0; 

  
Car_speed = zeros(1,segments+1); 

  
for i = 1:length(speed_lim_per) 
    for j = 1:length(speed_lim) 
        if i == 1 
           if route(j) <= round((dist*speed_lim_per(1)),2) 
               speed_lim(j) = speed_lim_cond(1); 
               if j > 1 
                   if speed_lim(j) == 1 
                       Car_speed(j) = 15; 
                   elseif speed_lim(j) == 2 
                       Car_speed(j) = 25; 
                   elseif speed_lim(j) == 3 
                       Car_speed(j) = 35; 
                   elseif speed_lim(j) == 4 
                       Car_speed(j) = 45; 
                   elseif speed_lim(j) == 5 
                       Car_speed(j) = 55; 
                   elseif speed_lim(j) == 6 
                       Car_speed(j) = 65; 
                   elseif speed_lim(j) == 7 
                       Car_speed(j) = 75; 
                   end 
               end 
           end 
        else 
           if (route(j) > (speed_lim_marker)) && (route(j) <= 

round((speed_lim_marker + dist*speed_lim_per(i)),2)) 
               speed_lim(j) = speed_lim_cond(i); 
               if speed_lim(j) == 1 



101 

 

                   Car_speed(j) = 15; 
               elseif speed_lim(j) == 2 
                   Car_speed(j) = 25; 
               elseif speed_lim(j) == 3 
                   Car_speed(j) = 35; 
               elseif speed_lim(j) == 4 
                   Car_speed(j) = 45; 
               elseif speed_lim(j) == 5 
                   Car_speed(j) = 55; 
               elseif speed_lim(j) == 6 
                   Car_speed(j) = 65; 
               elseif speed_lim(j) == 7 
                   Car_speed(j) = 75; 
               end 
           end 
        end 
    end 
    speed_lim_marker = speed_lim_marker + dist*speed_lim_per(i); 
end 

  
%%Traffic Data 
traffic = zeros(1,segments+1); 
traf_marker = 0; 

  
for i = 1:length(traffic_per) 
    for j = 1:length(traffic) 
        if i == 1 
           if route(j) <= round((dist*traffic_per(1)),2) 
               traffic(j) = traffic_cond(1); 
               if traffic(j) == 1 
                   Car_speed(j) = Car_speed(j)*(randi([95,100],1,1)/100); 
               elseif traffic(j) == 2 
                   Car_speed(j) = Car_speed(j)*(randi([60,65],1,1)/100); 
               else 
                   Car_speed(j) = Car_speed(j)*(randi([20,25],1,1)/100); 
               end 
           end 
        else 
           if (route(j) > (traf_marker)) && (route(j) <= round((traf_marker + 

dist*traffic_per(i)),2)) 
               traffic(j) = traffic_cond(i); 
               if traffic(j) == 1 
                   Car_speed(j) = Car_speed(j)*(randi([95,100],1,1)/100); 
               elseif traffic(j) == 2 
                   Car_speed(j) = Car_speed(j)*(randi([60,65],1,1)/100); 
               else 
                   Car_speed(j) = Car_speed(j)*(randi([20,25],1,1)/100); 
               end 
           end 
        end 
    end 
    traf_marker = traf_marker + dist*traffic_per(i); 
end 

  
%%Slope Data 
slope = zeros(1,segments+1); 



102 

 

slope_marker = 0; 
road_slope = zeros(1,segments+1); 

  
for i = 1:length(slope_per) 
    for j = 1:length(slope) 
        if i == 1 
           if route(j) <= round((dist*slope_per(1)),2) 
               slope(j) = slope_cond(1); 
               if slope(j) == 1 
                   road_slope(j) = -0.05; 
               elseif slope(j) == 2 
                   road_slope(j) = 0; 
               else 
                   road_slope(j) = 0.05; 
               end 
           end 
        else 
           if (route(j) > (slope_marker)) && (route(j) <= round((slope_marker 

+ dist*slope_per(i)),2)) 
               slope(j) = slope_cond(i); 
               if slope(j) == 1 
                   road_slope(j) = -0.05; 
               elseif slope(j) == 2 
                   road_slope(j) = 0; 
               else 
                   road_slope(j) = 0.05; 
               end 
           end 
        end 
    end 
    slope_marker = slope_marker + dist*slope_per(i); 
end 

  
%%Time Calculation 
Time = zeros(1,segments+1); 

  
for i = 2:length(Time) 
    Time(i) = Time(i-1) + interval_dist/((1/3600)*((Car_speed(i)+Car_speed(i-

1))/2)); 
end 

  
cyc_mph = [Time' Car_speed']; 
cyc_slope = [1609.34*route' road_slope']; 
save('C:\Users\Joseph\Documents\advisor\data\drive_cycle\CYC_TrajFore_Fuz.mat

','cyc_mph','cyc_slope','Slope_Option') 
save('route.mat') 

  
%%Plots 
figure 
plot(route,Car_speed) 
title('Car Speed vs. Distance') 
xlabel('Distance (miles)') 
ylabel('Car Speed (mph)') 

  
figure 
plot(Time,Car_speed) 



103 

 

title('Car Speed vs. Time') 
xlabel('Time (secs)') 
ylabel('Car Speed (mph)') 

  
figure 
plot(route,road_slope) 
title('Grade vs. Distance') 
xlabel('Distance (miles)') 
ylabel('Grade (mph)') 

  
%% Path Identifier Version 5 %% 
clear; clc; 

  
fprintf('\n') 
Bat_Type = input('1 if Pb battery, 2 if Li battery: '); fprintf('\n') 
Ah_Cap = input('Battery Capacity (ah): '); fprintf('\n') 
Max_SOC = input('Max SOC: '); fprintf('\n') 
Initial_SOC = input('Initial SOC: '); fprintf('\n') 
Lowest_SOC = input('Minimum SOC: '); fprintf('\n') 
SOC_Coeff = input('SOC Coefficient Adjustment: '); fprintf('\n') 
Drive_Type = input('1 for EV/ICE capability, 2  EV/Blended/ICE capability: 

'); fprintf('\n') 
load('route.mat') 

  
%%Assigning Section Priority            
Ant_Spd_Matrix = [15 9.75 3.75; % used numbers in routeV4 code that give the 

carspeed profile 
                  25 16.25 6.25   %   1  0.65   0.25 
                  35 22.75 8.75   %15 -  ----   ---- 
                  45 29.25 11.25  %25 -  ----   ---- 
                  55 35.75 13.75  %35 -  ----   ---- 
                  65 42.25 16.25  %45 -  ----   ---- 
                  75 48.75 18.75];%55 -  ----   ---- 
                                  %65 -  ----   ---- 
                                  %75 -  ----   ---- 

                                   
Priority_Matrix = [3 3 3; % 1- least priority (ICE); 2- medium priority 

(Blended); 3- highest priority (EV) 
                   3 3 3; % v <= 25 is EV Mode, 25 < v < 55 Blended Mode, v 

>= 55 ICE Mode 
                   2 3 3; 
                   2 2 3; 
                   1 2 3; 
                   1 2 3; 
                   1 2 3];            

  
Matrix = [route; traffic; speed_lim; slope; zeros(size(route)); 

zeros(size(route))]; 

  
for i = 1:length(route) 
    if Matrix(4,i) == 3 
        Matrix(5,i) = 1; %high road grade means this should be of least 

priority 
    else  
        Matrix(5,i) = Priority_Matrix(Matrix(3,i),Matrix(2,i)); 



104 

 

    end 
end 

  
%%Calculating Section Size and Distance 
Section_Size = 0; 

  
j = 0; 
for i = 2:length(Matrix(5,:)) 
    if Matrix(5,i) == Matrix(5,i-1) 
        j = j + 1; 
    else 
        Section_Size = [Section_Size, j]; %#ok<AGROW> 
        j = 1; 
    end 
end 

  
Section_Size = [Section_Size(2:end), (i-sum(Section_Size)-1)]; 
Section_Dist = interval_dist*Section_Size; 

  
%%SOC Needed per Section 
ampHrs_per_Segment = zeros(size(route)); 
%%%%%%%%%%%%%%%%%% 
for i = 2:length(ampHrs_per_Segment) 
    if Matrix(5,i) == 3 %SOC equation for priority 3 
        if Matrix(4,i) == 3 
            ampHrs_per_Segment(i) = 

interval_dist*2*0.87*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); %amount required double for uphill 
        else 
            ampHrs_per_Segment(i) = 

interval_dist*0.87*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); 
        end 
    elseif Matrix(5,i) == 2 %SOC equation for priority 2 
        if Matrix(4,i) == 3 
            ampHrs_per_Segment(i) = 

interval_dist*2*0.42*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); %amount required double for uphill 
        else 
            ampHrs_per_Segment(i) = 

interval_dist*0.42*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); 
        end 
    else 
        if Matrix(4,i) == 3 %SOC equation for priority 1 
            ampHrs_per_Segment(i) = 

interval_dist*2*0.34*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); %amount required double for uphill 
        else 
            ampHrs_per_Segment(i) = 

interval_dist*0.34*(0.0198*(Ant_Spd_Matrix(Matrix(3,i),Matrix(2,i))) + 

0.1689); 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%% 



105 

 

ampHrs_per_Segment = ampHrs_per_Segment(2:end); 

  
Section_AmpHrs = zeros(size(Section_Size)); 

  
for i = 1:length(Section_AmpHrs) 
    if i == 1 
        Section_AmpHrs(i) = sum(ampHrs_per_Segment(1:Section_Size(i))); 
    else 
        Section_AmpHrs(i) = sum(ampHrs_per_Segment((1+sum(Section_Size(1:(i-

1)))):sum(Section_Size(1:i)))); 
    end 
end 

  
if Bat_Type == 1 
    Section_SOC = Section_AmpHrs/(Ah_Cap*0.55); 
else 
    Section_SOC = Section_AmpHrs/Ah_Cap; 
end 

  
%%Sorting Sections by Priority and Length 
Section_Priority = size(Section_Size); 

  
for i = 1:length(Section_Size) 
    Section_Priority(i) = Matrix(5,(1+sum(Section_Size(1:i)))); 
end 

  
Section_Sort = [Section_Priority; Section_Dist; Section_SOC]'; 
[Section_Sort,index] = sortrows(Section_Sort,'descend'); 

  
%%Setting Section SOC_min 
Section_SOC_Mins = zeros(1,length(index)); 
if Initial_SOC == Max_SOC 
    Initial_SOC = Initial_SOC - 0.005; 
end 

  
allowed_SOC = Initial_SOC - Lowest_SOC; 

  
%%% Determine settings for determining sections' SOC_Min 
if Drive_Type == 1 
    SOC_setting = 1; 
else 
    if allowed_SOC >= (round(sum(Section_Sort(:,3)),3) - 0.125) %Enough for 

whole route in all electric mode; launch speed that includes all section 

speeds 
        SOC_setting = 1; 
    else 
        k_EV = length(find(Section_Sort(:,1) == 3)); 
        k_Bl = length(find(Section_Sort(:,1) == 2)); 
        if (allowed_SOC < (round(sum(Section_Sort(:,3)),3)) - 0.125) && 

(allowed_SOC >= round(sum(Section_Sort(1:(k_EV+k_Bl),3)),3)) %Enough for EV 

and Blended suggested sections in all electric mode; launch speed that 

includes EV and Blended section speeds 
            SOC_setting = 2; 
        elseif (allowed_SOC < round(sum(Section_Sort(1:(k_EV+k_Bl),3)),3)) && 

(allowed_SOC >= round(sum(Section_Sort(1:k_EV,3)),3)) %Enough for just EV 



106 

 

suggested sections in all eletric mode; launch speed that includes EV section 

speeds 
            SOC_setting = 3; 
        elseif allowed_SOC < round(sum(Section_Sort(1:k_EV,3)),3) %SOC will 

run out in the EV suggested sections; launch speed that includes EV section 

speeds 
            SOC_setting = 4; 
        end 
    end 
end 

  
%%% Different SOC settings for choosing SOC_Min values 
if SOC_setting == 1 
    flip_index = fliplr(index'); 

  

    for i = 1:(length(Section_SOC_Mins) - 1) 
        if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
            Section_SOC_Mins(flip_index(i)) = 0; 
        else 
            Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
            allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
        end 
    end 

  
    Section_SOC_Mins(index(1)) = allowed_SOC; 
    Allowed_SOC = Section_SOC_Mins; 

  
    Section_SOC_Mins = Lowest_SOC*ones(size(Section_SOC_Mins)); 

     
elseif SOC_setting == 2 
    flip_index = fliplr(index'); 

  
    for i = 1:(length(Section_SOC_Mins) - 1) 
        if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
            Section_SOC_Mins(flip_index(i)) = 0; 
        else 
            Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
            allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
        end 
    end 

  
    Section_SOC_Mins(index(1)) = allowed_SOC; 
    residual = sum(Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end)))); 
    blend_ratios = 

Section_Dist(sort(index((k_EV+k_Bl+1):end)))/sum(Section_Dist(sort(index((k_E

V+k_Bl+1):end)))); 
    Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end))) = residual*blend_ratios; 
    Allowed_SOC = Section_SOC_Mins; 

  
    for i = 1:length(Section_SOC_Mins) 
        if i == 1 
            Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
        else 



107 

 

            Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 
        end 
    end 

     
    blended_Section_SOC_Mins = 

Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end))); 
    blended_Section_distances = Section_Dist(sort(index((k_EV+k_Bl+1):end))); 

  
elseif SOC_setting == 3 
    flip_index = fliplr(index'); 

  
    for i = 1:(length(Section_SOC_Mins) - 1) 
        if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
            Section_SOC_Mins(flip_index(i)) = 0; 
        else 
            Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
            allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
        end 
    end 

  
    Section_SOC_Mins(index(1)) = allowed_SOC; 
    residual = sum(Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl))))); 
    blend_ratios =  

Section_Dist(sort(index((k_EV+1):(k_EV+k_Bl))))/sum(Section_Dist(sort(index((

k_EV+1):(k_EV+k_Bl))))); 
    Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl)))) = 

residual*blend_ratios; 
    Allowed_SOC = Section_SOC_Mins; 

  
    for i = 1:length(Section_SOC_Mins) 
        if i == 1 
            Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
        else 
            Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 
        end 
    end 

     
    blended_Section_SOC_Mins = 

Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl)))); 
    blended_Section_distances = 

Section_Dist(sort(index((k_EV+1):(k_EV+k_Bl)))); 

     
elseif SOC_setting == 4 
    flip_index = fliplr(index'); 

  
    for i = 1:(length(Section_SOC_Mins) - 1) 
        if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
            Section_SOC_Mins(flip_index(i)) = 0; 
        else 
            Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
            allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 



108 

 

        end 
    end 

  
    Section_SOC_Mins(index(1)) = allowed_SOC; 
    Allowed_SOC = Section_SOC_Mins; 

  
    for i = 1:length(Section_SOC_Mins) 
        if i == 1 
            Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
        else 
            Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 
        end 
    end 

     

end 

  
%%SOC Throughout Route 
SOC_Mins = zeros(1,(length(route)-1)); 
j = 1 + length(Section_SOC_Mins); 

  
for i = 1:length(Section_SOC_Mins) 
    if i == 1 
        SOC_Mins(1:Section_Size(i)) = 

Section_SOC_Mins(i)*ones(1,Section_Size(i)); 
    else 
        SOC_Mins((1+sum(Section_Size(1:(i-1)))):sum(Section_Size(1:i))) = 

Section_SOC_Mins(i)*ones(1,Section_Size(i)); 
    end  
end 

  
SOC_Mins = [SOC_Mins(1) SOC_Mins]; 
Matrix(6,:) = SOC_Mins; 
Section_SOC_Min_Dist = [Section_SOC_Mins; Section_Dist]; 
if SOC_setting == 1 || SOC_setting == 4 
    blended_SOC_and_dist = [0;0]; 
else 
    blended_SOC_and_dist = [blended_Section_SOC_Mins; 

blended_Section_distances]; 
end 

  
save('C:\Users\Joseph\Documents\advisor\models\Traj_Fore_Fuzzy_SOC_Variables.

mat','Section_SOC_Min_Dist','Matrix','SOC_setting','blended_SOC_and_dist') 
save('Traj_Fore_Fuzzy_SOC_Variables.mat') 

  
disp(Section_Dist) 
disp(Section_Priority) 
disp(Section_SOC) 
disp(SOC_setting) 
disp(Allowed_SOC) 
disp(Section_SOC_Mins) 
disp(blended_SOC_and_dist) 

  
%% Fuzzy Block Controller Setup Version 5 %% 
if Drive_Type == 2 



109 

 

    clear; clc 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
    %%Meant for Two Inputs and One Output with same # of membership functions 

for all%% 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

  
    %%Number of Membership Functions 
    fprintf('\n') 

  
    while 1 
        tri = input('Choose 5 or 7 membership functions for variables: '); 
        if ((tri == 5) || (tri == 7)) 
            break 
        else 
            disp('Choose either 5 or 7.') 
        end 
    end 

  
    if (tri == 5) 
        rule = [5 5 5 4 3; 
                5 5 4 3 2; 
                5 4 3 2 1; 
                4 3 2 1 1; 
                3 2 1 1 1]; 
    elseif (tri == 7) 
        rule = [7 7 7 7 6 5 4; 
                7 7 7 6 5 4 3; 
                7 7 6 5 4 3 2; 
                7 6 5 4 3 2 1; 
                6 5 4 3 2 1 1; 
                5 4 3 2 1 1 1; 
                4 3 2 1 1 1 1];  
    end 

  
    %%Error Input Triangles 
    fprintf('\n') 

  
    sat1 = input('Upper/Lower point of saturation for error range: '); 
    b1 = (2*sat1)/(((tri+1)/2)-1); 
    limit1 = sat1 + (b1/2); 

  
    x1 = zeros(2*tri,10); 
    y1 = zeros(2*tri,10); 

  
    for i = 1:(tri+1) 
         x1(i,:) = linspace((-limit1+((i-1)*(b1/2))),(-

limit1+(i*(b1/2))),10); 
    end 

  
    x1((tri+2):(2*tri),:) = x1(2:tri,:); 

  



110 

 

    for i = 1:(2*tri) 
        if ((i == 1) || (i == (tri+1))) 
            y1(i,:) = ones(1,10); 
        else 
            if (rem(i,2) ~= 0) 
                y1(i,:) = (2/b1)*(x1(i,:) - x1(i,1)); 
            else 
                y1(i,:) = -(2/b1)*(x1(i,:) - x1(i,1)) + 1; 
            end 
        end 
    end 

  
    %%d(Error)/dt Triangles Variables 
    fprintf('\n')  

  

    sat2 = input('Upper/Lower point of saturation for change in error range: 

'); 
    b2 = (2*sat2)/(((tri+1)/2)-1); 
    limit2 = sat2 + (b2/2); 

  
    x2 = zeros(2*tri,10); 
    y2 = zeros(2*tri,10); 

  
    for i = 1:(tri+1) 
         x2(i,:) = linspace((-limit2+((i-1)*(b2/2))),(-

limit2+(i*(b2/2))),10); 
    end 

  
    x2((tri+2):(2*tri),:) = x2(2:tri,:); 

  
    for i = 1:(2*tri) 
        if ((i == 1) || (i == (tri+1))) 
            y2(i,:) = ones(1,10); 
        else 
            if (rem(i,2) ~= 0) 
                y2(i,:) = (2/b2)*(x2(i,:) - x2(i,1)); 
            else 
                y2(i,:) = -(2/b2)*(x2(i,:) - x2(i,1)) + 1; 
            end 
        end 
    end 

  
    %%Output Triangles Variables 
    sat3 = 0.4; % hard set so x-axis allows [-0.4 0.4] for possible K output 
    b3 = (2*sat3)/(((tri+1)/2)-1); 
    limit3 = sat3 + (b3/2); %input('Upper/Lower limit for output range: ') 

  
    x3 = zeros(2*tri,10); 
    y3 = zeros(2*tri,10); 

  
    for i = 1:(tri+1) 
         x3(i,:) = linspace((-limit3+((i-1)*(b3/2))),(-

limit3+(i*(b3/2))),10); 
    end 

  



111 

 

    x3((tri+2):(2*tri),:) = x3(2:tri,:); 

  
    x3 = x3 + sat3; %shift possible K output to [0 0.8] 

  
    for i = 1:(2*tri) 
        if (rem(i,2) ~= 0) 
            y3(i,:) = (2/b3)*(x3(i,:) - x3(i,1)); 
        else 
            y3(i,:) = -(2/b3)*(x3(i,:) - x3(i,1)) + 1; 
        end 
    end 

  
    out_midpoint = zeros(1,tri); 

  
    for i = 1:tri 
        out_midpoint(i) = -limit3 + i*(b3/2); 
    end 

  
    out_midpoint = out_midpoint + sat3; %%shift possible K output to [0 0.8] 

  
    %%Controller (Determining Premise and Conclusion Certainty) 
    fprintf('\n') 
    while 1 
        Prem_Method = input('Choose either Minimum or Product for premise 

certainty: ','s'); 
        if (Prem_Method == 'Minimum') 
            Prem_Method = 1; 
            break 
        elseif (Prem_Method == 'Product') 
            Prem_Method = 2; 
            break 
        else 
            disp('Must choose Minimum or Product.') 
        end 
    end 
    fprintf('\n') 
    while 1 
        Defuzz_Method = input('Choose either COG or C_A defuzzification 

method: ','s'); 
        if (Defuzz_Method == 'COG') 
            Defuzz_Method = 1; 
            break 
        elseif (Defuzz_Method == 'C_A') 
            Defuzz_Method = 2; 
            break 
        else 
           disp('Must choose COG or C_A.') 
        end 
    end 

  
    

save('C:\Users\Joseph\Documents\advisor\models\Traj_Fore_Fuzzy_Calc_Variables

.mat') 
    save('Traj_Fore_Fuzzy_Calc_Variables.mat') 

  



112 

 

    %%Plots 
    figure 
    subplot(3,1,1) 
    for m = 1:1:(2*tri) 
    plot(x1(m,:),y1(m,:),'b') 
    hold on 
    end 
    grid on 
    ylabel('Certainty') 
    xlabel('e(t)') 
    ylim([0 1]) 

  
    subplot(3,1,2) 
    for m = 1:1:(2*tri) 
    plot(x2(m,:),y2(m,:),'b') 
    hold on 
    end 
    grid on 
    ylabel('Certainty') 
    xlabel('delta e(t)') 
    ylim([0 1]) 

  

  
    subplot(3,1,3) 
    for m = 1:1:(2*tri) 
    plot(x3(m,:),y3(m,:),'b') 
    hold on 
    end 
    grid on 
    ylabel('Certainty') 
    xlabel('u(t)') 
    ylim([0 1]) 
    clear; 
end 
clear; 
advisor; 

 

7.1.3. ADVISOR Code Additives 

7.1.3.1. Parallel TF Vehicle Control Block:  Engine Shutoff for EV Only Routes Function 

Code 

function y = fcn(u, SOC) 
FSC = load('Traj_Fore_Fuzzy_SOC_Variables.mat'); 
SOC_setting = FSC.SOC_setting; 

  
if (SOC_setting == 1 && SOC >= 0.25) 
    y = 0; 
else 
    y = u; 



113 

 

end 

 

7.1.3.2. Fuzzy TF Control Block: SOC Min Assignment Function Code 

function soc_min = fcn(distance,time) 
FSC = load('Traj_Fore_Fuzzy_SOC_Variables.mat'); 
Matrix = FSC.Matrix; 
[rows,~] = size(Matrix); 

  
if (rows == 6) 
    distance = distance*0.000621371; 
    if distance == 0 
        soc_min = Matrix(6,1); 
    else 
        a = find(Matrix(1,:) > distance); 
        if sum(a) == 0 
            soc_min = Matrix(6,end); 
        else 
            soc_min = Matrix(6,(a(1)-1)); 
        end 
    end 
elseif (rows == 2) 
    soc_min = Matrix(2,(time+1)); 
end 

 

7.1.3.3. Fuzzy TF Control Block: Control Strategy Function Code 

function 

[SOC_init_cur,Dist_init_cur,K,avail_trq,element_cur,priority_cur,desired,erro

r] = 

fcn(SOC_init_prev,Dist_init_prev,req_trq,distance,time,element_prev,SOC,prior

ity_prev,SOC_goal,error_prev) 
%% Initialize Variables 
a = 0; 
element_cur = 0; 
desired = 0; 
K = 0; 
Switch = 0; 
error = 0; 
SOC_init_cur = 0; 
Dist_init_cur = 0; 

  
%%%% Fuzzy SOC Variables C:\Users\Joseph\Documents\advisor\models 
FSC = load('Traj_Fore_Fuzzy_SOC_Variables.mat'); 
SOC_setting = FSC.SOC_setting; 
Matrix = FSC.Matrix; 
[rows,~] = size(Matrix); 
blended_SOC_and_dist = FSC.blended_SOC_and_dist; 

  
%%%% Fuzzy Calculation Variables C:\Users\Joseph\Documents\advisor\models 
FV = load('Traj_Fore_Fuzzy_Calc_Variables.mat'); 



114 

 

b1 = FV.b1; 
sat1 = FV.sat1; 
x1 = FV.x1; 
y1 = FV.y1; 
b2 = FV.b2; 
sat2 = FV.sat2; 
x2 = FV.x2; 
y2 = FV.y2; 
b3 = FV.b3; 
% x3 = FV.x3; 
% y3 = FV.y3; 
tri = FV.tri; 
Prem_Method = FV.Prem_Method; 
rule = FV.rule; 
Defuzz_Method = FV.Defuzz_Method; 
out_midpoint = FV.out_midpoint; 

  
%% Determine Priority Value 
if (rows == 6) 
    distance = distance*0.000621371; 

  
    if distance == 0 
        priority = Matrix(5,1); 
        SOC_Min = Matrix(6,1); 
    else 
        a = find(Matrix(1,:) > distance); 
        if sum(a) == 0 
            priority = Matrix(5,end); 
            SOC_Min = Matrix(6,end); 
        else 
            priority = Matrix(5,(a(1)-1)); 
            SOC_Min = Matrix(6,(a(1)-1)); 
        end 
    end 
elseif (rows == 2) 
    priority = Matrix(1,(time+1)); 
    SOC_Min = Matrix(2,(time+1)); 
end 

  
%% Determine Which Blended Section and SOC usage goal 
if SOC_setting == 1 
    element_cur = 0; 
%     z = 0; 
    K = 0; %Consider using K = 1 

     
%     Switch = 0; 
elseif SOC_setting == 2 
    if priority == 1 
        if distance == 0 && element_prev == 0 
            element_cur = element_prev + 1; 
            desired = (SOC - 

blended_SOC_and_dist(1,element_cur))/blended_SOC_and_dist(2,element_cur); 
            SOC_init_cur = SOC; 
            Dist_init_cur = distance; 
        elseif distance ~= 0 && priority_prev ~= 1 
            element_cur = element_prev + 1; 



115 

 

            desired = (SOC - 

blended_SOC_and_dist(1,element_cur))/blended_SOC_and_dist(2,element_cur); 
            SOC_init_cur = SOC; 
            Dist_init_cur = distance; 
%         elseif distance ~= 0 && (a(1)-2) > 0 
%             if priority_prev ~= 1 %Matrix(5,(a(1)-2)) ~= 1 
%                 w = element + 1; 
%                 z = (SOC - 

blended_SOC_and_dist(1,w))/blended_SOC_and_dist(2,w); 
%             end 
        else 
            element_cur = element_prev; 
            desired = SOC_goal; 
            SOC_init_cur = SOC_init_prev; 
            Dist_init_cur = Dist_init_prev; 
        end 

  
        Switch = 1; 
    else 
        element_cur = element_prev; 
%         z = 0; 
        K = 0; %Consider using K = 1 

  
%         Switch = 0; 
    end 
elseif SOC_setting == 3 
    if priority == 1 
        element_cur = element_prev; 
%         z = 0; 
        if ((SOC - SOC_Min) >= 0.01) 
            K = 0.85; 
        elseif ((SOC - SOC_Min) >= 0.005) 
            K = 0.9; 
        else 
            K = 1; 
        end 

  
%         Switch = 0; 
    elseif priority == 2 
        if distance == 0 && element_prev == 0 
            element_cur = element_prev + 1; 
            desired = (SOC - 

blended_SOC_and_dist(1,element_cur))/blended_SOC_and_dist(2,element_cur); 
            SOC_init_cur = SOC; 
            Dist_init_cur = distance; 
        elseif distance ~= 0 && priority_prev ~= 2 
            element_cur = element_prev + 1; 
            desired = (SOC - 

blended_SOC_and_dist(1,element_cur))/blended_SOC_and_dist(2,element_cur); 
            SOC_init_cur = SOC; 
            Dist_init_cur = distance; 
%         elseif distance ~= 0 && (a(1)-2) > 0 
%             if priority_prev ~= 2 %Matrix(5,(a(1)-2)) ~= 2 
%                 w = element + 1; 
%                 z = (SOC - 

blended_SOC_and_dist(1,w))/blended_SOC_and_dist(2,w); 



116 

 

%             end 
        else 
            element_cur = element_prev; 
            desired = SOC_goal; 
            SOC_init_cur = SOC_init_prev; 
            Dist_init_cur = Dist_init_prev; 
        end 

  
        Switch = 1; 
    else 
        element_cur = element_prev; 
%         z = 0; 
        K = 0; %Consider using K = 1 

  
%         Switch = 0; 
    end 
elseif SOC_setting == 4 %possibly combine with SOC_setting 3 with if 

statement for EV section K depending on setting 3 or 4 
    element_cur = 0; 
%     z = 0; 

     
%     Switch = 0; 
    if priority == 1 || priority == 2 
        if ((SOC - SOC_Min) >= 0.01) 
            K = 0.85; 
        elseif ((SOC - SOC_Min) >= 0.005) 
            K = 0.9; 
        else 
            K = 1; 
        end 
    else 
        K = 0; 
    end 
end 

  
if (SOC <= SOC_Min) 
    if (SOC_Min == 0.25) 
        Switch = 0; 
    end 
    K = 1; 
    Switch = 0; 
end 

     
%% Determine Available Torque K Coefficient 
if Switch == 1 
    if distance == 0 || distance == Dist_init_cur 
        error = 0; 
        del_error = error; 
    else 
        error = (desired - (SOC_init_cur-SOC)/(distance-

Dist_init_cur))/desired; 
        del_error = error - error_prev; 
    end 

     
%%%%%%%%%FUZZY LOGIC%%%%%%%%% 



117 

 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
    %%Meant for Two Inputs and One Output with same # of membership functions 

for all%% 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

     
    %%%% Controller (Finding Input Certainties and Triangle Numbers) 
    i = [0 0]; % Error triangle numbers, i(1) for odd and i(2) for even 
    j = [0 0]; % Change-in-Error triangle numbers, j(1) for odd and j(2) for 

even 

  
    mf_cer1 = zeros(1,2); % Error triangle certainties, mf_cer1(1) for odd 

and mf_cer1(2) for even 
    mf_cer2 = zeros(1,2); % Change-in-Error triangle certainties, mf_cer2(1) 

for odd and mf_cer2(2) for even 

  
    for k1 = 1:(2*tri)%Checks saturation and greater; checks for when 

centertainties are less than 1 
        if (error <= -sat1) 
            mf_cer1(1) = 1; 
            i(1) = 1; 
        elseif (error >= sat1) 
            mf_cer1(1) = 1; 
            i(1) = tri; 
        elseif ((error > x1(k1,1)) && (error < x1(k1,end)) && (abs(error) < 

sat1)) 
            if (rem(k1,2) ~= 0) 
                if (mf_cer1(1) == 0) 
                    mf_cer1(1) = (2/b1)*(error - x1(k1,1)); 
                    if (k1 <= (tri + 1)) 
                        i(1) = k1; 
                    elseif (k1 > (tri + 1)) 
                        i(1) = k1 - tri; 
                    end 
                else 
                    mf_cer1(2) = (2/b1)*(error - x1(k1,1)); 
                    if (k1 <= (tri + 1)) 
                        i(2) = k1; 
                    elseif (k1 > (tri + 1)) 
                        i(2) = k1 - tri; 
                    end 
                end 
            else 
                if (mf_cer1(1) == 0) 
                    mf_cer1(1) = -(2/b1)*(error - x1(k1,1)) + 1; 
                    if (k1 <= (tri + 1)) 
                        i(1) = k1 - 1; 
                    elseif (k1 > (tri + 1)) 
                        i(1) = k1 - tri - 1; 
                    end 
                else 
                    mf_cer1(2) = -(2/b1)*(error - x1(k1,1)) + 1; 
                    if (k1 <= (tri + 1)) 



118 

 

                        i(2) = k1 - 1; 
                    elseif (k1 > (tri + 1)) 
                        i(2) = k1 - tri - 1; 
                    end 
                end 
            end 
        end 
    end 

  
    if ((rem(error,(b1/2)) == 0) && (abs(error) < sat1))%Checks when 

certainties are one 
       mf_cer1(1) = 1; 
       for k1 = 1:(2*tri) 
           if ((error == x1(k1,1)) && (1 == y1(k1,1))) 
               if (k1 <= (tri + 1)) 
                   i(1) = k1 - 1; 
               elseif (k1 > (tri + 1)) 
                   i(1) = k1 - tri - 1; 
               end 
           end 
       end 
    end 

  
    for k1 = 1:(2*tri) %Checks saturation and greater; checks for when 

centertainties are less than 1 
        if (del_error <= -sat2) 
            mf_cer2(1) = 1; 
            j(1) = 1; 
        elseif (del_error >= sat2) 
            mf_cer2(1) = 1; 
            j(1) = tri; 
        elseif ((del_error > x2(k1,1)) && (del_error < x2(k1,end)) && 

(abs(del_error) < sat2)) 
            if (rem(k1,2) ~= 0) 
                if (mf_cer2(1) == 0) 
                    mf_cer2(1) = (2/b2)*(del_error - x2(k1,1)); 
                    if (k1 <= (tri + 1)) 
                        j(1) = k1; 
                    elseif (k1 > (tri + 1)) 
                        j(1) = k1 - tri; 
                    end 
                else 
                    mf_cer2(2) = (2/b2)*(del_error - x2(k1,1)); 
                    if (k1 <= (tri + 1)) 
                        j(2) = k1; 
                    elseif (k1 > (tri + 1)) 
                        j(2) = k1 - tri; 
                    end 
                end 
            else 
                if (mf_cer2(1) == 0) 
                    mf_cer2(1) = -(2/b2)*(del_error - x2(k1,1)) + 1; 
                    if (k1 <= (tri + 1)) 
                        j(1) = k1 - 1; 
                    elseif (k1 > (tri + 1)) 
                        j(1) = k1 - tri - 1; 



119 

 

                    end 
                else 
                    mf_cer2(2) = -(2/b2)*(del_error - x2(k1,1)) + 1; 
                    if (k1 <= (tri + 1)) 
                        j(2) = k1 - 1; 
                    elseif (k1 > (tri + 1)) 
                        j(2) = k1 - tri - 1; 
                    end 
                end 
            end 
         end 
    end 

  
    if ((rem(del_error,(b2/2)) == 0) && (abs(del_error) < sat2))%Checks when 

certainties are one 
       mf_cer2(1) = 1; 
       for k1 = 1:(2*tri) 
           if ((del_error == x2(k1,1)) && (1 == y2(k1,1))) 
               if (k1 <= (tri + 1)) 
                   j(1) = k1 - 1; 
               elseif (k1 > (tri + 1)) 
                   j(1) = (k1 - (tri + 1)); 
               end 
           end 
       end 
    end 

  
    %%%% Controller (Determining Premise and Conclusion Certainty) 
    prem = zeros(2,2); 

  
    for k1 = [1 2] 
        for k2 = [1 2] 
            if (Prem_Method == 1) 
                prem(k1,k2) = min(mf_cer1(k1),mf_cer2(k2)); 
            elseif (Prem_Method == 2) 
                prem(k1,k2) = (mf_cer1(k1)*mf_cer2(k2)); 
            end 
        end 
    end 

  
    leng = length(find(prem~=0)); 
    u = zeros(leng,2); 
    k = 1; 

  
    for k1 = [1 2] 
        for k2 = [1 2] 
            if prem(k1,k2) ~= 0 
               u(k,:) = [prem(k1,k2) rule(i(k1),j(k2))]; 
               k = k + 1; 
            end 
        end 
    end 

  
    Denom = zeros(1,leng); 
    Num = zeros(1,leng); 



120 

 

  
    if (Defuzz_Method == 1) 
        if (Prem_Method == 1) 
            Denom = b3.*(u(:,1)' - 0.5.*(u(:,1)'.^2)); 
        elseif (Prem_Method == 2) 
            Denom = 0.5.*b3.*u(:,1)'; 
        end 
        Num = out_midpoint(u(:,2)).*Denom; 
    elseif (Defuzz_Method == 2) 
        Denom = u(:,1)'; 
        Num = out_midpoint(u(:,2)).*Denom; 
    end 
    K = sum(Num)/sum(Denom); 
%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  
if K < 0 
    K = 0; 
end 

  
avail_trq = K*req_trq; 
priority_cur = priority; 

 

 

7.2. Convolutional Neural Network Code 

7.2.1.  Data Preprocessing 

close all; clear; clc; 

  
file_list = dir('..\drive_cycles_advisor_results_equal_num_1_0L_PB25'); 
file_list = file_list(5:end); 

  
V_pos = 0; 
V_neg = 0; 
A_pos = 0; 
A_neg = 0; 

  
for cycle = 1:length(file_list) 
    %% CNN Input Data Range Extraction %% 

     
    cycle_data = 

['..\drive_cycles_advisor_results_equal_num_1_0L_PB25\',file_list(cycle).name

]; 
    load(cycle_data) 

     
    if max(drive_cycle(:,2)) > V_pos 
        V_pos = max(drive_cycle(:,2)); 
    end 

     
    if min(drive_cycle(:,2)) < V_neg 
        V_neg = min(drive_cycle(:,2)); 



121 

 

    end 

     
    if max(drive_cycle(:,3)) > A_pos 
        A_pos = max(drive_cycle(:,3)); 
    end 

     
    if min(drive_cycle(:,3)) < A_neg 
        A_neg = min(drive_cycle(:,3)); 
    end         
end 

  
for output_choice = 1:1 
    clearvars -except V_neg V_pos A_neg A_pos output_choice file_list 

  
    i = round((resolution_rounding(A_pos,0.1) - 

resolution_rounding(A_neg,0.1))/0.1 + 1); 
    j = round((resolution_rounding(V_pos,0.5) - 

resolution_rounding(V_neg,0.5))/0.5 + 1); 

  
    Inputs = zeros(i,j,3,length(file_list)); 
    Outputs = zeros(length(file_list),1); 
    distance = zeros(length(file_list),1);%%% 
    engine = zeros(length(file_list),1);%%% 

  
%     output_choice = input('Choice of CNN output (1-4): '); 
%     fprintf('\n') 

  
    for cycle = 1:length(file_list) 
        %% CNN Input Preprocessing %% 

  
        cycle_data = 

['..\drive_cycles_advisor_results_equal_num_1_0L_PB25\',file_list(cycle).name

]; 
        load(cycle_data) 

  
        engine_on = 0; 
        distance(cycle) = trapz(drive_cycle(:,1),(drive_cycle(:,2)/3600));%%% 
        Inputs(:,:,:,cycle) = Inputs(:,:,:,cycle) + Initial_SOC; 
        if output_choice ~= 5 
            Outputs(cycle) = results(output_choice); 
        else 
            Outputs(cycle) = max(gal); 
        end 

  
        rounded_vel = resolution_rounding(drive_cycle(:,2),0.5); 
        rounded_accel = resolution_rounding(drive_cycle(:,3),0.1); 

  
        section = 1; 
        prev_layer = 0; 
        for ii = 1:length(drive_cycle(:,1)) 
            row = round((rounded_accel(ii) - 

resolution_rounding(A_neg,0.1))/0.1 + 1); 
            col = round((rounded_vel(ii) - 

resolution_rounding(V_neg,0.5))/0.5 + 1); 



122 

 

  
            if ii == 1 
                if Section_SOC(section) == 0 
                    layer = 1; 
                else 
                    ratio = 

round((Allowed_SOC(section)/Section_SOC(section)),3);%1 - 

round((Allowed_SOC(section)/Section_SOC(section)),3); 
                    if ratio >= 1%<= 0%>= 1 
                        layer = 3; 
                    elseif (ratio < 1) && (ratio > 0) 
                        layer = 2; 
                    elseif ratio == 0%1%0 
                        layer = 1; 
                    end 
                end 
            else 
                if Matrix(1,ii) ~= Matrix(1,(ii-1)) 
                    section = section + 1; 
                    if Section_SOC(section) == 0 
                        layer = 1; 
                    else 
                        ratio = 

round((Allowed_SOC(section)/Section_SOC(section)),3);%1 - 

round((Allowed_SOC(section)/Section_SOC(section)),3); 
                        if ratio >= 1%<= 0%>= 1 
                            layer = 3; 
                        elseif (ratio < 1) && (ratio > 0) 
                            layer = 2; 
                        elseif ratio == 0%1%0 
                            layer = 1; 
                        end 
                    end 
                end 
            end 

             
            if layer == 1 
                engine_on = engine_on + 1;%%% 
                if prev_layer == 3 
                    Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) 

+ 1; 
                elseif prev_layer == 2 
                    Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) 

+ 1; 
                elseif prev_layer == 1 
                    Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) 

+ 1; 
                end 
            elseif layer == 2 
                engine_on = engine_on + 1;%%% 
                if prev_layer == 3 
                    Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) 

+ (1-ratio); 
                else 
                    Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) 

+ (1-ratio); 



123 

 

                end 
            elseif layer == 3 
                Inputs(row,col,layer,cycle) = Inputs(row,col,layer,cycle) + 

1; 
            end 

             
            prev_layer = layer; 
        end 
        engine(cycle) = (engine_on - length(T_w_sat(:,1))); 
    end 

     
    XTrain = Inputs; 
    YTrain = Outputs; 
    Dist_Train = distance;%%% 

     

    %%%%%%%%% Might Have to take out %%%%%%%%%%% 
    id = 0; 
    if output_choice ~= 1 
        id = find(YTrain == 0); 
        XTrain(:,:,:,id) = []; 
        YTrain(id) = []; 
        Dist_Train(id) = [];%%% 
        engine(id) = []; 
%         temp = find(YTrain > 3); 
%         XTrain(:,:,:,temp) = []; 
%         YTrain(temp) = []; 
%         Dist_Train(temp) = [];%%% 
%         idd = find(Dist_Train < 6);%%% 
%         XTrain(:,:,:,idd) = [];%%% 
%         YTrain(idd) = [];%%% 
%         Dist_Train(idd) = [];%%% 
%         plot(1:length(YTrain),YTrain)%%% 
%         YTrain = YTrain.*Dist_Train;%%% 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%     if output_choice == 3 
% %         XTrain = XTrain(:,:,1:2,:); 
% %         YTrain = ((YTrain - min(YTrain))./(max(YTrain) - min(YTrain))) * 

(4 - 0.05) + 0.05; 
% %         YTrain = ((YTrain - min(YTrain))./(max(YTrain) - min(YTrain))) * 

(2 - 0.03) + 0.03; 
% %         YTrain = ((YTrain - min(YTrain))./(max(YTrain) - min(YTrain))) * 

(10 - 1) + 1; 
% %         YTrain = (YTrain - min(YTrain))./(max(YTrain) - min(YTrain)); 
% %         YTrain = YTrain.^(1/1.5); 
% %         YTrain = YTrain.^(1/2); 
% %         YTrain = YTrain.^(1/3); 
% %         temp = find(YTrain > 25); 
% %         XTrain(:,:,:,temp) = []; 
% %         YTrain(temp) = []; 
% %         YTrain = YTrain/20; 
%     end 

         
    num_test = 0.15; 
    num_val = (1 - num_test)*0.2; 



124 

 

  
    idx = randperm(size(XTrain,4),round(num_test*size(XTrain,4))); 
    XTest = XTrain(:,:,:,idx); 
    XTrain(:,:,:,idx) = []; 
    YTest = YTrain(idx); 
    YTrain(idx) = []; 
    Dist_Test = Dist_Train(idx);%%% 
    Dist_Train(idx) = [];%%% 

  
    idy = randperm(size(XTrain,4),round(num_val*size(XTrain,4))); 
    XValidation = XTrain(:,:,:,idy); 
    XTrain(:,:,:,idy) = []; 
    YValidation = YTrain(idy); 
    YTrain(idy) = []; 
    Dist_Valid = Dist_Train(idy);%%% 
    Dist_Train(idy) = [];%%% 

  
    CNN_Data = ['CNN_New_Data_Output_',num2str(output_choice),'.mat']; 
    

save(CNN_Data,'output_choice','Inputs','Outputs','distance','XTrain','YTrain'

,'Dist_Train', ... 
         

'XValidation','YValidation','Dist_Valid','XTest','YTest','Dist_Test','i','j',

'id', ... 
         'idx','idy','-v7.3') 
End 

 

7.2.2. Training 

close all; clear; clc; 

  
for output_choice = 1:5 

  
    CNN_Data = ['CNN_New_Data_Output_',num2str(output_choice),'.mat']; 
    load(CNN_Data) 
    temp = 0; 

  
    if output_choice ~= 1 
        XTrain = XTrain(:,:,1:2,:); 
        XValidation = XValidation(:,:,1:2,:); 
        XTest = XTest(:,:,1:2,:); 
    end 

  
    k = size(XTrain,3); 

  

  
    TF_CNN = Build_CNN(i,j,k); %#ok<IJCL> 
    options = trainingOptions('adam', ... 
                              'MiniBatchSize',50, ... 
                              'MaxEpochs',1000, ... 
                              'InitialLearnRate',0.0001, ... 
                              'Shuffle','every-epoch', ... 
                              'ValidationData',{XValidation,YValidation}, ... 



125 

 

                              'ValidationFrequency',25, ... 
                              'ValidationPatience',30, ... 
                              'ExecutionEnvironment','gpu', ... 
                              'Verbose',true); 

  
    for i = 1:5 
        [net, info] = trainNetwork(XTrain,YTrain,TF_CNN,options); 
        YPred = round(predict(net,XTest),4); 

  
        rmse = sqrt(mean((YTest - YPred).^2)); 
        fprintf('Root Mean Square Error: %4.2f\n',rmse) 
        avg_error = mean(100*(abs(YTest - YPred)./YTest)); 
        avg_accuracy = 100 - avg_error; 
        fprintf('Average Percent Accuracy: %4.2f\n',avg_accuracy) 

  

        if avg_accuracy > temp 
            file_name = ['Output_',num2str(output_choice),'_Linear.mat']; 
            save(file_name,'-v7.3') 
            temp = avg_accuracy; 
        end 
    end 

     
    clc; 
    clearvars -except output_choice 
end 

  
function TF_CNN = Build_CNN(i,j,k) 
    TF_CNN = layerGraph(); 

  
    tempLayers = [ 
        imageInputLayer([i j k],'Name','CNN_Inputs')%,'Normalization','none') 
        convolution2dLayer(3,3,'Name','Conv2D_1, 3@3x3','Padding','same') 
        reluLayer('Name','relu_1') 
        convolution2dLayer(3,3,'Name','Conv2D_2, 3@3x3','Padding','same') 
        reluLayer('Name','relu_2') 
        maxPooling2dLayer(2,'Name','MaxPool2D_1, 2x2_2','Stride',1) 
        convolution2dLayer(3,6,'Name','Conv2D_1, 6@3x3','Padding','same') 
        reluLayer('Name','relu_3') 
        convolution2dLayer(3,6,'Name','Conv2D_2, 6@3x3','Padding','same') 
        reluLayer('Name','relu_4') 
        maxPooling2dLayer(2,'Name','MaxPool2D_2, 2x2_2','Stride',1) 
        convolution2dLayer(3,6,'Name','Conv2D_1, 6@3x3','Padding','same') 
        reluLayer('Name','relu_5') 
        convolution2dLayer(3,6,'Name','Conv2D_2, 6@3x3','Padding','same') 
        reluLayer('Name','relu_6') 
        maxPooling2dLayer(2,'Name','MaxPool2D_3, 2x2_2','Stride',1) 
        convolution2dLayer(3,12,'Name','Conv2D_3, 12@3x3','Padding','same') 
        reluLayer('Name','relu_7') 
        convolution2dLayer(3,12,'Name','Conv2D_4, 12@3x3','Padding','same') 
        reluLayer('Name','relu_8') 
        maxPooling2dLayer(2,'Name','MaxPool2D_4, 2x2_2','Stride',1) 
        convolution2dLayer(2,12,'Name','Conv2D_5, 12@2x2','Padding','same') 
        reluLayer('Name','relu_9') 
        convolution2dLayer(2,12,'Name','Conv2D_6, 12@2x2','Padding','same') 
        reluLayer('Name','relu_10') 
        maxPooling2dLayer(2,'Name','MaxPool2D_5, 2x2_2','Stride',1) 



126 

 

        FlatteningLayer('Input Vector') 
        fullyConnectedLayer(512,'Name','Fully Connected_1') 
        reluLayer('Name','Output relu_1') 
        fullyConnectedLayer(256,'Name','Fully Connected_2') 
        reluLayer('Name','Output relu_2') 
        fullyConnectedLayer(1,'Name','Fully Connected_5') 
%         reluLayer('Name','Output relu_5') 
        regressionLayer('Name','regressionoutput')]; 
    TF_CNN = addLayers(TF_CNN,tempLayers); 
end 

 

7.3. Complete Trajectory Forecasting Based Machine Learning Control Strategy  

7.3.1. Original Route Data 

7.3.1.1. Route 1 

 

Figure 57: Original Route 1, 10 miles 



127 

 

7.3.1.2. Route 2 

 

Figure 58: Original Route 2, 20 miles 



128 

 

7.3.1.3. Route 3 

 

Figure 59: Original Route 3, 30 miles 



129 

 

7.3.1.4. Route 4 

 

Figure 60: Original Route 4, 40 miles 



130 

 

7.3.1.5. Route 5 

 

Figure 61: Original Route 5, 50 miles 



131 

 

7.3.1.6. Route 6 

 

Figure 62: Original Route 6, 60 miles 

7.3.2. MATLAB Code 

for result = 1:5 
    close all; clearvars -except result; clc; 

     
    for route_num = 1:6 
        while 1 
            close all; clearvars -except route_num result; clc; 

  
            %% Initial Test Variables %% 
            %%% Choice of Vehicle and Output Parameters %%% 
            engine = '1_0'; 
            battery = 28; 
    %         result = input('Choose 1 (MPGGE), 2 (HC), 3 (CO), 4 (NOx), or 5 

(gal) parameter: '); 
            clc;  

  
            switch result 
                case 1 
                    output_choice = 1; 
                    output_name = 'MPGGE'; 



132 

 

                case 2 
                    output_choice = 2; 
                    output_name = 'HC'; 
                case 3 
                    output_choice = 3; 
                    output_name = 'CO'; 
                case 4 
                    output_choice = 4; 
                    output_name = 'NOx'; 
                case 5 
                    output_choice = 5; 
                    output_name = 'gal'; 
            end 

  
            switch battery 
                case 25 
                    SOC_ratio = 0.0319; 
                case 28 
                    SOC_ratio = 0.0288; 
            end 

             
            advisor_net = ['../CNN 2 - Main network, ',engine,'L 

PB',num2str(battery),'/CNN_',output_name,'.mat']; 
            load(advisor_net,'net') 

                         
            route.test_variables.engine = engine; 
            route.test_variables.battery = battery; 
            route.test_variables.output_choice = output_choice; 
            route.test_variables.output_name = output_name; 
            route.test_variables.SOC_ratio = SOC_ratio; 
            route.test_variables.advisor_cnn = net; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %% Original Route %% 
            %%% Choosing and Creating Route %%% 
    %         route_num = input('Drive Cycle to Test, 1 (10 miles), 2 (20 

miles), 3 (30 miles), 4 (40 miles), 5 (50 miles), 6 (60 miles): '); 

  
            switch route_num 
                case 1 
                    dist = 10; 
                    speed_lim_per = [1 5 25 40 28 1]/100; 
                    speed_lim_cond = [1 2 4 5 3 1]; 
                    traffic_per = [12.5 20 15 10 17.5 10 15]/100; 
                    traffic_cond = [1 2 1 3 1 2 1]; 
                case 2 
                    dist = 20; 
                    speed_lim_per = [2.5 15 15 32.5 27.5 7.5 2.5]/100; 
                    speed_lim_cond = [1 3 5 6 5 2 1]; 
                    traffic_per = [5 10 20 15 10 15 10 15]/100; 
                    traffic_cond = [1 1 2 1 2 1 1 1]; 
                case 3 
                    dist = 30; 
                    speed_lim_per = [1 5 15 25 30 23 1]/100; 
                    speed_lim_cond = [1 2 4 6 5 3 1]; 
                    traffic_per = [20 8 25 10 10 7 20]/100; 



133 

 

                    traffic_cond = [1 3 1 2 1 2 1]; 
                case 4 
                    dist = 40; 
                    speed_lim_per = [0.5 7 12 20 1 28 1 22 5 3 0.5]/100; 
                    speed_lim_cond = [1 3 4 5 6 7 6 5 3 2 1]; 
                    traffic_per = [15 10 30 10 35]/100; 
                    traffic_cond = [1 2 1 2 1]; 
                case 5 
                    dist = 50; 
                    speed_lim_per = [0.2 1 9.6 29 2 32 2 22 2 0.2]/100; 
                    speed_lim_cond = [1 2 4 5 6 7 4 3 2 1]; 
                    traffic_per = [25 10 20 5 10 10 5 10 5]/100; 
                    traffic_cond = [1 2 1 2 1 1 2 1 1]; 
                case 6 
                    dist = 60; 
                    speed_lim_per = [0.15 2 5.7 2 25 30 20 8 5 2 0.15]/100; 
                    speed_lim_cond = [1 2 4 5 6 7 6 4 3 2 1]; 
                    traffic_per = [15 5 15 5 30 5 7.5 10 7.5]/100; 
                    traffic_cond = [1 2 1 3 1 2 1 1 1]; 
            end 

  
            while 1 
                if round(sum(speed_lim_per)) ~= 1 
                    disp('Percentages must add to 100%') 
                else 
                    break 
                end 
            end 

  
            while 1 
                if length(speed_lim_cond) ~= length(speed_lim_per) 
                    disp('Number of speed limit conditions must match number 

of speed limit sections') 
                else 
                    break     
                end 
            end 

  
            while 1 
                if round(sum(traffic_per)) ~= 1 
                    disp('Percentages must add to 100%') 
                else 
                    break 
                end 
            end 

  
            while 1 
                if length(traffic_cond) ~= length(traffic_per) 
                    disp('Number of traffic conditions must match number of 

traffic sections') 
                else 
                    break 
                end 
            end 

  
            speed_lim_marker = dist*speed_lim_per; 



134 

 

            for i = 2:length(speed_lim_marker) 
                speed_lim_marker(i) = sum(speed_lim_marker((i-1):i)); 
            end 

  
            traffic_marker = dist*traffic_per; 
            for i = 2:length(traffic_marker) 
                traffic_marker(i) = sum(traffic_marker((i-1):i)); 
            end 

  
            time = 1; 
            speed_count = 1; 
            traffic_count = 1; 
            drive_cycle = zeros(1,2); 

  
            while true 
                if time > 1 
                    if (trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) > 

speed_lim_marker(speed_count)) && (speed_count < length(speed_lim_cond)) 
                        speed_count = speed_count + 1; 
                    end 

  
                    if (trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) > 

traffic_marker(traffic_count)) && (traffic_count < length(traffic_cond)) 
                        traffic_count = traffic_count + 1; 
                    end 

  
                    if trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) > dist 
                        break; 
                    end 
                end 

  
                if speed_lim_cond(speed_count) == 1 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 10; 
                elseif speed_lim_cond(speed_count) == 2 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 15; 
                elseif speed_lim_cond(speed_count) == 3 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 25; 
                elseif speed_lim_cond(speed_count) == 4 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 35; 
                elseif speed_lim_cond(speed_count) == 5 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 45; 
                elseif speed_lim_cond(speed_count) == 6 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 55; 
                elseif speed_lim_cond(speed_count) == 7 
                    drive_cycle((time+1),1) = time; 
                    drive_cycle((time+1),2) = 65; 
                end 

  
                if traffic_cond(traffic_count) == 1 



135 

 

                    drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([95,100],1,1)/100); 
                elseif traffic_cond(traffic_count) == 2 
                    drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([60,65],1,1)/100); 
                elseif traffic_cond(traffic_count) == 3 
                    drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([20,25],1,1)/100); 
                end 

  
                time = time + 1; 
            end 

  
            drive_cycle = [drive_cycle; (drive_cycle(end,1) + 1) 0]; 

%#ok<AGROW> 
            accel = [0; 0.44704*(drive_cycle(2:end,2) - drive_cycle(1:(end-

1),2))]; 
            drive_cycle = [drive_cycle, accel]; %#ok<AGROW> 

  
            route.name = ['Route_',num2str(route_num),'_Data.mat']; 
            route.original_cycle.drive_cycle = drive_cycle; 
            route.original_cycle.distance = dist; 
            route.original_cycle.route_conditions.speed_lim_per = 

speed_lim_per; 
            route.original_cycle.route_conditions.speed_lim_cond = 

speed_lim_cond; 
            route.original_cycle.route_conditions.speed_lim_marker = 

speed_lim_marker; 
            route.original_cycle.route_conditions.traffic_per = traffic_per; 
            route.original_cycle.route_conditions.traffic_cond = 

traffic_cond; 
            route.original_cycle.route_conditions.traffic_marker = 

traffic_marker; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %%% Setting Up Trajectory Forecasting Variables for Advisor %%% 
            

[route.original_cycle.TFF_Setup.Initial_SOC,route.original_cycle.TFF_Setup.SO

C_setting, ... 
             

route.original_cycle.TFF_Setup.Section_SOC,route.original_cycle.TFF_Setup.All

owed_SOC, ... 
             

route.original_cycle.TFF_Setup.Section_Size,route.original_cycle.TFF_Setup.Ma

trix, ... 
             route.original_cycle.TFF_Setup.Section_SOC_Min_Dist, ... 
             route.original_cycle.TFF_Setup.blended_SOC_and_dist] = 

CNN_TFF_Setup(route.original_cycle.drive_cycle, ... 
                                                                                  

route.test_variables.battery,[]); 

  
            save('temp_data.mat','route') 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %%% Running Non-Gui Advisor For Needed Values From Original Cycle 

%%% 



136 

 

            clearvars -except route 

  
            bdclose('all') 
            pause(1) 
            

TF_advisor_func(route.original_cycle.TFF_Setup.Initial_SOC,route.test_variabl

es.engine,route.test_variables.battery); 
            bdclose('all') 
            pause(1) 

  
            load('temp_data.mat') 
            route.advisor_variables.gas_lhv = 42600; 
            route.advisor_variables.gas_dens = 749; 
            route.advisor_variables.fc_fuel_lhv = fc_fuel_lhv; 
            route.advisor_variables.fc_fuel_den = fc_fuel_den; 
            route.advisor_variables.kWhpgal = 33.44; 
            route.advisor_variables.charger_eff = 0.85; 
            route.advisor_variables.ess_tmp = ess_tmp; 
            route.advisor_variables.ess_max_ah_cap = ess_max_ah_cap; 
            route.advisor_variables.ess_module_num =  ess_module_num; 
            route.advisor_variables.ess_coulombic_eff = ess_coulombic_eff; 
            route.advisor_variables.amb_tmp = amb_tmp; 
            route.advisor_variables.ess_soc = ess_soc; 
            route.advisor_variables.ess_voc = ess_voc; 
            route.advisor_variables.ess_r_dis = ess_r_dis; 
            route.advisor_variables.ess_r_chg = ess_r_chg; 
            route.advisor_variables.ess_init_soc = ess_init_soc; 

  
            route.original_cycle.advisor_outputs.t = t; 
            route.original_cycle.advisor_outputs.distance = 

distance*0.000621371; 
            route.original_cycle.advisor_outputs.gal = gal; 
            route.original_cycle.advisor_outputs.emis = emis; 
            route.original_cycle.advisor_outputs.ess_soc_hist = ess_soc_hist; 
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %% Route Update %% 
            clearvars -except route 

  
            %%% Varibales For Route Updates %%% 
            num_update = [1 1 1 2 2 2]; 
            num_update = num_update(str2double(route.name(7))); 
    %         num_update = input('Number of times the route is updated: '); 

fprintf('\n') 

  
            if num_update == 1 
                update_dist = route.original_cycle.distance*0.2; 
            elseif num_update == 2 
                update_dist = route.original_cycle.distance*[0.2 0.4]; 
            end 
    %         while 1 
    %             update_dist = input(['Distances in miles at which updates 

occur within the original ', ... 
    %                                  

num2str(route.original_cycle.distance),' miles: ']); fprintf('\n') 



137 

 

    %             if length(update_dist) ~= num_update 
    %                 disp('Number of update distances does not match the 

number of updates') 
    %             else 
    %                 break 
    %             end 
    %         end 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
            %%% Variables to Take Into Account Traffic In Original Route %%% 
            element = find(route.original_cycle.advisor_outputs.distance >= 

update_dist(1)); 
            route.original_cycle_added_traffic.drive_cycle = 

route.original_cycle.drive_cycle(1:(element(1)-1),1:2); 

             
            section_dist = [update_dist, route.original_cycle.distance]; 
            section_dist = section_dist(2:end) - section_dist(1:(end-1));         
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %%% Compiling Final Driven Cycle Using CNN Chosen Route 

Alternatives %%% 
            route.final_cycle.drive_cycle = []; 
            route.final_cycle.t = 0; 
            route.final_cycle.distance = 0; 
            route.final_cycle.gal = 0; 
            route.final_cycle.emis = 0; 
            route.final_cycle.ess_soc_hist = []; 
            for i = 1:num_update 
                if i == 1 
                    prev_cycle = 'original_cycle'; 
                    temp = find(route.(prev_cycle).advisor_outputs.distance 

>= update_dist(i)); 
                else 
                    prev_cycle = ['cycle_update_',num2str(i-1)]; 
                    temp = find(route.(prev_cycle).advisor_outputs.distance 

>= (update_dist(i) - update_dist(i-1))); 
                end 
                route.final_cycle.drive_cycle = 

[route.final_cycle.drive_cycle; route.(prev_cycle).drive_cycle(1:(temp(1)-

1),2)]; 
                route.(prev_cycle).advisor_outputs.t = 

route.(prev_cycle).advisor_outputs.t(1:temp(1)); 
                route.final_cycle.t = [route.final_cycle.t; 

(route.(prev_cycle).advisor_outputs.t(2:end) + route.final_cycle.t(end))]; 
                route.(prev_cycle).advisor_outputs.distance = 

route.(prev_cycle).advisor_outputs.distance(1:temp(1)); 
                route.final_cycle.distance = route.final_cycle.distance + 

route.(prev_cycle).advisor_outputs.distance(end); 
                route.(prev_cycle).advisor_outputs.gal = 

max(route.(prev_cycle).advisor_outputs.gal(1:temp(1))); 
                route.final_cycle.gal = route.final_cycle.gal + 

route.(prev_cycle).advisor_outputs.gal; 
                route.(prev_cycle).advisor_outputs.emis = 

trapz(route.(prev_cycle).advisor_outputs.t,route.(prev_cycle).advisor_outputs

.emis(1:temp(1),:)); 



138 

 

                route.final_cycle.emis = route.final_cycle.emis + 

route.(prev_cycle).advisor_outputs.emis; 
                route.(prev_cycle).advisor_outputs.ess_soc_hist = 

route.(prev_cycle).advisor_outputs.ess_soc_hist(1:temp(1)); 
                route.final_cycle.ess_soc_hist = 

[route.final_cycle.ess_soc_hist; 

route.(prev_cycle).advisor_outputs.ess_soc_hist(1:(end-1))]; 

  
                cycle = ['cycle_update_',num2str(i)]; 
                route.(cycle).TFF_Setup.Initial_SOC = 

route.(prev_cycle).advisor_outputs.ess_soc_hist(temp(1)); 

  
                %%% Creating and Choosing Route Alternatives Based On 

Changing Traffic and Update Location %%% 
                emis_gal = 1000; 
                MPGGE = 0; 
                alternative = 0; 
                while alternative < 3 
                    alternative = alternative + 1; 
    %             for alternative = 1:3 
                    new_dist = route.original_cycle.distance - 

update_dist(i); 
                    speed_lim_marker_update = 

route.original_cycle.route_conditions.speed_lim_marker(route.original_cycle.r

oute_conditions.speed_lim_marker > update_dist(i)) - update_dist(i); 
                    speed_lim_cond_update = 

route.original_cycle.route_conditions.speed_lim_cond((length(route.original_c

ycle.route_conditions.speed_lim_cond)-

length(speed_lim_marker_update)+1):end); 
                    traffic_marker_update = 

route.original_cycle.route_conditions.traffic_marker(route.original_cycle.rou

te_conditions.traffic_marker > update_dist(i)) - update_dist(i); 
                    traffic_cond_update = 

route.original_cycle.route_conditions.traffic_cond((length(route.original_cyc

le.route_conditions.traffic_cond)-length(traffic_marker_update)+1):end) + ... 
                                          randi([(2-

alternative),2],1,length(traffic_marker_update)); 
                    traffic_cond_update(traffic_cond_update > 3) = 3; 
                    traffic_cond_update(traffic_cond_update < 1) = 1; 

  
                    time = 0; 
                    speed_count = 1; 
                    traffic_count = 1; 
                    drive_cycle = zeros(1,2); 

  
                    while true 
                        if time > 1 
                            if (trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) 

> speed_lim_marker_update(speed_count)) && (speed_count < 

length(speed_lim_cond_update)) 
                                speed_count = speed_count + 1; 
                            end 

  
                            if (trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) 

> traffic_marker_update(traffic_count)) && (traffic_count < 

length(traffic_cond_update)) 



139 

 

                                traffic_count = traffic_count + 1; 
                            end 

  
                            if trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) 

>= new_dist 
                                break; 
                            end 
                        end 

  
                        if speed_lim_cond_update(speed_count) == 1 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 10; 
                        elseif speed_lim_cond_update(speed_count) == 2 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 15; 
                        elseif speed_lim_cond_update(speed_count) == 3 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 25; 
                        elseif speed_lim_cond_update(speed_count) == 4 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 35; 
                        elseif speed_lim_cond_update(speed_count) == 5 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 45; 
                        elseif speed_lim_cond_update(speed_count) == 6 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 55; 
                        elseif speed_lim_cond_update(speed_count) == 7 
                            drive_cycle((time+1),1) = time; 
                            drive_cycle((time+1),2) = 65; 
                        end 

  
                        if traffic_cond_update(traffic_count) == 1 
                            drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([95,100],1,1)/100); 
                        elseif traffic_cond_update(traffic_count) == 2 
                            drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([60,65],1,1)/100); 
                        elseif traffic_cond_update(traffic_count) == 3 
                            drive_cycle((time+1),2) = 

drive_cycle((time+1),2)*(randi([20,25],1,1)/100); 
                        end 

  
                        if (time == 0) && (alternative == 1) 
                            original_cycle_added_traffic = 

[(route.original_cycle_added_traffic.drive_cycle(end,1) + 1), 

drive_cycle(end,2)]; 
                        elseif (time > 0) && 

(trapz(drive_cycle(:,1),drive_cycle(:,2)/3600) < section_dist(i)) && 

(alternative == 1) 
                            original_cycle_added_traffic = 

[original_cycle_added_traffic; (original_cycle_added_traffic(end,1) + 1), 

drive_cycle(end,2)]; %#ok<AGROW> 
                        end 

  
                        time = time + 1; 



140 

 

                    end 

  
                    if (i == num_update) && (alternative == 1) 
                        original_cycle_added_traffic = 

[original_cycle_added_traffic; (original_cycle_added_traffic(end,1) + 1) 0]; 

%#ok<AGROW> 
    %                     accel = [0; 

0.44704*(route.original_cycle_added_traffic.drive_cycle(2:end,2) - 

route.original_cycle_added_traffic.drive_cycle(1:(end-1),2))]; 
    %                     route.original_cycle_added_traffic.drive_cycle = 

[route.original_cycle_added_traffic.drive_cycle, accel]; 
    %                     clearvars accel; 
                    end 

  
                    drive_cycle = [drive_cycle; (drive_cycle(end,1) + 1) 0]; 

%#ok<AGROW> 
                    accel = [0; 0.44704*(drive_cycle(2:end,2) - 

drive_cycle(1:(end-1),2))]; 
                    drive_cycle = [drive_cycle, accel]; %#ok<AGROW> 

  
                    [~,SOC_setting,Section_SOC,Allowed_SOC,~,Matrix,~,~] = 

CNN_TFF_Setup(drive_cycle, ... 
                                                                                         

route.test_variables.battery, ... 
                                                                                         

route.(cycle).TFF_Setup.Initial_SOC); 

  
                    if (route.test_variables.output_choice ~= 1) && 

(((route.(cycle).TFF_Setup.Initial_SOC - 0.25)/new_dist) >= 

route.test_variables.SOC_ratio) && (SOC_setting == 1) 
                        Output = 0; 
                    else 
                        CNN_Input = 

CNN_Data_Preprocessing(drive_cycle,route.(cycle).TFF_Setup.Initial_SOC, ... 
                                                           

Matrix,Section_SOC,Allowed_SOC, ... 
                                                           

route.test_variables.output_choice); 
                        Output = 

round(predict(route.test_variables.advisor_cnn,CNN_Input),4); 
                    end 

  
                    file_name = [route.test_variables.output_name,'/Route 

',route.name(7),'/', ... 
                                 

route.name(1:7),'_Update_',num2str(i),'_Alternative_',num2str(alternative),'.

mat']; 
                    Bat = route.test_variables.battery; 
                    IS = route.(cycle).TFF_Setup.Initial_SOC; 
                    OC = route.test_variables.output_choice; 
                    save(file_name,'drive_cycle','Bat','IS','OC','Output') 

  
                    if route.test_variables.output_choice ~= 1 && Output < 

emis_gal 
                        emis_gal = Output; 
                        route.(cycle).alternative = alternative; 



141 

 

                        route.(cycle).drive_cycle = []; 
                        route.(cycle).drive_cycle = drive_cycle; 
                        route.(cycle).route_conditions.speed_lim_cond = []; 
                        route.(cycle).route_conditions.speed_lim_cond = 

speed_lim_cond_update; 
                        route.(cycle).route_conditions.speed_lim_marker = []; 
                        route.(cycle).route_conditions.speed_lim_marker = 

speed_lim_marker_update; 
                        route.(cycle).route_conditions.traffic_cond = []; 
                        route.(cycle).route_conditions.traffic_cond = 

traffic_cond_update; 
                        route.(cycle).route_conditions.traffic_marker = []; 
                        route.(cycle).route_conditions.traffic_marker = 

traffic_marker_update; 
                    elseif route.test_variables.output_choice == 1 && Output 

> MPGGE 
                        MPGGE = Output; 
                        route.(cycle).alternative = alternative; 
                        route.(cycle).drive_cycle = []; 
                        route.(cycle).drive_cycle = drive_cycle; 
                        route.(cycle).route_conditions.speed_lim_cond = []; 
                        route.(cycle).route_conditions.speed_lim_cond = 

speed_lim_cond_update; 
                        route.(cycle).route_conditions.speed_lim_marker = []; 
                        route.(cycle).route_conditions.speed_lim_marker = 

speed_lim_marker_update; 
                        route.(cycle).route_conditions.traffic_cond = []; 
                        route.(cycle).route_conditions.traffic_cond = 

traffic_cond_update; 
                        route.(cycle).route_conditions.traffic_marker = []; 
                        route.(cycle).route_conditions.traffic_marker = 

traffic_marker_update; 
                    elseif (alternative == 3) && (emis_gal == 1000) && (MPGGE 

== 0) 
                        alternative = 0;                                                                         
                    end 
                end 

                 
                route.original_cycle_added_traffic.drive_cycle = 

[route.original_cycle_added_traffic.drive_cycle; 

original_cycle_added_traffic]; 
                if i == num_update 
                    accel = [0; 

0.44704*(route.original_cycle_added_traffic.drive_cycle(2:end,2) - 

route.original_cycle_added_traffic.drive_cycle(1:(end-1),2))]; 
                    route.original_cycle_added_traffic.drive_cycle = 

[route.original_cycle_added_traffic.drive_cycle, accel]; 
                end 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

  
                %%% Setting Up and Running TF in Advisor For Chosen Route 

Alternative %%% 
                [~,route.(cycle).TFF_Setup.SOC_setting, ... 



142 

 

                 

route.(cycle).TFF_Setup.Section_SOC,route.(cycle).TFF_Setup.Allowed_SOC, ... 
                 

route.(cycle).TFF_Setup.Section_Size,route.(cycle).TFF_Setup.Matrix, ... 
                 route.(cycle).TFF_Setup.Section_SOC_Min_Dist, ... 
                 route.(cycle).TFF_Setup.blended_SOC_and_dist] = 

CNN_TFF_Setup(route.(cycle).drive_cycle, ... 
                                                                               

route.test_variables.battery, ... 
                                                                               

route.(cycle).TFF_Setup.Initial_SOC); 

  
                

save('Route_Update_Params.mat','route','i','num_update','update_dist','prev_c

ycle','cycle','section_dist') 
                clearvars -except route prev_cycle cycle 
                bdclose('all') 
                pause(1) 
                

TF_advisor_func(route.(cycle).TFF_Setup.Initial_SOC,route.test_variables.engi

ne,route.test_variables.battery); 
                bdclose('all') 
                pause(1) 

  
                clearvars -except t distance gal emis ess_soc_hist 
                load('Route_Update_Params.mat') 
                route.(cycle).advisor_outputs.t = t; 
                route.(cycle).advisor_outputs.distance = 

distance*0.000621371; 
                route.(cycle).advisor_outputs.gal = gal; 
                route.(cycle).advisor_outputs.emis = emis; 
                route.(cycle).advisor_outputs.ess_soc_hist = ess_soc_hist; 

  
                if i == num_update 
                    route.final_cycle.drive_cycle = 

[route.final_cycle.drive_cycle; route.(cycle).drive_cycle(:,2)]; 
                    route.final_cycle.drive_cycle = 

[(0:(length(route.final_cycle.drive_cycle)-1))', 

route.final_cycle.drive_cycle]; 
                    accel = [0; 

0.44704*(route.final_cycle.drive_cycle(2:end,2) - 

route.final_cycle.drive_cycle(1:(end-1),2))]; 
                    route.final_cycle.drive_cycle = 

[route.final_cycle.drive_cycle, accel]; 
                    route.final_cycle.t = [route.final_cycle.t; 

(route.(cycle).advisor_outputs.t(2:end) + route.final_cycle.t(end))]; 
                    route.final_cycle.distance = route.final_cycle.distance + 

route.(cycle).advisor_outputs.distance(end); 
                    route.(cycle).advisor_outputs.gal = 

max(route.(cycle).advisor_outputs.gal); 
                    route.final_cycle.gal = route.final_cycle.gal + 

route.(cycle).advisor_outputs.gal; 
                    route.(cycle).advisor_outputs.emis = 

trapz(route.(cycle).advisor_outputs.t,route.(cycle).advisor_outputs.emis); 
                    route.final_cycle.emis = route.final_cycle.emis + 

route.(cycle).advisor_outputs.emis; 



143 

 

                    route.final_cycle.ess_soc_hist = 

[route.final_cycle.ess_soc_hist; route.(cycle).advisor_outputs.ess_soc_hist]; 
                end 
                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            end 
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %%% Running Recharge Sim to Calculate MPGGE %%% 
            save('temp_data.mat','route') 
            if (exist('C:\Users\Joseph\Documents\MATLAB\Sim 

Cache\slprj','dir') ~= 0) 
                rmdir('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','s') 
                delete('C:\Users\Joseph\Documents\MATLAB\Sim Cache\*') 
            end 

  
            sim('recharge_kWh',100000) 
            route.final_cycle.MPGGE = 

route.final_cycle.distance/(route.final_cycle.gal/(route.advisor_variables.ga

s_lhv/route.advisor_variables.fc_fuel_lhv*route.advisor_variables.gas_dens/ro

ute.advisor_variables.fc_fuel_den) + ... 
                                      

recharge_kWh/route.advisor_variables.charger_eff/route.advisor_variables.kWhp

gal); 
            route.final_cycle.CNN_TF_Outputs = 

[route.final_cycle.MPGGE,(route.final_cycle.emis(1:(end-

1))/route.final_cycle.distance),route.final_cycle.gal]; 
            save('temp_data.mat','route') 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
            %% CS and CD Results Comparison %% 
            %%% Running CS and CD Strategy For Traffic Filled Original Cycle 

%%%  
            clearvars -except route 

  
            Slope_Option = 2; 
            cyc_mph = route.original_cycle_added_traffic.drive_cycle(:,1:2); 
            

save('..\..\..\..\advisor\data\drive_cycle\CYC_TrajFore_Fuz.mat','cyc_mph','S

lope_Option') 

  
            bdclose('all') 
            pause(1) 
            CS_outputs = 

CS_advisor_func(route.advisor_variables.ess_init_soc,route.test_variables.eng

ine,route.test_variables.battery); 
            bdclose('all') 
            pause(1) 
            load('temp_data.mat') 
            route.final_cycle.CS_Outputs = [CS_outputs, max(gal)]; 
            clearvars -except route 
            save('temp_data.mat','route') 

  
            bdclose('all') 
            pause(1) 



144 

 

            CD_outputs = 

CD_advisor_func(route.advisor_variables.ess_init_soc,route.test_variables.eng

ine,route.test_variables.battery); 
            bdclose('all') 
            pause(1) 
            load('temp_data.mat') 
            route.final_cycle.CD_Outputs = [CD_outputs, max(gal)]; 
            clearvars -except route 

  
            result = route.test_variables.output_choice; 
            route_num = str2double(route.name(7)); 
            if (result == 1) && (route.final_cycle.CNN_TF_Outputs(result) >= 

route.final_cycle.CS_Outputs(result)) && ... 
               (route.final_cycle.CNN_TF_Outputs(result) >= 

route.final_cycle.CD_Outputs(result)) 
                file_name = [route.test_variables.output_name,'/Route 

',route.name(7),'/',route.name]; 
                save(file_name,'route') 
                break; 
            elseif (result ~= 1) && (route.final_cycle.CNN_TF_Outputs(result) 

<= route.final_cycle.CS_Outputs(result)) && ... 
                   (route.final_cycle.CNN_TF_Outputs(result) <= 

route.final_cycle.CD_Outputs(result)) 
                file_name = [route.test_variables.output_name,'/Route 

',route.name(7),'/',route.name]; 
                save(file_name,'route') 
                break; 
            end 
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        end 
    end 
end 

  
close all; clear; clc 
%% Function Calls %% 
function [Initial_SOC,SOC_setting,Section_SOC,Allowed_SOC, ... 
          Section_Size,Matrix,Section_SOC_Min_Dist, ... 
          blended_SOC_and_dist] = 

CNN_TFF_Setup(drive_cycle,battery,Initial_SOC) 
    if battery == 25 
        Ah_Cap = 25; 
    elseif battery == 28 
        Ah_Cap = 28; 
    end 

  
    %% Path Identifier Version 5 %% 
    Slope_Option = 2; 
    cyc_mph = drive_cycle(:,1:2); 
    

save('..\..\..\..\advisor\data\drive_cycle\CYC_TrajFore_Fuz.mat','cyc_mph','S

lope_Option') 

  
    interval_distance = zeros(1,length(cyc_mph(:,1))-1); 
    for i = 2:length(cyc_mph(:,1)) 



145 

 

        interval_distance(i-1) = trapz(cyc_mph((i-1):i,1),cyc_mph((i-

1):i,2)/3600); 
    end 
    total_distance = sum(interval_distance); 

  
    Max_SOC = 0.8; 
    Lowest_SOC = 0.25; 

  
    if isempty(Initial_SOC) == 1 
        Initial_SOC = 0.8; 

         
        if total_distance < 5 
            Initial_SOC = 0.40; 
        elseif total_distance < 10 
            Initial_SOC = 0.50; 
        elseif total_distance < 25 
            Initial_SOC = 0.60; 
        elseif total_distance < 40 
            Initial_SOC = 0.70; 
        end 
    end 

  
    Matrix = zeros(2,length(cyc_mph(:,1))); % [Priority; SOC] 

  
    for i = 1:length(cyc_mph(:,2)) 
        if cyc_mph(i,2) <= 25 
            Matrix(1,i) = 3; 
        elseif (cyc_mph(i,2) > 25) && (cyc_mph(i,2) < 55) 
            Matrix(1,i) = 2; 
        elseif (cyc_mph(i,2) >= 55) 
            Matrix(1,i) = 1; 
        end 
    end 

  
    %%Calculating Section Size and Distance 
    Section_Size = 0; 
    Section_Dist = 0; 

  
    j = 0; 
    for i = 2:length(Matrix(1,:)) 
        if Matrix(1,i) == Matrix(1,i-1) 
            j = j + 1; 
            Section_Dist(end) = Section_Dist(end) + interval_distance(i-1); 
        else 
            Section_Size = [Section_Size, j]; %#ok<AGROW> 
            Section_Dist = [Section_Dist, interval_distance(i-1)]; 

%#ok<AGROW> 
            j = 1; 
        end 
    end 

  
    if j == (length(Matrix(1,:)) - 1) 
        Section_Size = j; 
    else 
        Section_Size = [Section_Size(2:end), (i-sum(Section_Size)-1)]; 



146 

 

    end 

  
            %%SOC Needed per Section 
        ampHrs_per_Segment = zeros(1,length(cyc_mph(:,1))-1); 
        %%%%%%%%%%%%%%%%%% 
        for i = 2:length(cyc_mph(:,1)) 
            if Matrix(1,i) == 3 %SOC equation for priority 3 
                    ampHrs_per_Segment(i-1) = interval_distance(i-

1)*0.87*(0.0198*cyc_mph(i,2) + 0.1689); 
            elseif Matrix(1,i) == 2 %SOC equation for priority 2 
                    ampHrs_per_Segment(i-1) = interval_distance(i-

1)*0.42*(0.0198*cyc_mph(i,2) + 0.1689); 
            elseif Matrix(1,i) == 1 %SOC equation for priority 1 
                    ampHrs_per_Segment(i-1) = interval_distance(i-

1)*0.34*(0.0198*cyc_mph(i,2) + 0.1689); 
            end 
        end 
        %%%%%%%%%%%%%%%%%%%%% 

  
        Section_AmpHrs = zeros(size(Section_Size)); 

  
        for i = 1:length(Section_AmpHrs) 
            if i == 1 
                Section_AmpHrs(i) = 

sum(ampHrs_per_Segment(1:Section_Size(i))); 
            else 
                Section_AmpHrs(i) = 

sum(ampHrs_per_Segment((1+sum(Section_Size(1:(i-

1)))):sum(Section_Size(1:i)))); 
            end 
        end 

  
        if Bat_Type == 1 
            Section_SOC = Section_AmpHrs/(Ah_Cap*0.55); 
        else 
            Section_SOC = Section_AmpHrs/Ah_Cap; 
        end 

  
    %%Sorting Sections by Priority and Length 
    Section_Priority = zeros(size(Section_Size)); 

  
    for i = 1:length(Section_Size) 
        Section_Priority(i) = Matrix(1,(1+sum(Section_Size(1:i)))); 
    end 

  
    Section_Sort = [Section_Priority; Section_Dist; Section_SOC]'; 
    [Section_Sort,index] = sortrows(Section_Sort,'descend'); 

  
    %%Setting Section SOC_min 
    Section_SOC_Mins = zeros(1,length(index)); 
    if Initial_SOC == Max_SOC 
        Initial_SOC = Initial_SOC - 0.005; 
    end 

  
    allowed_SOC = Initial_SOC - Lowest_SOC; 



147 

 

  
    %%% Determine settings for determining sections' SOC_Min 
    if allowed_SOC >= (round(sum(Section_Sort(:,3)),3) - 0.125) %Enough for 

whole route in all electric mode; launch speed that includes all section 

speeds 
        SOC_setting = 1; 
    else 
        k_EV = length(find(Section_Sort(:,1) == 3)); 
        k_Bl = length(find(Section_Sort(:,1) == 2)); 
        if (allowed_SOC < (round(sum(Section_Sort(:,3)),3)) - 0.125) && 

(allowed_SOC >= round(sum(Section_Sort(1:(k_EV+k_Bl),3)),3)) %Enough for EV 

and Blended suggested sections in all electric mode; launch speed that 

includes EV and Blended section speeds 
            SOC_setting = 2; 
        elseif (allowed_SOC < round(sum(Section_Sort(1:(k_EV+k_Bl),3)),3)) && 

(allowed_SOC >= round(sum(Section_Sort(1:k_EV,3)),3)) %Enough for just EV 

suggested sections in all eletric mode; launch speed that includes EV section 

speeds 
            SOC_setting = 3; 
        elseif allowed_SOC < round(sum(Section_Sort(1:k_EV,3)),3) %SOC will 

run out in the EV suggested sections; launch speed that includes EV section 

speeds 
            SOC_setting = 4; 
        end 
    end 

  

  
    %%% Different SOC settings for choosing SOC_Min values 
    if SOC_setting == 1 
        flip_index = fliplr(index'); 

  
        for i = 1:(length(Section_SOC_Mins) - 1) 
            if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
                Section_SOC_Mins(flip_index(i)) = 0; 
            else 
                Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
                allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
            end 
        end 

  
        Section_SOC_Mins(index(1)) = allowed_SOC; 
        Allowed_SOC = Section_SOC_Mins; 

  
        Section_SOC_Mins = Lowest_SOC*ones(size(Section_SOC_Mins)); 

  
    elseif SOC_setting == 2 
        flip_index = fliplr(index'); 

  
        for i = 1:(length(Section_SOC_Mins) - 1) 
            if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
                Section_SOC_Mins(flip_index(i)) = 0; 
            else 
                Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 



148 

 

                allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
            end 
        end 

  
        Section_SOC_Mins(index(1)) = allowed_SOC; 
        residual = sum(Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end)))); 
        blend_ratios = 

Section_Dist(sort(index((k_EV+k_Bl+1):end)))/sum(Section_Dist(sort(index((k_E

V+k_Bl+1):end)))); 
        Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end))) = 

residual*blend_ratios; 
        Allowed_SOC = Section_SOC_Mins; 

  
        for i = 1:length(Section_SOC_Mins) 
            if i == 1 
                Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
            else 
                Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 
            end 
        end 

         
        blended_Section_SOC_Mins = 

Section_SOC_Mins(sort(index((k_EV+k_Bl+1):end))); 
        blended_Section_distances = 

Section_Dist(sort(index((k_EV+k_Bl+1):end))); 

         
    elseif SOC_setting == 3 
        flip_index = fliplr(index'); 

  
        for i = 1:(length(Section_SOC_Mins) - 1) 
            if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
                Section_SOC_Mins(flip_index(i)) = 0; 
            else 
                Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
                allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
            end 
        end 

  
        Section_SOC_Mins(index(1)) = allowed_SOC; 
        residual = sum(Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl))))); 
        blend_ratios =  

Section_Dist(sort(index((k_EV+1):(k_EV+k_Bl))))/sum(Section_Dist(sort(index((

k_EV+1):(k_EV+k_Bl))))); 
        Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl)))) = 

residual*blend_ratios; 
        Allowed_SOC = Section_SOC_Mins; 

  
        for i = 1:length(Section_SOC_Mins) 
            if i == 1 
                Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
            else 
                Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 



149 

 

            end 
        end 

         
        blended_Section_SOC_Mins = 

Section_SOC_Mins(sort(index((k_EV+1):(k_EV+k_Bl)))); 
        blended_Section_distances = 

Section_Dist(sort(index((k_EV+1):(k_EV+k_Bl)))); 

  
    elseif SOC_setting == 4 
        flip_index = fliplr(index'); 

  
        for i = 1:(length(Section_SOC_Mins) - 1) 
            if (allowed_SOC - sum(Section_SOC(index(1:(end-i))))) <= 0 
                Section_SOC_Mins(flip_index(i)) = 0; 
            else 
                Section_SOC_Mins(flip_index(i)) = allowed_SOC - 

sum(Section_SOC(index(1:(end-i)))); 
                allowed_SOC = sum(Section_SOC(index(1:(end-i)))); 
            end 
        end 

  
        Section_SOC_Mins(index(1)) = allowed_SOC; 
        Allowed_SOC = Section_SOC_Mins; 

  
        for i = 1:length(Section_SOC_Mins) 
            if i == 1 
                Section_SOC_Mins(i) = Initial_SOC - Section_SOC_Mins(i); 
            else 
                Section_SOC_Mins(i) = Section_SOC_Mins(i-1) - 

Section_SOC_Mins(i); 
            end 
        end 

  
    end 

  
    %%SOC Throughout Route 
    SOC_Mins = zeros(1,(length(cyc_mph(:,1))-1)); 
    j = 1 + length(Section_SOC_Mins); 

  
    for i = 1:length(Section_SOC_Mins) 
        if i == 1 
            SOC_Mins(1:Section_Size(i)) = 

Section_SOC_Mins(i)*ones(1,Section_Size(i)); 
        else 
            SOC_Mins((1+sum(Section_Size(1:(i-1)))):sum(Section_Size(1:i))) = 

Section_SOC_Mins(i)*ones(1,Section_Size(i)); 
        end  
    end 

  
    SOC_Mins = [SOC_Mins(1) SOC_Mins]; 
    Matrix(2,:) = SOC_Mins; 
    Section_SOC_Min_Dist = [Section_SOC_Mins; Section_Dist]; 

  
    if SOC_setting == 1 || SOC_setting == 4 
        blended_SOC_and_dist = [0;0]; 



150 

 

    else 
        blended_SOC_and_dist = [blended_Section_SOC_Mins; 

blended_Section_distances]; 
    end 

     
    

save('..\..\..\..\advisor\models\Traj_Fore_Fuzzy_SOC_Variables.mat','Section_

SOC_Min_Dist', ... 
         'Matrix','SOC_setting','blended_SOC_and_dist') 
end 

  
function outputs = TF_advisor_func(Initial_SOC,engine,battery) 
    if (exist('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','dir') ~= 0) 
        rmdir('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','s') 
        delete('C:\Users\Joseph\Documents\MATLAB\Sim Cache\*') 
    end 

  
    if Initial_SOC == 0.7950 
        Initial_SOC = 0.8; 
    end 
    

input.init.saved_veh_file=['PARALLEL_TF_FUZ_defaults_',engine,'L_PB',num2str(

battery),'_in']; 
    [~,~]=adv_no_gui('initialize',input); 
    input.modify.param={'ess_init_soc'}; 
    input.modify.value={Initial_SOC}; 
    [~,~]=adv_no_gui('modify',input); 
    input.cycle.param = {'cycle.name','cycle.soc'}; 
    input.cycle.value={'CYC_TrajFore_Fuz','off'}; 
    [~,b]=adv_no_gui('drive_cycle',input); 

     
    if ~isempty(b) 
        outputs = [b.cycle.MPGGE, b.cycle.hc_gpm, b.cycle.co_gpm, 

b.cycle.nox_gpm]; 
    else 
        outputs = []; 
    end 
end 

  
function Input = 

CNN_Data_Preprocessing(drive_cycle,Initial_SOC,Matrix,Section_SOC, ... 
                                        Allowed_SOC,output_choice) 
    load('Input_Boundaries.mat','V_neg','V_pos','A_neg','A_pos'); 

  
    i = round((resolution_rounding(A_pos,0.1) - 

resolution_rounding(A_neg,0.1))/0.1 + 1); 
    j = round((resolution_rounding(V_pos,0.5) - 

resolution_rounding(V_neg,0.5))/0.5 + 1); 

  
    Input = zeros(i,j,3); 
    Input(:,:,:) = Input(:,:,:) + Initial_SOC; 

  
    rounded_vel = resolution_rounding(drive_cycle(:,2),0.5); 
    rounded_accel = resolution_rounding(drive_cycle(:,3),0.1); 

  



151 

 

    section = 1; 
    prev_layer = 0; 
    for ii = 1:length(drive_cycle(:,1)) 
        row = round((rounded_accel(ii) - resolution_rounding(A_neg,0.1))/0.1 

+ 1); 
        if row <= 0 
            row = 1; 
        elseif row > i 
            row = i; 
        end 

         
        col = round((rounded_vel(ii) - resolution_rounding(V_neg,0.5))/0.5 + 

1); 
        if col <= 0 
            col = 1; 
        elseif col > j 
            col = j; 
        end 

  
        if ii == 1 
            if Section_SOC(section) == 0 
                layer = 1; 
            else 
                ratio = 

round((Allowed_SOC(section)/Section_SOC(section)),3);%1 - 

round((Allowed_SOC(section)/Section_SOC(section)),3); 
                if ratio >= 1%<= 0%>= 1 
                    layer = 3; 
                elseif (ratio < 1) && (ratio > 0) 
                    layer = 2; 
                elseif ratio == 0%1%0 
                    layer = 1; 
                elseif ratio < 0 
                    layer = 3; 
                end 
            end 
        else 
            if Matrix(1,ii) ~= Matrix(1,(ii-1)) 
                section = section + 1; 
                if Section_SOC(section) == 0 
                    layer = 1; 
                else 
                    ratio = 

round((Allowed_SOC(section)/Section_SOC(section)),3);%1 - 

round((Allowed_SOC(section)/Section_SOC(section)),3); 
                    if ratio >= 1%<= 0%>= 1 
                        layer = 3; 
                    elseif (ratio < 1) && (ratio > 0) 
                        layer = 2; 
                    elseif ratio == 0%1%0 
                        layer = 1; 
                    elseif ratio < 0 
                        layer = 3; 
                    end 
                end 
            end 



152 

 

        end 

  
        if layer == 1 
            if prev_layer == 3 
                Input(row,col,layer) = Input(row,col,layer) + 1; 
            elseif prev_layer == 2 
                Input(row,col,layer) = Input(row,col,layer) + 1; 
            elseif prev_layer == 1 
                Input(row,col,layer) = Input(row,col,layer) + 1; 
            end 
        elseif layer == 2 
            if prev_layer == 3 
                Input(row,col,layer) = Input(row,col,layer) + (1-ratio); 
            else 
                Input(row,col,layer) = Input(row,col,layer) + (1-ratio); 
            end 
        elseif layer == 3 
            if ratio < 0 
                Input(row,col,layer) = Input(row,col,layer) - 1; 
            else 
                Input(row,col,layer) = Input(row,col,layer) + 1; 
            end 
        end 

  
        prev_layer = layer; 
    end 

  
    if output_choice ~= 1 
        Input = Input(:,:,1:2); 
    end 
end 

  
function outputs = CS_advisor_func(Initial_SOC,engine,battery) 
    if (exist('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','dir') ~= 0) 
        rmdir('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','s') 
        delete('C:\Users\Joseph\Documents\MATLAB\Sim Cache\*') 
    end 

  
    if Initial_SOC == 0.7950 
        Initial_SOC = 0.8; 
    end 
    

input.init.saved_veh_file=['PARALLEL_defaults_',engine,'L_PB',num2str(battery

),'_in']; 
    input.init.comp_files.comp={'powertrain_control'}; 
    input.init.comp_files.name={'PTC_PAR_Charge_Sustain'}; 
    input.init.comp_files.ver={'par'}; 
    input.init.comp_files.type={'man'}; 
    [~,~]=adv_no_gui('initialize',input); 
    input.modify.param={'ess_init_soc'}; 
    input.modify.value={Initial_SOC}; 
    [~,~]=adv_no_gui('modify',input); 
    input.cycle.param = {'cycle.name','cycle.soc'}; 
    input.cycle.value={'CYC_TrajFore_Fuz','off'}; 
    [~,b]=adv_no_gui('drive_cycle',input); 

  



153 

 

    if ~isempty(b) 
        outputs = [b.cycle.MPGGE, b.cycle.hc_gpm, b.cycle.co_gpm, 

b.cycle.nox_gpm]; 
    else 
        outputs = []; 
    end 
end 

  
function outputs = CD_advisor_func(Initial_SOC,engine,battery) 
    if (exist('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','dir') ~= 0) 
        rmdir('C:\Users\Joseph\Documents\MATLAB\Sim Cache\slprj','s') 
        delete('C:\Users\Joseph\Documents\MATLAB\Sim Cache\*') 
    end 

  
    if Initial_SOC == 0.7950 
        Initial_SOC = 0.8; 
    end 
    

input.init.saved_veh_file=['PARALLEL_defaults_',engine,'L_PB',num2str(battery

),'_in']; 
    input.init.comp_files.comp={'powertrain_control'}; 
    input.init.comp_files.name={'PTC_PAR_Charge_Deplete'}; 
    input.init.comp_files.ver={'par'}; 
    input.init.comp_files.type={'man'}; 
    [~,~]=adv_no_gui('initialize',input); 
    input.modify.param={'ess_init_soc'}; 
    input.modify.value={Initial_SOC}; 
    [~,~]=adv_no_gui('modify',input); 
    input.cycle.param = {'cycle.name','cycle.soc'}; 
    input.cycle.value={'CYC_TrajFore_Fuz','off'}; 
    [~,b]=adv_no_gui('drive_cycle',input); 

     
    if ~isempty(b) 
        outputs = [b.cycle.MPGGE, b.cycle.hc_gpm, b.cycle.co_gpm, 

b.cycle.nox_gpm]; 
    else 
        outputs = []; 
    end 
end 

 

 




